
Policy-Based Design and Verification for Mission
Assurance?

Shiu-Kai Chin1, Sarah Muccio2, Susan Older1, and Thomas N. J. Vestal2

1 EECS Department, Syracuse University, Syracuse, New York 13244, USA
2 Air Force Research Laboratory, Rome, New York 13441, USA

Abstract. Intelligent systems often operate in a blend of cyberspace
and physical space. Cyberspace operations—planning, actions, and ef-
fects in realms where signals affect intelligent systems—often occur in
milliseconds without human intervention. Decisions and actions in cy-
berspace can affect physical space, particularly in SCADA—supervisory
control and data acquisition—systems. For critical military missions, in-
telligent and autonomous systems must adhere to commander intent and
operate in ways that assure the integrity of mission operations. This pa-
per shows how policy, expressed using an access-control logic, serves as a
bridge between commanders and implementers. We describe an access-
control logic based on a multi-agent propositional modal logic, show how
policies are described, how access decisions are justified, and give ex-
amples of how concepts of operations are analyzed. Our experience is
policy-based design and verification is within the reach of practicing en-
gineers. A logical approach enables engineers to think precisely about the
security and integrity of their systems and the missions they support.
Key words: policy, concept of operations, access control, logic

1 Introduction

Cyber space and physical space are ever more intertwined. Cyber-physical sys-
tems, i.e., systems with tight coordination between computational and physical
resources, operate in these intertwined worlds. Automatic pilots in aircraft and
smart weapons are examples of cyber-physical systems where the capability to
complete Boyd’s observe-orient-decide-act decision loop [1] in milliseconds with-
out human intervention is essential.

For commanders, fulfilling the missions entrusted to them is of paramount
importance. As autonomous cyber and cyber-physical systems have by their very
nature little, if any, human supervision in their decision loops, mission assurance
and mission integrity concerns require that the trustworthiness of these systems
be rigorously established.

A practical concern is how commanders and implementers will communicate
with each other. Commanders operate at the level of policy: what is permitted
and under what circumstances. Implementers are concerned with mechanisms.
Our observation is that commanders and implementers communicate through de-
scriptions of policy and concepts of operation. Our key contribution is a method-
ology for describing policies and trust assumptions within the context of concepts
of operations.

? Distribution Statement A—Approved for Public Release—Distribution Unlimited
Document #88ABW-2010-0819, dated 24 February 2010

P1 says s1

Principal 2

P1 says s1
Jurisdiction statements

Policy statements
Trust assumptions

s2

P2 says s2

Principal 3

P2 says s2
Jurisdiction statements

Policy statements
Trust assumptions

s3

P3 says s3 ...

Fig. 1. Concept of Operations

The remainder of this paper is organized as follows. First, we informally
describe the central elements of policy and concepts of operation that we wish to
describe and justify rigorously. Second, we describe the syntax and semantics of
our access-control logic. Third, we describe a hypothetical concept of operations,
formalize its description, and provide a formal justification for its operations.
Finally, we offer summary remarks and conclusions.

2 Elements of Policy and Concepts of Operation

Policies are principles, guides, contracts, agreements, or statements about deci-
sions, actions, authority, delegation, credentials, or representation. Concepts of
operation (CONOPS) describe a system from the user’s perspective. CONOPS
describe the goals, objectives, policies, responsibilities, jurisdictions of various
authorities, and operational processes.

The elements of policy we are concerned with include:

– who or what has control over an action and under what circumstances,
– what are recognized tokens of authority,
– who are recognized delegates,
– what credentials are recognized,
– what authorities are recognized and on what are they trusted, and
– any trust assumptions used in making decisions or judgments.

We conceptualize CONOPS as a chain of statements or requests for action.
These requests are granted or rejected based on the elements of policy listed
above. This is illustrated in Figure 1. What Figure 1 shows is an abstract de-
piction of a CONOPS that has three or more principals or agents: P1, P2, and
P3. Principals are entities such as subjects, objects, keys, tokens, processes, etc.
Principals are anything or anybody that makes requests, is acted upon, or is
used as a token representing a principal.

CONOPS begin with a statement or request s1 by P1. In the syntax of the
access-control logic we introduce next, this is the formula P1 says s1. Principal
P2, is envisioned to receive the statement P1 says s1, and within the context of
jurisdiction statements, policy statements, and trust assumptions, P2 concludes
s2 is justified. As a result of this justification, principal P2 transmits a statement
P2 says s2 to principal P3, who then reacts within the context of its jurisdiction
and policy statements, and trust assumptions. We repeat this for all principals
and processes in the CONOPS.

Within the boxes labeled Principal 2 and Principal 3 are expressions

P1 says s1
Jurisdiction statements

Policy statements
Trust assumptions

s2 and

P2 says s2
Jurisdiction statements

Policy statements
Trust assumptions

s3 .

What the above expressions intend to convey is that based on: (1) the statements
or requests s1 and s2 made by principals P1 and P2, and (2) the statements
of jurisdiction, policy, and trust assumptions under which principals P2 and
P3 operate, P2 and P3 are logically justified (using the logic and calculus we
describe next) to conclude s2 and s3. As we will see after formally describing
the syntax and semantics of our logic, the two expressions above have the form
of derived inference rules or theorems in our calculus. Each step of a CONOPS
expressed in this fashion is a theorem justifying the behavior of a system.

One of the principal values of using the access-control logic is the evaluation
of a CONOPS for logical consistency within the context of given policies, cer-
tifications, and trust assumptions. The process we outline here makes explicit
underlying assumptions and potential vulnerabilities. This leads to a deeper un-
derstanding of the underpinnings of security and integrity for a system. This
greater understanding and precision, when compared to informal descriptions,
produces more informed design decisions and trade-offs.

In the following section, we define the syntax and semantics of the access-
control logic and calculus.

3 An Access-Control Logic and Calculus

3.1 Syntax

Principal Expressions Let P and Q range over a collection of principal expres-
sions. Let A range over a countable set of simple principal names. The abstract
syntax of principal expressions is:

P ::= A / P&Q / P | Q

The principal P&Q (“P in conjunction with Q”) is an abstract principal making
exactly those statements made by both P and Q; P | Q (“P quoting Q”) is an
abstract principal corresponding to principal P quoting principal Q.

Access Control Statements The abstract syntax of statements (ranged over by
ϕ) is defined as follows, where P and Q range over principal expressions and p
ranges over a countable set of propositional variables:

ϕ ::= p / ¬ϕ / ϕ1 ∧ ϕ2 / ϕ1 ∨ ϕ2 / ϕ1 ⊃ ϕ2 / ϕ1 ≡ ϕ2 /

P ⇒ Q / P says ϕ / P controls ϕ / P reps Q on ϕ

Informally, a formula P ⇒ Q (pronounced “P speaks for Q”) indicates that
every statement made by P can also be viewed as a statement from Q. A formula
P controls ϕ is syntactic sugar for the implication (P says ϕ) ⊃ ϕ: in effect, P is
a trusted authority with respect to the statement ϕ. P reps Q on ϕ denotes that
P is Q’s delegate on ϕ; it is syntactic sugar for (P says (Q says ϕ)) ⊃ Q says ϕ.
Notice that the definition of P reps Q on ϕ is a special case of controls and in
effect asserts that P is a trusted authority with respect to Q saying ϕ.

EM[[p]] = I(p)

EM[[¬ϕ]] = W − EM[[ϕ]]

EM[[ϕ1 ∧ ϕ2]] = EM[[ϕ1]] ∩ EM[[ϕ2]]

EM[[ϕ1 ∨ ϕ2]] = EM[[ϕ1]] ∪ EM[[ϕ2]]

EM[[ϕ1 ⊃ ϕ2]] = (W − EM[[ϕ1]]) ∪ EM[[ϕ2]]

EM[[ϕ1 ≡ ϕ2]] = EM[[ϕ1 ⊃ ϕ2]] ∩ EM[[ϕ2 ⊃ ϕ1]]

EM[[P ⇒ Q]] =

{
W, if J(Q) ⊆ J(P)
∅, otherwise

EM[[P says ϕ]] = {w|J(P)(w) ⊆ EM[[ϕ]]}
EM[[P controls ϕ]] = EM[[(P says ϕ) ⊃ ϕ]]

EM[[P reps Q on ϕ]] = EM[[P | Q says ϕ ⊃ Q says ϕ]]

Fig. 2. Semantics

3.2 Semantics

Kripke structures define the semantics of formulas.

Definition 1. A Kripke structure M is a three-tuple 〈W, I, J〉, where:

– W is a nonempty set, whose elements are called worlds.
– I : PropVar → P(W) is an interpretation function that maps each propo-

sitional variable p to a set of worlds.
– J : PName → P(W ×W) is a function that maps each principal name A

to a relation on worlds (i.e., a subset of W ×W).

We extend J to work over arbitrary principal expressions using set union and
relational composition as follows:

J(P&Q) = J(P) ∪ J(Q)

J(P | Q) = J(P) ◦ J(Q),

where

J(P) ◦ J(Q) = {(w1, w2) | ∃w′.(w1, w
′) ∈ J(P) and (w′, w2) ∈ J(Q)}

Definition 2. Each Kripke structure M = 〈W, I, J〉 gives rise to a function

EM[[−]] : Form → P(W),

where EM[[ϕ]] is the set of worlds in which ϕ is considered true. EM[[ϕ]] is defined
inductively on the structure of ϕ, as shown in Figure 2.

Note that, in the definition of EM[[P says ϕ]], J(P)(w) is simply the image
of world w under the relation J(P).

3.3 Inference Rules

In practice, relying on the Kripke semantics alone to reason about policies,
CONOPS, and behavior is inconvenient. Instead, inference rules are used to
manipulate formulas in the logic. All logical rules must be sound to maintain
consistency.

Taut
ϕ

if ϕ is an instance of a prop-
logic tautology

Modus Ponens
ϕ ϕ ⊃ ϕ′

ϕ′ Says
ϕ

P says ϕ

MP Says
(P says (ϕ ⊃ ϕ′)) ⊃ (P says ϕ ⊃ P says ϕ′)

Speaks For
P ⇒ Q ⊃ (P says ϕ ⊃ Q says ϕ)

Quoting
P | Q says ϕ ≡ P says Q says ϕ

&Says
P&Q says ϕ ≡ P says ϕ ∧Q says ϕ

Idempotency of ⇒
P ⇒ P

Monotonicity of |
P ′ ⇒ P Q′ ⇒ Q

P ′ | Q′ ⇒ P | Q

Associativity of |
P | (Q | R) says ϕ

(P | Q) | R says ϕ

P controls ϕ
def
= (P says ϕ) ⊃ ϕ

P reps Q on ϕ
def
= P | Q says ϕ ⊃ Q says ϕ

Fig. 3. Core Inference Rules

Quoting (1)
P | Q says ϕ

P says Q says ϕ
Quoting (2)

P says Q says ϕ

P | Q says ϕ

Controls
P controls ϕ P says ϕ

ϕ
Derived Speaks For

P ⇒ Q P says ϕ

Q says ϕ

Reps
Q controls ϕ P reps Q on ϕ P | Q says ϕ

ϕ

Rep Says
P reps Q on ϕ P | Q says ϕ

Q says ϕ

Fig. 4. Derived Rules Used in this Paper

Definition 3. A rule of form
H1 · · ·Hn

C
is sound if, for all Kripke structures

M = 〈W, I, J〉, if EM[[Hi]] = W for each i ∈ {1, . . . , n}, then EM[[C]] = W .

The rules in Figures 3 and 4 are all sound. As an additional check, the logic
and rules have been implemented in the HOL-4 (Higher Order Logic) theorem
prover as a conservative extension of the HOL logic [2].

3.4 Confidentiality and Integrity Policies

Confidentiality and integrity policies such as Bell-LaPadula [3] and Biba’s Strict
Integrity policy [4], depend on classifying, i.e., assigning a confidentiality or
integrity level to information, subjects, and objects. It is straightforward to
extend the access-control logic to include confidentiality, integrity, or availability
levels as needed. In what follows, we show how the syntax and semantics of

integrity levels are added to the core access-control logic. The same process is
used for levels used for confidentiality and availability.

Syntax The first step is to introduce syntax for describing and comparing security
levels. IntLabel is the collection of simple integrity labels, which are used as
names for the integrity levels (e.g., hi and lo).

Often, we refer abstractly to a principal P ’s integrity level. We define the
larger set IntLevel of all possible integrity-level expressions:

IntLevel ::= IntLabel / ilev(PName).

A integrity-level expression is either a simple integrity label or an expression of
the form ilev(A), where A is a simple principal name. Informally, ilev(A) refers
to the integrity level of principal A.

Finally, we extend our definition of well-formed formulas to support compar-
isons of integrity levels:

Form ::= IntLevel ≤i IntLevel / IntLevel =i IntLevel

Informally, a formula such as lo ≤i ilev(Kate) states that Kate’s integrity level
is greater than or equal to the integrity level lo. Similarly, a formula such as
ilev(Barry) =i ilev(Joe) states that Barry and Joe have been assigned the same

integrity level.

Semantics Providing formal and precise meanings for the newly added syntax
requires us to first extend our Kripke structures with additional components
that describe integrity classification levels. Specifically, we introduce extended
Kripke structures of the form

M = 〈W, I, J,K,L,�〉,
where:

– W , I, and J are as defined earlier.
– K is a non-empty set, which serves as the universe of integrity levels.
– L : (IntLabel ∪PName)→ K is a function that maps each integrity label

and each simple principal name to a integrity level. L is extended to work
over arbitrary integrity-level expressions, as follows:

L(ilev(A)) = L(A),

for every simple principal name A.
– �⊆ K × K is a partial order on K: that is, � is reflexive (for all k ∈ K,

k � k), transitive (for all k1, k2, k3 ∈ K, if k1 � k2 and k2 � k3, then
k1 � k3), and anti-symmetric (for all k1, k2 ∈ K, if k1 � k2 and k2 � k1,
then k1 = k2).

Using these extended Kripke structures, we extend the semantics for our new
well-formed expressions as follows:

EM[[`1 ≤i `2]] =

{
W, if L(`1) � L(`2)

∅, otherwise

EM[[`1 =i `2]] = EM[[`1 ≤i `2]] ∩ EM[[`2 ≤i `1]].

As these definitions suggest, the expression `1 =i `2 is simply syntactic sugar for
(`1 ≤i `2) ∧ (`2 ≤i `1).

`1 =i `2
def
= (`1 ≤i `2) ∧ (`2 ≤i `1)

Reflexivity of ≤i
` ≤i `

Transitivity of ≤i
`1 ≤i `2 `2 ≤i `3

`1 ≤i `3

sl ≤i
ilev(P) =i `1 ilev(Q) =i `i `1 ≤i `2

ilev(P) ≤i ilev(Q)

Fig. 5. Inference rules for relating integrity levels

Logical Rules Based on the extended Kripke semantics we introduce logical
rules that support the use of integrity levels to reason about access requests.
Specifically, the definition, reflexivity, and transitivity rules in Figure 5 reflect
that ≤i is a partial order. The fourth rule is derived and convenient to have.

4 Expressing Policy Elements in the Logic

With the definition of the syntax and semantics of access-control logic, we pro-
vide an introduction to expressing key elements of policy.

Statements and requests Statements and requests are made by principals. Re-
quests are logical statements. For example, if Alice wants to read file foo, we
represent Alice’s request as Alice says 〈read, foo〉. We interpret 〈read, foo〉 as
“it would be advisable to read file foo.”

Credentials or certificates are statements, usually signed with a cryptographic
key. For example, assume we believe public key KCA is the key used by certificate
authority CA. With this belief, we would interpret a statement made by KCA to
come from CA. In particular, if KCA says (KAlice ⇒ Alice), we would interpret
this public key certificate signed by KCA as having come from CA.

Jurisdiction Jurisdiction statements identify who or what has authority, spe-
cific privileges, powers, or rights. In the logic, jurisdiction statements usually
are controls statements. For example, if Alice has the right to read file foo, we
say Alice controls 〈read, foo〉. If Alice has read jurisdiction on foo and Alice re-
quests to read foo, then the Controls inference rule in Figure 4 allows us to infer
〈read, foo〉 is a sound decision, i.e.,

Alice controls 〈read, foo〉 Alice says 〈read, foo〉
〈read, foo〉.

Controls statements are also statements of trust. Suppose CA is recognized as the
trusted authority on public-key certificates. If CA says (KAlice ⇒ Alice) then we
believe that KAlice is Alice’s public key. An important consideration is that trust
is not all or nothing in our logic. A principal may be trusted on some things but
not others. For example, we may trust CA on matters related to Alice’s key, but
we may not trust CA on saying whether Alice has write permission on file foo.
Essentially, the scope of trust of a principal is limited to the specific statements
over which a principal has control.

Proxies and delegates Often, principals who are the sources of requests or state-
ments, do not in fact make the statements or requests themselves to the guards
protecting a resource. Instead, something or somebody makes the request on
their behalf. For example, it is quite common for cryptographic keys to be used
as proxies, or stand-ins, for principals. In the case of certificate authority CA, we
would say KCA ⇒ CA. If we get a certificate signed using KCA, then we would
attribute the information in that certificate to CA. For example, using the De-
rived Speaks For rule in Figure 4 we can conclude that certificate authority CA
vouches for KAlice being Alice’s public key:

KCA ⇒ CA KCA says (KAlice ⇒ Alice)

CA says (KAlice ⇒ Alice).

In situations where delegates are relaying orders or statements from their su-
periors, we typically use reps formulas. For example, say Alice is Bob’s delegate
on withdrawing funds from account1 and depositing funds into account2. If we
recognize Alice as Bob’s delegate, we would write:

Alice reps Bob on (〈withdraw $10
6
, account1〉 ∧ 〈deposit $10

6
, account2〉).

From the semantics of reps, if we recognize Alice as Bob’s delegate, in effect we
are saying that Alice is trusted on Bob stating that he wishes a million dollars to
be withdrawn from account1 and deposited into account2. If Alice says Bob says
withdraw a million dollars from account1 and deposit it into account2, we will
conclude that Bob has made the request. Using the Rep Says rule in Figure 4
we can conclude:

Alice reps Bob on (〈withdraw $106, account1〉 ∧ 〈deposit $106, account2〉)
Alice | Bob says (〈withdraw $106, account1〉 ∧ 〈deposit $106, account2〉)

Bob says (〈withdraw $106, account1〉 ∧ 〈deposit $106, account2〉).

5 An Extended Example

In this section we describe a hypothetical example CONOPS for joint operations
where Joint Terminal Air Controllers (JTACs) on the ground identify targets and
request they be destroyed. Requests are relayed to a theater command author-
ity (TCA) by controllers in Airborne Early Warning and Control (AEW&C)
aircraft. If approved by commanders, AEW&C controllers direct aircraft to de-
stroy the identified target. To avoid threats due to compromised communications
and control, the CONOPS specifies the use of a mission validation appliance
(MVA) to authenticate requests and orders. What follows is a more detailed
informal description of the scenario followed by a formalization and analysis of
the CONOPS.

5.1 Scenario Description

The sequence of requests and approvals is as follows:

1. At the squad level, Joint Terminal Air Controllers (JTACs) are authorized
to request air strikes against enemy targets in real time.

2. Requests are relayed to theater command authorities (TCAs) by Airborne
Early Warning and Control (AEW&C) controllers.

JTAC
MVA

Controller
MVA

Bob

Token

Alice

relay 1

request 1
authenticated

request 1

Controller
MVA

TCA
MVA

Carol

Token

Bob

relay 2

request 2

authenticated
request 2

Fig. 6. Request Use Case

3. Requested air strikes are approved by TCAs. These commanders are geo-
graphically distant from the squad requesting an air strike.

4. Command and control is provided by AEW&C aircraft operating close to
the squad requesting an air strike.

Threat Avoidance For mission security and integrity, JTACs, AEW&C con-
trollers, pilots, and TCAs use a mission validation appliance (MVA) to request,
transmit, authenticate, and authorize air strikes. MVAs are envisioned to be
used as follows:

1. JTACs will use MVAs to transmit air strike requests to AEW&C controllers.
2. AEW&C controllers use MVAs to (a) authenticate JTACs, and (b) pass

along JTAC requests to TCAs.
3. TCAs use MVAs to (a) authenticate JTACs and AEW&C controllers, and

(b) send air strike authorizations to AEW&C controllers.
4. AEW&C controllers use MVAs to transmit air strike orders to pilots.

Security and Integrity Requirements The CONOPS for using MVAs must meet
the following security and integrity requirements.

– All requests, commands, and approvals must be authenticated. No voice
communications will be used. This includes at a minimum:

• All personnel are to be authenticated into mission roles, i.e., joint termi-
nal air controller (JTAC), airborne early warning and controller (AEW&C)
controller, pilot, theater command authority (TCA) , and security officer
(SO).

• All communications, commands, and approvals are to be encrypted and
signed for integrity.

– All aircraft pilots receive their directions from AEW&C controllers and can
only act with the approval of the TCA.

– All keys, certificates, and delegations, i.e., the foundation for trust, must be
protected from corruption during operations. Only personnel with proper
integrity levels are allowed to establish or modify the foundation of trust.

Statement Formal Representation
request 1 (TokenAlice | JTAC) says 〈strike, target〉
relay 1 (KJTAC-MVA | JTAC) says 〈strike, target〉
authenticated
request 1

JTAC says 〈strike, target〉
request 2 (TokenBob | Controller) says (JTAC says 〈strike, target〉)
relay 2 (KController-MVA | Controller) says (JTAC says 〈strike, target〉)
authenticated
request 2

Controller says (JTAC says 〈strike, target〉)

Table 1. Requests and Relayed Requests

TCA
MVA

Controller
MVA

Bob

Token

Carol

relay 3

order 1
authenticated

order 1

Controller
MVA

Pilot
MVA

Dan

Token

Bob

relay 4

order 2

authenticated
order 2

Fig. 7. Order Use Case

5.2 An Example CONOPS

MVA Use Cases We consider two use cases. The first use case shows how MVAs
are used when an air strike is requested by a JTAC. The second use case shows
how MVAs are used when a TCA orders an air strike. Figure 6 illustrates the flow
of requests starting from Alice as JTAC, through Bob as Controller, resulting in
an authenticated request to Carol as TCA. The process starts with Alice using
her token TokenAlice to authenticate herself and her request to the JTAC MVA.
The JTAC MVA authenticates Alice and her role, and relays Alice’s request using
its key, KJTAC-MVA to the Controller MVA. The Controller MVA authenticates
the JTAC MVA and presents the authenticated request to Bob.

Should Bob decide to pass on Alice’s request, he uses his token to authenticate
himself to the Controller MVA, which relays his request to the TCA MVA, which
presents the authenticated request to Carol, a Theater Command Authority.
Table 1 lists the formal representation of each request, relayed request, and
authenticated request in Figure 6.

Figure 7 shows a similar flow of orders starting from Carol as TCA, through
Bob as Controller, resulting in an authenticated order to Dan as Pilot. Carol
authenticates herself to the TCA MCA using her token. Her orders are relayed to
Bob. When Bob decides to pass on the order to Dan, he does so by authenticating
himself to the Controller MVA, which relays to orders to Dan via the Pilot MVA.
The formulation of each order and relayed order is shown in Table 2.

Deducing Policies, Certifications, Delegations, and Trust Assumptions Based
on the use cases for air strike requests and air strike orders, we determine what

Statement Formal Representation
order 1 (TokenCarol | TCA) says 〈strike, target〉
relay 3 (KTCA−MV A | TCA) says 〈strike, target〉
authenticated
order 1

TCA says 〈strike, target〉
order 2 (TokenBob | Controller) says (TCA says 〈strike, target〉)
relay 4 (KController−MV A | Controller) says (TCA says 〈strike, target〉)
authenticated
order 2

Controller says (TCA says 〈strike, target〉)

Table 2. Orders and Relayed Orders

MVA 1 MVA 2

Token

Person

Token quoting Role says s

Key quoting Role says s

Role says s

Another person

Fig. 8. General Pairing of MVAs

policies, certifications, delegations, and trust assumptions are required to justify
each MVA action in the CONOPS. We look at each MVA’s input and output,
and based on the CONOPS, infer what policies, certifications, delegations, and
trust assumptions are required. We look for repeated patterns of behavior that
lead to repeated patterns of reasoning. Both use cases exhibit the same pattern
of behavior as illustrated in Figure 8 and formulated in Table 3.

1. A person authenticates herself and claims a role using a token. Acting in a
role, the person makes a statement (request or order). The first MVA, MVA
1, authenticates both the person and the role, and then relays the statement
using its key to the second MVA, MVA 2.

2. MVA 2 authenticates MVA 1 and the role it is serving, then passes the
statement up to the person using MVA 2.

Given the repeated pattern, we prove two derived inference rules (MVA 1
and MVA 2) that justify the behavior of MVA 1 and MVA 2.

MVA 1

(Token | Role) says ϕ
KAuth says (Person reps Role on ϕ)

KAuth says (Token⇒ Person)
Auth controls (Person reps Role on ϕ)

Auth controls (Token⇒ Person)
KAuth ⇒ Auth

KMV A1
| Role says ϕ

MVA 2

(KMV A1
| Role) says ϕ

KAuth says (MVA1 reps Role on ϕ)
KAuth says (KMV A1

⇒MVA1)
Auth controls (MVA1 reps Role on ϕ)
Auth controls (KMV A1

⇒MVA1)
KAuth ⇒ Auth

Role says ϕ

Statement Formal Representation
statement (Token | Role) says ϕ
relayed statement (KMV A−1 | Role) says ϕ
authenticated statement Role says ϕ

Table 3. Statements and Relayed Statements

Item Formula
Input (Token or Key | Role) says ϕ

Delegation Certificate KAuth says (Person or Object reps Role on ϕ)
Key Certificate KAuth says (Token or Key ⇒ Person or Object)

Jurisdiction Auth controls (Person or Object reps Role on ϕ)
Jurisdiction Auth controls (Token or Key ⇒ Person or Object)

Trust Assumption KAuth ⇒ Auth
Table 4. MVA Inputs, Outputs, Certificates, Jurisdiction, and Trust Assumptions

Both rules have the same components, as shown in Table 4. The components
have the following functions:

1. input : a token or key quoting a role
2. certificate: a certificate authorizing a delegation
3. certificate: a public key certificate
4. jurisdiction: an assumption about an authority’s jurisdiction to authorize a

person or MVA to act in a role
5. jurisdiction: an assumption about an authority’s jurisdiction over keys
6. trust assumption: knowledge of the trusted authority’s key

Both rules have nearly identical proofs that are direct application of inference
rules described in Section 3.3.

Using the inference rule MVA 1, we easily prove the following rule for the
TCA MVA authenticating Carol and validating her order for an air strike, where
SO is the Security Officer role, the SO has jurisdiction over roles and keys, and
KS is the key that speaks for the SO.

TCA-MVA

TokenCarol | TCA says 〈strike, target〉
KSO says (Carol reps TCA on 〈strike, target〉)

KSO says TokenCarol ⇒ Carol
SO controls TokenCarol ⇒ Carol

SO controls (Carol reps TCA on 〈strike, target〉)
KSO ⇒ SO

KTCA-MVA | TCA says 〈strike, target〉

Similar rules and proofs are written for each MVA. The above discussion on
certificates installed properly in MVAs leads us to the final use case, namely the
trust establishment use case.

5.3 Trust Establishment

Biba’s Strict Integrity model [4] is the basis for maintaining integrity of the
MVAs. As Strict Integrity is the dual of Bell and LaPadula’s confidentiality

Role Rights
SO (LSec) install, read

JTAC (Lop) read
Controller (Lop) read

TCA (Lop) read
Pilot (Lop) read

Table 5. Roles and Rights to Certificates

model [3], the short summary of Strict Integrity is, no read down and no write
up. For subjects S and objects O, S may have discretionary read rights on O
if O’s integrity level meets or exceeds S’s. For write access, S’s integrity level
must meet or exceed O’s.

ilev(S) ≤i ilev(O) ⊃ S controls 〈read,O〉
ilev(O) ≤i ilev(S) ⊃ S controls 〈write,O〉.

There are two integrity levels: Lop and LSec, where Lop ≤i LSec. All cer-
tificates have an integrity level LSec, i.e., ilev(cert) =i LSec. Table 5 show the
integrity level and certificate access rights for each role. Strict integrity is satisfied
as only the security officer SO (with the same integrity level LSec as certificates)
can install or write certificates into MVAs. Every other role is at the Lop level
and can only read certificates.

Installing KSO Establishing the basis for trust in MVAs starts with the installa-
tion of the Security Officer’s key, KSO. This is assumed to be done by controlled
physical access to each MVA that is deployed. Once the Security Officer’s key is
in place, the certificates that an MVA needs can be installed.

Certificate Installation Suppose Erica is acting as the Security Officer SO. The
policy is that security officers can install certificates, if the SO has a high enough
integrity level, and is given by

ilev(cert) ≤i ilev(SO) ⊃ SO controls 〈install, cert〉.

Erica’s authorization to act in the Security Officer role to install certificates
is given by

Kso says Erica reps SO on 〈install, cert〉.

This authorization is accepted under the assumption that KSO ⇒ SO and that
the SO has jurisdiction, which is given by

SO controls Erica reps SO on 〈install, cert〉.

The proof for justifying Erica’s capability to install certificates acting as a Se-
curity Officer, assuming her integrity level is Lso is a straightforward application
of inference rules described in Section 3.3.

6 Related Work

The access-control logic we use is based on Abadi and Plotkin’s work [5], with
modifications described in [6]. Many other logical systems have been used to
reason about access control. Some of them are summarized in [7].

Our contribution is the methodology and application of logic to describe poli-
cies, operations, and assumptions in CONOPS. Moreover, we have implemented
this logic in the HOL-4 theorem prover, which provides both an independent
verification of soundness as well as support for computer-assisted reasoning.

7 Conclusions

Our objective is the put usable mathematical methods into the hands of prac-
ticing engineers to help them reason about policies and concepts of operations.
We have experimented with policy-based design and verification for five years
in the US Air Force’s Advanced Course in Engineering (ACE) Cybersecurity
Bootcamps [8]. Our experience with a wide variety of students, practicing engi-
neers, and Air Force officers suggests that using the access-control logic meets
this objective.

References

1. Coram, R.: Boyd: The Fighter Pilot who Changed the Art of War. Back Bay
Books/Little, Brown and Company (2002)

2. Gordon, M., Melham, T.: Introduction to HOL: A Theorem Proving Environment
for Higher Order Logic. Cambridge University Press, New York (1993)

3. Bell, D.E., La Padula, L.J.: Secure computer systems: Mathematical foundations.
Technical Report Technical Report MTR-2547, Vol. I, MITRE Corporation, Bed-
ford, MA (March 1973)

4. Biba, K.: Integrity considerations for secure computer systems. Technical Report
MTR-3153, MITRE Corporation, Bedford, MA (June 1975)

5. Abadi, M., Burrows, M., Lampson, B., Plotkin, G.: A Calculus for Access Control in
Distributed Systems. ACM Transactions on Programming Languages and Systems
15(4) (September 1993) 706–734

6. Chin, S.K., Older, S.: Reasoning about delegation and account access in retail
payment systems. In: MMM-ACNS. (2007)

7. Abadi, M.: Logic in access control (tutorial notes). (2009) 145–165
8. Chin, S.K., Older, S.: A rigorous approach to teaching access control. In: Proceed-

ings of the First Annual Conference on Education in Information Security, ACM
(2006)

