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Motivation A Word from Our Sponsors

McMaster Centre for Software Certification

Leading 5 year $22 Million Ontario Research Fund Research
Excellence project on Certification of Software Intensive Systems
in collaboration with U Waterloo and York U (Canada).
Focused on product (not process) oriented certification
Working with industry and regulators to improve software in three
(soon 4!) main areas:

Biomedical Devices,
Financial Systems,
Nuclear
and coming soon - Automotive!

We are currently recruiting:
Post docs
Research Engineers
Graduate Students
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Motivation A Word from Our Sponsors

Darlington SDS Redesign Project

Note:
This talk is not the originial Darlington Project when Ontario Hydro was
forced to reverse engineer tabular specifications for requirements and
the code in order to get regulatory approval.
Its about the Redesign project where formal techniques were
integrated in the forward development process.

People often cite the difficulty & cost of the original project when
they want to dismiss tabular methods.
No other formal method applied after the fact would have fared
any better.
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Motivation A Word from Our Sponsors

What is a Shut Down System (SDS)?

An SDS is:
watchdog system that monitors system parameters
shuts down (trips) reactor if it observes “bad” behavior
process control is performed a separate Digital Control computer
(DCC) - not as critical

Why use formal verification?

Spurious trips cost $$$
Difficult to make modifications & even more difficult to get
regulatory approval for changes
Minor changes result in another extensive (& expensive) round of
testing & review
Testing can’t cover all possible cases
Too much detail for person to catch everything by review
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Overview of Darlington Redesign Project SDS Context and Size

60 modules
280 access programs
40,000 lines of code (in-
cluding comments)
33,000 FORTRAN
7,000 assembler
84 monitored variables
27 controlled variables
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Overview of Darlington Redesign Project SDS Context and Size

The Standard Used

The CANDU Computer Systems Engineering Centre for Excellence
Standard for Software Engineering of Safety Critical Software first
fundamental principle states:

“The required behavior of the software shall be documented
using mathematical functions in a notation which has well
defined syntax and semantics.”

Determinism: Want unambiguous description of safety critical behavior
Clarity: Easier to understand functional requirements

Preference: Engineers prefer to specify precise behavior and appeal
to tolerances when necessary

Sufficient: Functional methods often sufficient - Work "most of the
time" & are easily automated
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Overview of Darlington Redesign Project SDS Context and Size

The Assurance Case Implicit in the CANDU Standard

A part of the assurance case implicitly embodied in the standard
employed in developing the SDS was as follows:

1 The requirements are specified mathematically and checked for
completeness and consistency. A hazards analysis is required to
document risks and especially to identify sources of single point
failures. These hazards have to be mitigated in the specified
requirements.

2 Compliance between requirements and software design is
mathematically verified.

3 Compliance between the code and software design is verified
through both mathematical verification and testing. Compliance
between code and requirements is shown explicitly through
testing. However, there is an implicit argument of compliance
between code and requirements through the transitive closure of
the mathematical verification - code to design, and design to
requirements.
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Overview of Darlington Redesign Project SDS Context and Size

Idealized Development Process
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Overview of Darlington Redesign Project SDS Context and Size

System Requirements
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Overview of Darlington Redesign Project SDS Context and Size

Tabular Expressions - A Useable “Formal” Method

For the resdesign the Software Requirements Specification (SRS)
made extensive use of tabular expressions to document the
requirements as did the Software Design Description (SDD). Why?

Ontario Hydro had some experience with tabular expressions
since they were used to get Darlington licensed the first time.
They are readable by domain engineers, operators, testers . . . and
developers!
Built on previous successes with tabular methods (e.g. A-7)

They eventually showed significant benefits when used in a process
with integrated tool support.
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Overview of Darlington Redesign Project SDS Context and Size

Tabular Expressions

In order for a table to be proper it must satisfy two properties.

f (x1, . . . , xm) =
c1 c2 . . . cn
e1 e2 . . . en

Here each ci is a Boolean expression, when ci is true f returns ei

1 Disjointness - i 6= j → (ci ∧ cj ↔ ⊥)

2 Completeness - (c1 ∨ c2 ∨ . . . ∨ cn)↔ >
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Overview of Darlington Redesign Project SDS Context and Size

Why Tables Work

f(x , y)
df
=



x + y if x > 1 ∧ y < 0
x − y if x ≤ 1 ∧ y < 0
x if x > 1 ∧ y = 0
xy if x ≤ 1 ∧ y = 0
y if x > 1 ∧ y > 0
x/y if x ≤ 1 ∧ y > 0

(1)

f(x , y)
df
=

x > 1 x ≤ 1
y < 0 x + y x − y
y = 0 x xy
y > 0 y x/y

(2)

You can actually read them.
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Overview of Darlington Redesign Project SDS Context and Size

TCDD Example - NOP Trip
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Overview of Darlington Redesign Project SDS Context and Size

TCDD Example - NOP Trip
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Overview of Darlington Redesign Project SDS Context and Size

Module Interface Spec for NOP
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Overview of Darlington Redesign Project SDS Context and Size

Module Internal Design

Each access program needs to be specified. We specify details of
the required behaviour without going to the level of sequential
code statements (most of the time)
Two very simple rules make mathematical verification much more
tractable:

Get
Process
Set

Value of an asynchronous variables (e.g. a timer) stored on input -
stored value used throughout module
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Overview of Darlington Redesign Project SDS Context and Size

Module Internal Design - NOP
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Theorem Proving Used in “Certifying” Darlington

Idealized Development Process & Tools
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Theorem Proving Used in “Certifying” Darlington

Tool Supported Formal Methods

A formal method should be tightly integrated with the software
development process - i.e. it is directly applied to project documents
used by all parties as part of the process.

SRS.rtf

SDD.rtf

DVR.rtf

PVS

Tool
SDV
SESMprocessor

Word

   +
SESM
Tools

SDD.doc

DVR.doc

SRS.doc

block

proofs
comp.

Document flow
Information flow

b001.pvs
b002.pvs
b003.pvs
etc...

.

SOFi ◦ AbstVi−1 = AbstVi ◦ REQi
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Theorem Proving Used in “Certifying” Darlington

How much did the tools do?

roughly 70% of the over 200 functional blocks from the two
software designs of the Redesign Project were formally verified
using the SDV Tool together with PVS.
The remainder of the verification blocks that did not involve
straight forward block comparisons, requiring additional reasoning
about the program’s main execution thread and timing constraints,
were handled by rigorous manual arguments.
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Theorem Proving Used in “Certifying” Darlington

4-Variable Model (Parnas &Madey)

REQ

SOF

IN OUT

M C

I O

M - Monitored Variable statespace C - Controlled Variable statespace
I - Input Variable statespace O - Output Variable statespace

M, C, I, O are time series vectors and REQ, SOF , IN, OUT are relations.
We use a special case where all relations are functional resulting in proof
obligation:

REQ = OUT ◦ SOF ◦ IN (3)

Here REQ and SOF are the one step transition functions of the requirements
and design respectively.
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Theorem Proving Used in “Certifying” Darlington

“Vertical” Decomposition of Proof Obligations

M

I

IN

C

O

OUT

Mp Cp
SOFreqSOFin SOFout

REQ

AbstM AbstC

AbstC ◦ REQ = SOFreq ◦ AbstM (4)
AbstM = SOFin ◦ IN (5)

idC = OUT ◦ SOFout ◦ AbstC . (6)

(5) and (6) represent verification of hardware hiding modules
Mp is pseudo-monitored variables
Cp is pseudo-controlled variables
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Theorem Proving Used in “Certifying” Darlington

“Vertical” Decomposition (cont)

More "vertical" decomposition obtained by isolating outputs. In effect,

i) projecting C onto single output
ii) restricting REQ to the relevant subset of M

Note:
“Wrong way” AbstC arrow - used to reduce number of required
abstraction functions.

Why?
Can reduce by up to 1/2 number of abstraction functions required.
Proof obligation (6) precludes possibility of trivial implementations

Invertibility of OUT not possible in all situations but applicable to
majority of our safety critical requirements.
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Theorem Proving Used in “Certifying” Darlington

Hardware Hiding Example

The temperature of the primary heat transport system which
belongs to M might have a value of 500.3 Kelvin.
A/D converters map this via (part of) IN to a value of 3.4 volts in a
parameter of I.
A hardware hiding module might then process this input
corresponding to map SOFin, producing a value of 500 Kelvin in
the appropriate temperature variable of the software state space
Mp.
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Theorem Proving Used in “Certifying” Darlington

“Horizontal” Decomposition of Proof Obligations

M

Mp

C

Cp

REQ

. . .

SOF1 SOFn
. . .

REQ1 REQ2 REQn

SOF2

V1 V2 Vn−1

AbstCAbstM

SOFreq

V1p

AbstV1

V2p V(n−1)p

AbstV2 AbstVn−1

Main block comparison can be sequentially decomposed into
sequence of simpler obligations of the form:

SOFi ◦ AbstVi−1 = AbstVi ◦ REQi (7)

Cost of decomposition? Verifier must provide cross reference in form
of AbstVi : Vi → Vip. Now we see benefit of "wrong way" arrow: Same
AbstVi can be used on output then input of successive blocks.
Note: Only need to check invertibility of AbstC to satisfy (6).M. Lawford (McSCert) Revisiting Darlington TP in Cert 2010/12/07 26 / 47



Theorem Proving Used in “Certifying” Darlington

Example: Piece-wise Verification

Block 4 is everything else.
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Theorem Proving Used in “Certifying” Darlington

Example: Piece-wise Verification

A1(f1(m1, m2) = g1(Abstm1(m1), Abstm2(m2)) (Block 1)

A2(f2(f1∗)) = g2(A1(f1∗)) (Block 2)

Abstc1(f4(f2∗, f3∗)) = g4(A2(f2∗), Abstc2(f3∗)) (Block 3)

Abstc2(f3(f1∗, m2)) = g3(A1(f1∗), Abstm2(m2)) (Block 4)

If we verify that (Block 1) through (Block 4) is true, then we can
show that we have met the total proof obligation.1

Doing it piece-wise is MUCH easier than trying to do the total
proof. But somtimes you need Supplementary Function Tables to
help with verification.

1The decomposition was done and verified manually
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Theorem Proving Used in “Certifying” Darlington

. . . and when dataflow is not isomorphic
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Theorem Proving Used in “Certifying” Darlington Examples

Power Conditioning

Power

Time

Kin

Kout
FALSE

TRUE

t1

No Change

PwrCond(Prev:bool, Power, Kin, Kout:posreal):bool =

Power ≤ Kout Kout < Power < Kin Power ≥ Kin
FALSE Prev TRUE
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Theorem Proving Used in “Certifying” Darlington Examples

General Power Conditioning Function

When Power:
drops below Kout , sensor is unreliable so it’s “conditioned out”
(PwrCond = FALSE).
exceeds Kin, the sensor is “conditioned in” and is used to evaluate
the system.
is between Kout and Kin, the value of PwrCond is left unchanged
by setting it to its previous value, Prev .

E.g. For the graph of Power above, PwrCond would start out FALSE,
then become TRUE at time t1 and remain TRUE.
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Theorem Proving Used in “Certifying” Darlington Examples

PVS Specification of a General PwrCond Function

PwrCond(Prev:bool, Power, Kin, Kout:posreal):bool = TABLE
%---------------------------------------------------%
|[Power<=Kout | Power>Kout & Power<Kin | Power>=Kin]|
%---------------------------------------------------%
| FALSE | Prev | TRUE ||
%---------------------------------------------------%

ENDTABLE

The above PVS specification of the PwrCond table produces the following
proof obligations or “TCCs”.
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Theorem Proving Used in “Certifying” Darlington Examples

Step 1: Type-checking PwrCond

% Disjointness TCC generated (at line 14, column 55) for
% unfinished

PwrCond_TCC1: OBLIGATION
FORALL (Kin, Kout: posreal, Power):

NOT (Power <= Kout AND Power > Kout & Power < Kin) AND
NOT (Power <= Kout AND Power >= Kin) AND
NOT ((Power > Kout & Power < Kin) AND Power >= Kin);

% Coverage TCC generated (at line 14, column 55) for
% proved - complete

PwrCond_TCC2: OBLIGATION
FORALL (Kin, Kout: posreal, Power):
(Power <= Kout OR % Column1
(Power > Kout & Power < Kin) % Column2
OR Power >= Kin) % Column3
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Theorem Proving Used in “Certifying” Darlington Examples

Type-checking PwrCond

The coverage TCC is easily proved by PVS. Thus we conclude that at
least one column is always satisfied for every input.
But attempting the Disjointness TCC fails, indicating that the columns
overlap. The resulting unprovable sequent for the disjointness TCC is:

PwrCond_TCC1 :
[-1] Kin!1 > 0
[-2] Kout!1 > 0
[-3] Power!1 > 0
[-4] Power!1 <= Kout!1
[-5] (Kin!1 <= Power!1)

|-------
[1] FALSE
Rule?
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Theorem Proving Used in “Certifying” Darlington Examples

How times have changed!

The unprovable sequent was all I could get out of PVS in 1998 as a
verifier.
This is a very simple one, but still not very user friendly. Now as a
developer I can get in Matlab/Simulink:
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Theorem Proving Used in “Certifying” Darlington Examples

Making the assumptions explicit

Problem occurred because developer implicitly assumed that
Kout < Kin.
We can easily make it explicit with PVS subtypes.
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Theorem Proving Used in “Certifying” Darlington Examples

Other Examples?

See URL http://www.cas.mcmaster.ca/~lawford/papers - in
particular the references:
M. Lawford, P. Froebel, and G. Moum, “Application of Tabular Methods
to the Specification and Verification of a Nuclear Reactor Shutdown
System,” Submitted to Formal Methods in System Design (Accepted
subject to minor revision June 2004). (download)
M. Lawford, J. McDougall, P. Froebel and G. Moum “Practical
application of functional and relational methods for the specification
and verification of safety critical software,” In T. Rus, editor,
Proceedings of Algebraic Methodology and Software Technology, 8th
International Conference, AMAST 2000, LNCS 1816, Springer, Iowa
City, Iowa, USA, May 2000, pp. 7–88. (download)
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The Good, The Bad & The Ugly The Good: What worked

We Avoided the “Two Model Trap”

A Tale of Two Models
Many times formal methods have been “bolted onto the side” of an
existing S/W development process or applied to a project after the
product is developed by having the FM guru come and create another
(formal) version of the requirements and/or design.

The result
Short term: Errors were found! Papers written! FM are good!
Long term: FM guru moves on to another source of publications, the
“formal” version of documents is not understood by anyone and bit rots
aways into oblivion.

The solution
One set of documents that are formal AND readable by domain
experts AND easily maintained AND have tool support that integrates
with the company’s existing S/W process.
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The Good, The Bad & The Ugly The Bad: What was missing?

But We Could Have Done so Much More!

We only scratched the surface of what could be done.
The really difficult stuff:

Real Time Properties,
tolerances,
sequential behavior,
numerical analysis results for fixed point arithmetic

was done manually - because it wasn’t in the budget, and the regulator
did not require it

NOTE:
At the time that was probably the right decision - but times have
changed.
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The Good, The Bad & The Ugly The Ugly: The tool qualification problem

Everything was done manually too!

Say what?
Tools are great, but they don’t buy you as much as you think if they can
be a single point of failure.

In this case standards often will require the tool to be qualified to
the level of the system they are being used on.
We won’t be seeing formally verified matlab/simulink any time
soon

All tools developed in house
OPG & AECL had to build custom one off tools to support their
development method. They got the theorem prover PVS “off the shelf” .
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The Good, The Bad & The Ugly The Ugly: The tool qualification problem

Solving the Tool Qualification Problem

The bad news:
You will, in all likelihood, need two different tools in order to avoid
having to do it manually because “demonstrating soundness of the
tools” will likely be difficult or impossible

The good news:

Its not as hard as you might think to knock the tool qualification
requirements down a level by doing the same thing with 2+ tools.

DSLs can be used to generate code for multiple theorem provers,
or SMT solvers, or model checkers
There is often more than one way to get a result
This can help avoid vendor lock-in

Consider this in developing your tools and process.
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Questions and Lessons . . .

Is an Independent Verification Team Needed

Question:
If tools perform automated verification as part of the forward process,
do we really need an independent Verification team?
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Questions and Lessons . . .

Do we really need ATP in Certification?

Question:
Can’t model checkers and/or SAT & SMT solvers do everything you
need for certification?

Theorem provers will be part of certification for
diversity - to help mitigate against bugs in the above tools
abstraction - a detailed network of timed automata is closer to a
software design than a requirements specification and it is
non-trivial to write down TL formulas for the complete I/O
behaviour of a system
generality - the ability to verify things like convergence of numeric
algorithms, properties of some nonlinear expression, the
computation of a derivative used in deriving a requirement or as
part of the design, dealing with complex data structures, etc.
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Questions and Lessons . . .

Do I still need to test for certification?

Yes. Don’t sell formal verification as a way to reduce testing, it
shouldn’t.

Formal verification is done on models of the system.
Testing is done on the real system.

Theorem proving and other formal verification tools can help:
generate test cases (e.g. creative use of PVS random test, proofs
→ tests, etc.)
SMT solvers to hit all cells of a table
& model checkers to generate longer test sequences with specific
properties
formal models as oracles - e.g. PVSio can be used to execute
most of the Darlington tables

FM can certainly help reduce the cost of testing!
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Questions and Lessons . . .

How do Formal Verification & Certification relate?

Certifying (licensing, regulatory) authorities audit - be it process or
product based, by looking at samples or checking parts of the
work
The regulator on Darlington (the Atomic Energy Control Board -
now the CNSC) only audited the verification results by checking
samples

But . . .
Automated tools let you “audit everything” - just rerun all the tools.
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Questions and Lessons . . .

Lessons Learned

Mathematically based requirements - a crucial first step. If we
don’t do this we cannot perform mathematical verifications

Not forced to do this - but helps with certification! Long term: better
if done in forward going process

A priority was that domain experts would be able to read and
understand all the details

Not forced to do this - but helps with certification and increases
likelihood documents will be used!

Tools make regression verification possible.

M. Lawford (McSCert) Revisiting Darlington TP in Cert 2010/12/07 46 / 47



Questions and Lessons . . .

Research problems

Guaranteeing semantic consistency between
models for different provers
formal models and binary running on the system
Formal models used for V&V and engineering modeling tools (e.g.
Matlab/Simulink, MapleSim, etc)

How to best integrate the tools with:
the whole software engineering process,
the certification process
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