Automatic certification and interactive theorem proving: An impossible combination ?

Julien Schmaltz

Radboud University Nijmegen

Be provocative - Disclaimer

• Provocative statements - take them with a pinch of salt

About the speaker

- Limited knowledge about certification
- Interactive theorem proving systems
 - mainly ACL2
 - Isabelle on one project (1 year)
 - sharing office with Coq user
- Application domains
 - mainly on-chip interconnects
 - time-triggered hardware
- Other research projects
 - model-based testing with (Timed) LTS
 - real-time model-checking using UPPAAL
 - application to Wireless Sensor Networks

Automatic certification

- Automatic
 - tools easy to use and efficient
 - no human interaction scalability
- Certification
 - high-quality design process
 - less bugs at the end

Interactive Theorem Proving

- Interactive
 - hard thinking
 - complex tools
- Theorem Proving
 - complex, tedious proofs
 - bug free but expensive
 - deep insight in products
 - true correctness

 $\frac{\partial}{\partial u} \ln \int_{-\infty}^{\infty} f(u) u \left(\frac{u}{u} - u \right) \left(\frac{u}{u} + \frac{u$

Certification vs. Theorem Proving

- Automatic Certification
 - scalability, ease of use
 - stamp about system quality
 - bug removal by good design process
 - low injection + good hunting
- Interactive Theorem proving
 - tedious proofs, complex tools, "intelligence required"
 - proof of (total) correctness
 - about systems not their design process
 - can prove tools correct
 - tools with insight and true correctness

Bugs and NoCs

- Bug hunting Model Checking&Co
 - algorithmic technique automation
 - routine in HW industry
 - find subtle bugs
 - state-explosion problem small, fixed size systems
- A mosquito-net for NoCs The GeNoC approach
 - a generic model for reasoning about NoCs
 - highly *parametric*
 - generic definition of correctness theorems
 - identify constraints sufficient to prove the theorems
 - only need to check constraints on *particular instances*

The Generic Model: Constituents

Formal model of network architectures

Let σ be a configuration containing a state and messages Let M be a set of messages to be sent over the NoC

The Generic Model: Proof obligations (or constraints)

Local constraints sufficient to prove global generic theorems.

The Generic Model: Generic theorems

The Generic Model: Generic theorems

GeNoC Theorem (1): Functional correctness

- Functional correctness
 - if a message reaches a destination, it reaches its expected destination without modification of its content
 - Note: trivially holds if no message reach a destination
- Main proof obligations on routing
 - last of route from s to d is d
 - route computation terminates
 - length of routes (opt)
- Proof obligation on scheduling
 - mutual exclusion of scheduled and delayed messages
 - union of scheduled and delay contains exactly all messages (no spontaneous generation of new messages)

GeNoC Theorem (2): Deadlock freedom

- A network is deadlock-free iff
 - there is no reachable deadlocked configuration
 - deadlocked configuration = configuration where all messages are stuck
- Main proof obligations on routing
 - acyclic resource dependency graph (deterministic)
 - escape for all cycles (adaptive)
 - consistency between dependency graph and routing function

- Main proof obligation on scheduling
 - next-hop based scheduling policy

GeNoC Theorem (3): Evacuation

 σ iff σ .M = \emptyset // empty list of messages

GeNoC (σ) =

 σ iff deadlocked(Routing(Injection(σ)))

GeNoC(**Scheduling(Routing(Injection**(σ))))

Evacuation theorem

all messages eventually leave the network

- Main proof obligations on function GeNoC
 - function GeNoC terminates
 - generic termination measure
- Main proof obligation on scheduling
 - decreases measure if no deadlock

- Main proof obligation on routing
 - deadlock-free routing
- Main proof obligation on injection
 - decreases measure if when network is empty

Overview of applications of GeNoC

Automatically checking sufficient condition (C-code)

Our approach

- Develop formal theory of the domain (e.g. NoCs)
 - identify components and their interactions
- Prove general theorems in this theory
 - what are the interesting global properties (no deadlock)
- Extract proof obligations on the components
 - what is important to know about each component
- Develop verified algorithms checking the POs
- Implement these algorithms
 - within the logic of an ITP (e.g. ACL2)
 - every run of the algorithm is a *formal* proof
 - in standard languages (e.g. C)
 - high-quality "bug hunter"

Reflection and side effects of formal efforts

- Found a (small) flaw in seminal paper of Duato
 - work was a breakthrough
 - paper 250 cites on GS
 - flaw in other paper with 630 cites and book with 1450 cites

- flaw in many papers inspired by Duato's work
- Correcting the flaw makes problem co-NP-complete
 - previous work claimed polynomial solution
 - made same mistake as Duato
- Theorem proving ensure correctness of algorithms
 - lots of corner cases
 - hard to debug when 1 single incorrect trace
- *In-depth understanding* of the issue

Conclusion

- Verified certifiers
- ITP is used to develop general theories and verified algorithms
- Verified algorithms implemented as high-quality "bug hunters"
 - likelihood of bugs after running the certifier
 - formal proof when running verified code (ACL2)
- Domain specific
 - static (on-chip) interconnection networks
- Very efficient
 - proven correct (sound)
 - linear or polynomial when possible
 - boundary to co-NP-complete well-defined