
Automatic certi f ication and
interactive theorem proving:

An impossible combination ?

Jul ien Schmaltz

Be provocative - Disclaimer

• Provocative statements - take them with a pinch of salt

About the speaker

• Limited knowledge about certification

• Interactive theorem proving systems
– mainly ACL2
– Isabelle on one project (1 year)
– sharing office with Coq user

• Application domains
– mainly on-chip interconnects
– time-triggered hardware

• Other research projects
– model-based testing with (Timed) LTS
– real-time model-checking using UPPAAL
– application to Wireless Sensor Networks

Automatic certi f ication

• Automatic
– tools - easy to use and efficient
– no human interaction - scalability

• Certification
– high-quality design process
– less bugs at the end

Interactive Theorem Proving

• Interactive
– hard thinking
– complex tools

• Theorem Proving
– complex, tedious proofs
– bug free but expensive
– deep insight in products
– true correctness

Certif ication vs. Theorem Proving

• Automatic Certification
– scalability, ease of use
– stamp about system quality
– bug removal by good design process
– low injection + good hunting

• Interactive Theorem proving
– tedious proofs, complex tools, "intelligence required"
– proof of (total) correctness
– about systems not their design process
– can prove tools correct

• tools with insight and true correctness

Bugs and NoCs

• Bug hunting - Model Checking&Co
– algorithmic technique - automation
– routine in HW industry
– find subtle bugs
– state-explosion problem - small, fixed size systems

• A mosquito-net for NoCs - The GeNoC approach
– a generic model for reasoning about NoCs
– highly parametric
– generic definition of correctness theorems
– identify constraints sufficient to prove the theorems
– only need to check constraints on particular instances

The GeNoC approach

Generic
Model

Generic
Theorems

discharge
proof obligations

Deadlock
freedom

Functional
Correctness

Evacuation

Executable
NoC Model

specify

Instantiated
Theorems

Deadlock
freedom

Functional
Correctness

Evacuation

The Generic Model: Constituents

Topology

Injection

Scheduler

Router

Formal model of network architectures

Let σ be a configuration containing a state and messages
Let M be a set of messages to be sent over the NoC

σ iff σ.M = ∅ // empty list of messages

σ iff deadlocked(Routing(Injection(σ)))

GeNoC(Scheduling(Routing(Injection(σ))))

GeNoC (σ) =

inject messagesRoutes
from current to destination

Advance of
one hop if possible

The Generic Model: Proof obligations (or constraints)

Local constraints sufficient to prove global generic theorems.

Topology Router

Injection
Scheduler

Type: “R:PxPP”

“A message moves, unless it is stuck”

Inject if network is empty

“Sinks have no outgoing edges”
Acyclic dependency graph

The Generic Model: Generic theorems

Routing Function

Constraints

Switching Method

Constraints

Injection Policy

Constraints

Generic Theorem

The Generic Model: Generic theorems

Instantiated Theorem

 Instantiated Constraints

Instantiated Constraints

Instantiated Constraints

Routing Function

Constraints

Switching Method

Constraints

Injection Policy

Constraints

Generic Theorem

GeNoC Theorem (1): Functional correctness

• Functional correctness
– if a message reaches a destination, it reaches its expected

destination without modification of its content
– Note: trivially holds if no message reach a destination

• Main proof obligations on routing
– last of route from s to d is d
– route computation terminates
– length of routes (opt)

• Proof obligation on scheduling
– mutual exclusion of scheduled and delayed messages
– union of scheduled and delay contains exactly all messages

(no spontaneous generation of new messages)

GeNoC Theorem (2): Deadlock freedom

• A network is deadlock-free iff
– there is no reachable deadlocked configuration
– deadlocked configuration = configuration where all messages

are stuck

• Main proof obligations on routing
– acyclic resource dependency graph (deterministic)
– escape for all cycles (adaptive)
– consistency between dependency graph and routing function

• Main proof obligation on scheduling
– next-hop based scheduling policy

GeNoC Theorem (3): Evacuation

• Evacuation theorem
– all messages eventually leave the network

• Main proof obligations on function GeNoC
– function GeNoC terminates
– generic termination measure

• Main proof obligation on scheduling
– decreases measure if no deadlock

σ iff σ.M = ∅ // empty list of messages

σ iff deadlocked(Routing(Injection(σ)))

GeNoC(Scheduling(Routing(Injection(σ))))

GeNoC (σ) =

• Main proof obligation on routing
– deadlock-free routing

• Main proof obligation on injection
– decreases measure if when

network is empty

Overview of applications of GeNoC

Topology Router

Injection

Scheduler

“R:PxPP”

circuit switching
packet switching
wormhole switching

bus arbitration

xy routing

double Y routing

Octagon routing

Hot potato routing2D-mesh

Octagon

time dependent

immediate

Deadlock

Deadlock

Deadlock

Deadlock

Deadlock

Deadlock is an emerging property

Deadlock verif ication - The big picture

Formal model
 GeNoC

ACL2
Formal

C-code
efficient

Efficient tool
high-quality
likelihood of missing deadlocks very low

Correct definition
 of deadlock deadlock-free

 condition

algorithm specification

efficient implementation
automatic formal proof

necc. and suff.

sufficient

Automatically checking suff icient condit ion (C-code)

0.01

0.1

1

10

100

0 5000 10000 15000 20000

Time (s)

Number of channels

2D-XY

++
+

+
+

+
2D-WF

××
×

×
×

×

×
2D-SP

∗
∗

∗
∗

∗ ∗

∗
2D-XY+SP

!
!

!

!!

!

!
RING-AAD

"

"

"

"

"

"

(a) Benchmark of our algorithm

0

500

1000

1500

2000

0 5000 10000 15000
Number of channels

Taktak et al.

+

+

+
+++

+
Our algorithm

×××××××

×

(b) Comparison to Taktak et al.

Figure 6. Experimental results

topologies, with six different routing functions.
2D Mesh – XY [9]
XY routing is a deterministic routing function for two-
dimensional meshes used in, e.g., the HERMES chip [10].
Messages are routed first along the X-axis and then along
the Y-axis. It is deadlock-free, as there are no cyclic
dependencies. We have verified this for a mesh with 4225
nodes and 16900 channels in 0.31 seconds.
2D Mesh – West-First [11]
West-first routing is an adaptive routing function for
two-dimensional meshes. It is based on the turn-model,
which states that a routing function is deadlock-free as
long as there are not enough turns allowed to create a
cycle. Our algorithm needed 1.49 seconds for a 65 by 65
mesh with 16900 channels.
2D Mesh – Shortest Path [6]
Shortest path routing is an adaptive routing function,
which routes messages along the shortest path. It is not
deadlock-free. Our algorithm returns a deadlock in 0.87
seconds for a 65 by 65 mesh with 16900 channels.
Double 2D Mesh – Shortest path with XY [6]
There are two channels in each direction between the
processing nodes. One of the channels is used for the
adaptive shortest path routing function. The other chan-
nel is used for the deterministic XY routing function.
The network is deadlock-free, even though there are
cyclic dependencies. Our algorithm returns true in 110,07
seconds for a 45 by 45 mesh with 16200 channels.
Spidergon – Shortest path [12], [13]
Spidergon STNoC is an architecture developed by STMi-
croelectronics [12], [13]. The Spidergon topology is a ring
where each node has a channel going clockwise, counter-
clockwise, and across. Its shortest path routing function
is deterministic. It is not deadlock-free2. We checked this
for the Spidergon chip with eight processing nodes, i.e.,

2The ST implementation actually is deadlock-free thanks to extra
virtual channels used to break cycles.

the Octagon chip [14].
Double ring – AAD
We have designed a new adaptive routing function for
Spidergon. There are two channels in the counter- and
clockwise-direction between the processing nodes on the
ring. AAD routing – for Adaptive-Across-Deterministic –
routes a message first adaptively in any direction. Once it
has taken an across-channel, it is deterministically routed
towards its destination. Our algorithm proves that it is
deadlock-free in 65,12 seconds for a network with 2048
nodes and 12288 channels.
As Figure 6a shows, our algorithm performs signif-

icantly better on XY and West-First routing than on
”Shortest Path with XY” and AAD routing. This is due to
the fact that the first two routing functions are deadlock-
free because there are no cyclic dependencies. In such
cases, our algorithm performs exactly like a regular cycle
detection algorithm and terminates in linear time.

VI. R
To the best of our knowledge, there exists only

one previous algorithm for proving routing functions
deadlock-free for wormhole networks [6], [15]. This al-
gorithm is based on a channel tagging that inspired our
own marking. Taktak’s algorithm first extracts strongly
connected components of the dependency graph and
tries to tag channels according to a deadlock-free con-
dition. A network is deadlock-free if all channels have
been tagged. The time complexity of their procedure is in
O(N4). Figure 6b shows a comparison with our solution
for the ”Shortest Path with XY” routing functions.
In addition of being faster our algorithm has also been

formally verified. This has played a significant part in
getting all subtleties of the algorithm exactly right. As
an example, consider the criterion on which a channel
is marked deadlock-attainable. A path to a deadlock-
sensitive channel seems sufficient, but it is not. First,
all channels in the path must be supplied for some

no cyclic dependencies

10000s of channels in 100 seconds

Condition as strong as Duato's one and its variations

Time complexity in O(N^3) where N = number of nodes

Deadlock verif ication - Unintended functionality

Formal model
 GeNoC

ACL2
Formal

C-code
efficient

Efficient tool
high-quality
likelihood of missing deadlocks very low

Correct definition
 of deadlock deadlock-free

 condition

algorithm specification

efficient implementation
automatic formal proof

necc. and suff.

sufficient

equivalences

correctness?

Deadlock verif ication - Conservative representation

Formal model
 GeNoC

ACL2
Formal

C-code
efficient

Efficient tool
high-quality
likelihood of missing deadlocks very low

Correct definition
 of deadlock deadlock-free

 condition

algorithm specification

efficient implementation
automatic formal proof

necc. and suff.

sufficient
simulations

v

v reviews

v

Our approach

• Develop formal theory of the domain (e.g. NoCs)
– identify components and their interactions

• Prove general theorems in this theory
– what are the interesting global properties (no deadlock)

• Extract proof obligations on the components
– what is important to know about each component

• Develop verified algorithms checking the POs

• Implement these algorithms
– within the logic of an ITP (e.g. ACL2)
– every run of the algorithm is a formal proof
– in standard languages (e.g. C)
– high-quality "bug hunter"

Reflection and side effects of formal efforts

• Found a (small) flaw in seminal paper of Duato
– work was a breakthrough
– paper 250 cites on GS
– flaw in other paper with 630 cites and book with 1450 cites
– flaw in many papers inspired by Duato's work

• Correcting the flaw makes problem co-NP-complete
– previous work claimed polynomial solution
– made same mistake as Duato

• Theorem proving ensure correctness of algorithms
– lots of corner cases
– hard to debug when 1 single incorrect trace

• In-depth understanding of the issue

Conclusion

• Verified certifiers

• ITP is used to develop general theories and verified algorithms

• Verified algorithms implemented as high-quality "bug hunters"
– likelihood of bugs after running the certifier
– formal proof when running verified code (ACL2)

• Domain specific
– static (on-chip) interconnection networks

• Very efficient
– proven correct (sound)
– linear or polynomial when possible
– boundary to co-NP-complete well-defined

