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Be provocative - Disclaimer

» Provocative statements - take them with a pinch of salt
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About the speaker

» Limited knowledge about certification

» Interactive theorem proving systems
— mainly ACL2
— Isabelle on one project (1 year)
— sharing office with Coq user

» Application domains
— mainly on-chip interconnects
— time-triggered hardware

» Other research projects
— model-based testing with (Timed) LTS
— real-time model-checking using UPPAAL
— application to Wireless Sensor Networks
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Automatic certification

* Automatic
— tools - easy to use and efficient
— no human interaction - scalability

» Certification
— high-quality design process
— less bugs at the end
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Interactive Theorem Proving

* Interactive -
— hard thinking et
— complex tools \ (o

 Theorem Proving | 3.4
— complex, tedious proofs
— bug free but expensive

— deep insight in products s h Q
w7

— true correctness
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Certification vs. Theorem Proving

« Automatic Certification
— scalability, ease of use
— stamp about system quality
— bug removal by good design process

— low injection + good hunting YOU WANT PROOF?
I'LL 6IVE YOU PROOF!

* Interactive Theorem proving
— tedious proofs, complex tools, "intelligence required"
— proof of (total) correctness
— about systems not their design process
— can prove tools correct
 tools with insight and true correctness
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Bugs and NoCs

* Bug hunting - Model Checking&Co
— algorithmic technique - automation
— routine in HW industry

— find subtle bugs
— state-explosion problem - small, fixed size systems

A mosquito-net for NoCs - The GeNoC approach
— a generic model for reasoning about NoCs

— highly parametric

— generic definition of correctness theorems

— identify constraints sufficient to prove the theorems

— only need to check constraints on particular instances
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The GeNoC approach
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The Generic Model: Constituents

Topology Router

¥ Bg
|n;ectioéf/y Q

* Scheduler
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Formal model of network architectures

Let o be a configuration containing a state and messages
Let M be a set of messages to be sent over the NoC

o iff o.M = @ // empty list of messages

GeNoC (o) = o iff deadlocked(Routing(Injection(o)))

GeNoC(Schedulmg(Routlng(lnjectlon(o

Advance of
one hop if pOSSIb|e

Routes inject messages
from current to destination
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The Generic Model: Proof obligations (or constraints)

Local constraints sufficient to prove global generic theorems.

Topology

“Sinks have no outgoing edges”

Scheduler

“A message moves, unless it is stuck”

ey ROUtEr

Type:“R: PXP%P”

Acyclic depeﬁdency graph

Inject if network is empty

Injection



The Generic Model: Generic theorems

Routing Function

m\

Switching Method

Generic Theorem

Injection Policy
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The Generic Model: Generic theorems

Routing Function

Constraints

Instantiated Constraints

Generic Theorem

Instantiated Theorem

Switching Method

Constraints

/

Instantiated Constraints

Injection Policy

Constraints

Instantiated Constraints
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GeNoC Theorem (1): Functional correctness

 Functional correctness

— if a message reaches a destination, it reaches its expected
destination without modification of its content

— Note: trivially holds if no message reach a destination

» Main proof obligations on routing
— last of route fromstodisd
— route computation terminates
— length of routes (opt)

* Proof obligation on scheduling
— mutual exclusion of scheduled and delayed messages

— union of scheduled and delay contains exactly all messages
(no spontaneous generation of new messages)
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GeNoC Theorem (2): Deadlock freedom

* A network is deadlock-free iff
— there is no reachable deadlocked configuration

— deadlocked configuration = configuration where all messages
are stuck

» Main proof obligations on routing
— acyclic resource dependency graph (deterministic)
— escape for all cycles (adaptive)
— consistency between dependency graph and routing function

« Main proof obligation on scheduling
— next-hop based scheduling policy
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GeNoC Theorem (3): Evacuation

o iff .M = @ // empty list of messages

GeNoC (o) = o iff deadlocked(Routing(Injection(o)))

GeNoC(Scheduling(Routing(Injection(o))))

« Evacuation theorem
— all messages eventually leave the network

« Main proof obligations on function GeNoC
— function GeNoC terminates
— generic termination measure — deadlock-free routing

Main proof obligation on routing

Main proof obligation on injection

— decreases measure if when
network is-empty

« Main proof obligation on scheduling
— decreases measure if no deadlock
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Overview of applications of GeNoC

Topology Router

AN
xy routing
double Y routing .
Octagon routing :x:

2D-mesh Hot potato routing “R: PxP>P”

Injection /

time dependent ” ﬁ <

immediate

Octagon

circuit switching
packet switching

) wormbhole switching

bus arbitration www.ou.nl
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Deadlock
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Deadlock is an emerging property ‘ www.ou.nl




Deadlock verification - The big picture

necc. and suff.

Formal model
GeNoC Correct definition /\
of deadlock deadlock-free
W condition

[ algorithm specification }\/

ACL2 [efﬁcient implementationj
Formal automatic formal proof

C-code
efficient

Efficient tool
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likelihood of missing deadlocks very low




Automatically checking sufficient condition (C-code)
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Number of channels

Condition as strong as Duato's one and its variations

10000s of channels in 100 seconds
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Deadlock verification - Unintended functionality

necc. and suff.
Formal model [

GeNoC Correct definition /\
of deadlock deadlock-free
W condition

[ algorithm specification }\/

I \ equivalences

ACL2 [efﬁcient implementationj

Formal automatic formal proof correctness?
C-code /
efficient

Efficient tool
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Deadlock verification - Conservative representation

—  \\ necc. and suff.
Formal model
GeNoC Correct definition /\
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Our approach

» Develop formal theory of the domain (e.g. NoCs)
— identify components and their interactions

* Prove general theorems in this theory
— what are the interesting global properties (no deadlock)

« Extract proof obligations on the components
— what is important to know about each component

» Develop verified algorithms checking the POs

* Implement these algorithms
— within the logic of an ITP (e.g. ACL2)
— every run of the algorithm is a formal proof
— in standard languages (e.g. C)
— high-quality "bug hunter"
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Reflection and side effects of formal efforts

 Found a (small) flaw in seminal paper of Duato
— work was a breakthrough
— paper 250 cites on GS
— flaw in other paper with 630 cites and book with 1450 cites
— flaw in many papers inspired by Duato's work

» Correcting the flaw makes problem co-NP-complete
— previous work claimed polynomial solution
— made same mistake as Duato

« Theorem proving ensure correctness of algorithms
— lots of corner cases
— hard to debug when 1 single incorrect trace

» In-depth understanding of the issue
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Conclusion

* Verified certifiers

 |ITP is used to develop general theories and verified algorithms

» Verified algorithms implemented as high-quality "bug hunters"
— likelihood of bugs after running the certifier
— formal proof when running verified code (ACL2)

« Domain specific
— static (on-chip) interconnection networks

» Very efficient
— proven correct (sound)
— linear or polynomial when possible

— boundary to co-NP-complete well-defined
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