DEFENCE € < DEFENSE

The Road from Software Testing to Theorem Proving

A Short Compendium of my Favorite Software
Verification Techniques

Frédéric Painchaud
DRDC Valcartier / Robustness .
and Software Analysis Group '

December 2010

Defence Research and Recherche et développement
Development Canada pour la défense Canada Cal lada

DEFENCE m DEFENSE

The Road...

5 s] »

B

Copyright © 200§ Dimensioh Films, 2929 Productions, Nick Wechsler Productions, C

DEFENCE

The Road...

Copyright © 2010 TheerryMonk.com

V

DEFENCE 1 ’ DEFENSE

The Road... L

“The first principle is that-you
must not fool yourself - and you
are the easiest person to fool.”
- Richard P. Feynman

Copyright © 2001 SoftLab-NSK Ltd.

Agenda -

e Context
* A Selection of my Favorite Software Verification Techniques
— Implementation Level
e Testing
 Security Vulnerability Scanner Tools Decreasing level
— Specification/Design Level ar?]fogagmsl(l)'f%\r,:,%e
« Architectural Risk Analysis developers
e Model Checking
e Lightweight Formal Methods
e Theorem Proving

e Discussion

Context — Where i1s DRDC? L

Context — DRDC’s Mandate =

 Defence R&D Canada ensures that the Canadian Forces are
technologically prepared and operationally relevant by:

— Providing expert S&T advice to the Canadian Forces and
Department of National Defence;

— Conducting research, development and analysis to contribute
to new and improved defence capabilities;

— Anticipating and advising on future S&T trends, threats and
opportunities;

— Engaging industrial, academic and international partners in
the generation and commercialization of technology;

— Providing S&T for external customers to enhance Defence
S&T capacity.

DEFENCE %EFENSE
Context — So What? -

Our main clients: Canadian Forces, Public Safety Canada, OGDs
— They use very little formal methods, no theorem proving
— Approximately ten years behind, and it is normal
» Applied research
— Little fundamental, academic research
* My group: two projects a year involving software development
— Few opportunities to experiment with various verification techniques
* Few people in DRDC know about formal methods
— Not much traction inside the organization

e Theroad | am presenting is a summarized compendium of the views | am
promoting to my clients when | have an opportunity

— Not something | do everyday
— Comes from a lot of “formal methods watch”
— My usual focus iIs security

A Selection of my Favorite Software Verification R-‘i)7 :
Technigues — Implementation Level

» Testing

— Key point; making sure that the test suite is “large enough”
and contains “effective test cases”

— “Large enough”: Code coverage

o Statement coverage: implies function/method coverage

— Tricky for object-oriented code and exception handlers,
requires fault' injection

. Lo_opf)coverage: have all loops been executed at least
twice”

— Helps to focus more specifically on loop conditions
correctness

o Condition/decision coverage: when the correctness of the
Implemented tests in the application Is important, e.g.,
control applications

A Selection of my Favorite Software Verification u‘if

Technigues — Implementation Level

* Testing (cont’d)
— “Large enough’: Code coverage (cont’d)

* Modified condition/decision coverage: when the correctness
of the implemented tests in the application is paramount, e.g.,
safety-critical applications (DO-178B Level A)

— “Effective test cases”:

* Requirements-based testing: defining test cases from
requirements helps to ensure that requirements are implemented
correctly and completely by:

— having 100% success and
— 100% statement coverage after executing test suite

 Mutation testing: ensures that modifying the tested
application’s code, even very slightly, also modifies the end
result of at least one test case in the test suite

10

A Selection of my Favorite Software Verification R-'i)7 3
Technigues — Implementation Level
* Testing (cont’d)
— Pros
 Very well-known and studied
e Intuitive for programmers

« Many supporting tools available for code coverage, test
cases generation, mutation testing, etc, even freely

— Cons

 Often not performed adequately (code coverage is not
measured, no mutation testing, only unit testing, etc)

o False sense of correctness, fails during integration
— Important: testing often fails to show the presence of bugs

 Culture of “Never design, write once, debug many”

11

A Selection of my Favorite Software Verification u‘if

Technigues — Implementation Level

» Security Vulnerability Scanner Tools
— Key points:
* Increasing adoption, more than for other static analysis tools
« “Scan often, use many”
— Pros

o Intuitive for programmers, fit very well in current “build
environments™

« Minimal impact on management and development processes
» Overall quality of these tools increased significantly since 2005
— Cons

» Tendency to select only one tool judged as the best one, mostly from
the tool’s marketing

» Secure development and C&A processes slowly become centered
around tools

12

A Selection of my Favorite Software Verification > R-‘i)7 EEEEE

Techniques — Specification/Design Level

« Architectural Risk Analysis
— Key points:

* Structured and practical process to consider security at the
architectural level, either during new design or for legacy
applications

e Cigital Inc. is the main pioneer

* My process contains Cigital’s activities integrated within
the usual risk analysis process

— Cigital does not reveal its entire process

Step 2. Threat
identification

ik

Architectural Risk Analysis Process s R

Attacker’s
perspective

[

\ 4

Step 5. Attack likelihood determination

Step 1. System characterization

FYeidager
evegkdbect edse

of

Step 3. Vulnerability

identification

Step 4. Control
analysis

AJ

Step 6. Impact
analysis

Step 7. Risk determination

Step 9. Results documentation

Step 8. Control recommendations

Common Attack Pattern Enumeration and
Classification (CAPEC, see capec.mitre.org)

Common Attack Pattern Enumeration and Classification

« A Community Knowledge Resource for Building Secure Software

DEFENCE

R

e

FENSE

Home > CAPEC List = VIEW GRAPH: CAPEC-1000: Mechanism of Attack (Release 1.5)

CAPEC-1000: Mechanism of Attack

CAPEC List

Full CARPEC Dictionary
Methods of Attack View
Reports

Documents

Resources

Related Activities
Callabaoration List
Calendar

Free Newslatter

Search the Site

Definition

Search by ID: [N

Graph List

Slice XML.zip

HasMember & 225 Exploitation of Authentication 1000 |~
HasMember & 232 Exploitation of Privilege/Trust 1000
HasMember (# 255 Data Structure Attacks 1000
HasMember #® 252 Resource Manipulation 1000
HasMember [286 Network Reconnaissance 1000
| | |
Total 322 out of 384
Views 0 out of &
Categories 18 out of &7
Attack Patterns 311 out of 311
W
more ¥

1000 - Mechanism of Attack

H®Data leakage Attacks - (118)
E®Resource Depletion - (119)

Expand All | Collapse All

E®Injection (Injecting Control Plane content through the Data Plane) - (152)

= ® Spoofing - (156)

B®Time and State Attacks - (172)

= ® Abuse of Functionality - (210)

= ® Probabilistic Technigues - (223)

= ® Exploitation of Authentication - (225)

= {® Exploitation of Privilege/Trust - (232)

= ® Data Structure Attacks - (255)

= {® Resource Manipulation - (262)

mE Network Reconnaissance - (286)

Page Last Updated: April 02, 2010

14

MITRE

CAPEC is a Software Assurance strategic initiative co-sponsared by the National Cyber Security Division of the U5, Diepartment of Homeland Security,

Thizs Web site is spensered and managed by The MITRE Corporation to enable stakehaolder collabaration,
Copyright 2010, The MITRE Corperation. CAPEC and the CAPEC loge are trademarks of The MITRE Corperation.

Contact capec@mitre.org for more information,

Privacy policy
Terms of use
Contact us

o, g~

LTRETITHY

MM A

Common Weakness Enumeration (CWE, porace [g Jfoermnes
see cwe.mitre.org)

MOST DANGEROUS
SOFTWARE
ERRORS

L]

Common Weakness Enumeration

A Community-Developed Dictionary of Software Weakness Tvpes

International in scope and free for public use, CWE™ provides a unified, measurable set of software weaknesses that is enabling more effective “
discussion, description, selection, and use of software security tools and services that can find these weaknesses in source code and operational systems New ISO/IEC Repert Lists the 51
as well as better understanding and management of software weaknesses related to architecture and design. Most Commen Vulnerabilities in
Programming Languages

CWE and Making Security
Measurable panel at Rethinking
Cyber Security: A Systems-Based
o Approach Conference

- P CWE/CAPEC/MAEC panel at 11th
T I e Annual Sscuricy Conference

= = paaann, | S CWE/Making Security Measurable
Dizzuzmsizn List and CAPEC briefings at AppSec OC
2010

CWE/CAPEC Kevnote

presentation at SecureSDLC
Confersnce

Security Vulnerability Scanner Tools

= Software Assurance panel at CIF
Congress, Mowvember 20-December
2

CWE/Making Security Measurable
brigfing at ITU-T Security Workshoo,
December 6-7

Building CWE & Consens

Pty Ay st Sty amimmr
Resa e, sd O

ng Events

r wE — — » CWE/CAPEC/MAEC brisfings at
ol P Compatibifity | wawiain | " | DHS/DoD SwA Working Grous
_] Meeting Session, December 14-16
— omore
Status Report
Version 1.10 posted September 27,
.. 2010. There are 7 new entries,
Similar Standards mostly for synchronization and
"memory safety” issues; changes to
Attack Patterns (CAPEC) Assessment Language (OVAL 115 entries; modified mitigations for
Vulnerabilities {CVE) Checklist Language (XCCDF) 34 entries; and updates to 43
Configurations (CCE) Log Format (CEE) relationships. There were no schema
Platforms (CPE) Security Content Automation (SCAP changes. The CWE/SANS Top 25 was
Malware (MAEC) Making Security Measurable updated to reflect the new version.

More Information

cwe@mitre.org

Page List Updated:

g

CWE i= a Softwars Assurance stral=gi

This Web sit= &= spenzarsd and managsd by The MITRE Corperation to snabls stakeholder collaboration,
Copyright 2010, The MITRE Corporation. CWE and the CWE logo are trademarks of Tihe MITRE Conporation.

initiative co-spomnsonsd by the Nationsl Cyber Security Division of the U.S. Depariment of Homelsnd Secuwrity.

Contact cw=@mitre. org for mors information.

15

A Selection of my Favorite Software Verification e B-‘i)7 EEEEE
Techniques — Specification/Design Level

« Architectural Risk Analysis (cont’d)

— Pros

* Practical: even though it is framed Inside a process,
developers are really finding security flaws

 Helps to find higher-level security issues, not only buffer
overflows, format strings, etc

o Compatible with usual Software Development Life Cycles

— Cons

 In Immature organizations, it requires efforts to modify
current, usually ad hoc, development processes

* Requires trained personnel in security to take the
attacker’s perspective

16

A Selection of my Favorite Software Verification u‘i)7

Techniques — Specification/Design Level

* Model Checking

— Key ﬁoint:_given a formal model of a system, it verifies automatically
whether this model meets a given formal specification

— Pros

o Generic: theories have been developed for many types of models
(timed, stochastic, etc) and specification logics (temporal, modal, etc)

. M(t)st ttools now handle the state explosion problem to an acceptable
exten

— Cons

* In software model checking, most useful logics in practice (more
expressive than propositional and monadic predicate logics) are hardly
tractable, semidecidable or undecidable so it can fail to prove or
disprove a given property

o |t c?n be very difficult to produce a correct but yet abstract model of a
system

* Requires trained and dedicated personnel to analyze the results

17

18

A Selection of my Favorite Software Verification cermen |

Techniques — Specification/Design Level

o Lightweight Formal Methods
— Key points:

« Coined by Prof. Daniel Jackson at the MIT (see
alloy.mit.edu)

» Benefit from the precision of mathematical thinking and
linguistic advantages of formal methods while sacrificing
enough language expressiveness to get simplicity and a
fully-automated mechanical analysis that is effective at
finding errors

 In some sense, they could be named “Pra]qmatig: Formal
Methods” (but sounds pedant) or “Formal Testing” (but
sounds pejorative and Is too restrictive)

A Selection of my Favorite Software Verification e B-‘i)7 EEEEE
Techniques — Specification/Design Level

« Lightweight Formal Methods (cont’d)

— Pros

 Best of many worlds: smaller languages, easier to learn,
concepts closer to programmers’ mindsets, good tools

support, application- and domain-specific

— Con (comment)

* | believe many formal methods fall into this “more _
friendly” category but are unfortunately not presented with
this perspective: modern compilers (!), automatic static
analysis tools, model ch_ecklng, SAT solvers, first-order

C

automatic theorem proving, e

19

A Selection of my Favorite Software Verification u‘i)7

Techniques — Specification/Design Level

e Theorem Proving

— Key point: prove that some generic formal Properties, such as consistency
or completeness, are valid in a formally-defined specification

— Pros

* Proves the absence of errors (with respect to the verified properties),
no partial error detection anymore

» Backed by fifty years of research and development, world-wide

 First-order theorem proving now enjoys very efficient, effective and
some fully-automatic tools

— Cons

« Formal specification and theorem proving are very complex on
mainstream software developers’ scale

» With interactive theorem proving (more expressive Iogics?], the cost of
proof (analysis) is usually an order of magnitude greater than the cost
of formal specification, which is already high

20

Discussion — Comments Relating these Techniques > [Rgjvemes
to DO-178B/C Certification

e Testing

— Until we can formally specify the entire aircraft platform
systems (hardware and software), we will have to perform
some software testing (at the very least integration testing) to
verify that the software works correctly in its environment.

 Security Vulnerability Scanner Tools

— Note: In the context of DO-178B/C, these tools are not
security-enforcing tools but more generlcally correctness-
enforcing tools (static and dynamic).

— Tools must be qualified but are still incomplete (especially
taken individually) and potentially incorrect (except if
qualification is infallible). Cross-verifying one tool’s results
with one or more other tools should be discussed (if not
already in DO-178C).

21

Discussion — Comments Relating these Techniques = R-‘i)7 EEEEE

to DO-178B/C Certification

22

« Architectural Risk Analysis

— Note: If you switch its focus from security to safety and rename
It Threat and Risk Assessment (TRA), you get a process already
performed in Safety Engineering which can be used to progress
more smoothly towards formal methods adoption.

— For organizations with a small or inexistent “culture of
correctness”, forcing the adoption of formal methods Is
unrealistic.

« Model Checking/Lightweight Formal Methods/Theorem Proving

— The qualification of these tools is at least discussed in DO-
178B/C; the process is still imperfect but was refined. But the
processes and culture behind formal methods must still be
mapped onto and integrated into DO-178B/C required objectives
by the organizations that want to get the certification.

Discussion — From the List of Just-in-Time Topics
Prepared Ahead of the Workshop

« “Conservative Representation” (ref DO-178C): A conservative

23

representation is sound with respect to the Ol’lﬂlnal representation
but incomplete. Thus, every property true of the conservative
representation can be mapped to a true property of the original
representation (sound). But not every property true of the original
representation Is true of the conservative representation
(incomplete).

“Necessary Low-Level Software Requirements” (ref DO-178C):
It IS a requirements traceability problem. First, you need to
formalize all high-level and low-level software requirements.
Second, you need to find minimal sets of low-level software
re?uwements so that each set entails one or more high-level
software requirements. Finally, you need to show that ever¥ low-
level software requirement is'a member of at least one set. In
other words, low-level requirements must constitute a correct and
minimal step-wise refinement of high-level requirements.

Addi_tionaII%/z you could show that every high-level software
requirement Is entailed.

Discussion — From the List of Just-in-Time Topics orencs [Rg Y oo

Prepared Ahead of the Workshop

« “Avoidance of Unintended Functionality” (ref DO-178C): It Is
another requirements traceability problem. The implementation
must be formal, i.e., you must have a complete formal semantics
for its programming language. Using the same principle than in
the “Necessary Low-Level Software Requirements” topic, you
must show that the code Is a correct and minimal step-wise
refinement of low-level requirements.

 “Soundness of a Theorem-Proving Approach” (ref DO-178C):
My mterpretatlon IS that the intent behind “soundness” here is In
line with the “Conservative Representation” topic. A theorem-
proving approach is sound if it works on conservative
representations, or we might say sound representations (but not
necessarily complete), with respect to the reality being modeled.

28

Discussion — From the List of Just-in-Time Topics o [)RR
Prepared Ahead of the Workshop

o “Assurance Cases”: Interactive theorem proving can be used to
verify the validity of assurance cases already developed (say,
manually). They can also support the development of new
assurance cases by validating each step and performing some of
the steps automatically.

DEFENCE | < “ DEFENSE

-

7
dor”

	The Road…
	The Road…
	The Road…
	Agenda
	Context – Where is DRDC?
	Context – DRDC’s Mandate
	Context – So What?
	A Selection of my Favorite Software Verification Techniques – Implementation Level
	A Selection of my Favorite Software Verification Techniques – Implementation Level
	A Selection of my Favorite Software Verification Techniques – Implementation Level
	A Selection of my Favorite Software Verification Techniques – Implementation Level
	A Selection of my Favorite Software Verification Techniques – Specification/Design Level
	Architectural Risk Analysis Process
	Common Attack Pattern Enumeration and Classification (CAPEC, see capec.mitre.org)
	Common Weakness Enumeration (CWE, see cwe.mitre.org)
	A Selection of my Favorite Software Verification Techniques – Specification/Design Level
	A Selection of my Favorite Software Verification Techniques – Specification/Design Level
	A Selection of my Favorite Software Verification Techniques – Specification/Design Level
	A Selection of my Favorite Software Verification Techniques – Specification/Design Level
	A Selection of my Favorite Software Verification Techniques – Specification/Design Level
	Discussion – Comments Relating these Techniques to DO-178B/C Certification
	Discussion – Comments Relating these Techniques to DO-178B/C Certification
	Discussion – From the List of Just-in-Time Topics Prepared Ahead of the Workshop
	Discussion – From the List of Just-in-Time Topics Prepared Ahead of the Workshop
	Discussion – From the List of Just-in-Time Topics Prepared Ahead of the Workshop

