
A Short Compendium of my Favorite Software 
Verification Techniques

Frédéric Painchaud
DRDC Valcartier / Robustness 
and Software Analysis Group

December 2010

The Road from Software Testing to Theorem Proving



1

The Road…

Copyright © 2009 Dimension Films, 2929 Productions, Nick Wechsler Productions, Chockstone Pictures



2

The Road…

Copyright © 2010 TheMerryMonk.com



3

The Road…

“The first principle is that you 
must not fool yourself - and you 
are the easiest person to fool.”

- Richard P. Feynman
Copyright © 2001 SoftLab-NSK Ltd.



4

Agenda

• Context
• A Selection of my Favorite Software Verification Techniques

– Implementation Level
• Testing
• Security Vulnerability Scanner Tools

– Specification/Design Level
• Architectural Risk Analysis
• Model Checking
• Lightweight Formal Methods
• Theorem Proving

• Discussion

Decreasing level 
of familiarity 

among software 
developers



5

Context – Where is DRDC?



6

Context – DRDC’s Mandate

• Defence R&D Canada ensures that the Canadian Forces are 
technologically prepared and operationally relevant by:

– Providing expert S&T advice to the Canadian Forces and 
Department of National Defence;

– Conducting research, development and analysis to contribute 
to new and improved defence capabilities;

– Anticipating and advising on future S&T trends, threats and 
opportunities;

– Engaging industrial, academic and international partners in 
the generation and commercialization of technology;

– Providing S&T for external customers to enhance Defence
S&T capacity.



7

Context – So What?

• Our main clients: Canadian Forces, Public Safety Canada, OGDs
– They use very little formal methods, no theorem proving
– Approximately ten years behind, and it is normal

• Applied research
– Little fundamental, academic research

• My group: two projects a year involving software development
– Few opportunities to experiment with various verification techniques

• Few people in DRDC know about formal methods
– Not much traction inside the organization

• The road I am presenting is a summarized compendium of the views I am 
promoting to my clients when I have an opportunity
– Not something I do everyday
– Comes from a lot of “formal methods watch”
– My usual focus is security



8

A Selection of my Favorite Software Verification 
Techniques – Implementation Level

• Testing
– Key point: making sure that the test suite is “large enough”

and contains “effective test cases”
– “Large enough”: Code coverage

• Statement coverage: implies function/method coverage
– Tricky for object-oriented code and exception handlers, 

requires fault injection

• Loop coverage: have all loops been executed at least 
twice?

– Helps to focus more specifically on loop conditions 
correctness

• Condition/decision coverage: when the correctness of the 
implemented tests in the application is important, e.g., 
control applications



9

A Selection of my Favorite Software Verification 
Techniques – Implementation Level

• Testing (cont’d)

– “Large enough”: Code coverage (cont’d)

• Modified condition/decision coverage: when the correctness 
of the implemented tests in the application is paramount, e.g., 
safety-critical applications (DO-178B Level A)

– “Effective test cases”:

• Requirements-based testing: defining test cases from 
requirements helps to ensure that requirements are implemented 
correctly and completely by:

– having 100% success and

– 100% statement coverage after executing test suite

• Mutation testing: ensures that modifying the tested 
application’s code, even very slightly, also modifies the end 
result of at least one test case in the test suite



10

A Selection of my Favorite Software Verification 
Techniques – Implementation Level

• Testing (cont’d)
– Pros

• Very well-known and studied
• Intuitive for programmers
• Many supporting tools available for code coverage, test 

cases generation, mutation testing, etc, even freely
– Cons

• Often not performed adequately (code coverage is not 
measured, no mutation testing, only unit testing, etc)

• False sense of correctness, fails during integration
– Important: testing often fails to show the presence of bugs

• Culture of “Never design, write once, debug many”



11

A Selection of my Favorite Software Verification 
Techniques – Implementation Level

• Security Vulnerability Scanner Tools
– Key points:

• Increasing adoption, more than for other static analysis tools
• “Scan often, use many”

– Pros
• Intuitive for programmers, fit very well in current “build 

environments”
• Minimal impact on management and development processes
• Overall quality of these tools increased significantly since 2005

– Cons
• Tendency to select only one tool judged as the best one, mostly from 

the tool’s marketing
• Secure development and C&A processes slowly become centered 

around tools



12

A Selection of my Favorite Software Verification 
Techniques – Specification/Design Level

• Architectural Risk Analysis

– Key points:

• Structured and practical process to consider security at the 
architectural level, either during new design or for legacy 
applications

• Cigital Inc. is the main pioneer

• My process contains Cigital’s activities integrated within 
the usual risk analysis process

– Cigital does not reveal its entire process



13

Software architecture documentation

Step 1. System characterization

One-page overview

Step 2. Threat
identification

Step 3. Vulnerability
identification

Step 4. Control
analysis

History of system attacks
Sources of intelligence

Threat statement

Security testing
results

Vulnerability statement

Planned
controls

List of controls

Step 5. Attack likelihood determination

Attack likelihood rating

Step 6. Impact
analysis

Impact rating

Step 7. Risk determination

Step 8. Control recommendations

Step 9. Results documentation

Rated risks

Recommended controls or modifications

Software Architectural Risk Analysis report

One-page overview

13

Architectural Risk Analysis Process

Foundation of 
everything else

Attacker’s 
perspective

Defender’s 
perspective
Manager’s 
perspective



14

Common Attack Pattern Enumeration and 
Classification (CAPEC, see capec.mitre.org)



15

Common Weakness Enumeration (CWE, 
see cwe.mitre.org)

Security Vulnerability Scanner Tools



16

A Selection of my Favorite Software Verification 
Techniques – Specification/Design Level

• Architectural Risk Analysis (cont’d)

– Pros

• Practical: even though it is framed inside a process, 
developers are really finding security flaws

• Helps to find higher-level security issues, not only buffer 
overflows, format strings, etc

• Compatible with usual Software Development Life Cycles

– Cons

• In immature organizations, it requires efforts to modify 
current, usually ad hoc, development processes

• Requires trained personnel in security to take the 
attacker’s perspective



17

A Selection of my Favorite Software Verification 
Techniques – Specification/Design Level

• Model Checking
– Key point: given a formal model of a system, it verifies automatically 

whether this model meets a given formal specification
– Pros

• Generic: theories have been developed for many types of models 
(timed, stochastic, etc) and specification logics (temporal, modal, etc)

• Most tools now handle the state explosion problem to an acceptable 
extent

– Cons
• In software model checking, most useful logics in practice (more

expressive than propositional and monadic predicate logics) are hardly 
tractable, semidecidable or undecidable so it can fail to prove or 
disprove a given property

• It can be very difficult to produce a correct but yet abstract model of a 
system

• Requires trained and dedicated personnel to analyze the results



18

A Selection of my Favorite Software Verification 
Techniques – Specification/Design Level

• Lightweight Formal Methods
– Key points:

• Coined by Prof. Daniel Jackson at the MIT (see 
alloy.mit.edu)

• Benefit from the precision of mathematical thinking and 
linguistic advantages of formal methods while sacrificing 
enough language expressiveness to get simplicity and a 
fully-automated mechanical analysis that is effective at 
finding errors

• In some sense, they could be named “Pragmatic Formal 
Methods” (but sounds pedant) or “Formal Testing” (but 
sounds pejorative and is too restrictive)



19

A Selection of my Favorite Software Verification 
Techniques – Specification/Design Level

• Lightweight Formal Methods (cont’d)
– Pros

• Best of many worlds: smaller languages, easier to learn, 
concepts closer to programmers’ mindsets, good tools 
support, application- and domain-specific

– Con (comment)
• I believe many formal methods fall into this “more 

friendly” category but are unfortunately not presented with 
this perspective: modern compilers (!), automatic static 
analysis tools, model checking, SAT solvers, first-order 
automatic theorem proving, etc



20

A Selection of my Favorite Software Verification 
Techniques – Specification/Design Level

• Theorem Proving
– Key point: prove that some generic formal properties, such as consistency 

or completeness, are valid in a formally-defined specification
– Pros

• Proves the absence of errors (with respect to the verified properties), 
no partial error detection anymore

• Backed by fifty years of research and development, world-wide
• First-order theorem proving now enjoys very efficient, effective and 

some fully-automatic tools
– Cons

• Formal specification and theorem proving are very complex on 
mainstream software developers’ scale

• With interactive theorem proving (more expressive logics), the cost of 
proof (analysis) is usually an order of magnitude greater than the cost 
of formal specification, which is already high



21

Discussion – Comments Relating these Techniques 
to DO-178B/C Certification

• Testing

– Until we can formally specify the entire aircraft platform 
systems (hardware and software), we will have to perform 
some software testing (at the very least integration testing) to
verify that the software works correctly in its environment.

• Security Vulnerability Scanner Tools

– Note: In the context of DO-178B/C, these tools are not 
security-enforcing tools but more generically correctness-
enforcing tools (static and dynamic).

– Tools must be qualified but are still incomplete (especially 
taken individually) and potentially incorrect (except if 
qualification is infallible). Cross-verifying one tool’s results 
with one or more other tools should be discussed (if not 
already in DO-178C).



22

Discussion – Comments Relating these Techniques 
to DO-178B/C Certification

• Architectural Risk Analysis

– Note: If you switch its focus from security to safety and rename
it Threat and Risk Assessment (TRA), you get a process already 
performed in Safety Engineering which can be used to progress 
more smoothly towards formal methods adoption.

– For organizations with a small or inexistent “culture of 
correctness”, forcing the adoption of formal methods is 
unrealistic.

• Model Checking/Lightweight Formal Methods/Theorem Proving

– The qualification of these tools is at least discussed in DO-
178B/C; the process is still imperfect but was refined. But the 
processes and culture behind formal methods must still be 
mapped onto and integrated into DO-178B/C required objectives 
by the organizations that want to get the certification.



23

Discussion – From the List of Just-in-Time Topics 
Prepared Ahead of the Workshop

• “Conservative Representation” (ref DO-178C): A conservative 
representation is sound with respect to the original representation 
but incomplete. Thus, every property true of the conservative 
representation can be mapped to a true property of the original 
representation (sound). But not every property true of the original 
representation is true of the conservative representation 
(incomplete).

• “Necessary Low-Level Software Requirements” (ref DO-178C): 
It is a requirements traceability problem. First, you need to 
formalize all high-level and low-level software requirements. 
Second, you need to find minimal sets of low-level software 
requirements so that each set entails one or more high-level 
software requirements. Finally, you need to show that every low-
level software requirement is a member of at least one set. In 
other words, low-level requirements must constitute a correct and 
minimal step-wise refinement of high-level requirements.
Additionally, you could show that every high-level software 
requirement is entailed.



24

Discussion – From the List of Just-in-Time Topics 
Prepared Ahead of the Workshop

• “Avoidance of Unintended Functionality” (ref DO-178C): It is 
another requirements traceability problem. The implementation 
must be formal, i.e., you must have a complete formal semantics 
for its programming language. Using the same principle than in 
the “Necessary Low-Level Software Requirements” topic, you 
must show that the code is a correct and minimal step-wise 
refinement of low-level requirements.

• “Soundness of a Theorem-Proving Approach” (ref DO-178C): 
My interpretation is that the intent behind “soundness” here is in 
line with the “Conservative Representation” topic. A theorem-
proving approach is sound if it works on conservative 
representations, or we might say sound representations (but not 
necessarily complete), with respect to the reality being modeled.



25

Discussion – From the List of Just-in-Time Topics 
Prepared Ahead of the Workshop

• “Assurance Cases”: Interactive theorem proving can be used to 
verify the validity of assurance cases already developed (say, 
manually). They can also support the development of new 
assurance cases by validating each step and performing some of 
the steps automatically.



26


	The Road…
	The Road…
	The Road…
	Agenda
	Context – Where is DRDC?
	Context – DRDC’s Mandate
	Context – So What?
	A Selection of my Favorite Software Verification Techniques – Implementation Level
	A Selection of my Favorite Software Verification Techniques – Implementation Level
	A Selection of my Favorite Software Verification Techniques – Implementation Level
	A Selection of my Favorite Software Verification Techniques – Implementation Level
	A Selection of my Favorite Software Verification Techniques – Specification/Design Level
	Architectural Risk Analysis Process
	Common Attack Pattern Enumeration and Classification (CAPEC, see capec.mitre.org)
	Common Weakness Enumeration (CWE, see cwe.mitre.org)
	A Selection of my Favorite Software Verification Techniques – Specification/Design Level
	A Selection of my Favorite Software Verification Techniques – Specification/Design Level
	A Selection of my Favorite Software Verification Techniques – Specification/Design Level
	A Selection of my Favorite Software Verification Techniques – Specification/Design Level
	A Selection of my Favorite Software Verification Techniques – Specification/Design Level
	Discussion – Comments Relating these Techniques to DO-178B/C Certification
	Discussion – Comments Relating these Techniques to DO-178B/C Certification
	Discussion – From the List of Just-in-Time Topics Prepared Ahead of the Workshop
	Discussion – From the List of Just-in-Time Topics Prepared Ahead of the Workshop
	Discussion – From the List of Just-in-Time Topics Prepared Ahead of the Workshop

