
This pseudo-code description was created for the 2nd Workshop on Theorem Proving in
Certification to be held December 5 - 6, 2011 in Cambridge, UK. It has been “seeded” with
some intentional defects and other aberrations for the purposes of evaluating and demonstrating
the effectiveness of formal analysis as a means of verifying software. All uses of this pseudo-
code or variants of this pseudo-code should acknowledge this workshop as the original source.

/* ===
UpdateNGVelocity () - Nose Gear Velocity Estimate Update Function

Created 2010.07.16
Updated 2011.02.12
Updated 2011.08.04

This function is invoked by the scheduler at least once every 500
millisecs while the weight-on-wheels condition is true. It reads
three global variables (NGClickTime,NGRotations and Millisecs)and
updates two other global variables (estimatedGroundVelocity and
estimatedGroundVelocityIsAvailable).

The minimum measurable velocity is 3 km/hr. It is not safe to
use the output of this function to determine that the aircraft
is stopped.

Requirement #1: When the estimatedGroundVelocityIsAvailable flag
is true (i.e., this global variable is set to a non-zero value),
the value of the global variable estimatedGroundVelocity shall be
within 3 km/hr of the true velocity of the aircraft at some moment
within the past 3 seconds. This requirement may be expressed in a
semi-formal manner as follows (where behaviour is modelled at the
millisecond time scale):

FORALL t,
IF (estimatedGroundVelocityIsAvailable at time (t + 3000))
THEN EXISTS n, m SUCH THAT:
((1 <= n) AND (n <= 3000)) AND
((-3 <= m) AND (m <= 3)) AND
(estimatedGroundVelocity at time (t + 3000) =

(trueGroundVelocity at time (t + n)) + m)

This property must hold if all of the following assumptions are
true:

1. The sensor detects the completion of a full rotation of the nose
gear wheel with a maximum error of 1 cm, i.e., there is a maximum
variation of +/- 1 centimeter in the location of a fixed position
on the perimeter of the wheel between the times when a “click”
is signaled to the computer.

2. The two global variables, NGClickTime and NGRotations, are
updated no more than 2 milliseconds after the sensor detects the
completion of a full rotation of the nose gear wheel.

3. The maximum change in velocity (to be tolerated by this function)
is 20 meters per second per second at speeds above 150 km/hr and no

more than 10 meters per second per second at lower speeds. The
maximum tolerable jerk (i.e., derivative of acceleration) is 3 meters
per second cubed.

4. The wheel diameter is between 12 and 50 inches.

5. No other part of the software is capable of modifying the values
of estimatedGroundVelocityIsAvailable and estimatedGroundVelocity.

6. The aircraft is moving at least 3km/hr.

7. Once invoked, this update function runs to completion, or at least
the global variables updated by this function will not be read by any
any other part of the software between the time when this function is
entered and when its execution is completed.

Requirement #2: If all of the above assumptions are true, the
estimatedGroundVelocityIsAvailable flag shall be true if the values
of the three global variables NGClickTime, NGRotations and Millisecs
have been valid when accessed during the two previous invocations of
this function.

*/

/* SYSTEM ADAPTATION PARAMETERS */

/* WHEEL_DIAMETER is the approximate diameter of the nose gear wheel,
in inches (accurate within 1 inch of true diameter).

*/

#define WHEEL_DIAMETER 26

/* MIN_SPEED is the minimum measureable speed, in km/hr */

#define MIN_SPEED 3

/* MAX_SPEED is an upper bound on the range of measurable velocity
while the aircraft is moving on the ground, in km/hr.

*/

#define MAX_SPEED 600

/* MAX_ACCEL is an upper bound on the rate at which the measured speed
may increase or decrease, in meters per second squared. Note: just
a quantity, i.e., always a positive value regardless of whether the
speed is increasing or decreasing.

*/

#define MAX_ACCEL 20

/* MAX_NUM_FAILED_UPDATES is an upper bound on the number of times
that attempts to update the estimated ground speed can fail
consecutively (because the estimated velocity or estimated
(de-)acceleration rate is too high to be valid).

*/

#define MAX_FAILED_UPDATES 5

/* GLOBAL VARIABLES */

/* NGClickTime (unsigned 16 bits) is the approximate system clock
time when the nose gear wheel most recently completed a full
rotation causing NGRotations to be incremented.

*/

extern unsigned NGClickTime;

/* NGRotations (unsigned 16 bits) is the number of completed full
rotations of the nose gear, i.e., it is incremented when each full
rotation is completed.

*/

extern unsigned NGRotations;

/* Millisecs (unsigned 16 bits) is the number of milliseconds since
the start of system execution, i.e., system clock time.

*/

extern unsigned Millisecs;

/* estimatedGroundVelocityIsAvailable (unsigned 16 bits) is
non-zero if and only if estimatedGroundVelocity is a valid output.

*/

extern unsigned estimatedGroundVelocityIsAvailable;

/* estimatedGroundVelocity (unsigned 16 bits) is the measured velocity,
in km/hr, of the aircraft while moving on the ground when
estimatedGroundVelocityIsAvailable is a non-zero value.

*/

extern unsigned estimatedGroundVelocity;

void UpdateNGVelocity () {

/* private constants */

/* whcf is circumference in centimeters of the nose gear wheel. */

static int whcf = (((WHEEL_DIAMETER * 254) / 7) * 22) / 100;

/* maxMsecs is an upper bound on the time for a full rotation of
the nose gear wheel.

*/

static int maxMsecs = (whcf * 36) / MIN_SPEED;

/* maxUpdates is an upper bound on the number of updates required
for a full rotation of the nose gear wheel where maximum time
between updates is 500 millisecs.

*/

static int maxUpdates = (maxMsecs / 500) + 1;

/* maxClicks is an upper bound the number of full rotations,

i.e., clicks between innovations of this function where the
maximum time between updates is 500 millisecs.

*/

static int maxClicks = (MAX_SPEED / (whcf * 36)) * 500;

/* unsigned variables on target hardware are 16 bits */

static unsigned prevTime = 0;
static unsigned prevCount = 0;
static unsigned prevCurr = 0;
static unsigned firstTime = 1;
static unsigned numFailedUpdates = 0;
static unsigned updatesWithoutNewClicks = 0;

unsigned thisTime, thisCount, currTime, t1, t2, t3, d1, d2,
newEGV, deltaEGV, badResult;

currTime = Millisecs;
thisTime = NGClickTime;
thisCount = NGRotations;

/*
“click” “update” “click” “update”

<-----------d1--------->	<------d2----->	
<-----------t1--------->	<------t2----->	
	<-------------t3---------->	

------|------------|-----------|---------------|----> time
W X Y Z

^ ^ ^ ^
prevTime prevCurr thisTime currTime
prevCount thisCount

The above diagram shows one possible sequence of events where
there is a single “click” at point Y after the previous update
prior to the current update at point Z.

In general, there will be deltaCount updates between the
previous update and the current update at point Z, where
deltaCount is any number less than maxUpdates, including 0.

*/

if (thisTime == prevTime) return; /* too soon, just skip this update */

estimatedGroundVelocityIsAvailable = 0;

if (thisCount == prevCount) {
/* Okay to skip a few updates at low speed, but eventually it needs

to be set to unavailable if there are not any new “clicks”. Note
that an upper bound on changes in velocity should limit the
potential inaccuracy that results from missing a few updates.

*/
if (++updatesWithoutNewClicks > maxUpdates) {

estimatedGroundVelocityIsAvailable = 0;

return;
}
else updatesWithoutNewClicks = 0;

/* t1 is the elapsed time (in milliseconds) between the time at
the most recent update prior to the previous update occurred
and the time at which the most recent update occurred.

*/

if (prevTime <= thisTime) t1 = thisTime – prevTime;
else t1 = 65534 – (prevTime – thisTime);

/* t2 is the elapsed time (in milliseconds) between the time at
the most recent update occurred and the current time.

*/

if (thisTime <= currTime) t2 = currTime – thisTime;
else t2 = 65534 – (thisTime – currTime);

if (t2 > maxMsecs) firstTime = 1;

if (firstTime == 1) {
prevTime = thisTime;
prevCount = thisCount;
badResult = 0;
firstTime = 0;
return;

}

if (prevCount < thisCount) deltaCount = thisCount – prevCount;
else deltaCount = 65534 – (prevCount – thisCount);

badResult = (deltaCount > maxClicks) ? 1 : 0;

/* d1 is the distance (in centimeters) travelled since the most
recent click seen by the most recent update until the most
recent click, i.e., the distance travelled between prevTime
and thisTime.

*/

d1 = whcf * deltaCount;

/* d2 is an estimate of the distance (in centimeters) travelled
since the most recent click. If there has at least once
click since the time of the most recent click observed by
the previous update, i.e., deltaCount > 0, then use d1/t1
to approximate the current velocity used to calculate d2.
Otherwise, use the velocity that results from the previous
update, but make sure that d2 is less than the circumference
of the wheel (which is important to check in the case of
rapid deceleration to a low speed).

*/

if (deltaCount == 0) d2 = (estimatedGroundVelocity * t2) / 36;
else d2 = (d1 * t2) / t1;
if (d2 > whcf) d2 = whcf – 1;

/*
d1 + d2 = the total distance estimated to have been travelled
since the most recent click that occurred prior to the time
of the most recent update (in centimeters)

t1 + t2 = the total elapsed time since the most recent click
that occurred prior to the time of the most recent update (in
milliseconds)

*/

newEGV = ((((d1 + d2) * 360) / (t1 + t2)) + 5) / 10;

badResult += newEGV > MAX_SPEED;

if (newEGV < estimatedGroundVelocity)
deltaEGV = estimatedGroundVelocity - newEGV;

else deltaEGV = newEGV - estimatedGroundVelocity;

if (prevCurr <= currTime) t3 = currTime – prevCurr;
else t3 = 65534 – (thisTime – prevCurr);

badResult += (((deltaEGV * 100) / t3) * 100) > MAX_ACCEL;

estimatedGroundVelocityIsAvailable = 1;

/* If the result is bad, then don’t update estimatedGroundVelocity,
as the previous estimate should be valid for a few more update
cycles. But if the problem persists, then reset the flag to
indicate that the estimated velocity is no longer available.

*/

if ((badResult > 0) && (numFailedUpdates++ > MAX_FAILED_UPDATES)) {
firstTime = 1;
estimatedGroundVelocityIsAvailable = 0;

}
else if (badResult > 0) numFailedUpdates++;
else estimatedGroundVelocity = newEGV;

prevTime = thisTime;
prevCount = thisCount;
prevCurr = currTime;

}

