
www.QinetiQ.com

© Copyright QinetiQ limited 2011

Nose Gear (NG) Velocity Challenge

A Sketch of an approach

Andy McCallum Muretex

Colin O’Halloran QinetiQ

Karen Stephenson QinetiQ

www.QinetiQ.com

© Copyright QinetiQ limited 2011

The nature of the challenge

• The property that has been set as a challenge to be proven is not about
software.

• It is a relationship between the real physical world and estimating
software that samples sensed information about the real physical
world.

• To prove the property a:

− continuous time mathematical model of the relevant part of the physical real
world is needed;

− discrete time mathematical model of the estimating software is needed;

− and a relationship between discrete and continuous time.

• Suppose “SW_Spec(n)”, “Phys_Spec(t)” and “Sample(n,t)” denote
predicates over the: discrete software; physical system; and the
relationship between the discrete and continuous time, respectively.

www.QinetiQ.com

© Copyright QinetiQ limited 2011

• A proof of the property P(t) might take the form of a proof that

∀ t . SW_Spec(n) ∧ Phys_Spec(t) ∧ Sample(n,t) ⇒ P(t)

• From a certification point of view, where is the evidence that the
predicates SW_Spec(n), Phys_Spec(t) and Sample(n,t) are valid?

• Even if a proof is done, so what?

• Need to be able to define the predicates in a way that can be validated
for certification.

www.QinetiQ.com

© Copyright QinetiQ limited 2011

Phys_Spec(t)

www.QinetiQ.com

© Copyright QinetiQ limited 2011

Rotation Angle Component

www.QinetiQ.com

© Copyright QinetiQ limited 2011

Comments on the Simulink Physical Model

• The model is a first cut from the requirements and not the pseudo-code,
although the pseudo-code has been looked at.

• The asynchronous relationship between invocations of the update
function and updates to the two counters introduces some
complications that would also make conventional verification very
challenging.

• There are about a dozen assumptions that need to be made, e.g.,

− the maximum acceleration of the aircraft on the ground,

− the amount of variability in the timing of the pulse generated by the electro-
mechanical sensor connected to the nose gear wheel.

• Discovering and formalizing these assumptions may be one of the most
interesting aspects of the assurance cases.

• Hopefully first cut of Simulink model isn’t overly simplistic.

www.QinetiQ.com

© Copyright QinetiQ limited 2011

Scheduling

www.QinetiQ.com

© Copyright QinetiQ limited 2011

Scheduler and Physical Model (with instrumentation)

www.QinetiQ.com

© Copyright QinetiQ limited 2011

Discrete Simulink Model of Software

www.QinetiQ.com

© Copyright QinetiQ limited 2011

Overall Model

www.QinetiQ.com

© Copyright QinetiQ limited 2011

Quick example plots of some of the kinds of signals being generated.

• All plots show a parameter plotted against
time which runs for 120 seconds.

• <Millisecs> - clock time in millisecs,
emulating int16 behaviour.

• <NGRotations> - counter, incrementing
each time the wheel passes through 0.
This also emulates 16 bit behaviour and if
left to run long enough this would
overflow/wrap

• NGClickTime - the time in millisecs at
which the latest click was detected,
emulating int16 behaviour

• call - Emulation of the interrupt generated
by the RTOS to trigger a call to the
estimation algorithm. By default this goes
high at 500ms intervals but setting the
workspace parameter
rtos_randCallInterval to 1 will introduce
some variation in this so that calls at less
than 500ms intervals can be examined.
Units are binary 0/1. The algorithm is
called using a rising edge trigger, i.e. at the
point when the signal goes from 0 to 1.

www.QinetiQ.com

© Copyright QinetiQ limited 2011

Quick example plots of some of the kinds of signals being generated.

• <estimatedGroundVelocityIsAvailable> -
the flag output by the algorithm to
indicate validity of the estimated
speed. Units are binary 0/1

• “aircraft velocity” - a composite plot
showing the true velocity (magenta)
and the estimate (yellow). The units
are km/h.

• “velocity error” - the error between
the estimate and the true value. This
starts very high because within the
500ms of simulated time, the
algorithm has yet to be called and the
initial estimated speed is zero but the
truth is 144 km/h. Perhaps should
have set this chart up to take into
account the validity flag because
zooming in on the graph (magnifying
glass and rubber banding with the
mouse) shows that the flag is low
during that time.

www.QinetiQ.com

© Copyright QinetiQ limited 2011

Discrete Simulink Model of Software repeated

www.QinetiQ.com

© Copyright QinetiQ limited 2011

Overview of the CLawZ Process

Z

Ada

Proof

Z
Producer

B4S

Simulink
Development

Verification
User Interface

www.QinetiQ.com

© Copyright QinetiQ limited 2011

Ada Package Specification generated by B4S from the
Simulink model of the Software System

-- BEACON Auto-Generated Code
with BEACON_Standard;
package shell is

estimated_ground_velcity_is_available : BEACON_Standard.Extended_Float ;
estimated_ground_velocity : BEACON_Standard.Extended_Float ;
millisecs : BEACON_Standard.Extended_Float ;
ng_click_time : BEACON_Standard.Extended_Float ;
ng_rotations : BEACON_Standard.Extended_Float ;
pi : constant BEACON_Standard.Extended_Float := 3.141592654 ;

procedure shell (estimated_ground_velocity_is_available : out
BEACON_Standard.Extended_Float);
end shell;

www.QinetiQ.com

© Copyright QinetiQ limited 2011

Ada Package Body generated by B4S from the Simulink model
of the Software System

-- BEACON Auto-Generated Code
with BEACON_Standard;
package body shell is

shell_estimatedGroundVelocity_estimate_state :
BEACON_Standard.Extended_Float ;

shell_estimatedGroundVelocity_NGClickTime_state :
BEACON_Standard.Extended_Float ;

shell_estimatedGroundVelocity_NGRotation_state :
BEACON_Standard.Extended_Float ;
procedure NWDiameter (nw_diameter : out BEACON_Standard.Extended_Float)
is

ft2m : constant BEACON_Standard.Extended_Float := 0.3048 ;
wheel_diameter : constant BEACON_Standard.Extended_Float := 22.0 ;

begin
nw_diameter := (wheel_diameter / 12.0) * ft2m;

end NWDiameter ;

www.QinetiQ.com

© Copyright QinetiQ limited 2011

Ada Package Body (continued)

function calc_delta (now : in BEACON_Standard.Extended_Float ;
previous : in BEACON_Standard.Extended_Float)

return BEACON_Standard.Extended_Float is
tmp1 : BEACON_Standard.Extended_Float ;
tmp2 : BEACON_Standard.Discrete_Flag ;
delta_val : BEACON_Standard.Extended_Float ;

begin
tmp1 := now - (previous);
tmp2 := (now > previous);
if tmp2 then

delta_val := tmp1;
else

tmp1 := tmp1 + 65534.0;
delta_val := tmp1;

end if;
return delta_val;

end calc_delta ;

www.QinetiQ.com

© Copyright QinetiQ limited 2011

Ada Package Body (continued)

procedure ground_velocity (estimate_state : in out BEACON_Standard.Extended_Float ;
NGClickTime_state : in out BEACON_Standard.Extended_Float ;
NGRotation_state : in out BEACON_Standard.Extended_Float)

is
delta_ng_click_time : BEACON_Standard.Extended_Float ;
distance_travelled : BEACON_Standard.Extended_Float ;
NGClickTiime_unchanged : BEACON_Standard.Discrete_Flag ;
NGClickTime_last : BEACON_Standard.Extended_Float ;
NGRotation_last : BEACON_Standard.Extended_Float ;
nw_diameter : BEACON_Standard.Extended_Float ;
prev_estimated_ground_velocity : BEACON_Standard.Extended_Float ;
tmp1 : BEACON_Standard.Discrete_Flag ;
tmp2 : BEACON_Standard.Extended_Float ;
tmp3 : BEACON_Standard.Extended_Float ;
tmp4 : BEACON_Standard.Extended_Float ;

begin
NWDiameter (nw_diameter => nw_diameter);
prev_estimated_ground_velocity := estimate_state;

.

.

.

www.QinetiQ.com

© Copyright QinetiQ limited 2011

Fragment of Z specification automatically generated from
Simulink model of Software Specification

www.QinetiQ.com

© Copyright QinetiQ limited 2011

Fragment of Z specification automatically generated from Simulink model
of Software Specification (continued)

www.QinetiQ.com

© Copyright QinetiQ limited 2011

Final Z abbreviation that is automatically incorporated into Specification
Statement (analogous to specification statement in Morgan’s
refinement calculus)

www.QinetiQ.com

© Copyright QinetiQ limited 2011

Overview of the CLawZ Process again

Z

Ada

Proof

Z
Producer

B4S

Simulink
Development

Verification
User Interface

www.QinetiQ.com

© Copyright QinetiQ limited 2011

Screenshot of CLawZ GUI

www.QinetiQ.com

© Copyright QinetiQ limited 2011

Single Unproven Verification Condition

www.QinetiQ.com

© Copyright QinetiQ limited 2011

Conclusions

• The continuous model and scheduler allow us to define and evolve a discrete
model of the software system until we are confident that it is good enough to
deploy Formal Proof.

• From the Simulation models we can define

− a predicate over a continuous domain including time

− a scheduling predicate

− and from these two models and the requirements a predicate over the discrete domain

• The CLawZ “Z producer” automatically generates the formal representation of
the discrete Simulink model in Z.

• ADI’s B4S auto-coder independently generates an Ada implementation of the
same Simulink model.

• CLawZ automatically verifies the functional behaviour Ada against the Z
representation by proof.

• Exception analysis (e.g. QinetiQ Malporte tool) and WCET analysis is required to
discharge underlying assumptions.

www.QinetiQ.com

© Copyright QinetiQ limited 2011

Conclusions

• Metrics

− 1 day to define first cut of Simulink models.

− 1 day to modify discrete model to:

− comply with CLawZ and B4S supported subsets;

− automatically generate the predicate representing the discrete Simulink model;

− automatically generate the Ada using B4S;

− automatically verify the code.

• In a position to collaborate with other organisations with the capability to
reason about predicates over continuous time to prove the property

− We bring a capability to quickly evolve a validated predicate describing the software
and to quickly prove that the software is correct in a manner commensurate with DO-
178B.

www.QinetiQ.com

© Copyright QinetiQ limited 2011

Comments on Challenge Problem

• The requirements specification is not precise, e.g., what does “accurate” mean?

− The pseudo-code reflects some thinking on this by setting maximum allowable errors
on acceleration and “jerk” (rate of change of acceleration).

• What about when the aircraft is being pushed backwards – is this a negative
velocity?

− From the description of the system it is not clear that we would know. The sensor raises
a click when the wheel passes a particular point. As far as we know there is no encoder
counting up or down in a particular direction. The click simply indicates a single
position but in itself doesn’t allow direction to be deduced.

• The finite size of the data values (i.e., 16 bits) introduces some complications that
would make the conventional verification by means of testing more challenging.

− The pseudo-code reflects consideration of these aspects. The current area of most
concern in the simple first cut of the Simulink model is the test for “staleness” (i.e. has
more than 3 seconds elapsed since the last click) and how to tackle the case where the
clock resets (overflow/wraps whatever the right term is) during that window.

www.QinetiQ.com

© Copyright QinetiQ limited 2011

Comments on Challenge Problem

• The initial simplicity of the problem belies the potential for some considered thinking.

− Tyre slip and skidding. Not sure if nose wheels ever have a braking system (usually part of the main
gear) but it is possible for the aircraft to still be moving but the rotational information to suggest
otherwise because of the wheel becoming locked or skidding. Introduces possible need for
integration with other on-board systems to cross check (e.g. Inertial Navigation System)

− Also the wheel may be rotating before it is in contact with the ground (the model allows for this
with the variable nw_omega0) so, as the pseudo-code mentions, some form of weight on wheels
signal may be needed. In fact, we believe that in large aircraft the wheels are spun up to reduce
skidding and flat spotting of the tyre on contact with the ground.

− Type compression. The effective radius of the tyre will reduce as the load it carries increases. This
will impact on estimated speed. Again, is a type pressure signal needed to estimate compression?
Or, turning it around, do we use a range of possible radii to bracket the estimates and provide a
range or measurement of accuracy.

− Slight pedantry. The example refers to estimated velocity which to most engineers implies a vector
quantity. In fact the current scheme is measuring a scalar speed.

− With this in mind, the question is raised of what is actually being measured? The nose wheel on a
large aircraft sits well ahead of the centre of gravity. During ground taxiing and especially when
turning the local translational velocity/speed of the wheel can be quite different to that of the
Centre of Gravity . (This can be an issue for Inertial Navigation System systems where placement in
the airframe may require corrections to be made when calculating Centre of Gravity velocity due to
moment-arm issues). Again, introduction of an additional sensor (nose wheel steering angle) or
cross correlation with similar systems on the main gear may be needed to resolve the Centre of
Gravity’s translational velocity.

