AdaCOre Integrating Formal Program

The GNAT Pro Company Veriﬁcation with Testing

M-

December 6, 2011

Project Hi-Lite

1/ 25

Unit proofs vs. unit tests

| unit tests are costly to develop and maintain|

use instead unit proof:

1.

express LLRs as function contracts

2. interpret code+contracts in Hoare logics
3.
4. prove VCs with automatic prover

use Dijkstra's WP calculus to generate VCs

2 /25

Unit proofs vs. unit tests

| unit tests are costly to develop and maintain|

use instead unit proof:

—

express LLRs as function contracts
interpret code-+contracts in Hoare logics
use Dijkstra's WP calculus to generate VCs

N

prove VCs with automatic prover

unit proof used industrially:

» SPARK toolset (SPARK code): data/information flows,
run-time errors

» Frama-C platform (C code): contracts and run-time errors

DO-178C supports replacing unit tests with unit proofs

2 /25

How do we define contracts?

usual approach: first-order logic + program locations

» problem! avoid inconsistencies
solution? generation of models

» problem! detect incorrect contracts
solution? generation of counterexamples

3 /25

How do we define contracts?

usual approach: first-order logic + program locations

» problem! avoid inconsistencies
solution? generation of models

» problem! detect incorrect contracts
solution? generation of counterexamples

our approach: pure Boolean expressions (no writes)
» avoid inconsistencies? forbid axioms

» detect incorrect contracts? test/execute

v

possible effects? analyze and reject

v

possible run-time errors? generate VCs and prove

3 /25

How do we deal with unprovable code?

usual approach:
1. restrict language to potentially provable subset
2. use multiple automatic provers
3. write proof script in proof assistant
4. manually inspect and validate VC

4 /25

How do we deal with unprovable code?

usual approach:
1. restrict language to potentially provable subset
2. use multiple automatic provers
3. write proof script in proof assistant

4. manually inspect and validate VC

our approach:
1. limit proof to potentially provable subset
2. generate VCs targetting selected prover
3. ensure possible combination with tested code
4

. test remaining functions

4 /25

The three pillars of formal methods in DO-178C

Unambiguous formal semantics

match compiler choices of sizes & alignments for target
prevent compiler-dependent behavior:

» functions (not procedures) cannot have side-effects
> expressions cannot have side-effects

> arithmetic expressions are parenthesized if needed

5 / 25

The three pillars of formal methods in DO-178C

Unambiguous formal semantics

match compiler choices of sizes & alignments for target
prevent compiler-dependent behavior:

» functions (not procedures) cannot have side-effects
> expressions cannot have side-effects

» arithmetic expressions are parenthesized if needed

Sound formal analysis

deductive verification a la Hoare

5 / 25

The three pillars of formal methods in DO-178C

Unambiguous formal semantics

match compiler choices of sizes & alignments for target
prevent compiler-dependent behavior:

» functions (not procedures) cannot have side-effects
> expressions cannot have side-effects

» arithmetic expressions are parenthesized if needed

Sound formal analysis

deductive verification a la Hoare

Justified assumptions for proofs

5 / 25

Justified assumptions for proofs

formal verification of P assumes:
» precondition of P
» postcondition of subprograms called

> both user-defined and implicit ones

6 /25

Justified assumptions for proofs

formal verification of P assumes:
» precondition of P
» postcondition of subprograms called

» both user-defined and implicit ones

assumptions made for proof should be verified by testing

6 /25

Justified assumptions for proofs

formal verification of P assumes:
» precondition of P
» postcondition of subprograms called

> both user-defined and implicit ones

assumptions made for proof should be verified by testing

2 cases:
> tested T calls proved P
— check precondition of P at run-time

» proved P calls tested T
— check postcondition of T at run-time

> ...during test of T!

6 /25

Justified assumptions for proofs (cont'd)

1. identify implicit contracts (effects, strong typing, non-aliasing)

7 /25

Justified assumptions for proofs (cont'd)

1. identify implicit contracts (effects, strong typing, non-aliasing)

2. effects: generated (restrictions on complete program)

7 /25

Justified assumptions for proofs (cont'd)

1. identify implicit contracts (effects, strong typing, non-aliasing)
2. effects: generated (restrictions on complete program)
3. strong typing:
» strongly typed language (Ada)
forbid unsafe language features (pointer conversion)

proof: generate VCs
test: compiler inserts checks

v vYyy

7 /25

Justified assumptions for proofs (cont'd)

1. identify implicit contracts (effects, strong typing, non-aliasing)
2. effects: generated (restrictions on complete program)
3. strong typing:

» strongly typed language (Ada)

» forbid unsafe language features (pointer conversion)

» proof: generate VCs
> test: compiler inserts checks
4. non-aliasing:
» limit proof to subset with references (no pointers)
» global static analysis for non-aliasing with globals
» proof: semantic verification for parameter non-aliasing
> test: compiler inserts checks for parameter non-aliasing

7 /25

Application to Nose Gear Velocity

8 /25

Matching data to types

two different types of data:
» external counters with modulo semantics

» non-negative values for time/distance/velocity
coded in C example as unsigned causing 4 kinds of errors in code:

useless wraparound code
wrong wraparound: 65534 - (prevTime - thisTime)

inconsistent pattern: if (prevCount < thisCount)

Sl

copy-paste error: currTime or thisTime for t37?

in Ada, modulo integer (semantics) # non-negative (constraint)

9 /25

Dealing with dimensions and units

two dimensions: distance and time
three combinations: velocity, acceleration, jerk
many units: distance (cm, m, inch), time (ms, s), velocity (km/h)

vulnerability in code:
static init whcf
equivalent to
static init whef = .. * 254) *x 22) / 7) / 100;
only up to WHEEL_DIAMETER = 51

. % 264) / 7)) x 22) / 100;

errors in code:
1. wrong conversion: missing /100 for maxMsecs

2. wrong conversion: *500 should be *50 for maxClicks

10 / 25

Christof Grein's Sl units library

1 package SI is new Constrained_Checked_SI (Float);
2 package U 1is new SI.Generic_Units;

3 use SI, U;

4

5 Pi . constant = 3.14;

6 Inch : constant Distance := 2.14xcentixMeter;
7 WHEEL : constant Distance := 26.0xInch;

8 WHCF . constant Distance := WHEEL x Pi;

9

10 PrevCount : Count := O0;

11 PrevTime : Time := 0.0%xmillixMeter;

11 / 25

Christof Grein's Sl units library

1 package SI is new Constrained_Checked_SI (Float);
2 package U 1is new SI.Generic_Units;

3 use SI, U;

4

5 Pi . constant = 3.14;

6 Inch : constant Distance := 2.14xcentixMeter;
7 WHEEL : constant Distance := 26.0xInch;

8 WHCF . constant Distance := WHEEL x Pi;

9

10 PrevCount : Count := O0;

11 PrevTime : Time := 0.0%xmillixMeter;

raised NG.SI.SI.UNIT_ERROR :
unconstrained_checked_si.adb:72
instantiated at constrained_checked_si.ads:204
instantiated at ng.ads:9

11 / 25

Compile-time dimensional analysis in GNAT

1 subtype Time is Natural with

2 Dimension (second => 1, others => 0);

3 subtype Distance is Natural with

4 Dimension (meter => 1, others => 0);

5 subtype Count is Natural;

6 subtype Velocity is Natural with

7 Dimension(meter => 1, second => —1, others=>0);
8

9 WHEEL : constant Distance := 26; — inches
10 WHCF : constant Distance := — cm

11 (((WHEEL * 254) / 7) * 22) / 100;
12

13 PrevCount : Count := 0;

14 PrevTime : Time := 0; — ms

12 / 25

Defining execution conditions

© 0 ~NO O b WN =

update should not occur if no new click
translated as precondition:

procedure ComputeNGVelocity

(CurrTime : in Mod_Time;
ThisTime : in Mod_Time;
ThisCount : in Mod_Count ;
Success : out Boolean;
Result : out Velocity)

with

Pre => ThisTime /= PrevTime
and then ThisCount /= PrevCount;

explicit precondition avoids error in C example:

if (thisTime = prevTime) return;
if (thisCount = prevCount) {

13 / 25

Checking absence of run-time errors

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

procedure ComputeNGVelocity (...) is

T1,
D1,

begin

T2
D2

Time;
Distance;

if ThisCount — PrevCount < ThisTime — PrevTime
then

Success := False;
return;

end if;

T1
T2
D1
D2

Time (ThisTime — PrevTime);

Time (CurrTime — ThisTime);

WHCF #* Count (ThisCount — PrevCount);
(D1 % T2) / Ti;

Success = True;

Result
end ComputeNGVelocity;

:= ((D1 + D2) * 3600) / (T1 + T2);

14 / 25

Formal verification for run-time errors

ng.
ng.
ng.
ng.
ng.
ng.
ng.

ng

ng.
ng.
ng.
ng.
ng.
ng.

adb:
adb:
adb:
adb:
adb:
adb:
adb:
.adb:
adb:
adb:
adb:
adb:
adb:
adb:

49:
50:
51:
51:
52:
52:
52:
52:
55:
55:
55:
55:
55:
55:

28:
28:
18:
18:
17:
23:
23:
23:
23:
29:
37:
37:
37:
43:

range check not proved

range check not proved
(info) overflow check proved
(info) range check proved
overflow check not proved
(info) division check proved
(info) overflow check proved
range check not proved
overflow check not proved
overflow check not proved
(info) division check proved
(info) overflow check proved
(info) range check proved
(info) overflow check proved

15 / 25

Formal contract

1 procedure ComputeNGVelocity (...)

2 with

3 Pre => ThisTime /= PrevTime

4 and then ThisCount /= PrevCount,

5 Post =>

6 (if Success then

7 Result = Velocity(

8 (((WHCF * Integer (ThisCount—PrevCount)) +
9 ((WHCF * Integer (ThisCount—PrevCount))
10 * Integer (CurrTime — ThisTime))

11 / Integer (ThisTime — PrevTime))

12 * 3600)

13 / Integer (CurrTime — PrevTime)));

16 / 25

Testing of contract

change code from

1 D2 := (D1 % T2) / T1;

to erroneous

1 D2 := (D1 + T2) / T1;

leads to

raised SYSTEM.ASSERTIONS.ASSERT_FAILURE :
failed postcondition from ng.adb:33

17 / 25

Formal verification of contract

ng.adb:24:15: postcondition not proved
ng.adb:27:27: (info) overflow check proved
ng.adb:27:62: overflow check not proved
ng.adb:28:29: (info) overflow check proved
ng.adb:29:22: (info) overflow check proved
ng.adb:30:22: (info) division check proved
ng.adb:30:22: overflow check not proved
ng.adb:31:19: overflow check not proved
ng.adb:32:19: (info) division check proved
ng.adb:32:19: overflow check not proved

18 / 25

Formal contract (cont'd)

1 procedure UpdateNGVelocity with

2 Post =>

3 (if EstimatedGroundVelocityIsAvailable then
4 EstimatedGroundVelocity =

5 (DistanceSinceLastClickBeforeLastUpdate
6 * 3600)

7 / TimeSincelastClickBeforeLastUpdate);
8

9 function DistanceSince... return Distance is

10 (DistanceFromLastClickToLastUpdate

11 +—DistanceSinceLastUpdate);

12

13 function DistanceFrom... return Distance is

14 (WHCF % (ThisCount — PrevCount));

19 / 25

Tool Qualification

20 / 25

Appropriate TQL for DO-178C

1. used for requirement based verification (replaces unit testing)
= TQL-5

2. used for robustness verification (replaces robustness tests)
= TQL-5

3. used for both
= TQL-4 (levels 1 and 2) or TQL-5

4. TQL-4 & TQL-5: Tool Operational Requirements are defined
5. TQL-4: TORs are complete, accurate and consistent

6. TQL-4: tool requirements are developed and verified

21 / 25

Objective B: tools are qualified

» formalism: first-order Hoare logics + run-time checks

» software tools: compiler + translator + VCgen + prover

» assumptions: user-defined contracts + implicit contracts

» all the chain is FLOSS =- facilitates duplication

» soundness argument for each piece

» prover removed from qualification if produces checkable trace

» super qualification: formally proved correct (VCgen, prover)

22 /25

Objective C: software requirements

1. complete
» divide contract in cases (behaviors in JML)
» contract cases cover the precondition
2. consistent
> contract cases are disjoint
» consistency can be expressed and checked:
Vinputs € Pre.Joutputs € Post.Pre = Post
3. unambiguous
» expression as Boolean predicates
4. verifiable
» by testing or formal verification

23 / 25

Objective K: source code vs. software requirements

1. compliance

» contract-based verification (testing or proving)
2. traceability

» by nature, contracts are attached to function

24 / 25

http://wuw.open-do.org/projects/hi-lite/

25 / 25

http://www.open-do.org/projects/hi-lite/

	Project Hi-Lite
	Application to Nose Gear Velocity
	Tool Qualification

