
Integrating Formal Program

Verification with Testing

Yannick Moy, AdaCore

Workshop on Theorem Proving in

Certification

December 6, 2011

Outline

Project Hi-Lite

Application to Nose Gear Velocity

Tool Qualification

1 / 25

Unit proofs vs. unit tests

unit tests are costly to develop and maintain

use instead unit proof:

1. express LLRs as function contracts

2. interpret code+contracts in Hoare logics

3. use Dijkstra’s WP calculus to generate VCs

4. prove VCs with automatic prover

unit proof used industrially:

I SPARK toolset (SPARK code): data/information flows,
run-time errors

I Frama-C platform (C code): contracts and run-time errors

DO-178C supports replacing unit tests with unit proofs

2 / 25

Unit proofs vs. unit tests

unit tests are costly to develop and maintain

use instead unit proof:

1. express LLRs as function contracts

2. interpret code+contracts in Hoare logics

3. use Dijkstra’s WP calculus to generate VCs

4. prove VCs with automatic prover

unit proof used industrially:

I SPARK toolset (SPARK code): data/information flows,
run-time errors

I Frama-C platform (C code): contracts and run-time errors

DO-178C supports replacing unit tests with unit proofs

2 / 25

How do we define contracts?

usual approach: first-order logic + program locations

I problem! avoid inconsistencies
solution? generation of models

I problem! detect incorrect contracts
solution? generation of counterexamples

our approach: pure Boolean expressions (no writes)

I avoid inconsistencies? forbid axioms

I detect incorrect contracts? test/execute

I possible effects? analyze and reject

I possible run-time errors? generate VCs and prove

3 / 25

How do we define contracts?

usual approach: first-order logic + program locations

I problem! avoid inconsistencies
solution? generation of models

I problem! detect incorrect contracts
solution? generation of counterexamples

our approach: pure Boolean expressions (no writes)

I avoid inconsistencies? forbid axioms

I detect incorrect contracts? test/execute

I possible effects? analyze and reject

I possible run-time errors? generate VCs and prove

3 / 25

How do we deal with unprovable code?

usual approach:

1. restrict language to potentially provable subset

2. use multiple automatic provers

3. write proof script in proof assistant

4. manually inspect and validate VC

our approach:

1. limit proof to potentially provable subset

2. generate VCs targetting selected prover

3. ensure possible combination with tested code

4. test remaining functions

4 / 25

How do we deal with unprovable code?

usual approach:

1. restrict language to potentially provable subset

2. use multiple automatic provers

3. write proof script in proof assistant

4. manually inspect and validate VC

our approach:

1. limit proof to potentially provable subset

2. generate VCs targetting selected prover

3. ensure possible combination with tested code

4. test remaining functions

4 / 25

The three pillars of formal methods in DO-178C

Unambiguous formal semantics

match compiler choices of sizes & alignments for target
prevent compiler-dependent behavior:

I functions (not procedures) cannot have side-effects

I expressions cannot have side-effects

I arithmetic expressions are parenthesized if needed

Sound formal analysis

deductive verification à la Hoare

Justified assumptions for proofs

...

5 / 25

The three pillars of formal methods in DO-178C

Unambiguous formal semantics

match compiler choices of sizes & alignments for target
prevent compiler-dependent behavior:

I functions (not procedures) cannot have side-effects

I expressions cannot have side-effects

I arithmetic expressions are parenthesized if needed

Sound formal analysis

deductive verification à la Hoare

Justified assumptions for proofs

...

5 / 25

The three pillars of formal methods in DO-178C

Unambiguous formal semantics

match compiler choices of sizes & alignments for target
prevent compiler-dependent behavior:

I functions (not procedures) cannot have side-effects

I expressions cannot have side-effects

I arithmetic expressions are parenthesized if needed

Sound formal analysis

deductive verification à la Hoare

Justified assumptions for proofs

...

5 / 25

Justified assumptions for proofs

formal verification of P assumes:

I precondition of P

I postcondition of subprograms called

I both user-defined and implicit ones

assumptions made for proof should be verified by testing

2 cases:

I tested T calls proved P

→ check precondition of P at run-time

I proved P calls tested T

→ check postcondition of T at run-time

I ...during test of T!

6 / 25

Justified assumptions for proofs

formal verification of P assumes:

I precondition of P

I postcondition of subprograms called

I both user-defined and implicit ones

assumptions made for proof should be verified by testing

2 cases:

I tested T calls proved P

→ check precondition of P at run-time

I proved P calls tested T

→ check postcondition of T at run-time

I ...during test of T!

6 / 25

Justified assumptions for proofs

formal verification of P assumes:

I precondition of P

I postcondition of subprograms called

I both user-defined and implicit ones

assumptions made for proof should be verified by testing

2 cases:

I tested T calls proved P

→ check precondition of P at run-time

I proved P calls tested T

→ check postcondition of T at run-time

I ...during test of T!

6 / 25

Justified assumptions for proofs (cont’d)

1. identify implicit contracts (effects, strong typing, non-aliasing)

2. effects: generated (restrictions on complete program)

3. strong typing:
I strongly typed language (Ada)
I forbid unsafe language features (pointer conversion)
I proof: generate VCs
I test: compiler inserts checks

4. non-aliasing:
I limit proof to subset with references (no pointers)
I global static analysis for non-aliasing with globals
I proof: semantic verification for parameter non-aliasing
I test: compiler inserts checks for parameter non-aliasing

7 / 25

Justified assumptions for proofs (cont’d)

1. identify implicit contracts (effects, strong typing, non-aliasing)

2. effects: generated (restrictions on complete program)

3. strong typing:
I strongly typed language (Ada)
I forbid unsafe language features (pointer conversion)
I proof: generate VCs
I test: compiler inserts checks

4. non-aliasing:
I limit proof to subset with references (no pointers)
I global static analysis for non-aliasing with globals
I proof: semantic verification for parameter non-aliasing
I test: compiler inserts checks for parameter non-aliasing

7 / 25

Justified assumptions for proofs (cont’d)

1. identify implicit contracts (effects, strong typing, non-aliasing)

2. effects: generated (restrictions on complete program)

3. strong typing:
I strongly typed language (Ada)
I forbid unsafe language features (pointer conversion)
I proof: generate VCs
I test: compiler inserts checks

4. non-aliasing:
I limit proof to subset with references (no pointers)
I global static analysis for non-aliasing with globals
I proof: semantic verification for parameter non-aliasing
I test: compiler inserts checks for parameter non-aliasing

7 / 25

Justified assumptions for proofs (cont’d)

1. identify implicit contracts (effects, strong typing, non-aliasing)

2. effects: generated (restrictions on complete program)

3. strong typing:
I strongly typed language (Ada)
I forbid unsafe language features (pointer conversion)
I proof: generate VCs
I test: compiler inserts checks

4. non-aliasing:
I limit proof to subset with references (no pointers)
I global static analysis for non-aliasing with globals
I proof: semantic verification for parameter non-aliasing
I test: compiler inserts checks for parameter non-aliasing

7 / 25

Outline

Project Hi-Lite

Application to Nose Gear Velocity

Tool Qualification

8 / 25

Matching data to types

two different types of data:

I external counters with modulo semantics

I non-negative values for time/distance/velocity

coded in C example as unsigned causing 4 kinds of errors in code:

1. useless wraparound code

2. wrong wraparound: 65534 - (prevTime - thisTime)

3. inconsistent pattern: if (prevCount < thisCount)

4. copy-paste error: currTime or thisTime for t3?

in Ada, modulo integer (semantics) 6= non-negative (constraint)

9 / 25

Dealing with dimensions and units

two dimensions: distance and time
three combinations: velocity, acceleration, jerk
many units: distance (cm, m, inch), time (ms, s), velocity (km/h)

vulnerability in code:
static init whcf = .. * 254) / 7) * 22) / 100;

equivalent to
static init whcf = .. * 254) * 22) / 7) / 100;

only up to WHEEL_DIAMETER = 51

errors in code:

1. wrong conversion: missing /100 for maxMsecs

2. wrong conversion: *500 should be *50 for maxClicks

10 / 25

Christof Grein’s SI units library

1 package SI is new Constrained_Checked_SI (Float) ;
2 package U is new SI . Generic_Units ;
3 use SI , U ;
4

5 Pi : constant := 3 . 1 4 ;
6 Inch : constant Distance := 2 . 1 4∗ centi∗Meter ;
7 WHEEL : constant Distance := 2 6 . 0∗ Inch ;
8 WHCF : constant Distance := WHEEL ∗ Pi ;
9

10 PrevCount : Count := 0 ;
11 PrevTime : Time := 0 . 0∗ milli∗Meter ;

raised NG.SI.SI.UNIT_ERROR :

unconstrained_checked_si.adb:72

instantiated at constrained_checked_si.ads:204

instantiated at ng.ads:9

11 / 25

Christof Grein’s SI units library

1 package SI is new Constrained_Checked_SI (Float) ;
2 package U is new SI . Generic_Units ;
3 use SI , U ;
4

5 Pi : constant := 3 . 1 4 ;
6 Inch : constant Distance := 2 . 1 4∗ centi∗Meter ;
7 WHEEL : constant Distance := 2 6 . 0∗ Inch ;
8 WHCF : constant Distance := WHEEL ∗ Pi ;
9

10 PrevCount : Count := 0 ;
11 PrevTime : Time := 0 . 0∗ milli∗Meter ;

raised NG.SI.SI.UNIT_ERROR :

unconstrained_checked_si.adb:72

instantiated at constrained_checked_si.ads:204

instantiated at ng.ads:9

11 / 25

Compile-time dimensional analysis in GNAT

1 subtype Time is Natural with

2 Dimension (second => 1 , others => 0) ;
3 subtype Distance is Natural with

4 Dimension (meter => 1 , others => 0) ;
5 subtype Count is Natural ;
6 subtype Velocity is Natural with

7 Dimension (meter => 1 , second => −1, others=>0) ;
8

9 WHEEL : constant Distance := 2 6 ; −− i n c h e s
10 WHCF : constant Distance := −− cm
11 (((WHEEL ∗ 254) / 7) ∗ 22) / 1 0 0 ;
12

13 PrevCount : Count := 0 ;
14 PrevTime : Time := 0 ; −− ms

12 / 25

Defining execution conditions

update should not occur if no new click
translated as precondition:

1 procedure ComputeNGVelocity

2 (CurrTime : in Mod_Time ;
3 ThisTime : in Mod_Time ;
4 ThisCount : in Mod_Count ;
5 Success : out Boolean ;
6 Result : out Velocity)
7 with

8 Pre => ThisTime /= PrevTime

9 and then ThisCount /= PrevCount ;

explicit precondition avoids error in C example:

1 if (thisTime = prevTime) return ;
2 . . .
3 if (thisCount = prevCount) { . . .

13 / 25

Checking absence of run-time errors

1 procedure ComputeNGVelocity (. . .) is

2 T1 , T2 : Time ;
3 D1 , D2 : Distance ;
4 begin

5 if ThisCount − PrevCount < ThisTime − PrevTime

6 then

7 Success := False ;
8 return ;
9 end if ;

10

11 T1 := Time (ThisTime − PrevTime) ;
12 T2 := Time (CurrTime − ThisTime) ;
13 D1 := WHCF ∗ Count (ThisCount − PrevCount) ;
14 D2 := (D1 ∗ T2) / T1 ;
15

16 Success := True ;
17 Result := ((D1 + D2) ∗ 3600) / (T1 + T2) ;
18 end ComputeNGVelocity ;

14 / 25

Formal verification for run-time errors

ng.adb:49:28: range check not proved

ng.adb:50:28: range check not proved

ng.adb:51:18: (info) overflow check proved

ng.adb:51:18: (info) range check proved

ng.adb:52:17: overflow check not proved

ng.adb:52:23: (info) division check proved

ng.adb:52:23: (info) overflow check proved

ng.adb:52:23: range check not proved

ng.adb:55:23: overflow check not proved

ng.adb:55:29: overflow check not proved

ng.adb:55:37: (info) division check proved

ng.adb:55:37: (info) overflow check proved

ng.adb:55:37: (info) range check proved

ng.adb:55:43: (info) overflow check proved

15 / 25

Formal contract

1 procedure ComputeNGVelocity (. . .)
2 with

3 Pre => ThisTime /= PrevTime

4 and then ThisCount /= PrevCount ,
5 Post =>
6 (if Success then

7 Result = Velocity (
8 (((WHCF ∗ Integer (ThisCount−PrevCount)) +
9 ((WHCF ∗ Integer (ThisCount−PrevCount))

10 ∗ Integer (CurrTime − ThisTime))
11 / Integer (ThisTime − PrevTime))
12 ∗ 3600)
13 / Integer (CurrTime − PrevTime))) ;

16 / 25

Testing of contract

change code from

1 D2 := (D1 ∗ T2) / T1 ;

to erroneous

1 D2 := (D1 + T2) / T1 ;

leads to

raised SYSTEM.ASSERTIONS.ASSERT_FAILURE :

failed postcondition from ng.adb:33

17 / 25

Formal verification of contract

ng.adb:24:15: postcondition not proved

ng.adb:27:27: (info) overflow check proved

ng.adb:27:62: overflow check not proved

ng.adb:28:29: (info) overflow check proved

ng.adb:29:22: (info) overflow check proved

ng.adb:30:22: (info) division check proved

ng.adb:30:22: overflow check not proved

ng.adb:31:19: overflow check not proved

ng.adb:32:19: (info) division check proved

ng.adb:32:19: overflow check not proved

18 / 25

Formal contract (cont’d)

1 procedure UpdateNGVelocity with

2 Post =>
3 (if EstimatedGroundVelocityIsAvailable then

4 EstimatedGroundVelocity =
5 (DistanceSinceLastClickBeforeLastUpdate
6 ∗ 3600)
7 / TimeSinceLastClickBeforeLastUpdate) ;
8

9 function DistanceSince . . . return Distance is

10 (DistanceFromLastClickToLastUpdate
11 + DistanceSinceLastUpdate) ;
12

13 function DistanceFrom . . . return Distance is

14 (WHCF ∗ (ThisCount − PrevCount)) ;

19 / 25

Outline

Project Hi-Lite

Application to Nose Gear Velocity

Tool Qualification

20 / 25

Appropriate TQL for DO-178C

1. used for requirement based verification (replaces unit testing)
⇒ TQL-5

2. used for robustness verification (replaces robustness tests)
⇒ TQL-5

3. used for both
⇒ TQL-4 (levels 1 and 2) or TQL-5

4. TQL-4 & TQL-5: Tool Operational Requirements are defined

5. TQL-4: TORs are complete, accurate and consistent

6. TQL-4: tool requirements are developed and verified

21 / 25

Objective B: tools are qualified

I formalism: first-order Hoare logics + run-time checks

I software tools: compiler + translator + VCgen + prover

I assumptions: user-defined contracts + implicit contracts

I all the chain is FLOSS ⇒ facilitates duplication

I soundness argument for each piece

I prover removed from qualification if produces checkable trace

I super qualification: formally proved correct (VCgen, prover)

22 / 25

Objective C: software requirements

1. complete
I divide contract in cases (behaviors in JML)
I contract cases cover the precondition

2. consistent
I contract cases are disjoint
I consistency can be expressed and checked:
∀inputs ∈ Pre.∃outputs ∈ Post.Pre ⇒ Post

3. unambiguous
I expression as Boolean predicates

4. verifiable
I by testing or formal verification

23 / 25

Objective K: source code vs. software requirements

1. compliance
I contract-based verification (testing or proving)

2. traceability
I by nature, contracts are attached to function

24 / 25

http://www.open-do.org/projects/hi-lite/

25 / 25

http://www.open-do.org/projects/hi-lite/

	Project Hi-Lite
	Application to Nose Gear Velocity
	Tool Qualification

