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Introduction 

• Goals and Constraints 

– Do something useful and possibly interesting. 

 

– Do not attempt to solve every aspect of the problem. 

 

– Time available: very little, so focus on one or two aspects. 
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Introduction 

• Observation 

– Two problems really: 

• A calculation problem – given inputs, calculate the “right” 

value of velocity. 

• A concurrency problem – dealing with the independent timing 

and phasing of the interrupt handler and the polling periodic 

task. 

 

• Idea 

– Don’t try to solve both of these problems at the same time. 

– Aim for separation of concerns. 
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The Idea 

• A simple implementation was constructed by Yannick Moy 

of AdaCore. 

– Written in SPARK, and subject to information flow analysis. 

– NOT subjected to formal verification for runtime errors or any other 

property. 

 

• Goal: strengthen this implementation to develop a proof of 

type-safety for it. Record discoveries along the way. 
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Method 

1. Read and analyse the requirements statement. Look for ambiguity, 

inconsistency and incompleteness. 

 

2. Attempt type-safety proof for the original solution. 

 

3. Analyse each failed proof, either: 

1. Strengthen the solution (e.g. add a precondition). 

2. Re-code it. 

3. Document an assumption. 

4. Question the requirements. 

 

4. Repeat until proof complete (with a list of assumptions) and/or show-

stopping bug is found. 

 

5. Compare results with CSL’s Certification Standard. 
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Reading the v1.0 Requirements 

• (At this point, I hadn’t read Jeff’s pseudo-code, so I was 

starting with a relatively clean sheet…) 

 

• Reading v1.0 (July) of the requirements statement… 

 

• A few questions: 

– “16-bit counters” – this seems like an implementation-

detail, not a requirement! Are 16 bits enough for the 

required range and precision? 

– What set (of integer values) is represented by each 

“counter”? Negative values perhaps? 

– What actually is the required range and precision of the 

answers? R1 calls for an “accurate estimate”…what’s that? 
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Reading the v1.0 Requirements 

• What does “increment” mean? 

– X + 1? 

– (X + 1) mod 65536? 

 

• “The circumference…is also available…a compile time 

constant NG_WHEEL_DIAMETER.” 

– Eh? Diameter and Circumference are usually different… 

 

• The type (real, floating point, integer?) and units (mph, 

kmh?) of estimatedGroundVelocity are not specified. 
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Reading the v1.0 Requirements 

• The “worked example” 

– Uses 3.14 for Pi – is this really accurate enough? 

 

– Says Diameter of the wheel is 22 inches… 

 

– Yields velocity in miles per hour. 

 

• Let’s stick with these assumptions for now… 

 

• Final comment: reading requirements, you should not be 

able to tell what the author’s favourite programming 

language is… 
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The Original Implementation 

• Constructed by Yannick Moy at AdaCore. 

 

• Makes some simplifying assumptions. 

– In particular, calculate instantaneous velocity in response to 

every “click” from the wheel every time. 

 

– Avoids issues of timing and relative phase and timing of the 

interrupt and the update function. Addresses the 

calculcation problem, but not the concurrency problem 

(yet…) 

 

– Simply compute the velocity from the time elapsed between 

each “click” assuming the sensor reliably generates a “click” 

for every rotation of the wheel. 
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The Original Implementation 

   -- Assume “counters” are integers in the range 0 .. 65535 

-- with “modulo 65536” arithmetic operators. 

   type Counter_16_Bits is mod 2 ** 16; 

 

   -- Assume pre-defined “Float” has sufficient range 

-- and precision for now. 

   subtype Distance is Float;  --  in inches 

   subtype Time is Float;   --  in millisecs 

   subtype Velocity is Float;  --  in mph 
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The Original Implementation 

   NGRotations : Counter_16_Bits; 

    

   NGClickTime : Counter_16_Bits; 

    

   Millisecs : Counter_16_Bits; 

    

   EstimatedGroundVelocity : Velocity; 

  

   NG_WHEEL_DIAMETER : constant := 22; 

    

   PI : constant := 3.14; 

 

   procedure ComputeEstimatedGroundVelocity; 

   --# global in     NGRotations, NGClickTime; 

   --#           out EstimatedGroundVelocity; 

   --#        in out State; 
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The Original Implementation 

      ThisNGRotations := NGRotations; 
    ThisNGClickTime := NGClickTime; 

 

    DistanceRolled := RotationToInch 

      (ThisNGRotations - SavedNGRotations); 

 

    TimeElapsed := Float (ThisNGClickTime - SavedNGClickTime); 

 

    EstimatedGroundVelocity := 

       IpmsToMph (DistanceRolled / TimeElapsed); 

 

    SavedNGRotations := ThisNGRotations; 

    SavedNGClickTime := ThisNGClickTime; 

    

    

• Easy huh?  Well…err….no… 
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Proof of The Original Implementation 

  
• Proof using the SPARK Toolset for “type safety” 

(aka “no runtime errors”, “no exceptions”) yields 

16 Verification Conditions, only 5 of which 

(31.25%) are proved automatically by our 

Theorem Prover. 

 

• Not very impressive so far… 

 

• What’s going on?  
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Iteration 2: Implementation-Defined 

constants and types 

  
• By default, the SPARK toolset does not assume 

anything about the range of values and/or the 

precison of the pre-defined types like Integer and 

Float. 

• These are implementation-defined in SPARK, 

so the VC-Generator can be told the “right” 

values with a configuration file. 

 

• These have to be checked very carefully to 

make sure they’re valid for the target 

hardware. 
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Iteration 2: Implementation-Defined 

constants and types 

  
• Let’s assume 32-bit signed 2’s complement 

“Integer”, and IEEE 32-bit “Float”… 

 

• Now we get 11 of 16 VCs proved (68.75%) 

 

• Our normal rule-of-thumb is that well-written 

SPARK code should score >95% VCs proved 

automatically for type-safety, so still some room 

for improvement… 

 

 



Copyright © Altran Praxis  

 

Iteration 3: Data Validity 

  
• Who says that the pattern of bits you get from an 

input device is really a valid value according to the 

type system of the programming language? 

• This certainly isn’t the case for floating-point values, 

for example, where you might read a NaN value. 

• Even if you say an integer type is N-bits, a compiler 

and/or hardware might read more than N bits – 

enormous care is required. 

 

• So…The VCG makes no assumption at all about 

the validity of external data unless told otherwise. 
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Iteration 3: Data Validity 

  
• In this case, though, we’re OK. Every pattern of 16 

bits is a valid value for type Counter_16_Bits, 

assuming the generated code and hardware really 

do read exactly 16-bits. 

 

• We tell this to the VCG with an additional contract. 

 

• Now we get 13 VCs (81.25%) proved 

automatically. 
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Iteration 4: Numeric ranges 

  
• Normal coding practice in SPARK says that you 

should never use the pre-defined types like 

“Float” anyway, since their range and precision 

are implementation-defined. 

• You should say what you want! 

 

• So…what range should Velocity have? 

• What’s the smallest observable velocity? 

• What’s the largest? 

• What about negative value? 

• How is “zero velocity” handled? 
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Iteration 4: Numeric ranges 

  
• This train of thought led to many discoveries… 

 

• Let’s assume the highest observable velocity is 1 

wheel rotation in 1 millisecond. 

 

• Important constant 

• 1 inch per millisecond = 56.818181 miles per hour. 

 

• Therefore, MaxV = Diameter * Pi * 56.818181 

= 3924.99 mph (which we assume is beyond the physical 

capability of the airframe when it’s on the ground…) 
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Iteration 4: Numeric ranges 

  
• What about the minimum observable velocity? 

• Let’s assume 1 wheel rotation in 65535 

milliseconds (65.535 seconds). 

• Wheel circumference is 22*Pi = 69.08 inches, so 

this is about 1 inch per second. 

• MinV = 0.0598863 mph. 

 

• Realization: below MinV, this system is unreliable 

and not to be trusted. Zero velocity is not 

measurable at all. 
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Iteration 4: Numeric ranges 

  
• Realization: below MinV, this system is unreliable 

and not to be trusted. Zero velocity is not 

measurable at all. 

 

• Example: click N occurs at T1 = 0. Click N+1 

occurs 65538 milliseconds later. The “16 bit” 

clock now reads “2”, so we’re doing 1962 mph, 

right?  

 

• Observation: “16 bit” timer is insufficient and/or 

just plain wrong for this problem. 
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Iteration 4: Numeric ranges 

  
• What about negative velocity? 

• Can the plane roll backwards? 

 

• Well..probably – how many times have you parked 

your car facing uphill and momentarily forgotten 

to put the hand-brake on? 

 

• Does the sensor “click” on a backwards-going 

wheel turn? It seems to be impossible to tell the 

difference… 
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Iteration 4: Numeric ranges 

   Ipm_To_Mph : constant := 56.818181; 
 

 Slowest_Measureable_Velocity_Ipm : constant Velocity := 

     Velocity (Circumference / Inches (Counter_16_Bits'Last)); 

 

 Fastest_Measureable_Velocity_Ipm : constant Velocity := 

Velocity (Circumference); 

 

 subtype Velocity_Ipm is Velocity range 

 Slowest_Measureable_Velocity_Ipm .. 

 Fastest_Measureable_Velocity_Ipm; 

  

subtype Velocity_Mph is Velocity range 

    Slowest_Measureable_Velocity_Ipm * Ipm_To_Mph .. 

 Fastest_Measureable_Velocity_Ipm * Ipm_To_Mph; 
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Iteration 4: Numeric ranges 

  
• Numeric accuracy… 

 

• Now we know the range of Velocity_Mph, we can 

determine the density of the model numbers of 

type Float in that range, and decide if its precision 

is good enough… 

 

• Let’s not go there today, though… 
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Iteration 4: Numeric ranges 

  
• With a bit of further simplification, this implementation 

yields 14 VCs, of which 13 (92.8%) are proven 

automatically. 

 

• The one left, though, is troublesome, arising from the line 

of code: 

 

V_Ipm := Velocity_Ipm (Float (DistanceRolled) / TimeElapsed); 

 

• This expression needs to yield a value in the range of 

Velocity_Ipm (not too big, not too small…), must not 

overflow, and must not divide by zero. 
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Iteration 4: Numeric ranges 

  
• This observation open a whole can of worms: 

• Perhaps velocities and/or accelerations should be 

filtered, “sanity checked” or bounded in some way? 

• How should it deal with acceleration from standing 

start and deceleration towards zero? 

• Can the sensors exhibit stuck-at faults, so it might 

appear that no time is passing or no distance being 

travelled? 

• Should the system actually maintain a moving-average 

of velocity based on the last N readings? What should 

N be? 

• And so on and so on… 
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Reading the v1.1 Requirements 

• November 7th: find and read the v1.1 requirements spec. 

 

• See comments earlier. 

 

• Plus...v1.1 re-enforces the tricky matter of dealing with the 

unpredictable phase and timing of the update function 

relative to the hardware interrupt. 

 

• Introduces the “estimatedGroundVelocityIsAvailable” flag 

where “True” seems to be “non-zero value”. 

– Why is a requirements statement polluted with low-level and 

seemingly language-specific detail? 
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Iteration 5: Robustness 

  
• We need to guard the division suitably to avoid division-by-

zero and range overflow. 

• DistanceRolled and TimeElapsed must not be zero and 

• The number of wheel rotations registered must be less 

than or equal to the number of milliseconds since last 

click. For example: 

• 1 rotation in 2 milliseconds is OK. 

• 2 rotations in 1 millisecond is not allowed, since 

we’d be going too fast… 
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Iteration 5: Robustness 

Rotations      := ThisNGRotations - SavedNGRotations; 

Clicks_Elapsed := ThisNGClickTime - SavedNGClickTime; 

 

if (Clicks_Elapsed /= 0) and 

  (Rotations in Valid_Non_Zero_Rotation_Count) and 

  (Rotations <= Clicks_Elapsed) then 

 

   Distance_Rolled := RotationToInch (Rotations); 

   Time_Elapsed    := Time (Clicks_Elapsed); 

 

   V_Ipm := Velocity_Ipm (Float (Distance_Rolled) / Time_Elapsed); 

   EstimatedGroundVelocity := IpmToMph (V_Ipm); 

   EstimatedGroundVelocityAvailable := True; 

 

   SavedNGRotations := ThisNGRotations; 

   SavedNGClickTime := ThisNGClickTime; 

else 

   EstimatedGroundVelocity := Velocity_Mph'First; 

   EstimatedGroundVelocityAvailable := False; 

end if; 
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Iteration 5: Robustness 

  
• Now we get 17 VCs. 

• 16 proven fully automatically. 

• 1 requires a user-defined lemma to “help” the prover. 

 

• This gives us a solid understanding of what’s required to 

solve the calculation problem and the assumptions that 

we’ve made along the way. 
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The Concurrency Problem 

  
• Not really had enough time to address this. 

 

• But...this is a common pattern: 

• Interrupt handler (low latency, fast, non-blocking) 

samples raw inputs in response to click, and deposits 

in a “protected” (mutually exclusive access) buffer. 

• A “periodic” task samples latest data from buffer and 

calculates current estimated velocity. This is placed in 

another protected state to be visible to other tasks. 

 

• BUT..still lots of interesting issues.  How much history to 

store? What if sensors fail? Averaging or filtering? Etc. etc. 
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Comparison with the CSL 

Certification Standard. 

• SPARK generates evidence that directly addresses the 

following objectives: 

– M (Source code is accurate) 

– N (Source code complies with standards) 

– R (Object code robustness) 
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Comparison with the CSL 

Certification Standard. 

• SPARK also indirectly contributes to the following 

objectives (i.e. makes them easier, prevention of defects 

and/or reduction in repetition of steps) 

– K (Source code complies with the software requirements) 

– O (Source code is compatible with the target computer) 

– P (Output of integration is complete and correct) 

– S (Object code is compatible with the target computer) 

– V (Verification procedures are correct) 
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Comparison with the CSL 

Certification Standard. 

• On the C130J MC project (DO-178B Level A), the main 

contribution of SPARK was indirect. 

– Reduction of pre-test defect rate through prevention of common 

errors and exposure of specification defects (e.g. incomplete 

Parnas tables). 

– See Sutton & Middleton “Lean Software Strategies” book. 
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Comparison with the CSL 

Certification Standard. 

• But…with DO-178C 

– What if we qualify the SPARK toolset as a “super verification tool”? 

• What credit can we take? 

• What subsequent process adjustments can we make? 

 

– Is SPARK a “formal notation”? 

• We think “Yes” 

 

– Does static analysis of SPARK exhibit “property preservation” 

(relative to a realistic set of real-world assumptions)? 

• We hope so! This is a principal design goal of SPARK… 

 

• We hope to work with customers to address these issues soon. 
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Further work… 

• Some ideas for things to do: 

 

1. Complete the implementation using RavenSPARK tasking 

with an interrupt handler, protected objects and a 

periodic task that runs the update function. Investigate 

and report on concurrency issued raised. 

 

2. Translate Jeff’s pseudo-code into SPARK and analyse as 

before. 

 

3. Start again from scratch. Re-consider the design of the 

timer hardware for a start… 
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Conclusions 

• A formal implementation style forces you to think really 

hard about an implementation, its properties, and the 

assumptions on which your “proof” is built. 

 

• You are forced to write down and possibly question 

assumptions. 

 

• A sound verification tool forces you to think about all the 

corner cases. 
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