
Copyright © Altran Praxis

Implementation and Analysis of the

Nose-Gear Velocity Example in SPARK

Rod Chapman, Altran Praxis

Copyright © Altran Praxis

Agenda

• Introduction

• Method

• Results

• Conclusions

Copyright © Altran Praxis

Introduction

• Goals and Constraints

– Do something useful and possibly interesting.

– Do not attempt to solve every aspect of the problem.

– Time available: very little, so focus on one or two aspects.

Copyright © Altran Praxis

Introduction

• Observation

– Two problems really:

• A calculation problem – given inputs, calculate the “right”

value of velocity.

• A concurrency problem – dealing with the independent timing

and phasing of the interrupt handler and the polling periodic

task.

• Idea

– Don’t try to solve both of these problems at the same time.

– Aim for separation of concerns.

Copyright © Altran Praxis

The Idea

• A simple implementation was constructed by Yannick Moy

of AdaCore.

– Written in SPARK, and subject to information flow analysis.

– NOT subjected to formal verification for runtime errors or any other

property.

• Goal: strengthen this implementation to develop a proof of

type-safety for it. Record discoveries along the way.

Copyright © Altran Praxis

Method

1. Read and analyse the requirements statement. Look for ambiguity,

inconsistency and incompleteness.

2. Attempt type-safety proof for the original solution.

3. Analyse each failed proof, either:

1. Strengthen the solution (e.g. add a precondition).

2. Re-code it.

3. Document an assumption.

4. Question the requirements.

4. Repeat until proof complete (with a list of assumptions) and/or show-

stopping bug is found.

5. Compare results with CSL’s Certification Standard.

Copyright © Altran Praxis

Reading the v1.0 Requirements

• (At this point, I hadn’t read Jeff’s pseudo-code, so I was

starting with a relatively clean sheet…)

• Reading v1.0 (July) of the requirements statement…

• A few questions:

– “16-bit counters” – this seems like an implementation-

detail, not a requirement! Are 16 bits enough for the

required range and precision?

– What set (of integer values) is represented by each

“counter”? Negative values perhaps?

– What actually is the required range and precision of the

answers? R1 calls for an “accurate estimate”…what’s that?

Copyright © Altran Praxis

Reading the v1.0 Requirements

• What does “increment” mean?

– X + 1?

– (X + 1) mod 65536?

• “The circumference…is also available…a compile time

constant NG_WHEEL_DIAMETER.”

– Eh? Diameter and Circumference are usually different…

• The type (real, floating point, integer?) and units (mph,

kmh?) of estimatedGroundVelocity are not specified.

Copyright © Altran Praxis

Reading the v1.0 Requirements

• The “worked example”

– Uses 3.14 for Pi – is this really accurate enough?

– Says Diameter of the wheel is 22 inches…

– Yields velocity in miles per hour.

• Let’s stick with these assumptions for now…

• Final comment: reading requirements, you should not be

able to tell what the author’s favourite programming

language is…

Copyright © Altran Praxis

The Original Implementation

• Constructed by Yannick Moy at AdaCore.

• Makes some simplifying assumptions.

– In particular, calculate instantaneous velocity in response to

every “click” from the wheel every time.

– Avoids issues of timing and relative phase and timing of the

interrupt and the update function. Addresses the

calculcation problem, but not the concurrency problem

(yet…)

– Simply compute the velocity from the time elapsed between

each “click” assuming the sensor reliably generates a “click”

for every rotation of the wheel.

Copyright © Altran Praxis

The Original Implementation

 -- Assume “counters” are integers in the range 0 .. 65535

-- with “modulo 65536” arithmetic operators.

 type Counter_16_Bits is mod 2 ** 16;

 -- Assume pre-defined “Float” has sufficient range

-- and precision for now.

 subtype Distance is Float; -- in inches

 subtype Time is Float; -- in millisecs

 subtype Velocity is Float; -- in mph

Copyright © Altran Praxis

The Original Implementation

 NGRotations : Counter_16_Bits;

 NGClickTime : Counter_16_Bits;

 Millisecs : Counter_16_Bits;

 EstimatedGroundVelocity : Velocity;

 NG_WHEEL_DIAMETER : constant := 22;

 PI : constant := 3.14;

 procedure ComputeEstimatedGroundVelocity;

 --# global in NGRotations, NGClickTime;

 --# out EstimatedGroundVelocity;

 --# in out State;

Copyright © Altran Praxis

The Original Implementation

 ThisNGRotations := NGRotations;
 ThisNGClickTime := NGClickTime;

 DistanceRolled := RotationToInch

 (ThisNGRotations - SavedNGRotations);

 TimeElapsed := Float (ThisNGClickTime - SavedNGClickTime);

 EstimatedGroundVelocity :=

 IpmsToMph (DistanceRolled / TimeElapsed);

 SavedNGRotations := ThisNGRotations;

 SavedNGClickTime := ThisNGClickTime;

• Easy huh? Well…err….no…

Copyright © Altran Praxis

Proof of The Original Implementation

• Proof using the SPARK Toolset for “type safety”

(aka “no runtime errors”, “no exceptions”) yields

16 Verification Conditions, only 5 of which

(31.25%) are proved automatically by our

Theorem Prover.

• Not very impressive so far…

• What’s going on?

Copyright © Altran Praxis

Iteration 2: Implementation-Defined

constants and types

• By default, the SPARK toolset does not assume

anything about the range of values and/or the

precison of the pre-defined types like Integer and

Float.

• These are implementation-defined in SPARK,

so the VC-Generator can be told the “right”

values with a configuration file.

• These have to be checked very carefully to

make sure they’re valid for the target

hardware.

Copyright © Altran Praxis

Iteration 2: Implementation-Defined

constants and types

• Let’s assume 32-bit signed 2’s complement

“Integer”, and IEEE 32-bit “Float”…

• Now we get 11 of 16 VCs proved (68.75%)

• Our normal rule-of-thumb is that well-written

SPARK code should score >95% VCs proved

automatically for type-safety, so still some room

for improvement…

Copyright © Altran Praxis

Iteration 3: Data Validity

• Who says that the pattern of bits you get from an

input device is really a valid value according to the

type system of the programming language?

• This certainly isn’t the case for floating-point values,

for example, where you might read a NaN value.

• Even if you say an integer type is N-bits, a compiler

and/or hardware might read more than N bits –

enormous care is required.

• So…The VCG makes no assumption at all about

the validity of external data unless told otherwise.

Copyright © Altran Praxis

Iteration 3: Data Validity

• In this case, though, we’re OK. Every pattern of 16

bits is a valid value for type Counter_16_Bits,

assuming the generated code and hardware really

do read exactly 16-bits.

• We tell this to the VCG with an additional contract.

• Now we get 13 VCs (81.25%) proved

automatically.

Copyright © Altran Praxis

Iteration 4: Numeric ranges

• Normal coding practice in SPARK says that you

should never use the pre-defined types like

“Float” anyway, since their range and precision

are implementation-defined.

• You should say what you want!

• So…what range should Velocity have?

• What’s the smallest observable velocity?

• What’s the largest?

• What about negative value?

• How is “zero velocity” handled?

Copyright © Altran Praxis

Iteration 4: Numeric ranges

• This train of thought led to many discoveries…

• Let’s assume the highest observable velocity is 1

wheel rotation in 1 millisecond.

• Important constant

• 1 inch per millisecond = 56.818181 miles per hour.

• Therefore, MaxV = Diameter * Pi * 56.818181

= 3924.99 mph (which we assume is beyond the physical

capability of the airframe when it’s on the ground…)

Copyright © Altran Praxis

Iteration 4: Numeric ranges

• What about the minimum observable velocity?

• Let’s assume 1 wheel rotation in 65535

milliseconds (65.535 seconds).

• Wheel circumference is 22*Pi = 69.08 inches, so

this is about 1 inch per second.

• MinV = 0.0598863 mph.

• Realization: below MinV, this system is unreliable

and not to be trusted. Zero velocity is not

measurable at all.

Copyright © Altran Praxis

Iteration 4: Numeric ranges

• Realization: below MinV, this system is unreliable

and not to be trusted. Zero velocity is not

measurable at all.

• Example: click N occurs at T1 = 0. Click N+1

occurs 65538 milliseconds later. The “16 bit”

clock now reads “2”, so we’re doing 1962 mph,

right? 

• Observation: “16 bit” timer is insufficient and/or

just plain wrong for this problem.

Copyright © Altran Praxis

Iteration 4: Numeric ranges

• What about negative velocity?

• Can the plane roll backwards?

• Well..probably – how many times have you parked

your car facing uphill and momentarily forgotten

to put the hand-brake on?

• Does the sensor “click” on a backwards-going

wheel turn? It seems to be impossible to tell the

difference…

Copyright © Altran Praxis

Iteration 4: Numeric ranges

 Ipm_To_Mph : constant := 56.818181;

 Slowest_Measureable_Velocity_Ipm : constant Velocity :=

 Velocity (Circumference / Inches (Counter_16_Bits'Last));

 Fastest_Measureable_Velocity_Ipm : constant Velocity :=

Velocity (Circumference);

 subtype Velocity_Ipm is Velocity range

 Slowest_Measureable_Velocity_Ipm ..

 Fastest_Measureable_Velocity_Ipm;

subtype Velocity_Mph is Velocity range

 Slowest_Measureable_Velocity_Ipm * Ipm_To_Mph ..

 Fastest_Measureable_Velocity_Ipm * Ipm_To_Mph;

Copyright © Altran Praxis

Iteration 4: Numeric ranges

• Numeric accuracy…

• Now we know the range of Velocity_Mph, we can

determine the density of the model numbers of

type Float in that range, and decide if its precision

is good enough…

• Let’s not go there today, though…

Copyright © Altran Praxis

Iteration 4: Numeric ranges

• With a bit of further simplification, this implementation

yields 14 VCs, of which 13 (92.8%) are proven

automatically.

• The one left, though, is troublesome, arising from the line

of code:

V_Ipm := Velocity_Ipm (Float (DistanceRolled) / TimeElapsed);

• This expression needs to yield a value in the range of

Velocity_Ipm (not too big, not too small…), must not

overflow, and must not divide by zero.

Copyright © Altran Praxis

Iteration 4: Numeric ranges

• This observation open a whole can of worms:

• Perhaps velocities and/or accelerations should be

filtered, “sanity checked” or bounded in some way?

• How should it deal with acceleration from standing

start and deceleration towards zero?

• Can the sensors exhibit stuck-at faults, so it might

appear that no time is passing or no distance being

travelled?

• Should the system actually maintain a moving-average

of velocity based on the last N readings? What should

N be?

• And so on and so on…

Copyright © Altran Praxis

Reading the v1.1 Requirements

• November 7th: find and read the v1.1 requirements spec.

• See comments earlier.

• Plus...v1.1 re-enforces the tricky matter of dealing with the

unpredictable phase and timing of the update function

relative to the hardware interrupt.

• Introduces the “estimatedGroundVelocityIsAvailable” flag

where “True” seems to be “non-zero value”.

– Why is a requirements statement polluted with low-level and

seemingly language-specific detail?

Copyright © Altran Praxis

Iteration 5: Robustness

• We need to guard the division suitably to avoid division-by-

zero and range overflow.

• DistanceRolled and TimeElapsed must not be zero and

• The number of wheel rotations registered must be less

than or equal to the number of milliseconds since last

click. For example:

• 1 rotation in 2 milliseconds is OK.

• 2 rotations in 1 millisecond is not allowed, since

we’d be going too fast…

Copyright © Altran Praxis

Iteration 5: Robustness

Rotations := ThisNGRotations - SavedNGRotations;

Clicks_Elapsed := ThisNGClickTime - SavedNGClickTime;

if (Clicks_Elapsed /= 0) and

 (Rotations in Valid_Non_Zero_Rotation_Count) and

 (Rotations <= Clicks_Elapsed) then

 Distance_Rolled := RotationToInch (Rotations);

 Time_Elapsed := Time (Clicks_Elapsed);

 V_Ipm := Velocity_Ipm (Float (Distance_Rolled) / Time_Elapsed);

 EstimatedGroundVelocity := IpmToMph (V_Ipm);

 EstimatedGroundVelocityAvailable := True;

 SavedNGRotations := ThisNGRotations;

 SavedNGClickTime := ThisNGClickTime;

else

 EstimatedGroundVelocity := Velocity_Mph'First;

 EstimatedGroundVelocityAvailable := False;

end if;

Copyright © Altran Praxis

Iteration 5: Robustness

• Now we get 17 VCs.

• 16 proven fully automatically.

• 1 requires a user-defined lemma to “help” the prover.

• This gives us a solid understanding of what’s required to

solve the calculation problem and the assumptions that

we’ve made along the way.

Copyright © Altran Praxis

The Concurrency Problem

• Not really had enough time to address this.

• But...this is a common pattern:

• Interrupt handler (low latency, fast, non-blocking)

samples raw inputs in response to click, and deposits

in a “protected” (mutually exclusive access) buffer.

• A “periodic” task samples latest data from buffer and

calculates current estimated velocity. This is placed in

another protected state to be visible to other tasks.

• BUT..still lots of interesting issues. How much history to

store? What if sensors fail? Averaging or filtering? Etc. etc.

Copyright © Altran Praxis

Comparison with the CSL

Certification Standard.

• SPARK generates evidence that directly addresses the

following objectives:

– M (Source code is accurate)

– N (Source code complies with standards)

– R (Object code robustness)

Copyright © Altran Praxis

Comparison with the CSL

Certification Standard.

• SPARK also indirectly contributes to the following

objectives (i.e. makes them easier, prevention of defects

and/or reduction in repetition of steps)

– K (Source code complies with the software requirements)

– O (Source code is compatible with the target computer)

– P (Output of integration is complete and correct)

– S (Object code is compatible with the target computer)

– V (Verification procedures are correct)

Copyright © Altran Praxis

Comparison with the CSL

Certification Standard.

• On the C130J MC project (DO-178B Level A), the main

contribution of SPARK was indirect.

– Reduction of pre-test defect rate through prevention of common

errors and exposure of specification defects (e.g. incomplete

Parnas tables).

– See Sutton & Middleton “Lean Software Strategies” book.

Copyright © Altran Praxis

Comparison with the CSL

Certification Standard.

• But…with DO-178C

– What if we qualify the SPARK toolset as a “super verification tool”?

• What credit can we take?

• What subsequent process adjustments can we make?

– Is SPARK a “formal notation”?

• We think “Yes”

– Does static analysis of SPARK exhibit “property preservation”

(relative to a realistic set of real-world assumptions)?

• We hope so! This is a principal design goal of SPARK…

• We hope to work with customers to address these issues soon.

Copyright © Altran Praxis

Further work…

• Some ideas for things to do:

1. Complete the implementation using RavenSPARK tasking

with an interrupt handler, protected objects and a

periodic task that runs the update function. Investigate

and report on concurrency issued raised.

2. Translate Jeff’s pseudo-code into SPARK and analyse as

before.

3. Start again from scratch. Re-consider the design of the

timer hardware for a start…

Copyright © Altran Praxis

Conclusions

• A formal implementation style forces you to think really

hard about an implementation, its properties, and the

assumptions on which your “proof” is built.

• You are forced to write down and possibly question

assumptions.

• A sound verification tool forces you to think about all the

corner cases.

Copyright © Altran Praxis

Altran Praxis Limited
20 Manvers Street

Bath BA1 1PX

United Kingdom

Telephone: +44 (0) 1225 466991

Facsimile: +44 (0) 1225 469006

Website: www.altran-praxis.com

Email: rod.chapman@altran-praxis.com

