
Probabilistic Counting of Large Digital Signature Collections

Markus G. Kuhn∗

University of Cambridge
Computer Laboratory

Pembroke Street
Cambridge CB2 3QG

United Kingdom
mgk25@cl.cam.ac.uk

Abstract

A large number of people digitally sign the same
document. The signature collectors want to use only
a small amount of memory to demonstrate to any
third party approximately how many persons have
signed it. The scheme described in this paper uses
a non-uniform secure hash function to select a small
subset of signatures that the collectors store. The
size of this subset becomes a verifiable estimate for
the logarithm of the number of signers.

Applications for this scheme range from Web page
metering, through ranking mechanisms for electronic
discussion systems, to the distributed verifiable and
scalable delegation of power in jointly-administrated
systems.

1 Introduction

Signature collection has a long tradition as a
means of documenting public support and plays an
important rôle in many political systems. Candi-
dates for political positions often have to collect sig-
natures from voters as an entry qualification for an
election. Some constitutions allow voters to initiate
a vote by collecting a sufficient number of signatures.
Civil rights organizations frequently use signature
collection to demonstrate broad public support for
their agendas.

Signature collection can be a valuable mecha-
nism for decision-making arrangements that involve
a large number of participants. It differs in impor-
tant aspects from voting, which can consume signif-
icant up-front resources, since every entitled voter
has to be informed early enough about the oppor-
tunity to vote. The outcome of a vote only rep-

∗Supported by a European Commission Marie Curie train-
ing grant

resents the distribution of opinions sufficiently well
when enough voters participate.

In a signature collection on the other hand, the
signers can only decide to either support a proposal
by signing a prepared document or to abstain from
the procedure entirely. The result of a signature col-
lection thus explicitly indicates only a lower bound
for the absolute number of supporters for the pro-
posal and it provides no useful information on how
many people rejected it. Signature collection there-
fore makes sense only in situations where it is in
the interest of the originators of the proposal—and
those who collect signatures for it—to get as many
signatures as possible.

Signature collection can be performed in a mean-
ingful way without activating potentially expensive
mechanisms for inviting every entitled participant.
While voting requires an agreed official channel for
announcing the start of the procedure and the details
of the choices, in a signature collection, the respon-
sibility for any necessary announcements can be left
to the initiators of a proposal.

A centralized voting announcement mechanism
could become subject to frequent frivolous abuse.
Its activation must therefore be protected from ma-
licious participants, who could try to delay further
votes by overusing their right to initiate one. Signa-
ture collection mechanisms on the other hand can be
started locally without large-scale announcements.
They therefore make a much less attractive target
for denial-of-service attacks.

Signature collections can potentially become very
large, involving many millions of signers. The goal of
voting is to identify a majority choice and therefore
every single vote could become critical in deciding
the outcome. On the other hand, the goal of a sig-
nature collection is only to demonstrate that some
significant number of participants supports a pro-

Proceedings of the 9th USENIX Security Symposium, Den-
ver, Colorado, USA, August 14–17, 2000, USENIX Association,
pp. 73–83, ISBN 1-880446-18-9.

posal, and therefore a verifiable order-of-magnitude
estimate for the number of signers is what matters
rather than the precise count. The presentation of
for example roughly a million supporting signatures
can be an important demonstration of popularity of
an idea, even if there is a 25% uncertainty with re-
gard to the precise number of valid signatures.

The result of a conventional signature collection is
presented by the collectors as boxes of handwritten
paper lists. This form allows anyone to identify and
verify a few selected sample signers, but it usually
remains prohibitively expensive to create a database
of all signers. Signed paper lists thus remain a widely
accepted compromise between verifiability and pri-
vacy concerns.

In this paper, we propose a new technique for
conducting the cryptographic equivalent of signature
collection and outline some potential applications.
Our technique features the following properties, the
first three of which are shared with a handwritten
signature collection:

• A small sample of the signers will become iden-
tifiable such that the correctness of the signa-
ture collection can be verified by contacting them.
However, it is not necessary to provide a com-
plete database of all signers in order to make the
claimed number of supporting signatures verifi-
able.

• Only the order-of-magnitude number of valid sig-
natures is practically verifiable via sampling and
not the precise number.

• The result of a signature collection can be sent
as a single protocol data unit to verifiers and no
further interactions between the verifiers and the
collectors will be necessary to complete the veri-
fication. This makes the scheme useful for store-
and-forward delivery of the result.

• Many signature collectors can operate indepen-
dently and can merge their results at a later time
without risking multiple collection of the same
signature by different collectors to influence the
result.

• The verifiable result of a large-scale digital sig-
nature collection fits into a file not much larger
than a few tens of kilobytes, which can be effi-
ciently transmitted to and verified by many dif-
ferent parties.

• Signature collectors need only a small amount of
storage capacity, just large enough to hold the
compact final result that is provided to the veri-
fiers.

2 Application Examples

In addition to the classical political applications,
the digital equivalent of signature collection has also
numerous interesting new uses in distributed sys-
tems. Some examples include:

2.1 Web Page Metering

Advertising companies sponsor the providers of
free online content and services in exchange for pres-
ence on popular Web pages. The sponsors want ev-
idence for the popularity of the points-of-visibility
that they have purchased. A discussion of the re-
quirements and some proposed protocols for Web
page metering can be found in Naor and Pinkas [1].

If every user of the sponsored Web content au-
tomatically signed a digital guest book by submit-
ting a message that confirms that this user was in-
deed interested in the presented content, then the
content provider could easily prove the popularity
of her pages to the sponsors. Compared to the
secret-sharing based metering scheme suggested in
[1], the signature collection scheme presented in the
next section has the advantage that the approximate
number of users does not have to be known in ad-
vance to select the metering parameters, and users
do not have to fetch secret shares from a trusted
third party before using a Web page. They only have
to be part of a suitable public-key infrastructure,
and the certificates do not even have to bind their
web-metering keys to any cleartext name if their real
identity must remain secret from both the content
provider and the sponsor.

2.2 TV Rating and Opinion Polling

A closely related application field is counting the
viewers of a TV channel or interactive opinion gath-
ering via TV networks with return channels. Adver-
tisement customers and other observers might not
entirely trust the network operators to provide ac-
curate viewer or voter counts.

Set-top boxes could implement a mechanism to
allow TV viewers to participate in signature collec-
tions, the result of which could then be verified di-
rectly by anyone using the public keys of the set-top
box (or conditional-access module) manufacturers,
which would here also act as key certification au-
thorities. Signature lists could be collected into a
compact representation in local and regional net-
work nodes, so as to avoid communication bottle-
necks around a central collection point.

2

2.3 Newsgroup Contributor Ranking

In open electronic discussion forums such as Inter-
net newsgroups or mailing lists, the quality of con-
tributions varies greatly. Long-term participants in
such forums could establish a cryptographic credibil-
ity record by collecting signatures from readers who
considered their past contributions valuable. The
size of these signature lists could be queried by new
participants to get an initial estimate of the experi-
ence and signal-to-noise ratio of a contributor.

With the digital signature collection scheme pre-
sented here, such a ranking mechanism can be imple-
mented without any additional trusted third party
beyond the certification authorities that are required
as part of any public-key infrastructure. If the signa-
ture collection result can be represented compactly,
it can be distributed easily over the newsgroup server
network, allowing every reader to verify the valid-
ity of the signature count efficiently and indepen-
dently without relying on the integrity of distribu-
tion servers.

2.4 Delegation of Power and Joint Ad-
ministration

It might be undesirable to have replicated repos-
itories for public software and documents as well as
discussion groups under the central control of a sin-
gle organization. An interesting alternative would
be a system design in which all participants can di-
rectly determine which individuals they would like to
see authorized to perform administrative tasks, es-
pecially if there were an efficient way in which each
storage server can independently verify such a direct
authorization of an individual by a large user base.

Such systems could be set up so that owning a
long list of recent supporting signatures from other
participants would allow an individual directly to
perform privileged operations like acting as a moder-
ator with the right to clean-up inappropriate publi-
cations (“spam”, insults, piracy, etc.). Here, the sig-
nature list becomes a way in which a large number of
participants can delegate administrative power (usu-
ally with suitable time and scope restrictions) to in-
dividuals.

The same could be achieved with a voting mech-
anism. However, this would require common trust
in some central voting server that determines and
certifies the majority winners of this process. The
compact representation of the verifiable result gives
the signature collection approach robustness against
the failure or compromise of other servers. Every
server on which the administrative actions will be

executed can independently and directly verify the
public support for the moderators.

In all the previous applications, a trivial approach
would be that the collector of signatures just stores
all v collected signatures and hands them over to
anyone who wants to verify that at least v signa-
tures have indeed been collected. This would require
O(v) storage space, transmission time, and verifica-
tion time, which can be prohibitive if the number v
of collected signatures is large (� 104).

We therefore present a new technique that al-
lows us to collect signatures and prove a probabilis-
tic lower bound for their number to others using
only O(log v) of storage space, transmission time,
and verification effort.

3 A Probabilistic Representation of
Signature Collections

The basic idea of this scheme is the representa-
tion of a complete collection of signatures by storing
only a small set of sample signatures. The more sig-
natures there have already been collected and the
more signatures there are already in the sample set,
the less likely it will be that the collector is allowed
to add another collected signature to this sample set.

We have to agree in advance on the selection pro-
cess for signatures that are allowed to get into the
sample. This selection process will not be under
the full control of the collector. It is designed such
that the sample size grows logarithmically with the
number of collected signatures. The size of the sam-
ple becomes this way a probabilistic indicator for
the logarithm of the number v of collected signa-
tures. An inspection of the O(log v) sample signa-
tures alone allows us then to verify that the sam-
pling process was performed properly and that at
least around v signatures must have been given to
the collector.

We assume that the following public-key infra-
structure is in place:

Every person A who is entitled to participate in
the planned type of signature collection is in posses-
sion of a private signing key KA and a public verifi-
cation key K ′

A for some deterministic digital signa-
ture scheme. Each such person A has also received
a certificate CA that confirms for K ′

A that the corre-
sponding KA is the only secret key that is available
for A to be used in the collection. It is the respon-
sibility of the certification authority that generated
CA to ensure that it is very difficult for anyone to ob-
tain simultaneously valid certificates for more than

3

one single signing key and that it is very difficult for
not-entitled persons to get such a certificate.

The signature scheme under which the KA and
K ′

A are used must be deterministic. By this we
mean that for each message M , person A can only
generate one single signature value that verifies un-
der K ′

A. The signature must not contain any freely
selectable entropy. For instance using RSA signa-
tures in the form of the RSASSA-PKCS1-v1 5 scheme
[2] and a fixed message digest function (say SHA-1)
would be suitable. Using for example RSA with the
PSS scheme [3] or DSS [4] to generate the signature,
or leaving the signer a choice of multiple algorithms,
must not be allowed. Otherwise a signing key owner
could generate many different valid signatures for
the same message M , which could allow her to get
her signatures counted several times in the collec-
tion.

The signature collection is performed as follows:

1. The signature collector distributes to all poten-
tially interested signers A the proposed message
M together with an indication of which types of
public-key certificates are accepted in this collec-
tion.

2. If person A decides not to sign M , she either does
nothing or just confirms that she has received the
proposal and is not interested in supporting it.

3. If A supports the proposal M , she generates the
signature sA = sign(KA, h(M)) by applying her
signing key KA on a message digest of M , as re-
quired by the signature scheme. The resulting
signature sA is submitted together with the ver-
ification key K ′

A and the certificate CA to the
signature collector.

4. The collector has a storage space consisting of n
slots, each of which can save one signature, as well
as the corresponding public key and certificate (or
a pointer to it in some directory). The collector
knows the verification keys for all certificate types
that are allowed to be used.

5. The collector determines for each newly received
signature the slot position

t = ϕ(H(sA)),

where H is a uniformly distributed secure hash
function that maps signatures onto binary words
in the range 0 to 2l − 1, and

ϕ : {0, . . . , 2l − 1} → {1, . . . , n}

is a function that maps a uniformly distributed
hash value onto one out of n non-uniformly dis-
tributed slot numbers (typical practical values are
l = 64 and 100 < n < 5000). A precise construc-
tion for ϕ will be suggested below.

6. If the collector has already stored a signature in
slot number t, then the newly received signature
will simply be discarded (see also section 4.4 for a
better approach). Otherwise, the collector verifies
that the received certificate CA and the verifica-
tion key K ′

A are valid and that sA is valid under
K ′

A for message M . If so, he will store sA, K ′
A,

and CA in slot number t.

7. Many collectors can be active in the same sig-
nature collection at the same time. The merged
collection result will contain one sample signature
for each slot for which at least one of the collectors
has received a signature. If the same signature is
submitted multiple times or to different collec-
tors, this will not influence the number of filled
slots. The same signature will always fall into the
same slot with each collector and will therefore
appear at most once in the end result.

It is intuitively clear that to find a signature
whose hash has twenty leading zeros, we need to
look at about 220, or a million, signatures. In what
follows, we show how to count more precisely based
on this general idea.

Let u be the number of slots that the collector
has been able to fill with verifiable signatures. This
number will be used to estimate the number v of
valid distinct signatures that have been collected.
The number u can be verified quickly by anyone who
has reliable access to the public verification keys of
the certification authorities, because for every filled
slot number, one sample signature and the associ-
ated certificate has been kept as a proof that at least
one signature for this slot was collected.

We describe the number of collected signatures
using the discrete random variable V . The discrete
random variables Ui with 1 ≤ i ≤ n describe the
number of filled slots with slot numbers in the range
1 to i and U = Un shall be the random variable
describing the total number of signatures that the
collector has stored. The dependency between U
and V is determined by the function ϕ, which defines
the probability distribution of the random variable
T that assigns signatures to slot numbers.

Let pt = P (T = t) be the probability that a uni-
formly distributed l-bit input hash value is mapped

4

by ϕ onto slot number t, that is

pt =

∣∣{w | 0 ≤ w < 2l ∧ ϕ(w) = t}∣∣
2l

,

n∑
t=1

pt = 1.

Given a distribution of T in the form of pt values, a
suitable ϕ can be constructed as

ϕ(w) = min
{
t
∣∣ 1 ≤ t ≤ n ∧ 2l ·

t∑
i=1

pi > w
}

and easily implemented as a binary search in a stored
table of the values

wi =

⌈
2l ·

i∑
t=1

pt

⌉
, for all i ∈ {1, . . . , n − 1}.

The word size l of the secure hash function H has to
be selected sufficiently large such that 2−l � pt for
all 1 ≤ t ≤ n.

After v different valid signatures have been col-
lected, the probability that slot t is still empty will
be (1−pt)v, which we will abbreviate in the following
as qt := (1 − pt)v.

The probability that after v different signatures
have been collected, exactly u signatures are stored
in the first 1 ≤ i ≤ n slots is

ri(u, v) := P (Ui = u|V = v) =

∑
F⊆{1,...,i}

|F |=u


∏

t∈F

(1 − qt)




 ∏

t∈{1,...,i}\F

qt


 .

The above function can in spite of its exponentially
long sum be computed efficiently in O(n2) time using
the following recursion over the number of slots:

ri(u, v) =




ri−1(u, v) · qi +
ri−1(u − 1, v) · (1 − qi),

if 0 ≤ u ≤ i and i > 0

1, if i = u = 0

0, otherwise

We can now determine the expected number of
filled slots among the first i slots recursively as

ui := E[Ui|V = v] =
i∑

u=0

u · ri(u, v)

=
i∑

u=0

u · [ri−1(u, v) · qi +

ri−1(u − 1, v) · (1 − qi)]

= qi

(
i−1∑
u=0

u · ri−1(u, v) + i · ri−1(i, v)

)
+

(1 − qi)
i−1∑

u=−1

(u + 1) · ri−1(u, v)

= qi · (ui−1 + 0) + (1 − qi) ·(
i−1∑
u=0

u · ri−1(u, v) +
i−1∑
u=0

ri−1(u, v)

)

= qi · ui−1 + (1 − qi) · (ui−1 + 1)
= ui−1 + 1 − qi,

and therefore

ui = E[Ui|V = v] =
i∑

t=1

(1 − (1 − pt)v).

We can similarly calculate the average square of
the number of filled slots among the first i slots re-
cursively as

u2
i := E[U2

i |V = v] =
i∑

u=0

u2 · ri(u, v)

= qi

(
i−1∑
u=0

u2 · ri−1(u, v) + i2 · ri−1(i, v)

)
+

(1 − qi)
i−1∑

u=−1

(u + 1)2 · ri−1(u, v)

= qi · (u2
i−1 + 0) +

(1 − qi) · (u2
i−1 + 2ui−1 + 1)

= u2
i−1 + 2ui−1 + 1 − qi · (2ui−1 + 1)

and therefore

u2
i = E[U2

i |V = v] =
i∑

t=1

(2ut−1 + 1) · (1− (1− pt)v).

This way, we can determine the variance of the
number of filled slots as

Var[U |V = v] = σ2 = E[(U − E[U])2|V = v]
= E[U2|V = v] − E2[U |V = v] = u2

n − un
2.

3.1 Selecting Slot Probabilities

Ideally, we should aim to choose the slot selection
probabilities pt and the corresponding ϕ in a way
such that we get

E[U |V = v] ≈ a ln(v + 1)

for some scaling factor a. Then e
u
a − 1 would be the

corresponding estimated number of collected unique

5

0

1

2

3

4

5

1e+00 1e+01 1e+02 1e+03 1e+04 1e+05 1e+06

v

p = 1e-01
p = 1e-02
p = 1e-03
p = 1e-04
p = 1e-05

sum

Figure 1: In this graph, we can see the function
1 − (1 − p)v with the five parameter values p =
10−1, 10−2, . . . , 10−5 on a logarithmic scale for v, as
well as the sum of these five curves. The 1− (1−p)v

graphs form smoothed unit steps near 1/p and the
sum approximates a straight line (i.e., a logarithm)
in the range 101 to 105.

valid signatures. The factor a determines the size
of the sample set, and therefore the resolution and
relative error of the estimated size of the collection.
A logarithmic mapping between u and v corresponds
to a constant relative error of the estimate of v over
the entire range.

A good practical choice for ϕ turns out to be a
geometric distribution of the form

pt = αβt (1)

with

α =

(
n∑

t=1

βt

)−1

=
1 − β

β − βn+1
and 0 < β < 1.

The reason that a geometric distribution leads to
the desired result becomes intuitively clear as fol-
lows. We look at the graph of the function 1−(1−p)v

as we vary parameter p using values of a geomet-
ric series such as p = 10−1, 10−2, . . . , 10−5. These
graphs are shown in Fig. 1, where v is plotted on a
logarithmic scale. We see that this term results in
a smooth unit-step function, and the location of the
step coincides roughly with 1/p, because if we solve
1 − (1 − p)v = 1 − e−1 ≈ 0.63 for v, we get

v =
−1

ln(1 − p)
≈ 1

p
for 0 < p � 1.

Since E[U |V = v] is a sum of terms 1 − (1 − p)v,
we can approximate on a logarithmic scale for v a
straight line using equidistant values for 1/p. This

0

200

400

600

800

1000

1e+00 1e+02 1e+04 1e+06 1e+08 1e+10

v

E[U|V=v]

Figure 2: This graph shows the expected number of
filled slots E[U |V = v] over the number of collected
signatures v for geometrically distributed slot selec-
tion probabilities pt with parameters n = 1000 and
β = 0.9835, selected such that up to v̂ = 109 signa-
tures can be counted without danger of saturating
the scheme.

is demonstrated by the graph of the sum of the
five smooth unit-step functions that is also shown
in Fig. 1. It forms a nearly straight line in the range
101 to 105. This way, a geometric series of para-
meters pt has resulted in E[U |V = v] becoming an
approximation for a logarithm of v.

Figure 2 shows E[U |V = v] with a more practical
set of parameters. In this example we use n = 1000
slots and we want to be able to handle up to v̂ = 109

signatures, for which β = 0.9835 is a good choice.
With these parameters, the average relative error
will be around 10% and therefore collection sizes
that are less than a factor of two apart can still be
separated very reliably. Using this parameter set,
Fig. 3 shows for a number of collection sizes v the
distribution P (U = u|V = v). If a higher resolution
is desired, the number n of slots has to be increased
and β has to be adjusted accordingly.

If the desired number of slots n and the maxi-
mum expected signature count v̂ are given, a suit-
able value for β fulfills the equation

1 − (1 − pn)v̂ = 1 − e−1 ≈ 0.63

such that the last slot n will be filled with a probabil-
ity of a bit over one half after v̂ signatures have been
collected. The equation can be solved for β numer-
ically using a binary search. Figure 4 shows for the
practically useful ranges of n and v̂ the correspond-
ing β values and can be used to select a suitable β
graphically.

With the geometric series of slot probabilities
from (1), the probability densities P (U = u|V = v)

6

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 200 400 600 800 1000 1200

P
(U

=
u|

V
=

v)

u

v = 125
v = 250
v = 500

v = 1e+03
v = 1e+04
v = 1e+05
v = 1e+06
v = 1e+07
v = 1e+08

Figure 3: In this graph, the probability density
P (U = u|V = v) is shown for a number of signa-
ture collection sizes v. The parameters n and β are
the same as in Fig. 2.

1

100

10000

1e+06

1e+08

1e+10

1 10 100 1000 10000 100000

n

v̂
0.5
0.8
0.9

0.95
0.98
0.99

0.995
0.998
0.999

0.9995
0.9998

Figure 4: Using this graph, a suitable base β can be
selected for a given number of slots n and a maxi-
mum expected signature count v̂.

can be approximated by a Gaussian normal distri-
bution:

P (U = u|V = v) ≈ e
− (u−un)2

2u2
n−2un

2√
2π
(
u2

n − un
2
)

This works well at least as long as the variance is
larger than one and the expected value is at least
several standard deviations away from 0 and n, oth-
erwise boundary effects make the shape of the dis-
tribution noticeably asymmetric.

3.2 Estimating the Collection Result

We have seen how we can efficiently determine the
distribution P (U = u|V = v), but in order to inter-
pret the given outcome u of a probabilistic signature

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

1e+07

1e+08

1e+09

1e+10

0 200 400 600 800 1000

u

ṽ

Figure 5: For the same parameters n and β as in
Fig. 2, this graph shows the function ṽ that provides
the maximum-likelihood estimate of v for a given u.

collection, we are more interested in the Bayesian
distribution

P (V = v|U = u) =
P (U = u|V = v) · P (V = v)∑
v′ P (U = u|V = v′) · P (V = v′)

that tells us how probable every possible number
of signatures v was, given the outcome u. Unfortu-
nately, we cannot practically determine this quantity
unless we have a reasonable estimate for the distri-
bution of V.

Therefore, the best practical estimate for v given
a certain u will be the maximum-likelihood choice,
i.e. the v for which P (U = u|V = v) is maximal.
Given the pt values, it is possible to precalculate a
function

ṽ : {0, . . . , n} → IN

with ṽ(0) = 0 and

P (U = u|V = ṽ(u)) ≥ P (U = u|V = v)

for all u, v ∈ IN with 0 ≤ u < n, 0 ≤ v and
P (U = n − 1|V = v) > P (U = n|V = v). The
value ṽ(n) remains undefined, because if all slots are
filled, the only estimate about v that we can make
is that v > ṽ(n− 1), a case which should be avoided
in applications by selecting a generously large value
of v̂.

For practical purposes, it is usually sufficient to
determine P (U = u|V = v) for v increasing in steps
of around 5% and then tabulate in ṽ(u) that v that
resulted in the largest P (U = u|V = v). Figure 5
shows the result for our example parameter selec-
tion.

7

0.1

1

10

100

1000

10 100 1000 10000

st
an

da
rd

 d
ev

ia
tio

n

n

v < 1e+05
v < 1e+07
v < 1e+09
v < 1e+11

Figure 6: This graph shows for various n and v̂ val-
ues the standard deviation E[(U − E[U])2]

1
2 when

V = ṽ(n
2). It grows proportional to

√
n.

0.001

0.01

0.1

1

10

10 100 1000 10000 100000

er
ro

r

n

v < 1e+05
v < 1e+07
v < 1e+09
v < 1e+11

Figure 7: The root-mean-square of the relative er-
ror (E[(ṽ(U) − V)2/V 2]

1
2 for V = ṽ(n

2)), which this
graph shows for various n and v̂ values, falls propor-
tional to 1/

√
n.

Alternatively, ṽ can also be determined simply by
inverting E(U |V = v), which is practically equiva-
lent since the expected value happens to coincide
well with the peak of P (U = u|V = v) (see Fig. 5
compared to Fig. 2).

Figure 6 shows how the standard deviation of U
depends for a fixed v on the parameters n and v̂. It
depends only slightly on v̂ and grows proportional
to

√
n. The root-mean-square of the relative error

of the estimate ṽ develops accordingly proportional
to 1/

√
n (Fig. 7).

Instead of just looking at the number u of col-
lected signatures, the verifiers can also base their
maximum-likelihood estimate of v on the set F ⊆
{1, . . . , n} of slot positions that have been filled.
They can then make their estimate using the func-

tion ṽ(F) that returns that value of v which maxi-
mizes ∏

t∈F

(1 − (1 − pt)v) ·
∏
t6∈F

(1 − pt)v.

This approach allows the verifiers to utilize all avail-
able information, but it also makes it impractical to
precompute the function ṽ as a simple table.

Verifiers do not necessarily have to check the con-
tent of all slots. If many filled slots with low pt

have been verified, all those slots with orders-of-
magnitude larger pt will most likely be full as well.
This allows the result to be represented even more
compactly. The performance of the scheme could
also be improved by using several slot mapping func-
tions ϕ of different granularity. When a collector’s
storage space becomes full, he switches to the next
ϕ and merges existing slots accordingly.

4 Security Considerations

4.1 Trust Placed in Collectors

Collectors can easily discard signatures and can
therefore make the number of submitted signatures
look smaller than it actually was. As a consequence,
the result of a signature collection can only be mean-
ingful if signatures were collected by someone with
a genuine incentive to collect as many signatures as
possible.

It is also worth noting that participating sign-
ers have no guarantee that signature collectors store
only a maximum of n signatures. While signature
collectors are only required to store and present
u = O(log v) signatures to the verifiers, nothing pre-
vents them from creating a record of all v signatures.
The privacy protection that signature collection of-
fers thus protects only the signer from the verifier,
but not the signer from the signature collector.

4.2 Bribery

If either collectors or the signing key holders know
in advance which signing keys are able to fill a slot,
this might with some applications lead to the cre-
ation of a market for those sample signatures that
fill slot positions with low pt values. The resulting
risk is that instead of convincing O(v) people of the
value of proposition M , the collectors find it easier
to secretly purchase suitable sample signatures from
O(log v) selected signers to achieve the same result.

The presented scheme assigns the slot number
t = ϕ(H(sA)) based on participant A’s signature
sA = sign(KA, h(M)) of document M . It is the

8

very nature of a digital signature that its value is
not predictable by anyone except the holder of the
signing key. This way, the signature collectors have
no way of identifying in advance those signing key
holders who could provide them with the valuable
sample signatures that will fall into slots with low pt

and that therefore represent a large number of signa-
tures. If the slot number were instead assigned based
on the signer’s identity and not her signature of M ,
then the signature collector could identify in advance
those few signers whose signatures they need to fill
the low-probability slots. Strong incentives could be
offered to these few individuals to sign the proposal.

If ϕ and H are publicly known, then all potential
signers can check whether their signature would fall
into a slot with a low pt value. They could contact
the signature collectors secretly and could offer to
sell their more valuable signatures.

In applications where this second kind of bribery
is of concern, a secret nonce N only known to the
collectors should be concatenated with the signature
in the calculation of the slot position

t = ϕ(H(N ‖ sA)).

This will prevent signers from determining whether
their signature could fill an unlikely slot. The nonce
N will be published after the signature collection
process has finished, as this parameter has to be ac-
cessible to the verifiers. Every sample signature that
is stored in a slot position has to be registered at a
timestamping service before the publication of N .
The early leakage of N into the public only becomes
a problem if the number of signers who hear about
N during the collection is of an order of magnitude
comparable to the number of signatures that the col-
lectors will later claim to have obtained. In this case,
it is also very likely that someone opposing the pro-
posal will learn N before the collection closes. This
person can later prove the information leakage by
registering N immediately at a time stamping ser-
vice, and thus gains strong evidence for early public
knowledge of N , which can then invalidate the entire
signature collection.

4.3 Collusion of Signers

Another threat that has to be taken into account
is that a group of signing key holders could collude
with the signature collectors before the start of the
collection. They could generate a very large number
of candidate documents M with slight variations un-
til they find one M for which the signing keys of the
members of that group can be used to fill an unusu-
ally high number of slots. They then start a signa-
ture collection campaign with this carefully phrased

proposal M that guarantees their own secret keys a
high impact.

If c signers collude with the signature collectors,
then the probability that an arbitrary message M
will allow these c signers to fill at least w slots is

n∑
i=w

P (U = i|V = c).

In order to find with sufficient probability (say 1 −
e−1 ≈ 63%) such a message M that fills at least w
slots, they would have to generate at least

m =
−1

ln (1 −∑n
i=w P (U = i|V = c))

≈ 1∑n
i=w P (U = i|V = c)

candidate messages M and then have to calcu-
late all cm signatures on these to determine the
slot position of each signing key and message pair.
This should become computationally very impracti-
cal when cm � 1020.

Figure 8 shows the example distributions from
Fig. 3 on a logarithmic scale. Like a Gaussian nor-
mal distribution, the P (U = u|V = v) curves have
a parabolic shape on a logarithmic scale and fall off
rapidly. It is unlikely that a group of c signers who
collude with the signature collectors can increase the
number w of illegitimate sample signatures to more
than nine standard deviations above E[U |V = c].

In addition, if the true number of collected sig-
natures v is larger than ṽ(w), then the collusion is
unlikely to have any significant effect on the final
ṽ(u), because most of the w slots filled by keys of
the colluding group would have been filled anyway
by legitimate signatures from non-colluding signers,
and then the w illegitimate sample signatures do not
contribute any more to the estimate ṽ(u).

A collusion could be prevented by requiring the
signature collectors to announce M to some trusted
party, which in return generates a nonce that has
to be concatenated with M before the entire signa-
ture collection can start. This way, the signature
collectors cannot carefully select M to maximize the
impact of the colluding signers. For such a mecha-
nism to be effective, however, the rate at which such
announcements of M are allowed has to be limited,
as otherwise, the announcement would not prevent
the generation of a large number of candidate mes-
sages. Such a rate limitation, however, would defy
the design goal of keeping the signature collection
scheme free of central facilities and bottlenecks.

9

1e-30

1e-25

1e-20

1e-15

1e-10

1e-05

1

0 200 400 600 800 1000 1200

P
(U

=
u|

V
=

v)

u

v = 125
v = 250
v = 500

v = 1e+03
v = 1e+04
v = 1e+05
v = 1e+06
v = 1e+07
v = 1e+08

Figure 8: This graph is identical to Fig. 3 but shows
the probabilities on a logarithmic scale.

4.4 Fair Sampling

An indication for a collusion of signers would be
if an unusually large number of sample signatures
came from signers who are likely to be affiliated with
the collectors. This effect can also appear if only
the first received signature for each slot position be-
comes the sample signature for that slot. It would
not be unusual for signers in the social context of
the collectors to submit their signatures earlier than
most others and thus have a higher probability of
ending up as sample signers.

For this reason—as well as in the interest of gen-
eral fairness—it is advisable for the signature col-
lectors to give every submitted signature an equal
chance of becoming a sample. This can be achieved
by keeping a counter gt for every slot t, which indi-
cates how many valid signatures have already been
received for this slot. Whenever a new signature is
received for slot t and is validated successfully, then
gt is increased by one, and the newly arrived sig-
nature will replace the previously stored one with
probability 1/gt. This ensures that within a slot po-
sition, all submitted signatures have an equal prob-
ability of becoming the final sample, independent of
the order in which they arrive.

This technique works because, if ki = 1/i is the
probability for keeping the i-th arriving signature
and n signatures are received in total, then the prob-
ability fi with which the i-th signature becomes the
final surviving sample is

fi = ki ·
n∏

j=i+1

(1 − kj) =

=
1
i
· i

i + 1
· i + 1
i + 2

· · · n − 1
n

=
1
n

and therefore equal for all arrival positions i.
If signature collection results from the collectors

L1, . . . , Ld are merged, then every collector Li pro-
vides for each slot t his submission count gt,i. With
probability gt,i/

∑d
j=1 gt,j the sample signature in

slot t of Li will go into slot t of the merged result,
and the submission count of this slot will be set to∑d

j=1 gt,j. This maintains the equal chance for all
signature submissions to end up in the final result,
provided that signers cooperate and do not submit
signatures multiple times. Partial collection results
should be merged only in a hierarchical way.

4.5 Cryptographic Assumptions

Signing messages that have been generated by
others requires some diligence to avoid exposure to
various attacks. The chosen signature scheme should
certainly be robust against adaptive chosen message
attacks. In addition, the syntax of the proposed mes-
sage M should be sufficiently restricted to avoid that
M can have any other uses then being interpreted
as a proposal that was written for a signature col-
lection.

It has been suggested to avoid signing messages
without adding some entropy first [3], but the addi-
tion of random “salt” values seems not to be an ap-
plicable option against hypothetical future attacks in
this application. The digital signature design com-
munity is therefore invited to consider signature col-
lection based on probabilistic counting—apart from
the well known subliminal-channel concerns of salt
values—as yet another good reason for not giving up
deterministic signature algorithms and to continue
their design, evaluation, and standardization.

It is important to note that the presented scheme
relies on a property of the utilized deterministic dig-
ital signature method that is not among those com-
monly studied in-depth. We assume that it is infea-
sible with the used signature scheme to generate an
ambiguous verification key for which there is a prac-
tical way to generate many different signatures for
the same document M that all verify correctly under
this single public key1. An otherwise perfectly safe
deterministic signature scheme might be unsuitable
or at least require additional tests by the certifica-
tion authority or the verifier and signature collectors
on the public keys in order to keep individual sign-
ers from submitting many different seemingly valid
signatures. If the chosen signature scheme allows
the generation of ambiguous verification keys that

1With RSA, there exists exactly one signature s for h(M)
under public key (e, n) (with se mod n = h(M)), as long as
gcd(e, φ(n)) = 1.

10

cannot be detected later, then the certification au-
thority will have to generate the key pair and certify
for the verification key not only the identity of the
owner, but also that this key verifies only one single
signature for any document.

5 Related Work

The general idea of probabilistic counting was
probably first introduced by Morris [5], who used a
small integer register to estimate how often an event
had occurred. The number of events can be con-
siderably larger than the maximum value that the
register can hold, therefore the register is increased
by one only with a certain probability when a new
event occurs, and this probability is reduced expo-
nentially as the register value increases. The regis-
ter value becomes an estimate for the logarithm of
the number of events. The logarithmic relationship
keeps the relative error constant.

The probabilistic counting concept was later ex-
tended by Flajolet and Martin [6] to estimate the
number of different values in a large database ta-
ble. In their algorithm, every value is transformed
using a hash function into a word. The position of
the first 1-digit in this word is determined, and the
corresponding bit is set in a bitmap. The position
of the first zero in the resulting bitmap is used as
an estimate for the logarithm of the number of dif-
ferent values that were processed this way. Multi-
ple identical values are automatically discarded, as
they would only set the same bit several times. The
counting process can easily be distributed and the
resulting bitmaps can be combined using a logical-
or operation. The probability that the first 1-digit
in a uniformly distributed word is the n-th digit is
2−n, and the position of the first zero digit in the
bitmap is therefore comparable to the value of Mor-
ris’ register. This technique was later extended by
Kirschenhofer, Prodinger and Szpankowski by using
a histogram with saturation arithmetic instead of a
bitmap to increase counting accuracy [7].

6 Conclusions

The cryptographic equivalent of signature collec-
tion can be implemented using a probabilistic count-
ing technique that provides efficient verification of
the result. We have developed and discussed a prac-
tical construction of such a process with application
properties very similar to those of handwritten sig-
nature collections. The presented numerical anal-
ysis will help in the selection of suitable parame-
ters. We have discussed how Web page metering, TV

rating and opinion gathering, newsgroup contribu-
tion ranking, and joint administration concepts are
among the possible application areas. This signa-
ture collection technique can lead to improvements
in robustness, privacy protection, and efficiency, as
long as the application designer fully understands
the described security considerations. Perhaps this
application idea will encourage the development of
public-key infrastructures which support a new key
and certificate type that provides the assurance that
an individual cannot easily generate more than one
verifiable signature for a message.

The author wants to thank Ross Anderson, David
Wheeler and the referees for valuable comments.

References

[1] Moni Naor, Benny Pinkas: Secure and Efficient
Metering. In Kaisa Nyberg (ed.): Advances in
Cryptology – EUROCRYPT ’98, LNCS 1403, pp.
576–590. Springer-Verlag, May/June 1998.

[2] Burt Kaliski, Jessica Staddon: PKCS #1: RSA
Cryptography Standard – Version 2.0. RSA
Laboratories, September 1998. http://www.
rsasecurity.com/rsalabs/pkcs/pkcs-1/

[3] Mihir Bellare, Phillip Rogaway: The Exact Se-
curity of Digital Signatures – How to Sign with
RSA and Rabin. In Ueli Maurer (ed.): Advances
in Cryptology – EUROCRYPT ’96, LNCS 1070,
pp. 399–416. Springer-Verlag, May 1998.

[4] Digital Signature Standard (DSS). Federal Infor-
mation Processing Standards Publication FIPS
PUB 186-1, U.S. Department of Commerce, De-
cember 1988.

[5] Robert Morris: Counting Large Numbers of
Events in Small Registers. Communications of
the ACM, Vol. 21, No. 10, pp. 840–842, October
1978.

[6] Philippe Flajolet, G. Nigel Martin: Probabilis-
tic Counting Algorithms for Data Base Applica-
tions. Journal of Computer and System Sciences,
Vol. 31, No. 2, pp. 182–209, October 1985.

[7] Peter Kirschenhofer, Helmut Prodinger, Woj-
ciech Szpankowski: How to Count Quickly and
Accurately: A Unified Analysis of Probabilis-
tic Counting and Other Related Problems. In
W. Kuich (ed.): Automata, Languages and
Programming, 19th International Colloquium,
pp. 211–222, Wien, Austria, 13–17 July 1992.
Springer-Verlag.

11

