The Isabelle Reference Manual

Lawrence C. Paulson
Computer Laboratory
University of Cambridge
lcp@cl.cam.ac.uk

With Contributions by Tobias Nipkow and Markus Wenzel ${ }^{1}$
15 December 1997

[^0]
Contents

1 Basic Use of Isabelle 1
1.1 Basic interaction with Isabelle 1
1.2 Ending a session 2
1.3 Reading ML files 3
1.4 Setting flags 3
1.5 Printing of terms and theorems 3
1.5.1 Printing limits 3
1.5.2 Printing of hypotheses, brackets, types etc 4
1.5.3 $\quad \eta$-contraction before printing 4
1.6 Diagnostic messages 5
1.7 Displaying exceptions as error messages 5
2 Proof Management: The Subgoal Module 7
2.1 Basic commands 7
2.1.1 Starting a backward proof 7
2.1.2 Applying a tactic 8
2.1.3 Extracting and storing the proved theorem 9
2.1.4 Retrieving theorems 10
2.1.5 Undoing and backtracking 10
2.1.6 Printing the proof state 11
2.1.7 Timing 11
2.2 Shortcuts for applying tactics 11
2.2.1 Refining a given subgoal 12
2.2.2 Scanning shortcuts 12
2.2.3 Other shortcuts 13
2.3 Executing batch proofs 13
2.4 Managing multiple proofs 14
2.4.1 The stack of proof states 14
2.4.2 Saving and restoring proof states 15
2.5 *Debugging and inspecting 15
2.5.1 Reading and printing terms 15
2.5.2 Inspecting the proof state 16
2.5.3 Filtering lists of rules 16
3 Tactics 17
3.1 Resolution and assumption tactics 17
3.1.1 Resolution tactics 17
3.1.2 Assumption tactics 18
3.1.3 Matching tactics 18
3.1.4 Resolution with instantiation 18
3.2 Other basic tactics 19
3.2.1 Tactic shortcuts 19
3.2.2 Inserting premises and facts 20
3.2.3 "Putting off" a subgoal 21
3.2.4 Definitions and meta-level rewriting 21
3.2.5 Theorems useful with tactics 22
3.3 Obscure tactics 22
3.3.1 Renaming parameters in a goal 22
3.3.2 Manipulating assumptions 23
3.3.3 Tidying the proof state 23
3.3.4 Composition: resolution without lifting 24
$3.4{ }^{*}$ Managing lots of rules 24
3.4.1 Combined resolution and elim-resolution 24
3.4.2 Discrimination nets for fast resolution 25
3.5 Programming tools for proof strategies 26
3.5.1 Operations on type tactic 26
3.5.2 Tracing 27
3.6 *Sequences 27
3.6.1 Basic operations on sequences 27
3.6.2 Converting between sequences and lists 28
3.6.3 Combining sequences 28
4 Tacticals 29
4.1 The basic tacticals 29
4.1.1 Joining two tactics 29
4.1.2 Joining a list of tactics 30
4.1.3 Repetition tacticals 30
4.1.4 Identities for tacticals 30
4.2 Control and search tacticals 31
4.2.1 Filtering a tactic's results 31
4.2.2 Depth-first search 32
4.2.3 Other search strategies 32
4.2.4 Auxiliary tacticals for searching 33
4.2.5 Predicates and functions useful for searching 33
4.3 Tacticals for subgoal numbering 33
4.3.1 Restricting a tactic to one subgoal 34
4.3.2 Scanning for a subgoal by number 35
4.3.3 Joining tactic functions 36
4.3.4 Applying a list of tactics to 1 36
5 Theorems and Forward Proof 37
5.1 Basic operations on theorems 37
5.1.1 Pretty-printing a theorem 37
5.1.2 Forward proof: joining rules by resolution 38
5.1.3 Expanding definitions in theorems 39
5.1.4 Instantiating unknowns in a theorem 39
5.1.5 Miscellaneous forward rules 40
5.1.6 Taking a theorem apart 40
5.1.7 *Sort hypotheses 41
5.1.8 Tracing flags for unification 42
5.2 *Primitive meta-level inference rules 42
5.2.1 Assumption rule 43
5.2.2 Implication rules 44
5.2.3 Logical equivalence rules 44
5.2.4 Equality rules 44
5.2.5 The λ-conversion rules 45
5.2.6 Forall introduction rules 45
5.2.7 Forall elimination rules 46
5.2.8 Instantiation of unknowns 46
5.2.9 Freezing/thawing type unknowns 46
5.3 Derived rules for goal-directed proof 46
5.3.1 Proof by assumption 47
5.3.2 Resolution 47
5.3.3 Composition: resolution without lifting 47
5.3.4 Other meta-rules 48
5.4 Proof objects 48
6 Theories, Terms and Types 51
6.1 Defining theories 51
6.1.1 Definitions 53
6.1.2 * Classes and arities 54
6.2 Loading a new theory 54
6.3 Reloading modified theories 55
6.3.1 *Pseudo theories 56
6.4 Basic operations on theories 57
6.4.1 Retrieving axioms and theorems 57
6.4.2 *Theory inclusion 58
6.4.3 *Building a theory 58
6.4.4 Inspecting a theory 59
6.5 Terms 60
6.6 *Variable binding 61
6.7 Certified terms 61
6.7.1 Printing terms 62
6.7.2 Making and inspecting certified terms 62
6.8 Types 63
6.9 Certified types 63
6.9.1 Printing types 63
6.9.2 Making and inspecting certified types 64
6.10 Oracles: calling trusted external reasoners 64
7 Defining Logics 66
7.1 Priority grammars 66
7.2 The Pure syntax 67
7.2.1 Logical types and default syntax 69
7.2.2 Lexical matters 69
7.2.3 *Inspecting the syntax 71
7.3 Mixfix declarations 72
7.3.1 The general mixfix form 73
7.3.2 Example: arithmetic expressions 74
7.3.3 The mixfix template 75
7.3.4 Infixes 76
7.3.5 Binders 77
7.4 *Alternative print modes 77
7.5 Ambiguity of parsed expressions 78
7.6 Example: some minimal logics 79
8 Syntax Transformations 82
8.1 Abstract syntax trees 82
8.2 Transforming parse trees to ASTs 83
8.3 Transforming ASTs to terms 85
8.4 Printing of terms 85
8.5 Macros: syntactic rewriting 87
8.5.1 Specifying macros 88
8.5.2 Applying rules 90
8.5.3 Example: the syntax of finite sets 91
8.5.4 Example: a parse macro for dependent types 92
8.6 Translation functions 93
8.6.1 Declaring translation functions 93
8.6.2 The translation strategy 94
8.6.3 Example: a print translation for dependent types 95
8.7 Token translations 96
9 Substitution Tactics 98
9.1 Substitution rules 98
9.2 Substitution in the hypotheses 99
9.3 Setting up hyp_subst_tac 100
10 Simplification 102
10.1 Simplification for dummies 102
10.2 Simplification sets 104
10.2.1 Rewrite rules 104
10.2.2 *Congruence rules 105
10.2.3 *The subgoaler 106
10.2.4 *The solver 106
10.2.5 *The looper 107
10.3 The simplification tactics 109
10.4 Examples using the simplifier 109
10.4.1 A trivial example 110
10.4.2 An example of tracing 110
10.4.3 Free variables and simplification 112
10.4.4 Reordering assumptions 112
10.5 Permutative rewrite rules 113
10.5.1 Example: sums of natural numbers 114
10.5.2 Re-orienting equalities 115
10.6 *Setting up the simplifier 116
10.6.1 A collection of standard rewrite rules 116
10.6.2 Functions for preprocessing the rewrite rules 117
10.6.3 Making the initial simpset 118
10.6.4 Case splitting 119
11 The Classical Reasoner 121
11.1 The sequent calculus 122
11.2 Simulating sequents by natural deduction 123
11.3 Extra rules for the sequent calculus 124
11.4 Classical rule sets 125
11.4.1 Adding rules to classical sets 125
11.4.2 Modifying the search step 126
11.5 The classical tactics 128
11.5.1 Semi-automatic tactics 128
11.5.2 The tableau prover 128
11.5.3 An automatic tactic 129
11.5.4 Other classical tactics 129
11.5.5 Depth-limited automatic tactics 130
11.5.6 Single-step tactics 130
11.5.7 The current claset 131
CONTENTS vi
11.5.8 Other useful tactics 132
11.5.9 Creating swapped rules 132
11.6 Setting up the classical reasoner 132
A Syntax of Isabelle Theories 135

Chapter 1

Basic Use of Isabelle

The Reference Manual is a comprehensive description of Isabelle proper，including all ML commands，functions and packages．It really is intended for reference， perhaps for browsing，but not for reading through．It is not a tutorial，but assumes familiarity with the basic logical concepts of Isabelle．

When you are looking for a way of performing some task，scan the Table of Contents for a relevant heading．Functions are organized by their purpose，by their operands（subgoals，tactics，theorems），and by their usefulness．In each section，basic functions appear first，then advanced functions，and finally esoteric functions．Use the Index when you are looking for the definition of a particular Isabelle function．

A few examples are presented．Many examples files are distributed with Isabelle，however；please experiment interactively．

1．1 Basic interaction with Isabelle

We assume that your local Isabelle administrator（this might be you！）has already installed the Pure system and several object－logics properly－otherwise see the INSTALL file in the top－level directory of the distribution on how to build it．

Let \langle isabellehome \rangle denote the location where the distribution has been in－ stalled．To run Isabelle from a the shell prompt within an ordinary text terminal session，simply type

〈isabellehome〉／bin／isabelle
This should start an interactive ML session with the default object－logic already preloaded．

Subsequently we assume that 〈isabellehome〉／bin has been added to your shell＇s search path，in order to avoid typing full path specifications of the exe－ cutable files．

The object－logic image to load may be also specified explicitly as an argument to the isabelle command，e．g．
isabelle FOL
This should put you into the world of polymorphic first－order logic（assuming that FOL has been pre－built）．

Isabelle provides no means of storing theorems or internal proof objects on files. Theorems are simply part of the ML state. To save your work between sessions, you must dump the mL system state to a file. This is done automatically when ending the session normally (e.g. by typing control-D), provided that the image has been opened writable in the first place. The standard object-logic images are usually read-only, so you probably have to create a private working copy first. For example, the following shell command puts you into a writable Isabelle session of name Foo that initially contains just FOL:

```
isabelle FOL Foo
```

Ending the Foo session with control-D will cause the complete ML world to be saved somewhere in your home directory ${ }^{1}$. Make sure there is enough space available! Then one may later continue at exactly the same point by running

```
isabelle Foo
```

More details about the isabelle command may be found in the System Manual.

Saving the state is not enough. Record, on a file, the top-level commands that generate your theories and proofs. Such a record allows you to replay the proofs whenever required, for instance after making minor changes to the axioms. Ideally, your record will be somewhat intelligible to others as a formal description of your work.

There are more comfortable user interfaces than the bare-bones mL top-level run from a text terminal. The Isabelle executable (note the capital I) runs one such interface, depending on your local configuration. Furthermore there are a number of external utilities available. These are started uniformly via the isatool wrapper. See the System Manual for more information user interfaces and utilities.

1.2 Ending a session

```
quit : unit -> unit
```

exit : int -> unit
commit : unit -> unit
quit(); ends the Isabelle session, without saving the state.
exit i; similar to quit, passing return code i to the operating system.
commit() ; saves the current state without ending the session, provided that the logic image is opened read-write.

[^1]Typing control-D also finishes the session in essentially the same way as the sequence commit(); quit(); would.

1.3 Reading ML files

cd	: string -> unit
pwd	: unit $->$ string
use	: string -> unit
time_use	$:$ string $->$ unit

cd "dir" ; changes the current directory to dir. This is the default directory for reading files.
pwd() ; returns the full path of the current directory.
use "file"; reads the given file as input to the mL session. Reading a file of Isabelle commands is the usual way of replaying a proof.
time_use "file"; performs use "file" and prints the total execution time.
The dir and file specifications of the cd and use commands may contain path variables that are expanded appropriately, e.g. \$ISABELLE_HOME or ~ (which abbreviates \$HOME). Section 6.2 describes commands for loading theory files.

1.4 Setting flags

```
set : bool ref -> bool
reset : bool ref -> bool
toggle : bool ref -> bool
```

These are some shorthands for manipulating boolean references. The new value is returned.

1.5 Printing of terms and theorems

Isabelle's pretty printer is controlled by a number of parameters.

1.5.1 Printing limits

Pretty.setdepth : int $->$ unit
Pretty.setmargin : int $->$ unit
print_depth $:$ int \rightarrow unit
These set limits for terminal output. See also goals_limit, which limits the number of subgoals printed (§2.1.6).

Pretty.setdepth d; tells Isabelle's pretty printer to limit the printing depth to d. This affects Isabelle's display of theorems and terms. The default value is 0 , which permits printing to an arbitrary depth. Useful values for d are 10 and 20 .

Pretty.setmargin m; tells Isabelle's pretty printer to assume a right margin (page width) of m. The initial margin is 76 .
print_depth n; limits the printing depth of complex ML values, such as theorems and terms. This command affects the ML top level and its effect is compiler-dependent. Typically n should be less than 10 .

1.5.2 Printing of hypotheses, brackets, types etc.

show_hyps	: bool ref	initially true
show_brackets	$:$ bool ref	initially false
show_types	$:$ bool ref	initially false
show_sorts	$:$ bool ref	initially false
show_consts	$:$ bool ref	initially false

These flags allow you to control how much information is displayed for types, terms and theorems. The hypotheses of theorems are normally shown. Superfluous parentheses of types and terms are not. Types and sorts of variables are normally hidden.

Note that displaying types and sorts may explain why a polymorphic inference rule fails to resolve with some goal, or why a rewrite rule does not apply as expected.
reset show_hyps; makes Isabelle show each meta-level hypothesis as a dot.
set show_brackets; makes Isabelle show full bracketing. In particular, this reveals the grouping of infix operators.
set show_types; makes Isabelle show types when printing a term or theorem.
set show_sorts; makes Isabelle show both types and the sorts of type variables, independently of the value of show_types.
set show_consts; makes Isabelle show types of constants, provided that showing of types is enabled at all. This is supported for printing of proof states only. Note that the output can be enormous as polymorphic constants often occur at several different type instances.

1.5.3 $\quad \eta$-contraction before printing

The η-contraction law asserts $(\lambda x . f(x)) \equiv f$, provided x is not free in f. It asserts extensionality of functions: $f \equiv g$ if $f(x) \equiv g(x)$ for all x. Higher-order unification frequently puts terms into a fully η-expanded form. For example, if F has type $(\tau \Rightarrow \tau) \Rightarrow \tau$ then its expanded form is $\lambda h . F(\lambda x . h(x))$. By default, the user sees this expanded form.
set eta_contract; makes Isabelle perform η-contractions before printing, so that $\lambda h . F(\lambda x . h(x))$ appears simply as F. The distinction between a term and its η-expanded form occasionally matters.

1.6 Diagnostic messages

Isabelle conceptually provides three output channels for different kinds of messages: ordinary text, warnings, errors. Depending on the user interface involved, these messages may appear in different text styles or colours, even within separate windows.

The default setup of an isabelle terminal session is as follows: plain output of ordinary text, warnings prefixed by \#\#\#'s, errors prefixed by ***'s. For example, a typical warning would look like this:

```
### Beware the Jabberwock, my son!
### The jaws that bite, the claws that catch!
### Beware the Jubjub Bird, and shun
### The frumious Bandersnatch!
```

ML programs may output diagnostic messages using the following functions:

```
writeln : string -> unit
warning : string -> unit
error : string -> 'a
```

Note that error fails by raising exception ERROR after having output the text, while writeln and warning resume normal program execution.

1.7 Displaying exceptions as error messages print_exn: exn -> 'a

Certain Isabelle primitives, such as the forward proof functions RS and RSN, are called both interactively and from programs. They indicate errors not by printing messages, but by raising exceptions. For interactive use, ML's reporting of an uncaught exception may be uninformative. The Poly/ML function exception_trace can generate a backtrace.
print_exn e displays the exception e in a readable manner, and then re-raises e. Typical usage is EXP handle e => print_exn e; where EXP is an expression that may raise an exception.
print_exn can display the following common exceptions, which concern types, terms, theorems and theories, respectively. Each carries a message and related information.

```
exception TYPE of string * typ list * term list
exception TERM of string * term list
exception THM of string * int * thm list
exception THEORY of string * theory list
```

I print_exn prints terms by calling prin, which obtains pretty printing information from the proof state last stored in the subgoal module. The appearance of the output thus depends upon the theory used in the last interactive proof.

Proof Management: The Subgoal Module

The subgoal module stores the current proof state and many previous states; commands can produce new states or return to previous ones. The state list at level n is a list of pairs

$$
\left[\left(\psi_{n}, \Psi_{n}\right),\left(\psi_{n-1}, \Psi_{n-1}\right), \ldots,\left(\psi_{0},[]\right)\right]
$$

where ψ_{n} is the current proof state, ψ_{n-1} is the previous one, \ldots, and ψ_{0} is the initial proof state. The Ψ_{i} are sequences (lazy lists) of proof states, storing branch points where a tactic returned a list longer than one. The state lists permit various forms of backtracking.

Chopping elements from the state list reverts to previous proof states. Besides this, the undo command keeps a list of state lists. The module actually maintains a stack of state lists, to support several proofs at the same time.

The subgoal module always contains some proof state. At the start of the Isabelle session, this state consists of a dummy formula.

2.1 Basic commands

Most proofs begin with goal or goalw and require no other commands than by, chop and undo. They typically end with a call to qed.

2.1.1 Starting a backward proof

```
    goal : theory -> string -> thm list
    goalw : theory -> thm list -> string -> thm list
    goalw_cterm : thm list -> cterm -> thm list
    premises : unit -> thm list
```

The goal commands start a new proof by setting the goal. They replace the current state list by a new one consisting of the initial proof state. They also empty the undo list; this command cannot be undone!

They all return a list of meta-hypotheses taken from the main goal. If this list is non-empty, bind its value to an ML identifier by typing something like

```
val prems = goal theory formula;
```

These assumptions serve as the premises when you are deriving a rule. They are also stored internally and can be retrieved later by the function premises. When the proof is finished, qed compares the stored assumptions with the actual assumptions in the proof state.

Some of the commands unfold definitions using meta-rewrite rules. This expansion affects both the initial subgoal and the premises, which would otherwise require use of rewrite_goals_tac and rewrite_rule.

If the main goal has the form "!!vars. ...", with an outermost quantifier, then the list of premises will be empty. Subgoal 1 will contain the meta-quantified vars as parameters and the goal's premises as assumptions. This avoids having to call cut_facts_tac with the list of premises (§3.2.2).
goal theory formula; begins a new proof, where theory is usually an mL identifier and the formula is written as an ML string.
goalw theory defs formula; is like goal but also applies the list of defs as metarewrite rules to the first subgoal and the premises.
goalw_cterm theory defs ct; is a version of goalw for programming applications. The main goal is supplied as a cterm, not as a string. Typically, the cterm is created from a term t by cterm_of (sign_of thy) t.
premises() returns the list of meta-hypotheses associated with the current proof (in case you forgot to bind them to an ML identifier).

2.1.2 Applying a tactic
 by : tactic -> unit
 byev : tactic list -> unit

These commands extend the state list. They apply a tactic to the current proof state. If the tactic succeeds, it returns a non-empty sequence of next states. The head of the sequence becomes the next state, while the tail is retained for backtracking (see back).
by tactic; applies the tactic to the proof state.
byev tactics; applies the list of tactics, one at a time. It is useful for testing calls to prove_goal, and abbreviates by (EVERY tactics).

Error indications:

- "by: tactic failed" means that the tactic returned an empty sequence when applied to the current proof state.
- "Warning: same as previous level" means that the new proof state is identical to the previous state.
- "Warning: signature of proof state has changed" means that some rule was applied whose theory is outside the theory of the initial proof state. This could signify a mistake such as expressing the goal in intuitionistic logic and proving it using classical logic.

2.1.3 Extracting and storing the proved theorem

```
qed : string -> unit
result : unit -> thm
uresult : unit -> thm
bind_thm : string * thm -> unit
store_thm : string * thm -> thm
```

qed name; is the usual way of ending a proof. It combines result and bind_thm: it gets the theorem using result() and stores it the theorem database associated with its theory. See below for details.
result() returns the final theorem, after converting the free variables to schematics. It discharges the assumptions supplied to the matching goal command.

It raises an exception unless the proof state passes certain checks. There must be no assumptions other than those supplied to goal. There must be no subgoals. The theorem proved must be a (first-order) instance of the original goal, as stated in the goal command. This allows answer extraction - instantiation of variables - but no other changes to the main goal. The theorem proved must have the same signature as the initial proof state.
These checks are needed because an Isabelle tactic can return any proof state at all.
uresult() is like result() but omits the checks. It is needed when the initial goal contains function unknowns, when definitions are unfolded in the main goal (by calling rewrite_tac), or when assume_ax has been used.
bind_thm (name, thm); stores standard thm (see §5.1.5) in the theorem database associated with its theory and in the mL variable name. The theorem can be retrieved from the database using get_thm (see §6.4).
store_thm (name, thm) stores thm in the theorem database associated with its theory and returns that theorem.

2.1.4 Retrieving theorems

The following functions retrieve theorems (together with their names) from the theorem database that is associated with the current proof state's theory. They can only find theorems that have explicitly been stored in the database using qed, bind_thm or related functions.

```
findI : int -> (string * thm) list
findE : int -> int -> (string * thm) list
findEs : int -> (string * thm) list
thms_containing : xstring list -> (string * thm) list
```

findI i returns all "introduction rules" applicable to subgoal i - all theorems whose conclusion matches (rather than unifies with) subgoal i. Useful in connection with resolve_tac.
findE $n i$ returns all "elimination rules" applicable to premise n of subgoal i - all those theorems whose first premise matches premise n of subgoal i. Useful in connection with eresolve_tac and dresolve_tac.
findEs i returns all "elimination rules" applicable to subgoal i - all those theorems whose first premise matches some premise of subgoal i. Useful in connection with eresolve_tac and dresolve_tac.
thms_containing consts returns all theorems that contain all of a given set of constants. Note that a few basic constants like ==> are ignored.

2.1.5 Undoing and backtracking
 chop : unit $->$ unit
 choplev : int -> unit
 back : unit -> unit
 undo : unit -> unit

chop() ; deletes the top level of the state list, cancelling the last by command. It provides a limited undo facility, and the undo command can cancel it.
choplev n; truncates the state list to level n, if $n \geq 0$. A negative value of n refers to the nth previous level: choplev ${ }^{\sim} 1$ has the same effect as chop.
back() ; searches the state list for a non-empty branch point, starting from the top level. The first one found becomes the current proof state - the most recent alternative branch is taken. This is a form of interactive backtracking.
undo() ; cancels the most recent change to the proof state by the commands by, chop, choplev, and back. It cannot cancel goal or undo itself. It can be repeated to cancel a series of commands.

Error indications for back:

- "Warning: same as previous choice at this level" means back found a nonempty branch point, but that it contained the same proof state as the current one.
- "Warning: signature of proof state has changed" means the signature of the alternative proof state differs from that of the current state.
- "back: no alternatives" means back could find no alternative proof state.

```
2.1.6 Printing the proof state
    pr : unit -> unit
    prlev : int -> unit
    prlim : int -> unit
    goals_limit: int ref initially 10
```

See also the printing control options described in §1.5.
$\operatorname{pr}()$; prints the current proof state.
prlev n; prints the proof state at level n, if $n \geq 0$. A negative value of n refers to the nth previous level. This command allows you to review earlier stages of the proof.
prlim k; prints the current proof state, limiting the number of subgoals to k. It updates goals_limit (see below) and is helpful when there are many subgoals.
goals_limit $:=k$; specifies k as the maximum number of subgoals to print.

2.1.7 Timing

proof_timing: bool ref

initially false

set proof_timing; makes the by and prove_goal commands display how much processor time was spent. This information is compiler-dependent.

2.2 Shortcuts for applying tactics

These commands call by with common tactics. Their chief purpose is to minimise typing, although the scanning shortcuts are useful in their own right. Chapter 3 explains the tactics themselves.

2.2.1 Refining a given subgoal

```
int -> unit
```

br : thm -> int -> unit
be : thm $\quad->$ int $->$ unit
bd : thm -> int -> unit
brs : thm list -> int -> unit
bes : thm list -> int -> unit
bds : thm list -> int -> unit
ba i; performs by (assume_tac i);
br thm i; performs by (resolve_tac [thm] i);
be thm i; performs by (eresolve_tac [thm] i);
bd thm i; performs by (dresolve_tac [thm] i);
brs thms i; performs by (resolve_tac thms i);
bes thms i; performs by (eresolve_tac thms i);
bds thms i; performs by (dresolve_tac thms i);

2.2.2 Scanning shortcuts

These shortcuts scan for a suitable subgoal (starting from subgoal 1). They refine the first subgoal for which the tactic succeeds. Thus, they require less typing than br, etc. They display the selected subgoal's number; please watch this, for it may not be what you expect!

```
fa : unit -> unit
fr : thm -> unit
fe : thm -> unit
fd : thm -> unit
frs : thm list -> unit
fes : thm list -> unit
fds : thm list -> unit
```

fa() ; solves some subgoal by assumption.
fr thm; refines some subgoal using resolve_tac [thm]
fe thm; refines some subgoal using eresolve_tac [thm]
fd thm; refines some subgoal using dresolve_tac [thm]
frs thms; refines some subgoal using resolve_tac thms
fes thms; refines some subgoal using eresolve_tac thms
fds thms; refines some subgoal using dresolve_tac thms

2.2.3 Other shortcuts

bw : thm $->$ unit
bws : thm list -> unit
ren : string -> int -> unit
bw def; performs by (rewrite_goals_tac [def]) ; It unfolds definitions in the subgoals (but not the main goal), by meta-rewriting with the given definition (see also §3.2.4).
bws is like bw but takes a list of definitions.
ren names i; performs by (rename_tac names i); it renames parameters in subgoal i. (Ignore the message Warning: same as previous level.)

2.3 Executing batch proofs

To save space below, let type tacfun abbreviate thm list -> tactic list, which is the type of a tactical proof.

```
prove_goal : theory -> string -> tacfun -> thm
qed_goal : string -> theory -> string -> tacfun -> unit
prove_goalw: theory -> thm list -> string -> tacfun -> thm
qed_goalw : string -> theory -> thm list -> string -> tacfun -> unit
prove_goalw_cterm: thm list -> cterm -> tacfun -> thm
```

These batch functions create an initial proof state, then apply a tactic to it, yielding a sequence of final proof states. The head of the sequence is returned, provided it is an instance of the theorem originally proposed. The forms prove_goal, prove_goalw and prove_goalw_cterm are analogous to goal, goalw and goalw_cterm.

The tactic is specified by a function from theorem lists to tactic lists. The function is applied to the list of meta-assumptions taken from the main goal. The resulting tactics are applied in sequence (using EVERY). For example, a proof consisting of the commands

```
val prems = goal theory formula;
by tac ; ; .. by tac ;
qed "my_thm";
```

can be transformed to an expression as follows:

```
qed_goal "my_thm" theory formula
    (fn prems=> [ tac , ..., tac [ ]);
```

The methods perform identical processing of the initial formula and the final proof state. But prove_goal executes the tactic as a atomic operation, bypassing the subgoal module; the current interactive proof is unaffected.
prove_goal theory formula tacsf; executes a proof of the formula in the given theory, using the given tactic function.
qed_goal name theory formula tacsf; acts like prove_goal but also stores the resulting theorem in the theorem database associated with its theory and in the ML variable name (see §2.1.3).
prove_goalw theory defs formula tacsf; is like prove_goal but also applies the list of defs as meta-rewrite rules to the first subgoal and the premises.
qed_goalw name theory defs formula tacsf; is analogous to qed_goal.
prove_goalw_cterm theory defs ct tacsf; is a version of prove_goalw for programming applications. The main goal is supplied as a cterm, not as a string. Typically, the cterm is created from a term t as follows:
cterm_of (sign_of thy) t

2.4 Managing multiple proofs

You may save the current state of the subgoal module and resume work on it later. This serves two purposes.

1. At some point, you may be uncertain of the next step, and wish to experiment.
2. During a proof, you may see that a lemma should be proved first.

Each saved proof state consists of a list of levels; chop behaves independently for each of the saved proofs. In addition, each saved state carries a separate undo list.

2.4.1 The stack of proof states

push_proof : unit -> unit
pop_proof : unit -> thm list
rotate_proof : unit -> thm list
The subgoal module maintains a stack of proof states. Most subgoal commands affect only the top of the stack. The goal command replaces the top of the stack; the only command that pushes a proof on the stack is push_proof.

To save some point of the proof, call push_proof. You may now state a lemma using goal, or simply continue to apply tactics. Later, you can return to the saved point by calling pop_proof or rotate_proof.

To view the entire stack, call rotate_proof repeatedly; as it rotates the stack, it prints the new top element.
push_proof(); duplicates the top element of the stack, pushing a copy of the current proof state on to the stack.
pop_proof() ; discards the top element of the stack. It returns the list of assumptions associated with the new proof; you should bind these to an ML identifier. They can also be obtained by calling premises.
rotate_proof(); rotates the stack, moving the top element to the bottom. It returns the list of assumptions associated with the new proof.

2.4.2 Saving and restoring proof states

save_proof : unit -> proof
restore_proof : proof -> thm list
States of the subgoal module may be saved as ML values of type proof, and later restored.
save_proof(); returns the current state, which is on top of the stack.
restore_proof prf; replaces the top of the stack by prf. It returns the list of assumptions associated with the new proof.

2.5 *Debugging and inspecting

These functions can be useful when you are debugging a tactic. They refer to the current proof state stored in the subgoal module. A tactic should never call them; it should operate on the proof state supplied as its argument.

2.5.1 Reading and printing terms

read : string \rightarrow term
prin : term \rightarrow unit
printyp : typ -> unit
These read and print terms (or types) using the syntax associated with the proof state.
read string reads the string as a term, without type checking.
prin t; prints the term t at the terminal.
printyp T; prints the type T at the terminal.

2.5.2 Inspecting the proof state

topthm : unit -> thm
getgoal : int -> term
gethyps : int -> thm list
topthm () returns the proof state as an Isabelle theorem. This is what by would supply to a tactic at this point. It omits the post-processing of result and uresult.
getgoal i returns subgoal i of the proof state, as a term. You may print this using prin, though you may have to examine the internal data structure in order to locate the problem!
gethyps i returns the hypotheses of subgoal i as meta-level assumptions. In these theorems, the subgoal's parameters become free variables. This command is supplied for debugging uses of METAHYPS.

2.5.3 Filtering lists of rules

filter_goal: (term*term->bool) -> thm list -> int -> thm list
filter_goal could ths i applies filter_thms could to subgoal i of the proof state and returns the list of theorems that survive the filtering.

Chapter 3

Tactics

Tactics have type tactic. This is just an abbreviation for functions from theorems to theorem sequences, where the theorems represent states of a backward proof. Tactics seldom need to be coded from scratch, as functions; instead they are expressed using basic tactics and tacticals.

This chapter only presents the primitive tactics. Substantial proofs require the power of automatic tools like simplification (Chapter 10) and classical tableau reasoning (Chapter 11).

3.1 Resolution and assumption tactics

Resolution is Isabelle's basic mechanism for refining a subgoal using a rule. Elim-resolution is particularly suited for elimination rules, while destructresolution is particularly suited for destruction rules. The r, e, d naming convention is maintained for several different kinds of resolution tactics, as well as the shortcuts in the subgoal module.

All the tactics in this section act on a subgoal designated by a positive integer i. They fail (by returning the empty sequence) if i is out of range.

3.1.1 Resolution tactics

resolve_tac : thm list $->$ int $->$ tactic
eresolve_tac : thm list $->$ int $->$ tactic
dresolve_tac : thm list $->$ int $->$ tactic
forward_tac : thm list $->$ int $->$ tactic
These perform resolution on a list of theorems, thms, representing a list of objectrules. When generating next states, they take each of the rules in the order given. Each rule may yield several next states, or none: higher-order resolution may yield multiple resolvents.
resolve_tac thms i refines the proof state using the rules, which should normally be introduction rules. It resolves a rule's conclusion with subgoal i of the proof state.
eresolve_tac thms i performs elim-resolution with the rules, which should normally be elimination rules. It resolves with a rule, solves its first premise by assumption, and finally deletes that assumption from any new subgoals.
dresolve_tac thms i performs destruct-resolution with the rules, which normally should be destruction rules. This replaces an assumption by the result of applying one of the rules.
forward_tac is like dresolve_tac except that the selected assumption is not deleted. It applies a rule to an assumption, adding the result as a new assumption.

3.1.2 Assumption tactics

```
assume_tac : int }->\mathrm{ tactic
eq_assume_tac : int -> tactic
```

assume_tac i attempts to solve subgoal i by assumption.
eq_assume_tac is like assume_tac but does not use unification. It succeeds (with a unique next state) if one of the assumptions is identical to the subgoal's conclusion. Since it does not instantiate variables, it cannot make other subgoals unprovable. It is intended to be called from proof strategies, not interactively.

3.1.3 Matching tactics

```
match_tac : thm list -> int -> tactic
ematch_tac : thm list -> int -> tactic
dmatch_tac : thm list -> int -> tactic
```

These are just like the resolution tactics except that they never instantiate unknowns in the proof state. Flexible subgoals are not updated willy-nilly, but are left alone. Matching - strictly speaking - means treating the unknowns in the proof state as constants; these tactics merely discard unifiers that would update the proof state.
match_tac thms i refines the proof state using the rules, matching a rule's conclusion with subgoal i of the proof state.
ematch_tac is like match_tac, but performs elim-resolution.
dmatch_tac is like match_tac, but performs destruct-resolution.

3.1.4 Resolution with instantiation

res_inst_tac : (string*string)list -> thm -> int -> tactic eres_inst_tac : (string*string)list -> thm -> int -> tactic dres_inst_tac : (string*string)list -> thm -> int -> tactic forw_inst_tac : (string*string)list -> thm -> int -> tactic

These tactics are designed for applying rules such as substitution and induction, which cause difficulties for higher-order unification. The tactics accept explicit instantiations for unknowns in the rule - typically, in the rule's conclusion. Each instantiation is a pair (v, e), where v is an unknown without its leading question mark!

- If v is the type unknown 'a, then the rule must contain a type unknown ?' a of some sort s, and e should be a type of sort s.
- If v is the unknown P , then the rule must contain an unknown ?P of some type τ, and e should be a term of some type σ such that τ and σ are unifiable. If the unification of τ and σ instantiates any type unknowns in τ, these instantiations are recorded for application to the rule.

Types are instantiated before terms. Because type instantiations are inferred from term instantiations, explicit type instantiations are seldom necessary if ?t has type ?'a, then the instantiation list [("'a", "bool"), ("t", "True")] may be simplified to [("t","True")]. Type unknowns in the proof state may cause failure because the tactics cannot instantiate them.

The instantiation tactics act on a given subgoal. Terms in the instantiations are type-checked in the context of that subgoal - in particular, they may refer to that subgoal's parameters. Any unknowns in the terms receive subscripts and are lifted over the parameters; thus, you may not refer to unknowns in the subgoal.
res_inst_tac insts thm i instantiates the rule thm with the instantiations insts, as described above, and then performs resolution on subgoal i. Resolution typically causes further instantiations; you need not give explicit instantiations for every unknown in the rule.
eres_inst_tac is like res_inst_tac, but performs elim-resolution.
dres_inst_tac is like res_inst_tac, but performs destruct-resolution.
forw_inst_tac is like dres_inst_tac except that the selected assumption is not deleted. It applies the instantiated rule to an assumption, adding the result as a new assumption.

3.2 Other basic tactics

3.2.1 Tactic shortcuts

rtac : thm $->$ int $->$ tactic
etac : thm $->$ int $->$ tactic
dtac : thm $->$ int $->$ tactic
atac : int $->$ tactic
ares_tac : thm list $->$ int $->$ tactic
rewtac : thm -> tactic

These abbreviate common uses of tactics.
rtac thm i abbreviates resolve_tac [thm] i, doing resolution.
etac thm i abbreviates eresolve_tac [thm] i, doing elim-resolution.
dtac thm i abbreviates dresolve_tac [thm] i, doing destruct-resolution.
atac i abbreviates assume_tac i, doing proof by assumption.
ares_tac thms i tries proof by assumption and resolution; it abbreviates
assume_tac i ORELSE resolve_tac thms i
rewtac def abbreviates rewrite_goals_tac [def], unfolding a definition.

3.2.2 Inserting premises and facts

cut_facts_tac : thm list -> int -> tactic
cut_inst_tac : (string*string)list -> thm -> int -> tactic
subgoal_tac : string -> int -> tactic
subgoal_tacs : string list -> int -> tactic
These tactics add assumptions to a subgoal.
cut_facts_tac thms i adds the thms as new assumptions to subgoal i. Once they have been inserted as assumptions, they become subject to tactics such as eresolve_tac and rewrite_goals_tac. Only rules with no premises are inserted: Isabelle cannot use assumptions that contain \Longrightarrow or \wedge. Sometimes the theorems are premises of a rule being derived, returned by goal; instead of calling this tactic, you could state the goal with an outermost metaquantifier.
cut_inst_tac insts thm i instantiates the thm with the instantiations insts, as described in §3.1.4. It adds the resulting theorem as a new assumption to subgoal i.
subgoal_tac formula i adds the formula as a assumption to subgoal i, and inserts the same formula as a new subgoal, $i+1$.
subgoals_tac formulae i uses subgoal_tac to add the members of the list of formulae as assumptions to subgoal i.

3.2.3 "Putting off" a subgoal

defer_tac : int -> tactic
defer_tac i moves subgoal i to the last position in the proof state. It can be useful when correcting a proof script: if the tactic given for subgoal i fails, calling defer_tac instead will let you continue with the rest of the script.

The tactic fails if subgoal i does not exist or if the proof state contains type unknowns.

3.2.4 Definitions and meta-level rewriting

Definitions in Isabelle have the form $t \equiv u$, where t is typically a constant or a constant applied to a list of variables, for example $\operatorname{sqr}(n) \equiv n \times n$. Conditional definitions, $\phi \Longrightarrow t \equiv u$, are also supported. Unfolding the definition $t \equiv u$ means using it as a rewrite rule, replacing t by u throughout a theorem. Folding $t \equiv u$ means replacing u by t. Rewriting continues until no rewrites are applicable to any subterm.

There are rules for unfolding and folding definitions; Isabelle does not do this automatically. The corresponding tactics rewrite the proof state, yielding a single next state. See also the goalw command, which is the easiest way of handling definitions.

```
rewrite_goals_tac : thm list -> tactic
rewrite_tac : thm list -> tactic
fold_goals_tac : thm list -> tactic
fold_tac : thm list -> tactic
```

rewrite_goals_tac defs unfolds the defs throughout the subgoals of the proof state, while leaving the main goal unchanged. Use SELECT_GOAL to restrict it to a particular subgoal.
rewrite_tac defs unfolds the defs throughout the proof state, including the main goal - not normally desirable!
fold_goals_tac defs folds the defs throughout the subgoals of the proof state, while leaving the main goal unchanged.
fold_tac defs folds the defs throughout the proof state.
! These tactics only cope with definitions expressed as meta-level equalities (\equiv).
More general equivalences are handled by the simplifier, provided that it is set up appropriately for your logic (see Chapter 10).

3.2.5 Theorems useful with tactics

asm_rl: thm
cut_rl: thm
asm_rl is $\psi \Longrightarrow \psi$. Under elim-resolution it does proof by assumption, and eresolve_tac (asm_rl::thms) i is equivalent to
assume_tac i ORELSE eresolve_tac thms i
cut_rl is $\llbracket \psi \Longrightarrow \theta, \psi \rrbracket \Longrightarrow \theta$. It is useful for inserting assumptions; it underlies forward_tac, cut_facts_tac and subgoal_tac.

3.3 Obscure tactics

3.3.1 Renaming parameters in a goal

```
rename_tac : string -> int -> tactic
rename_last_tac : string -> string list -> int -> tactic
Logic.set_rename_prefix : string -> unit
Logic.auto_rename : bool ref initially false
```

When creating a parameter, Isabelle chooses its name by matching variable names via the object-rule. Given the rule $(\forall I)$ formalized as $(\wedge x . P(x)) \Longrightarrow \forall x . P(x)$, Isabelle will note that the Λ-bound variable in the premise has the same name as the \forall-bound variable in the conclusion.

Sometimes there is insufficient information and Isabelle chooses an arbitrary name. The renaming tactics let you override Isabelle's choice. Because renaming parameters has no logical effect on the proof state, the by command prints the message Warning: same as previous level.

Alternatively, you can suppress the naming mechanism described above and have Isabelle generate uniform names for parameters. These names have the form $p \mathrm{a}, p \mathrm{~b}, p \mathrm{c}, \ldots$, where p is any desired prefix. They are ugly but predictable.
rename_tac str i interprets the string str as a series of blank-separated variable names, and uses them to rename the parameters of subgoal i. The names must be distinct. If there are fewer names than parameters, then the tactic renames the innermost parameters and may modify the remaining ones to ensure that all the parameters are distinct.
rename_last_tac prefix suffixes i generates a list of names by attaching each of the suffixes to the prefix. It is intended for coding structural induction tactics, where several of the new parameters should have related names.

Logic.set_rename_prefix prefix; sets the prefix for uniform renaming to prefix. The default prefix is " k ".
set Logic.auto_rename; makes Isabelle generate uniform names for parameters.

3.3.2 Manipulating assumptions

thin_tac : string $->$ int $->$ tactic
rotate_tac : int -> int -> tactic
thin_tac formula i deletes the specified assumption from subgoal i. Often the assumption can be abbreviated, replacing subformulæ by unknowns; the first matching assumption will be deleted. Removing useless assumptions from a subgoal increases its readability and can make search tactics run faster.
rotate_tac $n i$ rotates the assumptions of subgoal i by n positions: from right to left if n is positive, and from left to right if n is negative. This is sometimes necessary in connection with asm_full_simp_tac, which processes assumptions from left to right.

3.3.3 Tidying the proof state

distinct_subgoals_tac : tactic
prune_params_tac : tactic
flexflex_tac : tactic
distinct_subgoals_tac removes duplicate subgoals from a proof state. (These arise especially in ZF , where the subgoals are essentially type constraints.)
prune_params_tac removes unused parameters from all subgoals of the proof state. It works by rewriting with the theorem $(\wedge x . V) \equiv V$. This tactic can make the proof state more readable. It is used with rule_by_tactic to simplify the resulting theorem.
flexflex_tac removes all flex-flex pairs from the proof state by applying the trivial unifier. This drastic step loses information, and should only be done as the last step of a proof.
Flex-flex constraints arise from difficult cases of higher-order unification. To prevent this, use res_inst_tac to instantiate some variables in a rule (§3.1.4). Normally flex-flex constraints can be ignored; they often disappear as unknowns get instantiated.

3.3.4 Composition: resolution without lifting
 compose_tac: (bool * thm * int) -> int -> tactic

Composing two rules means resolving them without prior lifting or renaming of unknowns. This low-level operation, which underlies the resolution tactics, may occasionally be useful for special effects. A typical application is res_inst_tac, which lifts and instantiates a rule, then passes the result to compose_tac.
compose_tac (flag, rule, m) i refines subgoal i using rule, without lifting. The rule is taken to have the form $\llbracket \psi_{1} ; \ldots ; \psi_{m} \rrbracket \Longrightarrow \psi$, where ψ need not be atomic; thus m determines the number of new subgoals. If flag is true then it performs elim-resolution - it solves the first premise of rule by assumption and deletes that assumption.

$3.4 *$ Managing lots of rules

These operations are not intended for interactive use. They are concerned with the processing of large numbers of rules in automatic proof strategies. Higherorder resolution involving a long list of rules is slow. Filtering techniques can shorten the list of rules given to resolution, and can also detect whether a subgoal is too flexible, with too many rules applicable.

3.4.1 Combined resolution and elim-resolution

```
biresolve_tac : (bool*thm)list -> int -> tactic
bimatch_tac : (bool*thm)list -> int -> tactic
subgoals_of_brl : bool*thm -> int
lessb : (bool*thm) * (bool*thm) -> bool
```

Bi-resolution takes a list of (flag, rule) pairs. For each pair, it applies resolution if the flag is false and elim-resolution if the flag is true. A single tactic call handles a mixture of introduction and elimination rules.
biresolve_tac brls i refines the proof state by resolution or elim-resolution on each rule, as indicated by its flag. It affects subgoal i of the proof state.
bimatch_tac is like biresolve_tac, but performs matching: unknowns in the proof state are never updated (see §3.1.3).
subgoals_of_brl(flag, rule) returns the number of new subgoals that biresolution would yield for the pair (if applied to a suitable subgoal). This is n if the flag is false and $n-1$ if the flag is true, where n is the number of premises of the rule. Elim-resolution yields one fewer subgoal than ordinary resolution because it solves the major premise by assumption.
lessb (brl1,brl2) returns the result of

```
subgoals_of_brl brl1 < subgoals_of_brl brl2
```

Note that sort lessb brls sorts a list of (flag, rule) pairs by the number of new subgoals they will yield. Thus, those that yield the fewest subgoals should be tried first.

3.4.2 Discrimination nets for fast resolution

```
net_resolve_tac : thm list -> int -> tactic
net_match_tac : thm list -> int -> tactic
net_biresolve_tac: (bool*thm) list -> int -> tactic
net_bimatch_tac : (bool*thm) list -> int -> tactic
filt_resolve_tac : thm list -> int -> int -> tactic
could_unify : term*term->bool
filter_thms : (term*term->bool) -> int*term*thm list -> thm list
```

The module Net implements a discrimination net data structure for fast selection of rules [2, Chapter 14]. A term is classified by the symbol list obtained by flattening it in preorder. The flattening takes account of function applications, constants, and free and bound variables; it identifies all unknowns and also regards λ-abstractions as unknowns, since they could η-contract to anything.

A discrimination net serves as a polymorphic dictionary indexed by terms. The module provides various functions for inserting and removing items from nets. It provides functions for returning all items whose term could match or unify with a target term. The matching and unification tests are overly lax (due to the identifications mentioned above) but they serve as useful filters.

A net can store introduction rules indexed by their conclusion, and elimination rules indexed by their major premise. Isabelle provides several functions for 'compiling' long lists of rules into fast resolution tactics. When supplied with a list of theorems, these functions build a discrimination net; the net is used when the tactic is applied to a goal. To avoid repeatedly constructing the nets, use currying: bind the resulting tactics to ML identifiers.
net_resolve_tac thms builds a discrimination net to obtain the effect of a similar call to resolve_tac.
net_match_tac thms builds a discrimination net to obtain the effect of a similar call to match_tac.
net_biresolve_tac brls builds a discrimination net to obtain the effect of a similar call to biresolve_tac.
net_bimatch_tac brls builds a discrimination net to obtain the effect of a similar call to bimatch_tac.
filt_resolve_tac thms maxr i uses discrimination nets to extract the thms that are applicable to subgoal i. If more than maxr theorems are applicable then the tactic fails. Otherwise it calls resolve_tac.

This tactic helps avoid runaway instantiation of unknowns, for example in type inference.
could_unify (t, u) returns false if t and u are 'obviously' non-unifiable, and otherwise returns true. It assumes all variables are distinct, reporting that $? a=?$ a may unify with $0=1$.
filter_thms could (limit, prem, thms) returns the list of potentially resolvable rules (in thms) for the subgoal prem, using the predicate could to compare the conclusion of the subgoal with the conclusion of each rule. The resulting list is no longer than limit.

3.5 Programming tools for proof strategies

Do not consider using the primitives discussed in this section unless you really need to code tactics from scratch.

3.5.1 Operations on type tactic

A tactic maps theorems to sequences of theorems. The type constructor for sequences (lazy lists) is called Seq.seq. To simplify the types of tactics and tacticals, Isabelle defines a type abbreviation:

```
type tactic = thm -> thm Seq.seq
```

The following operations provide means for coding tactics in a clean style.

```
PRIMITIVE : (thm -> thm) -> tactic
SUBGOAL : ((term*int) -> tactic) -> int -> tactic
```

PRIMITIVE f packages the meta-rule f as a tactic that applies f to the proof state and returns the result as a one-element sequence. If f raises an exception, then the tactic's result is the empty sequence.

SUBGOAL $f i$ extracts subgoal i from the proof state as a term t, and computes a tactic by calling $f(t, i)$. It applies the resulting tactic to the same state. The tactic body is expressed using tactics and tacticals, but may peek at a particular subgoal:

```
SUBGOAL (fn (t,i) => tactic-valued expression)
```


3.5.2 Tracing

pause_tac: tactic
print_tac: tactic
These tactics print tracing information when they are applied to a proof state. Their output may be difficult to interpret. Note that certain of the searching tacticals, such as REPEAT, have built-in tracing options.
pause_tac prints ** Press RETURN to continue: and then reads a line from the terminal. If this line is blank then it returns the proof state unchanged; otherwise it fails (which may terminate a repetition).
print_tac returns the proof state unchanged, with the side effect of printing it at the terminal.

$3.6 *$ Sequences

The module Seq declares a type of lazy lists. It uses Isabelle's type option to represent the possible presence (Some) or absence (None) of a value:

```
datatype 'a option = None | Some of 'a;
```

The Seq structure is supposed to be accessed via fully qualified names and should not be open.

3.6.1 Basic operations on sequences

Seq.empty : 'a seq
Seq.make : (unit -> ('a * 'a seq) option) -> 'a seq
Seq.single : 'a -> 'a seq
Seq.pull : 'a seq -> ('a * 'a seq) option

Seq.empty is the empty sequence.
Seq.make (fn () => Some ($x, x q$)) constructs the sequence with head x and tail $x q$, neither of which is evaluated.

Seq. single x constructs the sequence containing the single element x.
Seq.pull $x q$ returns None if the sequence is empty and $\operatorname{Some}\left(x, x q^{\prime}\right)$ if the sequence has head x and tail $x q^{\prime}$. Warning: calling Seq.pull $x q$ again will recompute the value of x; it is not stored!

3.6.2 Converting between sequences and lists

Seq.chop : int * 'a seq -> 'a list * 'a seq
Seq.list_of : 'a seq $->$ 'a list
Seq. of_list : 'a list $->$ 'a seq

Seq.chop ($n, x q$) returns the first n elements of $x q$ as a list, paired with the remaining elements of $x q$. If $x q$ has fewer than n elements, then so will the list.

Seq.list_of $x q$ returns the elements of $x q$, which must be finite, as a list.
Seq.of_list $x s$ creates a sequence containing the elements of $x s$.

3.6.3 Combining sequences

Seq.append : 'a seq * 'a seq $->$ 'a seq
Seq.interleave : 'a seq * 'a seq -> 'a seq
Seq.flat : 'a seq seq \rightarrow 'a seq
Seq.map : ('a -> 'b) -> 'a seq $->$ 'b seq Seq.filter : ('a -> bool) -> 'a seq -> 'a seq

Seq.append ($x q, y q$) concatenates $x q$ to $y q$.
Seq.interleave ($x q, y q$) joins $x q$ with $y q$ by interleaving their elements. The result contains all the elements of the sequences, even if both are infinite.

Seq.flat $x q q$ concatenates a sequence of sequences.
Seq.map $f x q$ applies f to every element of $x q=x_{1}, x_{2}, \ldots$, yielding the sequence $f\left(x_{1}\right), f\left(x_{2}\right), \ldots$

Seq.filter $p x q$ returns the sequence consisting of all elements x of $x q$ such that $p(x)$ is true.

Chapter 4

Tacticals

Tacticals are operations on tactics. Their implementation makes use of functional programming techniques, especially for sequences. Most of the time, you may forget about this and regard tacticals as high-level control structures.

4.1 The basic tacticals

4.1.1 Joining two tactics

The tacticals THEN and ORELSE, which provide sequencing and alternation, underlie most of the other control structures in Isabelle. APPEND and INTLEAVE provide more sophisticated forms of alternation.

```
THEN : tactic * tactic -> tactic infix 1
ORELSE : tactic * tactic -> tactic infix
APPEND : tactic * tactic -> tactic infix
INTLEAVE : tactic * tactic -> tactic infix
```

$t a c_{1}$ THEN $t a c_{2}$ is the sequential composition of the two tactics. Applied to a proof state, it returns all states reachable in two steps by applying tac followed by $t a c_{2}$. First, it applies $t a c_{1}$ to the proof state, getting a sequence of next states; then, it applies $t a c_{2}$ to each of these and concatenates the results.
$t a c_{1}$ ORELSE $t a c_{2}$ makes a choice between the two tactics. Applied to a state, it tries $t a c_{1}$ and returns the result if non-empty; if $t a c_{1}$ fails then it uses $t a c_{2}$. This is a deterministic choice: if $t a c_{1}$ succeeds then $t a c_{2}$ is excluded.
$t a c_{1}$ APPEND $t a c_{2}$ concatenates the results of $t a c_{1}$ and $t a c_{2}$. By not making a commitment to either tactic, APPEND helps avoid incompleteness during search.
$t a c_{1}$ INTLEAVE $t a c_{2}$ interleaves the results of $t a c_{1}$ and $t a c_{2}$. Thus, it includes all possible next states, even if one of the tactics returns an infinite sequence.

4.1.2 Joining a list of tactics

EVERY : tactic list -> tactic
FIRST : tactic list -> tactic
EVERY and FIRST are block structured versions of THEN and ORELSE.
EVERY $\left[t a c_{1}, \ldots, t a c_{n}\right]$ abbreviates $t a c_{1}$ THEN ... THEN $t a c_{n}$. It is useful for writing a series of tactics to be executed in sequence.

FIRST $\left[t a c_{1}, \ldots, t a c_{n}\right]$ abbreviates $t a c_{1}$ ORELSE ... ORELSE $t a c_{n}$. It is useful for writing a series of tactics to be attempted one after another.

4.1.3 Repetition tacticals

```
TRY : tactic -> tactic
REPEAT_DETERM : tactic -> tactic
REPEAT : tactic -> tactic
REPEAT1 : tactic -> tactic
```

trace_REPEAT : bool ref initially false

TRY tac applies tac to the proof state and returns the resulting sequence, if nonempty; otherwise it returns the original state. Thus, it applies tac at most once.

REPEAT_DETERM tac applies tac to the proof state and, recursively, to the head of the resulting sequence. It returns the first state to make tac fail. It is deterministic, discarding alternative outcomes.

REPEAT tac applies tac to the proof state and, recursively, to each element of the resulting sequence. The resulting sequence consists of those states that make tac fail. Thus, it applies tac as many times as possible (including zero times), and allows backtracking over each invocation of tac. It is more general than REPEAT_DETERM, but requires more space.

REPEAT1 tac is like REPEAT tac but it always applies tac at least once, failing if this is impossible.
set trace_REPEAT; enables an interactive tracing mode for the tacticals REPEAT_DETERM and REPEAT. To view the tracing options, type h at the prompt.

4.1.4 Identities for tacticals
 all_tac : tactic
 no_tac : tactic

all_tac maps any proof state to the one-element sequence containing that state. Thus, it succeeds for all states. It is the identity element of the tactical THEN.
no_tac maps any proof state to the empty sequence. Thus it succeeds for no state. It is the identity element of ORELSE, APPEND, and INTLEAVE. Also, it is a zero element for THEN, which means that tac THEN no_tac is equivalent to no_tac.

These primitive tactics are useful when writing tacticals. For example, TRY and REPEAT (ignoring tracing) can be coded as follows:

```
fun TRY tac = tac ORELSE all_tac;
    fun REPEAT tac =
        (fn state => ((tac THEN REPEAT tac) ORELSE all_tac) state);
```

If tac can return multiple outcomes then so can REPEAT tac. Since REPEAT uses ORELSE and not APPEND or INTLEAVE, it applies tac as many times as possible in each outcome.
| Note REPEAT's explicit abstraction over the proof state. Recursive tacticals must

- be coded in this awkward fashion to avoid infinite recursion. With the following definition, REPEAT tac would loop due to ML's eager evaluation strategy:

```
fun REPEAT tac = (tac THEN REPEAT tac) ORELSE all_tac;
```

The built-in REPEAT avoids THEN, handling sequences explicitly and using tail recursion. This sacrifices clarity, but saves much space by discarding intermediate proof states.

4.2 Control and search tacticals

A predicate on theorems, namely a function of type thm->bool, can test whether a proof state enjoys some desirable property - such as having no subgoals. Tactics that search for satisfactory states are easy to express. The main search procedures, depth-first, breadth-first and best-first, are provided as tacticals. They generate the search tree by repeatedly applying a given tactic.

4.2.1 Filtering a tactic's results

FILTER : (thm -> bool) -> tactic -> tactic CHANGED : tactic -> tactic

FILTER p tac applies tac to the proof state and returns a sequence consisting of those result states that satisfy p.

CHANGED tac applies tac to the proof state and returns precisely those states that differ from the original state. Thus, CHANGED tac always has some effect on the state.

4.2.2 Depth-first search

| DEPTH_FIRST : (thm->bool) | -> tactic $->$ tactic |
| :--- | :--- | :--- |
| DEPTH_SOLVE : | tactic $->$ tactic |
| DEPTH_SOLVE_1 : | tactic $->$ tactic |
| trace_DEPTH_FIRST: bool ref | |

initially false
DEPTH_FIRST satp tac returns the proof state if satp returns true. Otherwise it applies tac, then recursively searches from each element of the resulting sequence. The code uses a stack for efficiency, in effect applying tac THEN DEPTH_FIRST satp tac to the state.

DEPTH_SOLVE tac uses DEPTH_FIRST to search for states having no subgoals.
DEPTH_SOLVE_1 tac uses DEPTH_FIRST to search for states having fewer subgoals than the given state. Thus, it insists upon solving at least one subgoal.
set trace_DEPTH_FIRST; enables interactive tracing for DEPTH_FIRST. To view the tracing options, type h at the prompt.

4.2.3 Other search strategies

```
BREADTH_FIRST : (thm->bool) -> tactic -> tactic
BEST_FIRST : (thm->bool)*(thm->int) -> tactic -> tactic
THEN_BEST_FIRST : tactic * ((thm->bool) * (thm->int) * tactic)
    -> tactic
    trace_BEST_FIRST: bool ref
infix 1 trace_BEST_FIRST: bool ref initially false
```

These search strategies will find a solution if one exists. However, they do not enumerate all solutions; they terminate after the first satisfactory result from tac.
BREADTH_FIRST satp tac uses breadth-first search to find states for which satp is true. For most applications, it is too slow.

BEST_FIRST (satp, distf) tac does a heuristic search, using distf to estimate the distance from a satisfactory state. It maintains a list of states ordered by distance. It applies tac to the head of this list; if the result contains any satisfactory states, then it returns them. Otherwise, BEST_FIRST adds the new states to the list, and continues.

The distance function is typically size_of_thm, which computes the size of the state. The smaller the state, the fewer and simpler subgoals it has.
$t a c_{0}$ THEN_BEST_FIRST ($s a t p$, distf, $t a c$) is like BEST_FIRST, except that the priority queue initially contains the result of applying $t a c_{0}$ to the proof state. This tactical permits separate tactics for starting the search and continuing the search.
set trace_BEST_FIRST; enables an interactive tracing mode for the tactical BEST_FIRST. To view the tracing options, type h at the prompt.

4.2.4 Auxiliary tacticals for searching

```
COND : (thm->bool) -> tactic -> tactic -> tactic
IF_UNSOLVED : tactic -> tactic
DETERM : tactic -> tactic
```

COND p tac tac_{2} applies $t a c_{1}$ to the proof state if it satisfies p, and applies $t a c_{2}$ otherwise. It is a conditional tactical in that only one of $t a c_{1}$ and $t a c_{2}$ is applied to a proof state. However, both $t a c_{1}$ and $t a c_{2}$ are evaluated because ML uses eager evaluation.

IF_UNSOLVED tac applies tac to the proof state if it has any subgoals, and simply returns the proof state otherwise. Many common tactics, such as resolve_tac, fail if applied to a proof state that has no subgoals.

DETERM tac applies tac to the proof state and returns the head of the resulting sequence. DETERM limits the search space by making its argument deterministic.

4.2.5 Predicates and functions useful for searching
 has_fewer_prems : int -> thm -> bool
 eq_thm : thm $*$ thm $->$ bool
 size_of_thm : thm -> int

has_fewer_prems n thm reports whether thm has fewer than n premises. By currying, has_fewer_prems n is a predicate on theorems; it may be given to the searching tacticals.
eq_thm (thm_1, thm_2) reports whether thmı1 and thm_2 are equal. Both theorems must have identical signatures. Both theorems must have the same conclusions, and the same hypotheses, in the same order. Names of bound variables are ignored.
size_of_thm thm computes the size of thm, namely the number of variables, constants and abstractions in its conclusion. It may serve as a distance function for BEST_FIRST.

4.3 Tacticals for subgoal numbering

When conducting a backward proof, we normally consider one goal at a time. A tactic can affect the entire proof state, but many tactics - such as resolve_tac and assume_tac - work on a single subgoal. Subgoals are designated by a positive integer, so Isabelle provides tacticals for combining values of type int->tactic.

4.3.1 Restricting a tactic to one subgoal

SELECT_GOAL : tactic -> int -> tactic
METAHYPS : (thm list $->$ tactic) $->$ int $->$ tactic
SELECT_GOAL tac i restricts the effect of tac to subgoal i of the proof state. It fails if there is no subgoal i, or if tac changes the main goal (do not use rewrite_tac). It applies tac to a dummy proof state and uses the result to refine the original proof state at subgoal i. If tac returns multiple results then so does SELECT_GOAL tac i.
SELECT_GOAL works by creating a state of the form $\phi \Longrightarrow \phi$, with the one subgoal ϕ. If subgoal i has the form $\psi \Longrightarrow \theta$ then $(\psi \Longrightarrow \theta) \Longrightarrow(\psi \Longrightarrow \theta)$ is in fact $\llbracket \psi \Longrightarrow \theta ; \psi \rrbracket \Longrightarrow \theta$, a proof state with two subgoals. Such a proof state might cause tactics to go astray. Therefore SELECT_GOAL inserts a quantifier to create the state

$$
(\bigwedge x \cdot \psi \Longrightarrow \theta) \Longrightarrow(\bigwedge x \cdot \psi \Longrightarrow \theta)
$$

METAHYPS tacf i takes subgoal i, of the form

$$
\bigwedge x_{1} \ldots x_{l} \cdot \llbracket \theta_{1} ; \ldots ; \theta_{k} \rrbracket \Longrightarrow \theta
$$

and creates the list $\theta_{1}^{\prime}, \ldots, \theta_{k}^{\prime}$ of meta-level assumptions. In these theorems, the subgoal's parameters $\left(x_{1}, \ldots, x_{l}\right)$ become free variables. It supplies the assumptions to tacf and applies the resulting tactic to the proof state $\theta \Longrightarrow \theta$.

If the resulting proof state is $\llbracket \phi_{1} ; \ldots ; \phi_{n} \rrbracket \Longrightarrow \phi$, possibly containing $\theta_{1}^{\prime}, \ldots, \theta_{k}^{\prime}$ as assumptions, then it is lifted back into the original context, yielding n subgoals.
Meta-level assumptions may not contain unknowns. Unknowns in the hypotheses $\theta_{1}, \ldots, \theta_{k}$ become free variables in $\theta_{1}^{\prime}, \ldots, \theta_{k}^{\prime}$, and are restored afterwards; the METAHYPS call cannot instantiate them. Unknowns in θ may be instantiated. New unknowns in $\phi_{1}, \ldots, \phi_{n}$ are lifted over the parameters.
Here is a typical application. Calling hyp_res_tac i resolves subgoal i with one of its own assumptions, which may itself have the form of an inference rule (these are called higher-level assumptions).

```
val hyp_res_tac = METAHYPS (fn prems => resolve_tac prems 1);
```

The function gethyps is useful for debugging applications of METAHYPS.
| METAHYPS fails if the context or new subgoals contain type unknowns. In principle, the tactical could treat these like ordinary unknowns.

4.3.2 Scanning for a subgoal by number

These apply a tactic function of type int -> tactic to all the subgoal numbers of a proof state, and join the resulting tactics using THEN or ORELSE. Thus, they apply the tactic to all the subgoals, or to one subgoal.

Suppose that the original proof state has n subgoals.
ALLGOALS tacf is equivalent to $\operatorname{tacf}(n)$ THEN . . . THEN tacf(1).
It applies tacf to all the subgoals, counting downwards (to avoid problems when subgoals are added or deleted).

TRYALL tacf is equivalent to $\operatorname{TRY}(\operatorname{tacf}(n))$ THEN \ldots THEN $\operatorname{TRY}(\operatorname{tacf}(1))$.
It attempts to apply tacf to all the subgoals. For instance, the tactic TRYALL assume_tac attempts to solve all the subgoals by assumption.

SOMEGOAL tacf is equivalent to $\operatorname{tacf}(n)$ ORELSE ... ORELSE $\operatorname{tacf}(1)$.
It applies tacf to one subgoal, counting downwards. For instance, the tactic SOMEGOAL assume_tac solves one subgoal by assumption, failing if this is impossible.

FIRSTGOAL tacf is equivalent to $\operatorname{tacf}(1)$ ORELSE ... ORELSE $\operatorname{tacf}(n)$.
It applies tacf to one subgoal, counting upwards.
REPEAT_SOME tacf applies tacf once or more to a subgoal, counting downwards.
REPEAT_FIRST tacf applies tacf once or more to a subgoal, counting upwards.
trace_goalno_tac tac i applies tac i to the proof state. If the resulting sequence is non-empty, then it is returned, with the side-effect of printing Subgoal i selected. Otherwise, trace_goalno_tac returns the empty sequence and prints nothing.

It indicates that 'the tactic worked for subgoal i ' and is mainly used with SOMEGOAL and FIRSTGOAL.

4.3.3 Joining tactic functions

These help to express tactics that specify subgoal numbers. The tactic

```
SOMEGOAL (fn i => resolve_tac rls i ORELSE eresolve_tac erls i)
```

can be simplified to

```
SOMEGOAL (resolve_tac rls ORELSE' eresolve_tac erls)
```

Note that TRY', REPEAT', DEPTH_FIRST', etc. are not provided, because function composition accomplishes the same purpose. The tactic

```
ALLGOALS (fn i => REPEAT (etac exE i ORELSE atac i))
```

can be simplified to

```
ALLGOALS (REPEAT o (etac exE ORELSE' atac))
```

These tacticals are polymorphic; x need not be an integer.

4.3.4 Applying a list of tactics to 1

EVERY1: (int -> tactic) list -> tactic
FIRST1: (int -> tactic) list -> tactic
A common proof style is to treat the subgoals as a stack, always restricting attention to the first subgoal. Such proofs contain long lists of tactics, each applied to 1 . These can be simplified using EVERY1 and FIRST1:

EVERY1 $\left[t a c f_{1}, \ldots, t a c f_{n}\right]$ abbreviates EVERY $\left[t a c f_{1}(1), \ldots, t a c f_{n}(1)\right]$
FIRST1 $\left[t a c f_{1}, \ldots, t a c f_{n}\right]$ abbreviates FIRST $\left[\operatorname{tac} f_{1}(1), \ldots, t a c f_{n}(1)\right]$

Chapter 5

Theorems and Forward Proof

Theorems, which represent the axioms, theorems and rules of object-logics, have type thm. This chapter begins by describing operations that print theorems and that join them in forward proof. Most theorem operations are intended for advanced applications, such as programming new proof procedures. Many of these operations refer to signatures, certified terms and certified types, which have the mL types Sign.sg, cterm and ctyp and are discussed in Chapter 6. Beginning users should ignore such complexities - and skip all but the first section of this chapter.

The theorem operations do not print error messages. Instead, they raise exception THM. Use print_exn to display exceptions nicely:

```
allI RS mp handle e => print_exn e;
    Exception THM raised:
    RSN: no unifiers -- premise 1
    (!!x. ?P(x)) ==> ALL x. ?P(x)
    [| ?P --> ?Q; ?P |] ==> ?Q
    uncaught exception THM
```


5.1 Basic operations on theorems

```
5.1.1 Pretty-printing a theorem
prth : thm -> thm
prths : thm list -> thm list
prthq : thm Seq.seq -> thm Seq.seq
print_thm : thm -> unit
print_goals : int -> thm -> unit
string_of_thm : thm -> string
```

The first three commands are for interactive use. They are identity functions that display, then return, their argument. The mL identifier it will refer to the value just displayed.

The others are for use in programs. Functions with result type unit are convenient for imperative programming.
prth thm prints thm at the terminal.
prths thms prints thms, a list of theorems.
prthq thmq prints thmq, a sequence of theorems. It is useful for inspecting the output of a tactic.
print_thm thm prints thm at the terminal.
print_goals limit thm prints thm in goal style, with the premises as subgoals. It prints at most limit subgoals. The subgoal module calls print_goals to display proof states.
string_of_thm thm converts thm to a string.

5.1.2 Forward proof: joining rules by resolution

| RSN $:$ thm $*$ (int $*$ thm \rightarrow thm | infix |
| :--- | :--- | :--- |
| RS $:$ thm $*$ thm \rightarrow thm | infix |
| MRS $:$ thm list $*$ thm \rightarrow thm | infix |
| RLN $:$ thm list $*$ (int $*$ thm list) \rightarrow thm list | infix |
| RL $:$ thm list $*$ thm list \rightarrow thm list | infix |
| MRL $:$ thm list list $*$ thm list \rightarrow thm list | infix |

Joining rules together is a simple way of deriving new rules. These functions are especially useful with destruction rules. To store the result in the theorem database, use bind_thm (§2.1.3).
thm m_{1} RSN $\left(i, t h m_{2}\right)$ resolves the conclusion of $t h m_{1}$ with the i th premise of $t h m_{2}$. Unless there is precisely one resolvent it raises exception THM; in that case, use RLN.
$t h m_{1}$ RS thm m_{2} abbreviates $t h m_{1} \operatorname{RSN}\left(1, t h m_{2}\right)$. Thus, it resolves the conclusion of $t h m_{1}$ with the first premise of $t h m_{2}$.
$\left[t h m_{1}, \ldots\right.$, th $\left.m_{n}\right]$ MRS thm uses RSN to resolve $t h m_{i}$ against premise i of $t h m$, for $i=n, \ldots, 1$. This applies $t h m_{n}, \ldots$, thm m_{1} to the first n premises of $t h m$. Because the theorems are used from right to left, it does not matter if the $t h m_{i}$ create new premises. MRS is useful for expressing proof trees.
thms s_{1} RLN ($i, t h m s_{2}$) joins lists of theorems. For every thm m_{1} in $t h m s_{1}$ and $t h m_{2}$ in $t h m s_{2}$, it resolves the conclusion of $t h m_{1}$ with the i th premise of $t h m_{2}$, accumulating the results.
thms s_{1} RL $t h m s_{2}$ abbreviates $t h m s_{1}$ RLN (1, thms s_{2}.
$\left[t h m s_{1}, \ldots, t h m s_{n}\right]$ MRL thms is analogous to MRS, but combines theorem lists rather than theorems. It too is useful for expressing proof trees.

5.1.3 Expanding definitions in theorems

```
rewrite_rule : thm list -> thm -> thm
rewrite_goals_rule : thm list -> thm -> thm
```

rewrite_rule defs thm unfolds the defs throughout the theorem thm.
rewrite_goals_rule defs thm unfolds the defs in the premises of thm, but leaves the conclusion unchanged. This rule underlies rewrite_goals_tac, but serves little purpose in forward proof.

5.1.4 Instantiating unknowns in a theorem

```
read_instantiate : (string*string) list -> thm -> thm
read_instantiate_sg : Sign.sg -> (string*string) list -> thm -> thm
cterm_instantiate : (cterm*cterm) list -> thm -> thm
instantiate, : ctyp option list -> cterm option list -> thm -> thm
```

These meta-rules instantiate type and term unknowns in a theorem. They are occasionally useful. They can prevent difficulties with higher-order unification, and define specialized versions of rules.
read_instantiate insts thm processes the instantiations insts and instantiates the rule thm. The processing of instantiations is described in §3.1.4, under res_inst_tac.
Use res_inst_tac, not read_instantiate, to instantiate a rule and refine a particular subgoal. The tactic allows instantiation by the subgoal's parameters, and reads the instantiations using the signature associated with the proof state.
Use read_instantiate_sg below if insts appears to be treated incorrectly.
read_instantiate_sg sg insts thm resembles read_instantiate insts thm, but reads the instantiations under signature $s g$. This is necessary to instantiate a rule from a general theory, such as first-order logic, using the notation of some specialized theory. Use the function sign_of to get a theory's signature.
cterm_instantiate ctpairs thm is similar to read_instantiate, but the instantiations are provided as pairs of certified terms, not as strings to be read.
instantiate' ctyps cterms thm instantiates thm according to the positional arguments ctyps and cterms. Counting from left to right, schematic variables ? x are either replaced by t for any argument Some t, or left unchanged in case of None or if the end of the argument list is encountered. Types are instantiated before terms.

5.1.5 Miscellaneous forward rules

```
standard : thm -> thm
zero_var_indexes : thm -> thm
make_elim : thm -> thm
rule_by_tactic : tactic -> thm -> thm
```

standard thm puts thm into the standard form of object-rules. It discharges all meta-assumptions, replaces free variables by schematic variables, renames schematic variables to have subscript zero, also strips outer (meta) quantifiers and removes dangling sort hypotheses.
zero_var_indexes thm makes all schematic variables have subscript zero, renaming them to avoid clashes.
make_elim thm converts thm, a destruction rule of the form $\llbracket P_{1} ; \ldots ; P_{m} \rrbracket \Longrightarrow Q$, to the elimination rule $\llbracket P_{1} ; \ldots ; P_{m} ; Q \Longrightarrow R \rrbracket \Longrightarrow R$. This is the basis for destruct-resolution: dresolve_tac, etc.
rule_by_tactic tac thm applies tac to the thm, freezing its variables first, then yields the proof state returned by the tactic. In typical usage, the thm represents an instance of a rule with several premises, some with contradictory assumptions (because of the instantiation). The tactic proves those subgoals and does whatever else it can, and returns whatever is left.

5.1.6 Taking a theorem apart

cprop_of : thm -> cterm
concl_of : thm $->$ term
prems_of : thm \rightarrow term list
cprems_of : thm $->$ cterm list
nprems_of : thm -> int
tpairs_of : thm -> (term*term) list
sign_of_thm : thm $->$ Sign.sg
theory_of_thm : thm -> theory
dest_state $:$ thm $*$ int $->$ (term $*$ term) list $*$ term list $*$ term $*$ term
rep_thm : thm $->$ \{sign_ref: Sign.sg_ref, der: deriv, maxidx: int, shyps: sort list, hyps: term list, prop: term\}
crep_thm : thm -> \{sign_ref: Sign.sg_ref, der: deriv, maxidx: int, shyps: sort list, hyps: cterm list, prop: cterm\}
cprop_of thm returns the statement of thm as a certified term.
concl_of thm returns the conclusion of thm as a term.
prems_of thm returns the premises of thm as a list of terms.
cprems_of thm returns the premises of thm as a list of certified terms.
nprems_of thm returns the number of premises in thm, and is equivalent to length (prems_of thm).
tpairs_of thm returns the flex-flex constraints of thm.
sign_of_thm thm returns the signature associated with thm.
theory_of_thm thm returns the theory associated with thm. Note that this does a lookup in Isabelle's global database of loaded theories.
dest_state (thm,i) decomposes thm as a tuple containing a list of flex-flex constraints, a list of the subgoals 1 to $i-1$, subgoal i, and the rest of the theorem (this will be an implication if there are more than i subgoals).
rep_thm thm decomposes thm as a record containing the statement of thm (prop), its list of meta-assumptions (hyps), its derivation (der), a bound on the maximum subscript of its unknowns (maxidx), and a reference to its signature (sign_ref). The shyps field is discussed below.
crep_thm thm like rep_thm, but returns the hypotheses and statement as certified terms.

5.1.7 *Sort hypotheses

force_strip_shyps : bool ref initially true
force_strip_shyps causes sort hypotheses to be deleted, printing a warning.
Isabelle's type variables are decorated with sorts, constraining them to certain ranges of types. This has little impact when sorts only serve for syntactic classification of types - for example, FOL distinguishes between terms and other types. But when type classes are introduced through axioms, this may result in some sorts becoming empty: where one cannot exhibit a type belonging to it because certain sets of axioms are unsatisfiable.

If a theorem contains a type variable that is constrained by an empty sort, then that theorem has no instances. It is basically an instance of ex falso quodlibet. But what if it is used to prove another theorem that no longer involves that sort? The latter theorem holds only if under an additional non-emptiness assumption.

Therefore, Isabelle's theorems carry around sort hypotheses. The shyps field is a list of sorts occurring in type variables in the current prop and hyps fields. It may also includes sorts used in the theorem's proof that no longer appear in the prop or hyps fields - so-called dangling sort constraints. These are the critical ones, asserting non-emptiness of the corresponding sorts.

Isabelle tries to remove extraneous sorts from the shyps field whenever nonemptiness can be established by looking at the theorem's signature: from the
arities information, etc. Because its current implementation is highly incomplete, the flag shown above is available. Setting it to true (the default) allows existing proofs to run.

5.1.8 Tracing flags for unification

Unify.trace_simp $:$ bool ref	initially false	
Unify.trace_types	: bool ref	initially false
Unify.trace_bound	: int ref	initially $\mathbf{1 0}$
Unify.search_bound : int ref	initially $\mathbf{2 0}$	

Tracing the search may be useful when higher-order unification behaves unexpectedly. Letting res_inst_tac circumvent the problem is easier, though.
set Unify.trace_simp; causes tracing of the simplification phase.
set Unify.trace_types; generates warnings of incompleteness, when unification is not considering all possible instantiations of type unknowns.

Unify.trace_bound := n; causes unification to print tracing information once it reaches depth n. Use $n=0$ for full tracing. At the default value of 10 , tracing information is almost never printed.

Unify.search_bound := n; causes unification to limit its search to depth n. Because of this bound, higher-order unification cannot return an infinite sequence, though it can return a very long one. The search rarely approaches the default value of 20 . If the search is cut off, unification prints a warning Unification bound exceeded.

5.2 *Primitive meta-level inference rules

These implement the meta-logic in the style of the LCF system, as functions from theorems to theorems. They are, rarely, useful for deriving results in the pure theory. Mainly, they are included for completeness, and most users should not bother with them. The meta-rules raise exception THM to signal malformed premises, incompatible signatures and similar errors.

The meta-logic uses natural deduction. Each theorem may depend on metalevel assumptions. Certain rules, such as ($\Longrightarrow I)$, discharge assumptions; in most other rules, the conclusion depends on all of the assumptions of the premises. Formally, the system works with assertions of the form

$$
\phi \quad\left[\phi_{1}, \ldots, \phi_{n}\right],
$$

where $\phi_{1}, \ldots, \phi_{n}$ are the assumptions. This can be also read as a single conclusion sequent $\phi_{1}, \ldots, \phi_{n} \vdash \phi$. Do not confuse meta-level assumptions with the objectlevel assumptions in a subgoal, which are represented in the meta-logic using \Longrightarrow.

Each theorem has a signature. Certified terms have a signature. When a rule takes several premises and certified terms, it merges the signatures to make a signature for the conclusion. This fails if the signatures are incompatible.

The implication rules are $(\Longrightarrow I)$ and $(\Longrightarrow E)$:

Equality of truth values means logical equivalence:

$$
\frac{\phi \Longrightarrow \psi \psi \phi}{\phi \equiv \psi}(\equiv I) \quad \frac{\phi \equiv \psi \quad \phi}{\psi}(\equiv E)
$$

The equality rules are reflexivity, symmetry, and transitivity:

$$
a \equiv a(\text { refl }) \quad \frac{a \equiv b}{b \equiv a}(\text { sym }) \quad \frac{a \equiv b \quad b \equiv c}{a \equiv c}(\text { trans })
$$

The λ-conversions are α-conversion, β-conversion, and extensionality: ${ }^{1}$

$$
(\lambda x \cdot a) \equiv(\lambda y \cdot a[y / x]) \quad((\lambda x \cdot a)(b)) \equiv a[b / x] \quad \frac{f(x) \equiv g(x)}{f \equiv g}(e x t)
$$

The abstraction and combination rules let conversions be applied to subterms: ${ }^{2}$

$$
\frac{a \equiv b}{(\lambda x . a) \equiv(\lambda x . b)}(a b s) \quad \frac{f \equiv g \quad a \equiv b}{f(a) \equiv g(b)}(c o m b)
$$

The universal quantification rules are $(\wedge I)$ and $(\wedge E):^{3}$

$$
\frac{\phi}{\bigwedge x \cdot \phi}(\bigwedge I) \quad \frac{\bigwedge x \cdot \phi}{\phi[b / x]}(\bigwedge E)
$$

5.2.1 Assumption rule

assume: cterm -> thm
assume ct makes the theorem $\phi[\phi]$, where ϕ is the value of $c t$. The rule checks that $c t$ has type prop and contains no unknowns, which are not allowed in assumptions.

[^2]
5.2.2 Implication rules

```
implies_intr : cterm -> thm -> thm
implies_intr_list : cterm list -> thm -> thm
implies_intr_hyps : thm -> thm
implies_elim : thm -> thm -> thm
implies_elim_list : thm -> thm list -> thm
```

implies_intr ct thm is $(\Longrightarrow I)$, where $c t$ is the assumption to discharge, say ϕ. It maps the premise ψ to the conclusion $\phi \Longrightarrow \psi$, removing all occurrences of ϕ from the assumptions. The rule checks that ct has type prop.
implies_intr_list cts thm applies $(\Longrightarrow I)$ repeatedly, on every element of the list cts.
implies_intr_hyps thm applies $(\Longrightarrow I)$ to discharge all the hypotheses (assumptions) of thm. It maps the premise $\phi\left[\phi_{1}, \ldots, \phi_{n}\right]$ to the conclusion $\llbracket \phi_{1}, \ldots, \phi_{n} \rrbracket \Longrightarrow \phi$.
implies_elim thm m_{1} thm m_{2} applies $(\Longrightarrow E)$ to thm m_{1} and $t h m_{2}$. It maps the premises $\phi \Longrightarrow \psi$ and ϕ to the conclusion ψ.
implies_elim_list thm thms applies ($\Longrightarrow E$) repeatedly to thm, using each element of thms in turn. It maps the premises $\llbracket \phi_{1}, \ldots, \phi_{n} \rrbracket \Longrightarrow \psi$ and $\phi_{1}, \ldots, \phi_{n}$ to the conclusion ψ.

5.2.3 Logical equivalence rules

equal_intr : thm \rightarrow thm \rightarrow thm
equal_elim : thm $->$ thm \rightarrow thm
equal_intr thm m_{1} thm m_{2} applies $(\equiv I)$ to $t h m_{1}$ and $t h m_{2}$. It maps the premises ψ and ϕ to the conclusion $\phi \equiv \psi$; the assumptions are those of the first premise with ϕ removed, plus those of the second premise with ψ removed.
equal_elim thm m_{1} thm m_{2} applies $(\equiv E)$ to $t h m_{1}$ and $t h m_{2}$. It maps the premises $\phi \equiv \psi$ and ϕ to the conclusion ψ.

5.2.4 Equality rules

reflexive : cterm $->$ thm
symmetric : thm $->$ thm
transitive : thm -> thm -> thm
reflexive ct makes the theorem $c t \equiv c t$.
symmetric thm maps the premise $a \equiv b$ to the conclusion $b \equiv a$.
transitive thm m_{1} thm maps the premises $a \equiv b$ and $b \equiv c$ to the conclusion $a \equiv c$.

5.2.5 The λ-conversion rules

beta_conversion : cterm -> thm
extensional : thm -> thm
abstract_rule : string -> cterm -> thm -> thm
combination : thm -> thm -> thm
There is no rule for α-conversion because Isabelle regards α-convertible theorems as equal.
beta_conversion $c t$ makes the theorem $((\lambda x . a)(b)) \equiv a[b / x]$, where $c t$ is the term $(\lambda x . a)(b)$.
extensional thm maps the premise $f(x) \equiv g(x)$ to the conclusion $f \equiv g$. Parameter x is taken from the premise. It may be an unknown or a free variable (provided it does not occur in the assumptions); it must not occur in f or g.
abstract_rule $v x$ thm maps the premise $a \equiv b$ to the conclusion $(\lambda x . a) \equiv$ ($\lambda x . b$), abstracting over all occurrences (if any!) of x. Parameter x is supplied as a cterm. It may be an unknown or a free variable (provided it does not occur in the assumptions). In the conclusion, the bound variable is named v.
combination thm m_{1} thm maps the premises $f \equiv g$ and $a \equiv b$ to the conclusion $f(a) \equiv g(b)$.

5.2.6 Forall introduction rules

forall_intr	$:$ cterm	$->$	thm $->$ thm
forall_intr_list	: cterm list \rightarrow thm $->$ thm		
forall_intr_frees :	thm $->$ thm		

forall_intr x thm applies ($\bigwedge I$), abstracting over all occurrences (if any!) of x. The rule maps the premise ϕ to the conclusion $\wedge x . \phi$. Parameter x is supplied as a cterm. It may be an unknown or a free variable (provided it does not occur in the assumptions).
forall_intr_list xs thm applies ((ΛI) repeatedly, on every element of the list $x s$.
forall_intr_frees thm applies ($(\wedge I)$ repeatedly, generalizing over all the free variables of the premise.

5.2.7 Forall elimination rules

forall_elim ct thm applies $(\bigwedge E)$, mapping the premise $\bigwedge x . \phi$ to the conclusion $\phi[c t / x]$. The rule checks that $c t$ and x have the same type.
forall_elim_list cts thm applies (ΛE) repeatedly, on every element of the list cts.
forall_elim_var k thm applies $(\bigwedge E)$, mapping the premise $\Lambda x . \phi$ to the conclusion $\phi\left[? x_{k} / x\right]$. Thus, it replaces the outermost Λ-bound variable by an unknown having subscript k.
forall_elim_vars $k s$ thm applies forall_elim_var repeatedly, for every element of the list $k s$.

5.2.8 Instantiation of unknowns

instantiate: (indexname * ctyp) list * (cterm * cterm) list -> thm -> thm
instantiate (tyinsts, insts) thm simultaneously substitutes types for type unknowns (the tyinsts) and terms for term unknowns (the insts). Instantiations are given as (v, t) pairs, where v is an unknown and t is a term (of the same type as v) or a type (of the same sort as v). All the unknowns must be distinct. The rule normalizes its conclusion.

Note that instantiate' (see $\S 5.1 .4)$ provides a more convenient interface to this rule.

5.2.9 Freezing/thawing type unknowns

freezeT: thm -> thm
varifyT: thm -> thm
freezeT thm converts all the type unknowns in thm to free type variables.
varifyT thm converts all the free type variables in thm to type unknowns.

5.3 Derived rules for goal-directed proof

Most of these rules have the sole purpose of implementing particular tactics. There are few occasions for applying them directly to a theorem.

5.3.1 Proof by assumption

```
assumption : int -> thm -> thm Seq.seq
eq_assumption : int -> thm -> thm
```

assumption i thm attempts to solve premise i of $t h m$ by assumption.
eq_assumption is like assumption but does not use unification.

5.3.2 Resolution

biresolution : bool $->$ (bool*thm)list $->$ int $->$ thm -> thm Seq.seq
biresolution match rules i state performs bi-resolution on subgoal i of state, using the list of (flag, rule) pairs. For each pair, it applies resolution if the flag is false and elim-resolution if the flag is true. If match is true, the state is not instantiated.

5.3.3 Composition: resolution without lifting

```
    compose : thm * int * thm -> thm list
    COMP : thm * thm -> thm
    bicompose : bool -> bool * thm * int -> int -> thm
                        -> thm Seq.seq
```

In forward proof, a typical use of composition is to regard an assertion of the form $\phi \Longrightarrow \psi$ as atomic. Schematic variables are not renamed, so beware of clashes!
compose ($t h m_{1}, i$, thm m_{2}) uses $t h m_{1}$, regarded as an atomic formula, to solve premise i of $t h m_{2}$. Let $t h m_{1}$ and $t h m_{2}$ be ψ and $\llbracket \phi_{1} ; \ldots ; \phi_{n} \rrbracket \Longrightarrow \phi$. For each s that unifies ψ and ϕ_{i}, the result list contains the theorem

$$
\left(\llbracket \phi_{1} ; \ldots ; \phi_{i-1} ; \phi_{i+1} ; \ldots ; \phi_{n} \rrbracket \Longrightarrow \phi\right) s
$$

thm m_{1} COMP thm m_{2} calls compose ($t h m_{1}, 1$, thm m_{2}) and returns the result, if unique; otherwise, it raises exception THM. It is analogous to RS.
For example, suppose that $t h m_{1}$ is $a=b \Longrightarrow b=a$, a symmetry rule, and that $t h m_{2}$ is $\llbracket P \Longrightarrow Q ; \neg Q \rrbracket \Longrightarrow \neg P$, which is the principle of contrapositives. Then the result would be the derived rule $\neg(b=a) \Longrightarrow \neg(a=b)$.
bicompose match (flag, rule, m) i state refines subgoal i of state using rule, without lifting. The rule is taken to have the form $\llbracket \psi_{1} ; \ldots ; \psi_{m} \rrbracket \Longrightarrow \psi$, where ψ need not be atomic; thus m determines the number of new subgoals. If flag is true then it performs elim-resolution - it solves the first premise of rule by assumption and deletes that assumption. If match is true, the state is not instantiated.

5.3.4 Other meta-rules

```
    trivial : cterm -> thm
    lift_rule : (thm * int) -> thm -> thm
    rename_params_rule : string list * int -> thm -> thm
    flexflex_rule : thm -> thm Seq.seq
```

trivial ct makes the theorem $\phi \Longrightarrow \phi$, where ϕ is the value of $c t$. This is the initial state for a goal-directed proof of ϕ. The rule checks that $c t$ has type prop.
lift_rule (state, i) rule prepares rule for resolution by lifting it over the parameters and assumptions of subgoal i of state.
rename_params_rule (names, i) thm uses the names to rename the parameters of premise i of thm. The names must be distinct. If there are fewer names than parameters, then the rule renames the innermost parameters and may modify the remaining ones to ensure that all the parameters are distinct.
flexflex_rule thm removes all flex-flex pairs from thm using the trivial unifier.

5.4 Proof objects

Isabelle can record the full meta-level proof of each theorem. The proof object contains all logical inferences in detail, while omitting bookkeeping steps that have no logical meaning to an outside observer. Rewriting steps are recorded in similar detail as the output of simplifier tracing. The proof object can be inspected by a separate proof-checker, for example.

Full proof objects are large. They multiply storage requirements by about seven; attempts to build large logics (such as ZF and HOL) may fail. Isabelle normally builds minimal proof objects, which include only uses of oracles. You can also request an intermediate level of detail, containing uses of oracles, axioms and theorems. These smaller proof objects indicate a theorem's dependencies.

Isabelle provides proof objects for the sake of transparency. Their aim is to increase your confidence in Isabelle. They let you inspect proofs constructed by the classical reasoner or simplifier, and inform you of all uses of oracles. Seldom will proof objects be given whole to an automatic proof-checker: none has been written. It is up to you to examine and interpret them sensibly. For example, when scrutinizing a theorem's derivation for dependence upon some oracle or axiom, remember to scrutinize all of its lemmas. Their proofs are included in the main derivation, through the Theorem constructor.

Proof objects are expressed using a polymorphic type of variable-branching trees. Proof objects (formally known as derivations) are trees labelled by rules, where rule is a complicated datatype declared in the file Pure/thm.ML.

```
datatype 'a mtree = Join of 'a * 'a mtree list;
datatype rule = ...;
type deriv = rule mtree;
```

Each theorem's derivation is stored as the der field of its internal record:

```
#der (rep_thm conjI);
    Join (Theorem "HOL.conjI", [Join (MinProof,[])]) : deriv
```

This proof object identifies a labelled theorem, conjI of theory HOL, whose underlying proof has not been recorded; all we have is MinProof.

Nontrivial proof objects are unreadably large and complex. Isabelle provides several functions to help you inspect them informally. These functions omit the more obscure inferences and attempt to restructure the others into natural formats, linear or tree-structured.

```
keep_derivs : deriv_kind ref
Deriv.size : deriv -> int
Deriv.drop : 'a mtree * int -> 'a mtree
Deriv.linear : deriv -> deriv list
Deriv.tree : deriv -> Deriv.orule mtree
```

keep_derivs := MinDeriv | ThmDeriv | FullDeriv; specifies one of the three options for keeping derivations. They can be minimal (oracles only), include theorems and axioms, or be full.

Deriv.size der yields the size of a derivation, excluding lemmas.
Deriv.drop (tree, n) returns the subtree n levels down, always following the first child. It is good for stripping off outer level inferences that are used to put a theorem into standard form.

Deriv.linear der converts a derivation into a linear format, replacing the deep nesting by a list of rules. Intuitively, this reveals the single-step Isabelle proof that is constructed internally by tactics.

Deriv.tree der converts a derivation into an object-level proof tree. A resolution by an object-rule is converted to a tree node labelled by that rule. Complications arise if the object-rule is itself derived in some way. Nested resolutions are unravelled, but other operations on rules (such as rewriting) are left as-is.

Functions Deriv.linear and Deriv.tree omit the proof of any named theorems (constructor Theorem) they encounter in a derivation. Applying them
directly to the derivation of a named theorem is therefore pointless. Use Deriv.drop with argument 1 to skip over the initial Theorem constructor.

Chapter 6

Theories, Terms and Types

Theories organize the syntax, declarations and axioms of a mathematical development. They are built, starting from the Pure or CPure theory, by extending and merging existing theories. They have the mL type theory. Theory operations signal errors by raising exception THEORY, returning a message and a list of theories.

Signatures, which contain information about sorts, types, constants and syntax, have the mL type Sign.sg. For identification, each signature carries a unique list of stamps, which are ML references to strings. The strings serve as humanreadable names; the references serve as unique identifiers. Each primitive signature has a single stamp. When two signatures are merged, their lists of stamps are also merged. Every theory carries a unique signature.

Terms and types are the underlying representation of logical syntax. Their ML definitions are irrelevant to naive Isabelle users. Programmers who wish to extend Isabelle may need to know such details, say to code a tactic that looks for subgoals of a particular form. Terms and types may be 'certified' to be wellformed with respect to a given signature.

6.1 Defining theories

Theories are usually defined using theory definition files (which have a name suffix .thy). There is also a low level interface provided by certain mL functions (see §6.4.3). Appendix A presents the concrete syntax for theory definitions; here is an explanation of the constituent parts:
theoryDef is the full definition. The new theory is called $i d$. It is the union of the named parent theories, possibly extended with new components. Pure and CPure are the basic theories, which contain only the meta-logic. They differ just in their concrete syntax for function applications.
Normally each name is an identifier, the name of the parent theory. Quoted strings can be used to document additional file dependencies; see $\S 6.2$ for details.
classes is a series of class declarations. Declaring $i d<i d_{1} \ldots i d_{n}$ makes $i d$ a subclass of the existing classes $i d_{1} \ldots i d_{n}$. This rules out cyclic class struc-
tures. Isabelle automatically computes the transitive closure of subclass hierarchies; it is not necessary to declare $\mathrm{c}<\mathrm{e}$ in addition to $\mathrm{c}<\mathrm{d}$ and d < e.
default introduces sort as the new default sort for type variables. This applies to unconstrained type variables in an input string but not to type variables created internally. If omitted, the default sort is the listwise union of the default sorts of the parent theories (i.e. their logical intersection).
sort is a finite set of classes. A single class $i d$ abbreviates the sort -id".
types is a series of type declarations. Each declares a new type constructor or type synonym. An n-place type constructor is specified by $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ name, where the type variables serve only to indicate the number n.
A type synonym is an abbreviation $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ name $=\tau$, where name and τ can be strings.
infix declares a type or constant to be an infix operator of priority nat associating to the left (infixl) or right (infixr). Only 2-place type constructors can have infix status; an example is ('a,'b) "*" (infixr 20), which may express binary product types.
arities is a series of type arity declarations. Each assigns arities to type constructors. The name must be an existing type constructor, which is given the additional arity arity.
consts is a series of constant declarations. Each new constant name is given the specified type. The optional mixfix annotations may attach concrete syntax to the constant.
syntax is a variant of consts which adds just syntax without actually declaring logical constants. This gives full control over a theory's context free grammar. The optional mode specifies the print mode where the mixfix productions should be added. If there is no output option given, all productions are also added to the input syntax (regardless of the print mode).
mixfix annotations can take three forms:

- A mixfix template given as a string of the form "............" where the i-th underscore indicates the position where the i-th argument should go. The list of numbers gives the priority of each argument. The final number gives the priority of the whole construct.
- A constant f of type $\tau_{1} \Rightarrow\left(\tau_{2} \Rightarrow \tau\right)$ can be given infix status.
- A constant f of type $\left(\tau_{1} \Rightarrow \tau_{2}\right) \Rightarrow \tau$ can be given binder status. The declaration binder $\mathcal{Q} p$ causes $\mathcal{Q} x . F(x)$ to be treated like $f(F)$, where p is the priority.
trans specifies syntactic translation rules (macros). There are three forms: parse rules (=>), print rules (<=), and parse/print rules (==).
rules is a series of rule declarations. Each has a name $i d$ and the formula is given by the string. Rule names must be distinct within any single theory.
defs is a series of definitions. They are just like rules, except that every string must be a definition (see below for details).
constdefs combines the declaration of constants and their definition. The first string is the type, the second the definition.
axclass defines an axiomatic type class as the intersection of existing classes, with additional axioms holding. Class axioms may not contain more than one type variable. The class axioms (with implicit sort constraints added) are bound to the given names. Furthermore a class introduction rule is generated, which is automatically employed by instance to prove instantiations of this class.
instance proves class inclusions or type arities at the logical level and then transfers these to the type signature. The instantiation is proven and checked properly. The user has to supply sufficient witness information: theorems (longident), axioms (string), or even arbitrary mL tactic code verbatim.
oracle links the theory to a trusted external reasoner. It is allowed to create theorems, but each theorem carries a proof object describing the oracle invocation. See $\S 6.10$ for details.
$m l$ consists of ML code, typically for parse and print translation functions.
Chapters 7 and 8 explain mixfix declarations, translation rules and the ML section in more detail.

6.1.1 Definitions

Definitions are intended to express abbreviations. The simplest form of a definition is $f \equiv t$, where f is a constant. Isabelle also allows a derived forms where the arguments of f appear on the left, abbreviating a string of λ-abstractions.

Isabelle makes the following checks on definitions:

- Arguments (on the left-hand side) must be distinct variables.
- All variables on the right-hand side must also appear on the left-hand side.
- All type variables on the right-hand side must also appear on the left-hand side; this prohibits definitions such as (zero::nat) == length ([]::'a list).
- The definition must not be recursive. Most object-logics provide definitional principles that can be used to express recursion safely.

These checks are intended to catch the sort of errors that might be made accidentally. Misspellings, for instance, might result in additional variables appearing on the right-hand side. More elaborate checks could be made, but the cost might be overly strict rules on declaration order, etc.

6.1.2 * Classes and arities

In order to guarantee principal types [7], arity declarations must obey two conditions:

- There must not be any two declarations $t y::(\vec{r}) c$ and $t y::(\vec{s}) c$ with $\vec{r} \neq \vec{s}$. For example, this excludes the following:

```
arities
    foo :: ({logic}) logic
    foo :: ({})logic
```

- If there are two declarations $t y::\left(s_{1}, \ldots, s_{n}\right) c$ and $t y::\left(s_{1}^{\prime}, \ldots, s_{n}^{\prime}\right) c^{\prime}$ such that $c^{\prime}<c$ then $s_{i}^{\prime} \preceq s_{i}$ must hold for $i=1, \ldots, n$. The relationship \preceq, defined as

$$
s^{\prime} \preceq s \Longleftrightarrow \forall c \in s . \exists c^{\prime} \in s^{\prime} . \quad c^{\prime} \leq c,
$$

expresses that the set of types represented by s^{\prime} is a subset of the set of types represented by s. Assuming term \preceq logic, the following is forbidden:

```
arities
    foo :: ({logic})logic
    foo :: ({})term
```


6.2 Loading a new theory

```
use_thy : string -> unit
time_use_thy : string -> unit
delete_tmpfiles : bool ref
```

loadpath : string list ref initially ["."]
initially true
use_thy thyname reads the theory thyname and creates an ML structure as described below.
time_use_thy thyname calls use_thy thyname and reports the time taken.
loadpath contains a list of directories to search when locating the files that define a theory. This list is only used if the theory name in use_thy does not specify the path explicitly.
reset delete_tmpfiles; suppresses the deletion of temporary files.
Each theory definition must reside in a separate file. Let the file T.thy contain the definition of a theory called T, whose parent theories are $T B_{1} \ldots T B_{n}$. Calling use_thy " T " reads the file T.thy, writes a temporary ML file.T.thy. ML, and reads the latter file. Recursive use_thy calls load those parent theories that have not been loaded previously; the recursive calls may continue to any depth. One use_thy call can read an entire logic provided all theories are linked appropriately.

The result is an mL structure T containing at least a component thy for the new theory and components for each of the rules. The structure also contains the definitions of the ML section, if present. The file .T.thy.ML is then deleted if delete_tmpfiles is set and no errors occurred.

Finally the file T. ML is read, if it exists. The structure T is automatically open in this context. Proof scripts typically refer to its components by unqualified names.

Some applications construct theories directly by calling ML functions. In this situation there is no .thy file, only an .ML file. The .ML file must declare an ML structure having the theory's name and a component thy containing the new theory object. Section 6.3 .1 below describes a way of linking such theories to their parents.
| Temporary files are written to the current directory, so this must be writable.

- Isabelle inherits the current directory from the operating system; you can change it within Isabelle by typing cd" dir".

6.3 Reloading modified theories

update : unit -> unit
unlink_thy : string -> unit
Changing a theory on disk often makes it necessary to reload all theories descended from it. However, use_thy reads only one theory, even if some of the parent theories are out of date. In this case you should call update().

Isabelle keeps track of all loaded theories and their files. If use_thy finds that the theory to be loaded has been read before, it determines whether to reload the theory as follows. First it looks for the theory's files in their previous location. If it finds them, it compares their modification times to the internal data and stops if they are equal. If the files have been moved, use_thy searches for them as it
would for a new theory. After use_thy reloads a theory, it marks the children as out-of-date.
update() reloads all modified theories and their descendants in the correct order.
unlink_thy thyname informs Isabelle that theory thyname no longer exists. If you delete the theory files for thyname then you must execute unlink_thy; otherwise update will complain about a missing file.

6.3.1 *Pseudo theories

Any automatic reloading facility requires complete knowledge of all dependencies. Sometimes theories depend on objects created in mL files with no associated theory definition file. These objects may be theories but they could also be theorems, proof procedures, etc.

Unless such dependencies are documented, update fails to reload these mL files and the system is left in a state where some objects, such as theorems, still refer to old versions of theories. This may lead to the error

Attempt to merge different versions of theories: ...
Therefore there is a way to link theories and orphaned ML files - those not associated with a theory definition.

Let us assume we have an orphaned ML file named orphan.ML and a theory B that depends on orphan.ML - for example, B.ML uses theorems proved in orphan.ML. Then B.thy should mention this dependency as follows:

```
B = ... + "orphan" + ...
```

Quoted strings stand for theories which have to be loaded before the current theory is read but which are not used in building the base of theory B. Whenever orphan changes and is reloaded, Isabelle knows that B has to be updated, too.

Note that it's necessary for orphan to declare a special ML object of type theory which is present in all theories. This is normally achieved by adding the file orphan.thy to make orphan a pseudo theory. A minimum version of orphan.thy would be

```
orphan = Pure
```

which uses Pure to make a dummy theory. Normally though the orphaned file has its own dependencies. If orphan.ML depends on theories or files A_{1}, \ldots, A_{n}, record this by creating the pseudo theory in the following way:

```
orphan = A1 + \ldots+ + An
```

The resulting theory ensures that update reloads orphan whenever it reloads one of the A_{i}.

For an extensive example of how this technique can be used to link lots of theory files and load them by just a few use_thy calls see the sources of one of the major object-logics (e.g. ZF).

6.4 Basic operations on theories

6.4.1 Retrieving axioms and theorems

```
get_axiom : theory -> xstring -> thm
get_thm : theory -> xstring -> thm
get_thms : theory -> xstring -> thm list
axioms_of : theory -> (string * thm) list
thms_of : theory -> (string * thm) list
assume_ax : theory -> string -> thm
```

get_axiom thy name returns an axiom with the given name from thy or any of its ancestors, raising exception THEORY if none exists. Merging theories can cause several axioms to have the same name; get_axiom returns an arbitrary one. Usually, axioms are also stored as theorems and may be retrieved via get_thm as well.
get_thm thy name is analogous to get_axiom, but looks for a theorem stored in the theory's database. Like get_axiom it searches all parents of a theory if the theorem is not found directly in thy.
get_thms thy name is like get_thm for retrieving theorem lists stored within the theory. It returns a singleton list if name actually refers to a theorem rather than a theorem list.
axioms_of thy returns the axioms of this theory node, not including the ones of its ancestors.
thms_of thy returns all theorems stored within the database of this theory node, not including the ones of its ancestors.
assume_ax thy formula reads the formula using the syntax of thy, following the same conventions as axioms in a theory definition. You can thus pretend that formula is an axiom and use the resulting theorem like an axiom. Actually assume_ax returns an assumption; qed and result complain about additional assumptions, but uresult does not.

For example, if formula is $\mathrm{a}=\mathrm{b}==>\mathrm{b}=\mathrm{a}$ then the resulting theorem has the form ? $\mathrm{a}=$? $\mathrm{b}==>$? $\mathrm{b}=? \mathrm{a} \quad[!!\mathrm{a} \mathrm{b} . \mathrm{a}=\mathrm{b}==>\mathrm{b}=\mathrm{a}$]

6.4.2 *Theory inclusion

```
subthy : theory * theory -> bool
eq_thy : theory * theory -> bool
transfer : theory -> thm -> thm
transfer_sg : Sign.sg -> thm -> thm
```

Inclusion and equality of theories is determined by unique identification stamps that are created when declaring new components. Theorems contain a reference to the theory (actually to its signature) they have been derived in. Transferring theorems to super theories has no logical significance, but may affect some operations in subtle ways (e.g. implicit merges of signatures when applying rules, or pretty printing of theorems).
subthy (thy, thy y_{2}) determines if thy is included in thy y_{2} wrt. identification stamps.
eq_thy (thy $y_{1}, t h y_{2}$) determines if thy y_{1} is exactly the same as $t h y_{2}$.
transfer thy thm transfers theorem thm to theory thy, provided the latter includes the theory of $t h m$.
transfer_sg sign thm is similar to transfer, but identifies the super theory via its signature.

6.4.3 *Building a theory

ProtoPure.thy : theory
Pure.thy : theory
CPure.thy : theory
merge_theories : string $->$ theory $*$ theory $->$ theory

ProtoPure.thy, Pure.thy, CPure.thy contain the syntax and signature of the meta-logic. There are basically no axioms: meta-level inferences are carried out by ML functions. Pure and CPure just differ in their concrete syntax of prefix function application: $t\left(u_{1}, \ldots, u_{n}\right)$ in Pure vs. $t u_{1}, \ldots u_{n}$ in CPure. ProtoPure is their common parent, containing no syntax for printing prefix applications at all!
merge_theories name (thy y_{1}, thy y_{2}) merges the two theories thy y_{1} and thy y_{2}, creating a new named theory node. The resulting theory contains all of the syntax, signature and axioms of the constituent theories. Merging theories that contain different identification stamps of the same name fails with the following message

Attempt to merge different versions of theories: " T_{1} ", ..., " T_{n} "

This error may especially occur when a theory is redeclared - say to change an inappropriate definition - and bindings to old versions persist. Isabelle ensures that old and new theories of the same name are not involved in a proof.

6.4.4 Inspecting a theory

```
print_syntax : theory -> unit
print_theory : theory -> unit
print_data : theory -> string -> unit
parents_of : theory -> theory list
ancestors_of : theory -> theory list
sign_of : theory -> Sign.sg
Sign.stamp_names_of : Sign.sg -> string list
```

These provide means of viewing a theory's components.
print_syntax thy prints the syntax of thy (grammar, macros, translation functions etc., see page 71 for more details).
print_theory thy prints the logical parts of thy, excluding the syntax.
print_data thy kind prints generic data of thy. This invokes the print method associated with kind. Refer to the output of print_theory for a list of available data kinds in thy.
parents_of thy returns the direct ancestors of thy.
ancestors_of thy returns all ancestors of thy (not including thy itself).
sign_of thy returns the signature associated with thy. It is useful with functions like read_instantiate_sg, which take a signature as an argument.

Sign.stamp_names_of $s g$ returns the names of the identification stamps of ax signature. These coincide with the names of its full ancestry including that of $s g$ itself.

6.5 Terms

Terms belong to the ML type term, which is a concrete datatype with six constructors:

```
type indexname = string * int;
infix 9 $;
datatype term = Const of string * typ
    | Free of string * typ
    | Var of indexname * typ
    | Bound of int
    | Abs of string * typ * term
    | op $ of term * term;
```

Const (a, T) is the constant with name a and type T. Constants include connectives like \wedge and \forall as well as constants like 0 and Suc. Other constants may be required to define a logic's concrete syntax.

Free (a, T) is the free variable with name a and type T.
$\operatorname{Var}(v, T)$ is the scheme variable with indexname v and type T. An indexname is a string paired with a non-negative index, or subscript; a term's scheme variables can be systematically renamed by incrementing their subscripts. Scheme variables are essentially free variables, but may be instantiated during unification.

Bound i is the bound variable with de Bruijn index i, which counts the number of lambdas, starting from zero, between a variable's occurrence and its binding. The representation prevents capture of variables. For more information see de Bruijn [3] or Paulson [9, page 336].

Abs (a, T, u) is the λ-abstraction with body u, and whose bound variable has name a and type T. The name is used only for parsing and printing; it has no logical significance.
$t \$ u$ is the application of t to u.
Application is written as an infix operator to aid readability. Here is an ML pattern to recognize FOL formulae of the form $A \rightarrow B$, binding the subformulae to A and B :

```
Const("Trueprop",_) $ (Const("op -->",_) $ A $ B)
```


6.6 *Variable binding

```
loose_bnos : term -> int list
incr_boundvars : int -> term -> term
abstract_over : term*term -> term
variant_abs : string * typ * term -> string * term
aconv : term * term -> bool
```

infix
These functions are all concerned with the de Bruijn representation of bound variables.
loose_bnos t returns the list of all dangling bound variable references. In particular, Bound 0 is loose unless it is enclosed in an abstraction. Similarly Bound 1 is loose unless it is enclosed in at least two abstractions; if enclosed in just one, the list will contain the number 0 . A well-formed term does not contain any loose variables.
incr_boundvars j increases a term's dangling bound variables by the offset j. This is required when moving a subterm into a context where it is enclosed by a different number of abstractions. Bound variables with a matching abstraction are unaffected.
abstract_over (v, t) forms the abstraction of t over v, which may be any wellformed term. It replaces every occurrence of v by a Bound variable with the correct index.
variant_abs (a, T, u) substitutes into u, which should be the body of an abstraction. It replaces each occurrence of the outermost bound variable by a free variable. The free variable has type T and its name is a variant of a chosen to be distinct from all constants and from all variables free in u.
t aconv u tests whether terms t and u are α-convertible: identical up to renaming of bound variables.

- Two constants, Frees, or Vars are α-convertible if their names and types are equal. (Variables having the same name but different types are thus distinct. This confusing situation should be avoided!)
- Two bound variables are α-convertible if they have the same number.
- Two abstractions are α-convertible if their bodies are, and their bound variables have the same type.
- Two applications are α-convertible if the corresponding subterms are.

6.7 Certified terms

A term t can be certified under a signature to ensure that every type in t is wellformed and every constant in t is a type instance of a constant declared in the
signature. The term must be well-typed and its use of bound variables must be well-formed. Meta-rules such as forall_elim take certified terms as arguments.

Certified terms belong to the abstract type cterm. Elements of the type can only be created through the certification process. In case of error, Isabelle raises exception TERM.

6.7.1 Printing terms

```
    string_of_cterm : cterm -> string
Sign.string_of_term : Sign.sg -> term -> string
```

string_of_cterm ct displays $c t$ as a string.
Sign.string_of_term $\operatorname{sign} t$ displays t as a string, using the syntax of sign.

6.7.2 Making and inspecting certified terms

```
cterm_of : Sign.sg -> term -> cterm
read_cterm : Sign.sg -> string * typ -> cterm
cert_axm : Sign.sg -> string * term -> string * term
read_axm : Sign.sg -> string * string -> string * term
rep_cterm : cterm -> {T:typ, t:term, sign:Sign.sg, maxidx:int}
```

cterm_of sign t certifies t with respect to signature sign.
read_cterm $\operatorname{sign}(s, T)$ reads the string s using the syntax of sign, creating a certified term. The term is checked to have type T; this type also tells the parser what kind of phrase to parse.
cert_axm sign (name, t) certifies t with respect to sign as a meta-proposition and converts all exceptions to an error, including the final message

The error(s) above occurred in axiom "name"
read_axm sign (name, s) similar to cert_axm, but first reads the string s using the syntax of sign.
rep_cterm ct decomposes $c t$ as a record containing its type, the term itself, its signature, and the maximum subscript of its unknowns. The type and maximum subscript are computed during certification.

6.8 Types

Types belong to the ML type typ, which is a concrete datatype with three constructor functions. These correspond to type constructors, free type variables and schematic type variables. Types are classified by sorts, which are lists of classes (representing an intersection). A class is represented by a string.

```
type class = string;
type sort = class list;
datatype typ = Type of string * typ list
    | TFree of string * sort
    | TVar of indexname * sort;
```

infixr 5 -->;
fun $\mathrm{S}-->\mathrm{T}=$ Type ("fun", [S, T]);

Type ($a, T s$) applies the type constructor named a to the type operands $T s$. Type constructors include fun, the binary function space constructor, as well as nullary type constructors such as prop. Other type constructors may be introduced. In expressions, but not in patterns, $S-->T$ is a convenient shorthand for function types.

TFree (a, s) is the type variable with name a and sort s.
$\operatorname{TVar}(v, s)$ is the type unknown with indexname v and sort s. Type unknowns are essentially free type variables, but may be instantiated during unification.

6.9 Certified types

Certified types, which are analogous to certified terms, have type ctyp.

6.9.1 Printing types

```
    string_of_ctyp : ctyp -> string
    Sign.string_of_typ : Sign.sg -> typ -> string
```

string_of_ctyp $c T$ displays $c T$ as a string.

Sign.string_of_typ sign T displays T as a string, using the syntax of sign.

6.9.2 Making and inspecting certified types
 ctyp_of : Sign.sg -> typ -> ctyp
 rep_ctyp : ctyp $->$ \{T: typ, sign: Sign.sg\}

ctyp_of sign T certifies T with respect to signature sign.
rep_ctyp $c T$ decomposes $c T$ as a record containing the type itself and its signature.

6.10 Oracles: calling trusted external reasoners

Oracles allow Isabelle to take advantage of external reasoners such as arithmetic decision procedures, model checkers, fast tautology checkers or computer algebra systems. Invoked as an oracle, an external reasoner can create arbitrary Isabelle theorems. It is your responsibility to ensure that the external reasoner is as trustworthy as your application requires. Isabelle's proof objects (§5.4) record how each theorem depends upon oracle calls.

```
invoke_oracle : theory -> xstring -> Sign.sg * object -> thm
Theory.add_oracle : bstring * (Sign.sg * object -> term) -> theory -> theory
```

invoke_oracle thy name (sign, data) invokes the oracle name of theory thy passing the information contained in the exception value data and creating a theorem having signature sign. Note that type object is just an abbreviation for exn. Errors arise if thy does not have an oracle called name, if the oracle rejects its arguments or if its result is ill-typed.

Theory.add_oracle name fun thy extends thy by oracle fun called name. It is seldom called explicitly, as there is concrete syntax for oracles in theory files.

A curious feature of mL exceptions is that they are ordinary constructors. The ML type exn is a datatype that can be extended at any time. (See my ML for the Working Programmer [10], especially page 136.) The oracle mechanism takes advantage of this to allow an oracle to take any information whatever.

There must be some way of invoking the external reasoner from ML, either because it is coded in ML or via an operating system interface. Isabelle expects the mL function to take two arguments: a signature and an exception object.

- The signature will typically be that of a desendant of the theory declaring the oracle. The oracle will use it to distinguish constants from variables, etc., and it will be attached to the generated theorems.
- The exception is used to pass arbitrary information to the oracle. This information must contain a full description of the problem to be solved by the external reasoner, including any additional information that might be required. The oracle may raise the exception to indicate that it cannot solve the specified problem.

A trivial example is provided in theory FOL/ex/IffOracle. This oracle generates tautologies of the form $P \leftrightarrow \cdots \leftrightarrow P$, with an even number of P s.

The ML section of IffOracle. thy begins by declaring a few auxiliary functions (suppressed below) for creating the tautologies. Then it declares a new exception constructor for the information required by the oracle: here, just an integer. It finally defines the oracle function itself.

```
exception IffOracleExn of int;
fun mk_iff_oracle (sign, IffOracleExn n) =
    if n > 0 andalso n mod 2 = 0
    then Trueprop $ mk_iff n
    else raise IffOracleExn n;
```

Observe the function's two arguments, the signature sign and the exception given as a pattern. The function checks its argument for validity. If n is positive and even then it creates a tautology containing n occurrences of P. Otherwise it signals error by raising its own exception (just by happy coincidence). Errors may be signalled by other means, such as returning the theorem True. Please ensure that the oracle's result is correctly typed; Isabelle will reject ill-typed theorems by raising a cryptic exception at top level.

The oracle section of IffOracle.thy installs above ML function as follows:

```
IffOracle = FOL +
oracle
    iff = mk_iff_oracle
end
```

Now in IffOracle.ML we first define a wrapper for invoking the oracle:

```
fun iff_oracle n =
    invoke_oracle IffOracle.thy "iff" (sign_of IffOracle.thy, IffOracleExn n);
```

Here are some example applications of the iff oracle. An argument of 10 is allowed, but one of 5 is forbidden:

```
iff_oracle 10;
    "P <-> P <-> P" : thm
iff_oracle 5;
    Exception- IffOracleExn 5 raised
```


Chapter 7

Defining Logics

This chapter explains how to define new formal systems - in particular, their concrete syntax. While Isabelle can be regarded as a theorem prover for set theory, higher-order logic or the sequent calculus, its distinguishing feature is support for the definition of new logics.

Isabelle logics are hierarchies of theories, which are described and illustrated in Introduction to Isabelle. That material, together with the theory files provided in the examples directories, should suffice for all simple applications. The easiest way to define a new theory is by modifying a copy of an existing theory.

This chapter documents the meta-logic syntax, mixfix declarations and pretty printing. The extended examples in $\S 7.6$ demonstrate the logical aspects of the definition of theories.

7.1 Priority grammars

A context-free grammar contains a set of nonterminal symbols, a set of terminal symbols and a set of productions. Productions have the form $A=\gamma$, where A is a nonterminal and γ is a string of terminals and nonterminals. One designated nonterminal is called the start symbol. The language defined by the grammar consists of all strings of terminals that can be derived from the start symbol by applying productions as rewrite rules.

The syntax of an Isabelle logic is specified by a priority grammar. Each nonterminal is decorated by an integer priority, as in $A^{(p)}$. A nonterminal $A^{(p)}$ in a derivation may be rewritten using a production $A^{(q)}=\gamma$ only if $p \leq q$. Any priority grammar can be translated into a normal context free grammar by introducing new nonterminals and productions.

Formally, a set of context free productions G induces a derivation relation $\longrightarrow{ }_{G}$. Let α and β denote strings of terminal or nonterminal symbols. Then

$$
\alpha A^{(p)} \beta \longrightarrow_{G} \alpha \gamma \beta
$$

if and only if G contains some production $A^{(q)}=\gamma$ for $p \leq q$.
The following simple grammar for arithmetic expressions demonstrates how binding power and associativity of operators can be enforced by priorities.

$$
\begin{aligned}
A^{(9)} & =0 \\
A^{(9)} & =\left(A^{(0)}\right) \\
A^{(0)} & =A^{(0)}+A^{(1)} \\
A^{(2)} & =A^{(3)} * A^{(2)} \\
A^{(3)} & =-A^{(3)}
\end{aligned}
$$

The choice of priorities determines that - binds tighter than $*$, which binds tighter than + . Furthermore + associates to the left and $*$ to the right.

For clarity, grammars obey these conventions:

- All priorities must lie between 0 and max_pri, which is a some fixed integer. Sometimes max_pri is written as ∞.
- Priority 0 on the right-hand side and priority max_pri on the left-hand side may be omitted.
- The production $A^{(p)}=\alpha$ is written as $A=\alpha(p)$; the priority of the left-hand side actually appears in a column on the far right.
- Alternatives are separated by |.
- Repetition is indicated by dots (...) in an informal but obvious way.

Using these conventions and assuming $\infty=9$, the grammar takes the form

$$
\begin{align*}
A= & 0 \\
& (A) \\
: & A+A^{(1)} \tag{0}\\
& A^{(3)} * A^{(2)} \tag{2}\\
& -A^{(3)} \tag{3}
\end{align*}
$$

7.2 The Pure syntax

At the root of all object-logics lies the theory Pure. It contains, among many other things, the Pure syntax. An informal account of this basic syntax (types, terms and formulae) appears in Introduction to Isabelle. A more precise description using a priority grammar appears in Fig.7.1. It defines the following nonterminals:
any denotes any term.
prop denotes terms of type prop. These are formulae of the meta-logic. Note that user constants of result type prop (i.e. $c:: \ldots \Rightarrow$ prop) should always provide concrete syntax. Otherwise atomic propositions with head c may be printed incorrectly.

```
    any = prop | logic
prop = ( prop)
    prop }\mp@subsup{}{}{(4)}:: typ
        PROP aprop
        any (3)}== any(2
        any }\mp@subsup{}{}{(3)}=?=an\mp@subsup{y}{}{(2)
        prop }\mp@subsup{}{}{(2)}==> prop\mp@subsup{}{}{(1)
        [| prop ; ...; prop |] ==> propp}\mp@subsup{}{}{(1)
        !! idts . prop
        OFCLASS ( type, logic )
aprop = id | var | logic(\infty)(any ,\ldots, any )
    logic = (logic )
        | logic(4) :: type
        | id | var | logic(\infty)(any ,\ldots, any )
        % pttrns . any (3)
    idts = idt | idtt (1) idts
    idt = id | (idt)
            | id :: type
pttrns = pttrn | pttrn (1) pttrns
pttrn = idt
    type = ( type )
            | tid | tvar | tid:: sort | tvar :: sort
            id | type (\infty) id | (type ,..., type ) id
            type (1) => type
            [ type , ..., type ] => type
    sort = id | {} | {id,\ldots,id}
```

Figure 7.1: Meta-logic syntax
aprop denotes atomic propositions.
logic denotes terms whose type belongs to class logic, excluding type prop. idts denotes a list of identifiers, possibly constrained by types.
pttrn, pttrns denote patterns for abstraction, cases etc. Initially the same as $i d t$ and idts, these are indetended to be augmented by user extensions.
type denotes types of the meta-logic.
sort denotes meta-level sorts.
| In idts, note that $\mathrm{x}:$:nat y is parsed as $\mathrm{x}:$:(nat y), treating y like a type con-- structor applied to nat. The likely result is an error message. To avoid this interpretation, use parentheses and write (x::nat) y.

Similarly, $\mathrm{x}::$ nat $\mathrm{y}:$:nat is parsed as $\mathrm{x}::($ nat $\mathrm{y}:$:nat) and yields an error. The correct form is (x::nat) (y::nat).
| Type constraints bind very weakly. For example, $\mathrm{x}<\mathrm{y}:$:nat is normally parsed as

- $(x<y)::$ nat, unless < has priority of 3 or less, in which case the string is likely to be ambiguous. The correct form is $\mathrm{x}<$ ($\mathrm{y}:: \mathrm{nat}$).

7.2.1 Logical types and default syntax

Isabelle's representation of mathematical languages is based on the simply typed λ-calculus. All logical types, namely those of class logic, are automatically equipped with a basic syntax of types, identifiers, variables, parentheses, λ abstraction and application.
| Isabelle combines the syntaxes for all types of class logic by mapping all those

- types to the single nonterminal logic. Thus all productions of logic, in particular $i d$, var etc, become available.

7.2.2 Lexical matters

The parser does not process input strings directly. It operates on token lists provided by Isabelle's lexer. There are two kinds of tokens: delimiters and name tokens.

Delimiters can be regarded as reserved words of the syntax. You can add new ones when extending theories. In Fig. 7.1 they appear in typewriter font, for example $==,=?=$ and PROP.

Name tokens have a predefined syntax. The lexer distinguishes six disjoint classes of names: identifiers, unknowns, type identifiers, type unknowns, numerals, strings. They are denoted by id, var, tid, tvar, xnum, xstr, respectively.

Typical examples are x , ? x 7 , ' a , ?' a 3 , \#42, ''foo bar''. Here is the precise syntax:

$$
\begin{aligned}
\text { id } & =\text { letter quasiletter* } \\
\text { var } & =\text { ?id } \mid \text { ? id.nat } \\
\text { tid } & =\text { 'id } \\
\text { tvar } & =\text { ?tid } \mid \text { ?tid.nat } \\
\text { xnum } & =\# \text { nat } \mid \# \sim^{\sim} \text { nat } \\
\text { xstr } & =\text { ''text'' } \\
\text { letter } & =\text { one of a...z A...Z } \\
\text { digit } & =\text { one of } 0 \ldots 9 \\
\text { quasiletter } & =\text { letter } \mid \text { digit }|-|, \\
\text { nat } & =\text { digit }^{+}
\end{aligned}
$$

The lexer repeatedly takes the maximal prefix of the input string that forms a valid token. A maximal prefix that is both a delimiter and a name is treated as a delimiter. Spaces, tabs, newlines and formfeeds are separators; they never occur within tokens, except those of class $x s t r$.

Delimiters need not be separated by white space. For example, if - is a delimiter but -- is not, then the string -- is treated as two consecutive occurrences of the token -. In contrast, mL treats -- as a single symbolic name. The consequence of Isabelle's more liberal scheme is that the same string may be parsed in different ways after extending the syntax: after adding -- as a delimiter, the input -- is treated as a single token.

A var or tvar describes an unknown, which is internally a pair of base name and index (mL type indexname). These components are either separated by a dot as in ?x. 1 or ? x 7.3 or run together as in ? x 1 . The latter form is possible if the base name does not end with digits. If the index is 0 , it may be dropped altogether: ?x abbreviates both ?x0 and ?x.0.

Tokens of class xnum or xstr are not used by the meta-logic. Object-logics may provide numerals and string constants by adding appropriate productions and translation functions.

Although name tokens are returned from the lexer rather than the parser, it is more logical to regard them as nonterminals. Delimiters, however, are terminals; they are just syntactic sugar and contribute nothing to the abstract syntax tree.

7.2.3 *Inspecting the syntax

```
syn_of : theory -> Syntax.syntax
print_syntax : theory -> unit
Syntax.print_syntax : Syntax.syntax -> unit
Syntax.print_gram : Syntax.syntax -> unit
Syntax.print_trans : Syntax.syntax -> unit
```

The abstract type Syntax.syntax allows manipulation of syntaxes in ML. You can display values of this type by calling the following functions:
syn_of thy returns the syntax of the Isabelle theory thy as an ML value.
print_syntax thy displays the syntax part of thy using Syntax.print_syntax.
Syntax.print_syntax syn shows virtually all information contained in the syntax syn. The displayed output can be large. The following two functions are more selective.

Syntax.print_gram syn shows the grammar part of syn, namely the lexicon, logical types and productions. These are discussed below.

Syntax.print_trans syn shows the translation part of syn, namely the constants, parse/print macros and parse/print translations.

Let us demonstrate these functions by inspecting Pure's syntax. Even that is too verbose to display in full.

```
Syntax.print_syntax (syn_of Pure.thy);
    lexicon: "!!" "%" "(" ")" "," "." "::" ";" "==" "==>" ...
    logtypes: fun itself
    prods:
        type = tid (1000)
        type = tvar (1000)
        type = id (1000)
        type = tid "::" sort[0] => "_ofsort" (1000)
        type = tvar "::" sort[0] => "_ofsort" (1000)
    print modes: "symbols" "xterm"
    consts: "_K" "_appl" "_aprop" "_args" "_asms" "_bigimpl" ...
    parse_ast_translation: "_appl" "_bigimpl" "_bracket"
        "_idtyp" "_lambda" "_tapp" "_tappl"
    parse_rules:
    parse_translation: "!!" "_K" "_abs" "_aprop"
    print_translation: "all"
    print_rules:
    print_ast_translation: "==>" "_abs" "_idts" "fun"
```

As you can see, the output is divided into labelled sections. The grammar is represented by lexicon, logtypes and prods. The rest refers to syntactic translations and macro expansion. Here is an explanation of the various sections.
lexicon lists the delimiters used for lexical analysis.
logtypes lists the types that are regarded the same as logic syntactically. Thus types of object-logics (e.g. nat, say) will be automatically equipped with the standard syntax of λ-calculus.
prods lists the productions of the priority grammar. The nonterminal $A^{(n)}$ is rendered in ASCII as $A[n]$. Each delimiter is quoted. Some productions are shown with => and an attached string. These strings later become the heads of parse trees; they also play a vital role when terms are printed (see §8.1).
Productions with no strings attached are called copy productions. Their right-hand side must have exactly one nonterminal symbol (or name token). The parser does not create a new parse tree node for copy productions, but simply returns the parse tree of the right-hand symbol.

If the right-hand side consists of a single nonterminal with no delimiters, then the copy production is called a chain production. Chain productions act as abbreviations: conceptually, they are removed from the grammar by adding new productions. Priority information attached to chain productions is ignored; only the dummy value -1 is displayed.
print_modes lists the alternative print modes provided by this syntax (see §7.4).
consts, parse_rules, print_rules relate to macros (see §8.5).
parse_ast_translation, print_ast_translation list sets of constants that invoke translation functions for abstract syntax trees. Section $\S 8.1$ below discusses this obscure matter.
parse_translation, print_translation list sets of constants that invoke translation functions for terms (see §8.6).

7.3 Mixfix declarations

When defining a theory, you declare new constants by giving their names, their type, and an optional mixfix annotation. Mixfix annotations allow you to extend Isabelle's basic λ-calculus syntax with readable notation. They can express any context-free priority grammar. Isabelle syntax definitions are inspired by obj [4]; they are more general than the priority declarations of mL and Prolog.

A mixfix annotation defines a production of the priority grammar. It describes the concrete syntax, the translation to abstract syntax, and the pretty printing. Special case annotations provide a simple means of specifying infix operators and binders.

7.3.1 The general mixfix form

Here is a detailed account of mixfix declarations. Suppose the following line occurs within a consts or syntax section of a . thy file:

$$
c:: \quad " \sigma " \text { ("template" ps p) }
$$

This constant declaration and mixfix annotation are interpreted as follows:

- The string c is the name of the constant associated with the production; unless it is a valid identifier, it must be enclosed in quotes. If c is empty (given as "") then this is a copy production. Otherwise, parsing an instance of the phrase template generates the $\operatorname{AST}\left(\begin{array}{lllll} \\ c & a_{1} & \ldots & a_{n}\end{array}\right)$, where a_{i} is the AST generated by parsing the i-th argument.
- The constant c, if non-empty, is declared to have type σ (consts section only).
- The string template specifies the right-hand side of the production. It has the form

$$
w_{0}-w_{1}-\cdots-w_{n},
$$

where each occurrence of _ denotes an argument position and the w_{i} do not contain _. (If you want a literal _ in the concrete syntax, you must escape it as described below.) The w_{i} may consist of delimiters, spaces or pretty printing annotations (see below).

- The type σ specifies the production's nonterminal symbols (or name tokens). If template is of the form above then σ must be a function type with at least n argument positions, say $\sigma=\left[\tau_{1}, \ldots, \tau_{n}\right] \Rightarrow \tau$. Nonterminal symbols are derived from the types $\tau_{1}, \ldots, \tau_{n}, \tau$ as described below. Any of these may be function types.
- The optional list $p s$ may contain at most n integers, say $\left[p_{1}, \ldots, p_{m}\right]$, where p_{i} is the minimal priority required of any phrase that may appear as the i-th argument. Missing priorities default to 0 .
- The integer p is the priority of this production. If omitted, it defaults to the maximal priority. Priorities range between 0 and max_pri ($=1000$).
The resulting production is

$$
A^{(p)}=w_{0} A_{1}^{\left(p_{1}\right)} w_{1} A_{2}^{\left(p_{2}\right)} \ldots A_{n}^{\left(p_{n}\right)} w_{n}
$$

where A and the A_{i} are the nonterminals corresponding to the types τ and τ_{i} respectively. The nonterminal symbol associated with a type (...)ty is logic, if this is a logical type (namely one of class logic excluding prop). Otherwise it is ty (note that only the outermost type constructor is taken into account). Finally, the nonterminal of a type variable is any.
| Theories must sometimes declare types for purely syntactic purposes - merely playing the role of nonterminals. One example is type, the built-in type of types. This is a 'type of all types' in the syntactic sense only. Do not declare such types under arities as belonging to class logic, for that would make them useless as separate nonterminal symbols.

Associating nonterminals with types allows a constant's type to specify syntax as well. We can declare the function f to have type $\left[\tau_{1}, \ldots, \tau_{n}\right] \Rightarrow \tau$ and, through a mixfix annotation, specify the layout of the function's n arguments. The constant's name, in this case f, will also serve as the label in the abstract syntax tree.

You may also declare mixfix syntax without adding constants to the theory's signature, by using a syntax section instead of consts. Thus a production need not map directly to a logical function (this typically requires additional syntactic translations, see also Chapter 8).

As a special case of the general mixfix declaration, the form

$$
c:: ~ " \sigma " \text { ("template") }
$$

specifies no priorities. The resulting production puts no priority constraints on any of its arguments and has maximal priority itself. Omitting priorities in this manner is prone to syntactic ambiguities unless the production's right-hand side is fully bracketed, as in "if _ then _ else _ fi".

Omitting the mixfix annotation completely, as in $c:$: " σ ", is sensible only if c is an identifier. Otherwise you will be unable to write terms involving c.

7.3.2 Example: arithmetic expressions

This theory specification contains a syntax section with mixfix declarations encoding the priority grammar from §7.1:

```
ExpSyntax = Pure +
types
    exp
syntax
    "0" :: exp ("0" 9)
    "+" :: [exp, exp] => exp ("_ + _" [0, 1] 0)
    "*" :: [exp, exp] => exp ("_ * _" [3, 2] 2)
    "-" :: exp => exp ("- _" [3] 3)
end
```

If you put this into a file ExpSyntax.thy and load it via use_thy"ExpSyntax", you can run some tests:

```
val read_exp = Syntax.test_read (syn_of ExpSyntax.thy) "exp";
    val it = fn : string -> unit
read_exp "0 * 0 * 0 * 0 + 0 + 0 + 0";
    tokens: "O" "*" "O" "*" "O" "*" "O" "+" "O" "+" "O" "+" "O"
    raw: ("+" ("+" ("+" ("*" "O" ("*" "O" ("*" "O" "O"))) "O") "O") "O")
    \vdots
read_exp "0 + - 0 + 0";
    tokens: "O" "+" "-" "0" "+" "O"
    raw: ("+" ("+" "O" ("-" "O")) "O")
    \vdots
```

The output of Syntax.test_read includes the token list (tokens) and the raw AST directly derived from the parse tree, ignoring parse AST translations. The rest is tracing information provided by the macro expander (see §8.5).

Executing Syntax.print_gram reveals the productions derived from the above mixfix declarations (lots of additional information deleted):

```
Syntax.print_gram (syn_of ExpSyntax.thy);
    exp = "0" => "0" (9)
    exp = exp[0] "+" exp[1] => "+" (0)
    exp = exp[3] "*" exp[2] => "*" (2)
    exp = "-" exp[3] => "-" (3)
```

Note that because exp is not of class logic, it has been retained as a separate nonterminal. This also entails that the syntax does not provide for identifiers or paranthesized expressions. Normally you would also want to add the declaration arities exp::logic after types and use consts instead of syntax. Try this as an exercise and study the changes in the grammar.

7.3.3 The mixfix template

Let us now take a closer look at the string template appearing in mixfix annotations. This string specifies a list of parsing and printing directives: delimiters, arguments, spaces, blocks of indentation and line breaks. These are encoded by the following character sequences:
d is a delimiter, namely a non-empty sequence of characters other than the special characters _, (,) and /. Even these characters may appear if escaped; this means preceding it with a ' (single quote). Thus you have to write '' if you really want a single quote. Furthermore, a' followed by a space separates delimiters without extra white space being added for printing.
_ is an argument position, which stands for a nonterminal symbol or name
token.
s is a non-empty sequence of spaces for printing. This and the following specifications do not affect parsing at all.
(n opens a pretty printing block. The optional number n specifies how much indentation to add when a line break occurs within the block. If (is not followed by digits, the indentation defaults to 0 .
) closes a pretty printing block.
// forces a line break.
/s allows a line break. Here s stands for the string of spaces (zero or more) right after the / character. These spaces are printed if the break is not taken.

For example, the template " (_ +/ _)" specifies an infix operator. There are two argument positions; the delimiter + is preceded by a space and followed by a space or line break; the entire phrase is a pretty printing block. Other examples appear in Fig. 8.4 below. Isabelle's pretty printer resembles the one described in Paulson [9].

7.3.4 Infixes

Infix operators associating to the left or right can be declared using infixl or infixr. Basically, the form $c:: \sigma$ (infixl p) abbreviates the mixfix declarations

```
"op c" :: \sigma ("(_ c/ _)" [p, p+1] p)
"op c" :: \sigma ("op c")
```

and $c:: \sigma$ (infixr p) abbreviates the mixfix declarations

$$
\begin{aligned}
& \text { "op } c \text { " :: } \sigma \quad \begin{array}{l}
\left("\left(_c / _\right) "[p+1, p] p\right) \\
" o p ~ c ":: \sigma \\
(" o p ~ c ")
\end{array}
\end{aligned}
$$

The infix operator is declared as a constant with the prefix op. Thus, prefixing infixes with op makes them behave like ordinary function symbols, as in ML. Special characters occurring in c must be escaped, as in delimiters, using a single quote.

A slightly more general form of infix declarations allows constant names to be independent from their concrete syntax, namely $c:: \sigma$ (infixl "sy" p), the same for infixr. As an example consider:

```
and :: [bool, bool] => bool (infixr "&" 35)
```

The internal constant name will then be just and, without any op prefixed.

7.3.5 Binders

A binder is a variable-binding construct such as a quantifier. The constant declaration

```
c :: \sigma (binder "Q" [pb] p)
```

introduces a constant c of type σ, which must have the form $\left(\tau_{1} \Rightarrow \tau_{2}\right) \Rightarrow \tau_{3}$. Its concrete syntax is $\mathcal{Q} x . P$, where x is a bound variable of type τ_{1}, the body P has type τ_{2} and the whole term has type τ_{3}. The optional integer $p b$ specifies the body's priority, by default p. Special characters in \mathcal{Q} must be escaped using a single quote.

The declaration is expanded internally to something like

$$
\begin{array}{ll}
c & ::\left(\tau_{1}=>\tau_{2}\right) \Rightarrow \tau_{3} \\
" \mathcal{Q} " & ::\left[i d t s, \tau_{2}\right] \Rightarrow \tau_{3} \quad\left("\left(3 \mathcal{Q}_{-} . /{ }_{2}\right) "[0, p b] p\right)
\end{array}
$$

Here idts is the nonterminal symbol for a list of identifiers with optional type constraints (see Fig. 7.1). The declaration also installs a parse translation for \mathcal{Q} and a print translation for c to translate between the internal and external forms.

A binder of type $(\sigma \Rightarrow \tau) \Rightarrow \tau$ can be nested by giving a list of variables. The external form $\mathcal{Q} x_{1} x_{2} \ldots x_{n}$. P corresponds to the internal form

$$
c\left(\lambda x_{1} . c\left(\lambda x_{2} \ldots c\left(\lambda x_{n} . P\right) \ldots\right)\right)
$$

For example, let us declare the quantifier \forall :

```
All :: ('a => 0) => o (binder "ALL " 10)
```

This lets us write $\forall x . P$ as either All (\% $x . P$) or ALL $x . P$. When printing, Isabelle prefers the latter form, but must fall back on $\operatorname{All}(P)$ if P is not an abstraction. Both P and ALL x.P have type o, the type of formulae, while the bound variable can be polymorphic.

7.4 * Alternative print modes

Isabelle's pretty printer supports alternative output syntaxes. These may be used independently or in cooperation. The currently active print modes (with precedence from left to right) are determined by a reference variable.

```
print_mode: string list ref
```

Initially this may already contain some print mode identifiers, depending on how Isabelle has been invoked (e.g. by some user interface). So changes should be incremental - adding or deleting modes relative to the current value.

Any mL string is a legal print mode identifier, without any predeclaration required. The following names should be considered reserved, though: " " (yes, the empty string), symbols, latex, xterm.

There is a separate table of mixfix productions for pretty printing associated with each print mode. The currently active ones are conceptually just concatenated from left to right, with the standard syntax output table always coming last as default. Thus mixfix productions of preceding modes in the list may override those of later ones. Also note that token translations are always relative to some print mode (see $\S 8.7$).

The canonical application of print modes is optional printing of mathematical symbols from a special screen font instead of ASCII. Another example is to re-use Isabelle's advanced λ-term printing mechanisms to generate completely different output, say for interfacing external tools like model checkers (see also HOL/Modelcheck).

7.5 Ambiguity of parsed expressions

To keep the grammar small and allow common productions to be shared all logical types (except prop) are internally represented by one nonterminal, namely logic. This and omitted or too freely chosen priorities may lead to ways of parsing an expression that were not intended by the theory's maker. In most cases Isabelle is able to select one of multiple parse trees that an expression has lead to by checking which of them can be typed correctly. But this may not work in every case and always slows down parsing. The warning and error messages that can be produced during this process are as follows:

If an ambiguity can be resolved by type inference the following warning is shown to remind the user that parsing is (unnecessarily) slowed down. In cases where it's not easily possible to eliminate the ambiguity the frequency of the warning can be controlled by changing the value of Syntax.ambiguity_level which has type int ref. Its default value is 1 and by increasing it one can control how many parse trees are necessary to generate the warning.

```
Ambiguous input "..."
produces the following parse trees:
Fortunately, only one parse tree is type correct.
You may still want to disambiguate your grammar or your input.
```

The following message is normally caused by using the same syntax in two different productions:

```
Ambiguous input "..."
produces the following parse trees:
More than one term is type correct:
```

Ambiguities occuring in syntax translation rules cannot be resolved by type
inference because it is not necessary for these rules to be type correct. Therefore Isabelle always generates an error message and the ambiguity should be eliminated by changing the grammar or the rule.

7.6 Example: some minimal logics

This section presents some examples that have a simple syntax. They demonstrate how to define new object-logics from scratch.

First we must define how an object-logic syntax is embedded into the metalogic. Since all theorems must conform to the syntax for prop (see Fig. 7.1), that syntax has to be extended with the object-level syntax. Assume that the syntax of your object-logic defines a meta-type of formulae which refers to the nonterminal logic. These formulae can now appear in axioms and theorems wherever prop does if you add the production

$$
\text { prop }=\text { logic. }
$$

This is not supposed to be a copy production but an implicit coercion from formulae to propositions:

```
Base = Pure +
types
    o
arities
    o :: logic
consts
    Trueprop :: 0 => prop ("_" 5)
end
```

The constant Trueprop (the name is arbitrary) acts as an invisible coercion function. Assuming this definition resides in a file Base.thy, you have to load it with the command use_thy "Base".

One of the simplest nontrivial logics is minimal logic of implication. Its definition in Isabelle needs no advanced features but illustrates the overall mechanism nicely:

```
Hilbert = Base +
consts
    "-->" :: [o, o] => o (infixr 10)
rules
    K "P --> Q --> P"
    S "(P --> Q --> R) --> (P --> Q) --> P --> R"
    MP "[| P --> Q; P |] ==> Q"
end
```

After loading this definition from the file Hilbert.thy, you can start to prove
theorems in the logic:

```
goal Hilbert.thy "P --> P";
    Level 0
    \(P\)--> P
        1. \(P-->P\)
by (resolve_tac [Hilbert.MP] 1);
    Level 1
    \(P\)--> \(P\)
            1. \(? P-->P-->P\)
            2. ?P
by (resolve_tac [Hilbert.MP] 1);
    Level 2
    \(P\)--> \(P\)
            1. ?P1 --> ?P --> \(P\)--> \(P\)
            2. ?P1
            3. ?P
by (resolve_tac [Hilbert.S] 1);
    Level 3
    \(P\)--> \(P\)
            1. \(P-->\) ?Q2 \(-->P\)
            2. \(P\)--> ?Q2
by (resolve_tac [Hilbert.K] 1);
    Level 4
    \(P\)--> \(P\)
            1. \(P-->\) ?Q2
by (resolve_tac [Hilbert.K] 1);
    Level 5
    \(P\)--> \(P\)
    No subgoals!
```

As we can see, this Hilbert-style formulation of minimal logic is easy to define but difficult to use. The following natural deduction formulation is better:

```
MinI = Base +
consts
    "-->" :: [o, o] => o (infixr 10)
rules
    impI "(P ==> Q) ==> P --> Q"
    impE "[l P --> Q; P |] ==> Q"
end
```

Note, however, that although the two systems are equivalent, this fact cannot be proved within Isabelle. Axioms S and K can be derived in MinI (exercise!), but impI cannot be derived in Hilbert. The reason is that impI is only an admissible rule in Hilbert, something that can only be shown by induction over all possible proofs in Hilbert.

We may easily extend minimal logic with falsity:

```
MinIF = MinI +
consts
    False :: ○
rules
    FalseE "False ==> P"
end
```

On the other hand, we may wish to introduce conjunction only:

```
MinC = Base +
consts
    "\&" : : [o, o] => ○ (infixr 30)
rules
    conjI "[| P; Q |] ==> P \& Q"
    conjE1 "P \& Q ==> P"
    conjE2 "P \& Q ==> Q"
end
```

And if we want to have all three connectives together, we create and load a theory file consisting of a single line:

```
MinIFC = MinIF + MinC
```

Now we can prove mixed theorems like

```
goal MinIFC.thy "P & False --> Q";
by (resolve_tac [MinI.impI] 1);
by (dresolve_tac [MinC.conjE2] 1);
by (eresolve_tac [MinIF.FalseE] 1);
```

Try this as an exercise!

Chapter 8

Syntax Transformations

This chapter is intended for experienced Isabelle users who need to define macros or code their own translation functions. It describes the transformations between parse trees, abstract syntax trees and terms.

8.1 Abstract syntax trees

The parser, given a token list from the lexer, applies productions to yield a parse tree. By applying some internal transformations the parse tree becomes an abstract syntax tree, or AST. Macro expansion, further translations and finally type inference yields a well-typed term. The printing process is the reverse, except for some subtleties to be discussed later.

Figure 8.1 outlines the parsing and printing process. Much of the complexity is due to the macro mechanism. Using macros, you can specify most forms of concrete syntax without writing any ML code.

Abstract syntax trees are an intermediate form between the raw parse trees and the typed λ-terms. An AST is either an atom (constant or variable) or a list of at least two subtrees. Internally, they have type Syntax.ast:

```
datatype ast = Constant of string
    | Variable of string
    | Appl of ast list
```

Isabelle uses an S-expression syntax for abstract syntax trees. Constant atoms are shown as quoted strings, variable atoms as non-quoted strings and applications as a parenthesised list of subtrees. For example, the AST

```
Appl [Constant "_constrain",
    Appl [Constant "_abs", Variable "x", Variable "t"],
    Appl [Constant "fun", Variable "'a", Variable "'b"]]
```

is shown as ("_constrain" ("_abs" x t) ("fun" 'a 'b)). Both () and (f) are illegal because they have too few subtrees.

The resemblance to Lisp's S-expressions is intentional, but there are two kinds of atomic symbols: Constant x and Variable x. Do not take the names Constant and Variable too literally; in the later translation to terms, Variable x may become a constant, free or bound variable, even a type constructor or class name;

string	
\downarrow	lexer, parser
parse tree	
\downarrow	parse AST translation
AST	
\downarrow	AST rewriting (macros)
AST	
\downarrow	parse translation, type inference
- well-typed term	
\downarrow	print translation
AST	AST rewriting (macros)
\downarrow	
AST	print AST translation, token translation
\downarrow	

Figure 8.1: Parsing and printing
the actual outcome depends on the context.
Similarly, you can think of $\left(f x_{1} \ldots x_{n}\right)$ as the application of f to the arguments x_{1}, \ldots, x_{n}. But the kind of application is determined later by context; it could be a type constructor applied to types.

Forms like (("_abs" x t) u) are legal, but ASTs are first-order: the "_abs" does not bind the x in any way. Later at the term level, ("_abs" $\mathrm{x} t$) will become an Abs node and occurrences of x in t will be replaced by bound variables (the term constructor Bound).

8.2 Transforming parse trees to ASTs

The parse tree is the raw output of the parser. Translation functions, called parse AST translations, transform the parse tree into an abstract syntax tree.

The parse tree is constructed by nesting the right-hand sides of the productions used to recognize the input. Such parse trees are simply lists of tokens and constituent parse trees, the latter representing the nonterminals of the productions. Let us refer to the actual productions in the form displayed by print_syntax (see §6.4.4 for an example).

Ignoring parse AST translations, parse trees are transformed to ASTs by stripping out delimiters and copy productions. More precisely, the mapping $\llbracket-\rrbracket$ is derived from the productions as follows:

- Name tokens: $\llbracket t \rrbracket=\operatorname{Variable} s$, where t is an id, var, tid, tvar, xnum or xstr token, and s its associated string. Note that for xstr this does not

input string	AST
"f"	f
"'a"	'a
"t == u"	("==" t u)
"f(x)"	("_appl" f x)
"f(x, y) "	("_appl" f ("_args" x y))
"f(x, y, z)"	("_appl" f ("_args" x ("_args" y z)))
"\%x y. t"	("_lambda" ("_idts" x y) t)

Figure 8.2: Parsing examples using the Pure syntax

input string	AST	
"f(x, y, z)"	(f x y z)	
"'a ty"	(ty 'a)	
"('a, 'b) ty"	(ty 'a 'b)	
"\%x y z. t"	("_abs" x ("_abs" y ("_abs" z t))	
"\%x : : 'a. t"	("_abs" ("_constrain" x 'a) t)	
"[\| P; Q; R] $=$ (${ }^{\text {" }}$	("==>" P ("==>" Q ("==>" R S)))
"['a, 'b, 'c] => 'd"	("fun" 'a ("fun" 'b ("fun" 'c 'd))	

Figure 8.3: Built-in parse AST translations
include the quotes.

- Copy productions: $\llbracket \ldots P \ldots \rrbracket=\llbracket P \rrbracket$. Here \ldots stands for strings of delimiters, which are discarded. P stands for the single constituent that is not a delimiter; it is either a nonterminal symbol or a name token.
- 0-ary productions: $\llbracket \ldots=>c \rrbracket=$ Constant c. Here there are no constituents other than delimiters, which are discarded.
- n-ary productions, where $n \geq 1$: delimiters are discarded and the remaining constituents P_{1}, \ldots, P_{n} are built into an application whose head constant is c :

$$
\llbracket \ldots P_{1} \ldots P_{n} \ldots=>c \rrbracket=\operatorname{Appl}\left[\text { Constant } c, \llbracket P_{1} \rrbracket, \ldots, \llbracket P_{n} \rrbracket\right]
$$

Figure 8.2 presents some simple examples, where ==, _appl, _args, and so forth name productions of the Pure syntax. These examples illustrate the need for further translations to make ASTs closer to the typed λ-calculus. The Pure syntax provides predefined parse AST translations for ordinary applications, type applications, nested abstractions, meta implications and function types. Figure 8.3 shows their effect on some representative input strings.

The names of constant heads in the AST control the translation process. The list of constants invoking parse AST translations appears in the output of print_syntax under parse_ast_translation.

8.3 Transforming ASTs to terms

The AST, after application of macros (see $\S 8.5$), is transformed into a term. This term is probably ill-typed since type inference has not occurred yet. The term may contain type constraints consisting of applications with head "_constrain"; the second argument is a type encoded as a term. Type inference later introduces correct types or rejects the input.

Another set of translation functions, namely parse translations, may affect this process. If we ignore parse translations for the time being, then ASTs are transformed to terms by mapping AST constants to constants, AST variables to schematic or free variables and AST applications to applications.

More precisely, the mapping $\llbracket-\rrbracket$ is defined by

- Constants: \llbracket Constant $x \rrbracket=\operatorname{Const}(x$, dummyT $)$.
- Schematic variables: $\llbracket \operatorname{Variable} " ? x i " \rrbracket=\operatorname{Var}((x, i)$, dummyT), where x is the base name and i the index extracted from $x i$.
- Free variables: \llbracket Variable $x \rrbracket=\operatorname{Free}(x$, dummyT $)$.
- Function applications with n arguments:

$$
\llbracket \operatorname{Appl}\left[f, x_{1}, \ldots, x_{n}\right] \rrbracket=\llbracket f \rrbracket \$ \llbracket x_{1} \rrbracket \$ \ldots \$ \llbracket x_{n} \rrbracket
$$

Here Const, Var, Free and \$ are constructors of the datatype term, while dummyT stands for some dummy type that is ignored during type inference.

So far the outcome is still a first-order term. Abstractions and bound variables (constructors Abs and Bound) are introduced by parse translations. Such translations are attached to "_abs", "!!" and user-defined binders.

8.4 Printing of terms

The output phase is essentially the inverse of the input phase. Terms are translated via abstract syntax trees into strings. Finally the strings are pretty printed.

Print translations (§8.6) may affect the transformation of terms into ASTs. Ignoring those, the transformation maps term constants, variables and applications to the corresponding constructs on ASTs. Abstractions are mapped to applications of the special constant _abs.

More precisely, the mapping 【-】 is defined as follows:

- $\llbracket \operatorname{Const}(x, \tau) \rrbracket=$ Constant x.
- $\llbracket \operatorname{Free}(x, \tau) \rrbracket=$ constrain $(\operatorname{Variable} x, \tau)$.
- $\llbracket \operatorname{Var}((x, i), \tau) \rrbracket=$ constrain(Variable "? $x i$ ",$\tau)$, where ? $x i$ is the string representation of the indexname (x, i).
- For the abstraction $\lambda x:: \tau . t$, let x^{\prime} be a variant of x renamed to differ from all names occurring in t, and let t^{\prime} be obtained from t by replacing all bound occurrences of x by the free variable x^{\prime}. This replaces corresponding occurrences of the constructor Bound by the term Free (x^{\prime}, dummyT):

$$
\left.\llbracket \operatorname{Abs}(x, \tau, t) \rrbracket=\text { Appl [Constant "_abs", constrain }\left(\text { Variable } x^{\prime}, \tau\right), \llbracket t^{\prime} \rrbracket\right] .
$$

- 【Bound $i \rrbracket=$ Variable "B. i ". The occurrence of constructor Bound should never happen when printing well-typed terms; it indicates a de Bruijn index with no matching abstraction.
- Where f is not an application,

$$
\llbracket f \$ x_{1} \$ \ldots \$ x_{n} \rrbracket=\operatorname{Appl}\left\lceil\llbracket f \rrbracket, \llbracket x_{1} \rrbracket, \ldots, \llbracket x_{n} \rrbracket\right]
$$

Type constraints are inserted to allow the printing of types. This is governed by the boolean variable show_types:

- constrain $(x, \tau)=x$ if $\tau=$ dummyT or show_types is set to false.
- constrain $(x, \tau)=$ Appl [Constant "_constrain", $x, \llbracket \tau \rrbracket]$ otherwise.

Here, $\llbracket \tau \rrbracket$ is the Ast encoding of τ : type constructors go to Constants; type identifiers go to Variables; type applications go to Appls with the type constructor as the first element. If show_sorts is set to true, some type variables are decorated with an AST encoding of their sort.

The AST, after application of macros (see §8.5), is transformed into the final output string. The built-in print AST translations reverse the parse AST translations of Fig. 8.3.

For the actual printing process, the names attached to productions of the form $\ldots A_{1}^{\left(p_{1}\right)} \ldots A_{n}^{\left(p_{n}\right)} \ldots \Rightarrow c$ play a vital role. Each AST with constant head c, namely " c " or (" c " $x_{1} \ldots x_{n}$), is printed according to the production for c. Each $\operatorname{argument} x_{i}$ is converted to a string, and put in parentheses if its priority $\left(p_{i}\right)$ requires this. The resulting strings and their syntactic sugar (denoted by ... above) are joined to make a single string.

If an application (" c " $x_{1} \ldots x_{m}$) has more arguments than the corresponding production, it is first split into ($\left(" c\right.$ " $\left.x_{1} \ldots x_{n}\right) x_{n+1} \ldots x_{m}$). Applications with too few arguments or with non-constant head or without a corresponding production
are printed as $f\left(x_{1}, \ldots, x_{l}\right)$ or $\left(\alpha_{1}, \ldots, \alpha_{l}\right)$ ty. Multiple productions associated with some name c are tried in order of appearance. An occurrence of Variable x is simply printed as x.

Blanks are not inserted automatically. If blanks are required to separate tokens, specify them in the mixfix declaration, possibly preceded by a slash (/) to allow a line break.

8.5 Macros: syntactic rewriting

Mixfix declarations alone can handle situations where there is a direct connection between the concrete syntax and the underlying term. Sometimes we require a more elaborate concrete syntax, such as quantifiers and list notation. Isabelle's macros and translation functions can perform translations such as

```
ALL x:A.P }\rightleftharpoons Ball(A, %x.P)
[x, y, z] \rightleftharpoons Cons(x, Cons(y, Cons(z, Nil)))
```

Translation functions (see $\S 8.6$) must be coded in ML; they are the most powerful translation mechanism but are difficult to read or write. Macros are specified by first-order rewriting systems that operate on abstract syntax trees. They are usually easy to read and write, and can express all but the most obscure translations.

Figure 8.4 defines a fragment of first-order logic and set theory. ${ }^{1}$ Theory SetSyntax declares constants for set comprehension (Collect), replacement (Replace) and bounded universal quantification (Ball). Each of these binds some variables. Without additional syntax we should have to write $\forall x \in A . P$ as Ball (A, \%x.P), and similarly for the others.

The theory specifies a variable-binding syntax through additional productions that have mixfix declarations. Each non-copy production must specify some constant, which is used for building ASTs. The additional constants are decorated with @ to stress their purely syntactic purpose; they may not occur within the final well-typed terms, being declared as syntax rather than consts.

The translations cause the replacement of external forms by internal forms after parsing, and vice versa before printing of terms. As a specification of the set theory notation, they should be largely self-explanatory. The syntactic constants, @Collect, @Replace and @Ball, appear implicitly in the macro rules via their mixfix forms.

Macros can define variable-binding syntax because they operate on ASTs, which have no inbuilt notion of bound variable. The macro variables x and y have type idt and therefore range over identifiers, in this case bound variables.

[^3]```
SetSyntax = Pure +
types
 i o
arities
 i, ○ :: logic
consts
 Trueprop : : ○ => prop ("_" 5)
 Collect :: [i, i => o] => i
 Replace :: [i, [i, i] \(\Rightarrow\) o] \(\Rightarrow\) i
 Ball :: [i, i => o] => o
syntax
 "@Collect" :: [idt, i, o] => i ("(1\{_:./ _\})")
 "@Replace" :: [idt, idt, i, o] => i ("(1\{_./ _:_, _\})")
 "@Ball" :: [idt, i, o] => o ("(3ALL _:_./ _)" 10)
translations
 "\{x:A.P\}" == "Collect(A, \%x. P)"
 "\{y. x:A, Q\}" == "Replace(A, \%x y. Q)"
 "ALL x:A. P" == "Ball(A, \%x. P)"
end
```

Figure 8.4: Macro example: set theory

The macro variables $P$ and $Q$ range over formulae containing bound variable occurrences.

Other applications of the macro system can be less straightforward, and there are peculiarities. The rest of this section will describe in detail how Isabelle macros are preprocessed and applied.

### 8.5.1 Specifying macros

Macros are basically rewrite rules on ASTs. But unlike other macro systems found in programming languages, Isabelle's macros work in both directions. Therefore a syntax contains two lists of rewrites: one for parsing and one for printing.

The translations section specifies macros. The syntax for a macro is

$$
\text { (root) string }\left\{\begin{array}{l}
=> \\
<= \\
==
\end{array}\right\} \quad \text { (root) string }
$$

This specifies a parse rule (=>), a print rule ( $<=$ ), or both $(==)$. The two strings specify the left and right-hand sides of the macro rule. The (root) specification is optional; it specifies the nonterminal for parsing the string and if omitted defaults to logic. AST rewrite rules $(l, r)$ must obey certain conditions:

- Rules must be left linear: $l$ must not contain repeated variables.
- Rules must have constant heads, namely $l=" c "$ or $l=\left(" c " x_{1} \ldots x_{n}\right)$.
- Every variable in $r$ must also occur in $l$.

Macro rules may refer to any syntax from the parent theories. They may also refer to anything defined before the current translations section - including any mixfix declarations.

Upon declaration, both sides of the macro rule undergo parsing and parse AST translations (see $\S 8.1$ ), but do not themselves undergo macro expansion. The lexer runs in a different mode that additionally accepts identifiers of the form _ letter quasiletter* (like _idt, _K). Thus, a constant whose name starts with an underscore can appear in macro rules but not in ordinary terms.

Some atoms of the macro rule's AST are designated as constants for matching. These are all names that have been declared as classes, types or constants (logical and syntactic).

The result of this preprocessing is two lists of macro rules, each stored as a pair of Asts. They can be viewed using print_syntax (sections parse_rules and print_rules). For theory SetSyntax of Fig. 8.4 these are

```
parse_rules:
 ("@Collect" x A P) -> ("Collect" A ("_abs" x P))
 ("@Replace" y x A Q) -> ("Replace" A ("_abs" x ("_abs" y Q)))
 ("@Ball" x A P) -> ("Ball" A ("_abs" x P))
print_rules:
 ("Collect" A ("_abs" x P)) -> ("@Collect" x A P)
 ("Replace" A ("_abs" x ("_abs" y Q))) -> ("@Replace" y x A Q)
 ("Ball" A ("_abs" x P)) -> ("@Ball" x A P)
```

| Avoid choosing variable names that have previously been used as constants, types

- or type classes; the consts section in the output of print_syntax lists all such names. If a macro rule works incorrectly, inspect its internal form as shown above, recalling that constants appear as quoted strings and variables without quotes.
| If eta_contract is set to true, terms will be $\eta$-contracted before the AST rewriter - sees them. Thus some abstraction nodes needed for print rules to match may vanish. For example, Ball (A, \%x. P(x)) contracts to Ball(A, P); the print rule does not apply and the output will be Ball (A, P). This problem would not occur if ML translation functions were used instead of macros (as is done for binder declarations).
! Another trap concerns type constraints. If show_types is set to true, bound vari-
- ables will be decorated by their meta types at the binding place (but not at occurrences in the body). Matching with Collect (A, \%x. P) binds $x$ to something like ("_constrain" y "i") rather than only y. AST rewriting will cause the constraint to appear in the external form, say $\{y:: i: A:: i . P:: 0\}$.

To allow such constraints to be re-read, your syntax should specify bound variables using the nonterminal idt. This is the case in our example. Choosing id instead of idt is a common error.

### 8.5.2 Applying rules

As a term is being parsed or printed, an AST is generated as an intermediate form (recall Fig. 8.1). The AST is normalised by applying macro rules in the manner of a traditional term rewriting system. We first examine how a single rule is applied.

Let $t$ be the abstract syntax tree to be normalised and $(l, r)$ some translation rule. A subtree $u$ of $t$ is a redex if it is an instance of $l$; in this case $l$ is said to match $u$. A redex matched by $l$ may be replaced by the corresponding instance of $r$, thus rewriting the AST $t$. Matching requires some notion of place-holders that may occur in rule patterns but not in ordinary ASTs; Variable atoms serve this purpose.

The matching of the object $u$ by the pattern $l$ is performed as follows:

- Every constant matches itself.
- Variable $x$ in the object matches Constant $x$ in the pattern. This point is discussed further below.
- Every ast in the object matches Variable $x$ in the pattern, binding $x$ to $u$.
- One application matches another if they have the same number of subtrees and corresponding subtrees match.
- In every other case, matching fails. In particular, Constant $x$ can only match itself.

A successful match yields a substitution that is applied to $r$, generating the instance that replaces $u$.

The second case above may look odd. This is where Variables of non-rule ASTs behave like Constants. Recall that ASTs are not far removed from parse trees; at this level it is not yet known which identifiers will become constants, bounds, frees, types or classes. As $\S 8.1$ describes, former parse tree heads appear in ASTs as Constants, while the name tokens id, var, tid, tvar, xnum and xstr become Variables. On the other hand, when ASTs generated from terms for printing, all constants and type constructors become Constants; see §8.1. Thus ASTs may contain a messy mixture of Variables and Constants. This is insignificant at macro level because matching treats them alike.

Because of this behaviour, different kinds of atoms with the same name are
indistinguishable, which may make some rules prone to misbehaviour. Example:

```
types
 Nil
consts
 Nil :: 'a list
syntax
 "[]" :: 'a list ("[]")
translations
 "[]" == "Nil"
```

The term Nil will be printed as [], just as expected. The term \%Nil.t will be printed as \% [].t, which might not be expected! Guess how type Nil is printed?

Normalizing an AST involves repeatedly applying macro rules until none are applicable. Macro rules are chosen in order of appearance in the theory definitions. You can watch the normalization of ASTs during parsing and printing by setting Syntax.trace_norm_ast to true. Alternatively, use Syntax.test_read. The information displayed when tracing includes the AST before normalization (pre), redexes with results (rewrote), the normal form finally reached (post) and some statistics (normalize). If tracing is off, Syntax.stat_norm_ast can be set to true in order to enable printing of the normal form and statistics only.

### 8.5.3 Example: the syntax of finite sets

This example demonstrates the use of recursive macros to implement a convenient notation for finite sets.

```
FinSyntax = SetSyntax +
types
 is
syntax
 "" :: i => is ("_")
 "@Enum" :: [i, is] => is ("_,/ _")
consts
 empty :: i
 ("{}")
 insert :: [i, i] => i
syntax
 "@Finset" :: is => i ("{(_)}")
translations
 "{x, xs}" == "insert(x, {xs})"
 "{x}" == "insert(x, {})"
end
```

Finite sets are internally built up by empty and insert. The declarations above specify $\{x, y, z\}$ as the external representation of

```
insert(x, insert(y, insert(z, empty)))
```

The nonterminal symbol is stands for one or more objects of type i separated by commas. The mixfix declaration " , / _" allows a line break after the comma
for pretty printing; if no line break is required then a space is printed instead.
The nonterminal is declared as the type is, but with no arities declaration. Hence is is not a logical type and may be used safely as a new nonterminal for custom syntax. The nonterminal is can later be re-used for other enumerations of type i like lists or tuples. If we had needed polymorphic enumerations, we could have used the predefined nonterminal symbol args and skipped this part altogether.

Next follows empty, which is already equipped with its syntax \{\}, and insert without concrete syntax. The syntactic constant @Finset provides concrete syntax for enumerations of i enclosed in curly braces. Remember that a pair of parentheses, as in "\{(_)\}", specifies a block of indentation for pretty printing.

The translations may look strange at first. Macro rules are best understood in their internal forms:

```
parse_rules:
 ("@Finset" ("@Enum" x xs)) -> ("insert" x ("@Finset" xs))
 ("@Finset" x) -> ("insert" x "empty")
print_rules:
 ("insert" x ("@Finset" xs)) -> ("@Finset" ("@Enum" x xs))
 ("insert" x "empty") -> ("@Finset" x)
```

This shows that $\{x, x s\}$ indeed matches any set enumeration of at least two elements, binding the first to x and the rest to xs . Likewise, $\{\mathrm{xs}\}$ and $\{\mathrm{x}\}$ represent any set enumeration. The parse rules only work in the order given.
| The AST rewriter cannot distinguish constants from variables and looks only for names of atoms. Thus the names of Constants occurring in the (internal) left-hand side of translation rules should be regarded as reserved words. Choose non-identifiers like @Finset or sufficiently long and strange names. If a bound variable's name gets rewritten, the result will be incorrect; for example, the term

```
\%empty insert. insert(x, empty)
```

is incorrectly printed as \%empty insert. \{x\}.

### 8.5.4 Example: a parse macro for dependent types

As stated earlier, a macro rule may not introduce new Variables on the righthand side. Something like "K(B)" $=>$ "\%x.B" is illegal; if allowed, it could cause variable capture. In such cases you usually must fall back on translation functions. But a trick can make things readable in some cases: calling translation functions
by parse macros:

```
ProdSyntax \(=\) SetSyntax +
consts
 Pi :: [i, i => i] => i
syntax
 "@PROD" :: [idt, i, i] => i ("(3PROD _:_./ _)" 10)
 "@->" :: [i, i] => i ("(_ ->/ _)" [51, 50] 50)
translations
 "PROD x:A. B" => "Pi(A, \%x. B)"
 "A -> B" \(\quad\) - "Pi \((A, \quad\) K \((B)) "\)
end
ML
 val print_translation = [("Pi", dependent_tr' ("@PROD", "@->"))];
```

Here Pi is a logical constant for constructing general products. Two external forms exist: the general case PROD $x: A . B$ and the function space $A \rightarrow B$, which abbreviates $\operatorname{Pi}(A, \% x . B)$ when $B$ does not depend on $x$.

The second parse macro introduces _K (B), which later becomes \%x. B due to a parse translation associated with _K. Unfortunately there is no such trick for printing, so we have to add a ML section for the print translation dependent_tr'.

Recall that identifiers with a leading _ are allowed in translation rules, but not in ordinary terms. Thus we can create ASTs containing names that are not directly expressible.

The parse translation for _K is already installed in Pure, and dependent_tr' is exported by the syntax module for public use. See $\S 8.6$ below for more of the arcane lore of translation functions.

### 8.6 Translation functions

This section describes the translation function mechanism. By writing mL functions, you can do almost everything to terms or ASTs during parsing and printing. The logic LK is a good example of sophisticated transformations between internal and external representations of sequents; here, macros would be useless.

A full understanding of translations requires some familiarity with Isabelle's internals, especially the datatypes term, typ, Syntax.ast and the encodings of types and terms as such at the various stages of the parsing or printing process. Most users should never need to use translation functions.

### 8.6.1 Declaring translation functions

There are four kinds of translation functions, with one of these coming in two variants. Each such function is associated with a name, which triggers calls to it. Such names can be constants (logical or syntactic) or type constructors.
print_syntax displays the sets of names associated with the translation functions of a theory under parse_ast_translation, parse_translation, print_translation (or typed_print_translation) and print_ast_translation. You can add new ones via the ML section of a theory definition file. There may never be more than one function of the same kind per name. Even though the ML section is the very last part of the file, newly installed translation functions are already effective when processing all of the preceding sections.

The ML section's contents are simply copied verbatim near the beginning of the mL file generated from a theory definition file. Definitions made here are accessible as components of an ML structure; to make some parts private, use an ML local declaration. The ML code may install translation functions by declaring any of the following identifiers:

```
val parse_ast_translation : (string * (ast list -> ast)) list
val print_ast_translation : (string * (ast list -> ast)) list
val parse_translation : (string * (term list -> term)) list
val print_translation : (string * (term list -> term)) list
val typed_print_translation :
 (string * (bool -> typ -> term list -> term)) list
```


### 8.6.2 The translation strategy

The different kinds of translation functions are called during the transformations between parse trees, ASTs and terms (recall Fig. 8.1). Whenever a combination of the form (" $c$ " $x_{1} \ldots x_{n}$ ) is encountered, and a translation function $f$ of appropriate kind exists for $c$, the result is computed by the mL function call $f\left[x_{1}, \ldots, x_{n}\right]$.

For Ast translations, the arguments $x_{1}, \ldots, x_{n}$ are ASTs. A combination has the form Constant $c$ or Appl [Constant $c, x_{1}, \ldots, x_{n}$ ]. For term translations, the arguments are terms and a combination has the form Const $(c, \tau)$ or Const $(c, \tau) \$$ $x_{1} \$ \ldots \$ x_{n}$. Terms allow more sophisticated transformations than ASTs do, typically involving abstractions and bound variables. Typed print translations may even peek at the type $\tau$ of the constant they are invoked on; they are also passed the current value of the show_sorts flag.

Regardless of whether they act on terms or ASTs, translation functions called during the parsing process differ from those for printing more fundamentally in their overall behaviour:

Parse translations are applied bottom-up. The arguments are already in translated form. The translations must not fail; exceptions trigger an error message.

Print translations are applied top-down. They are supplied with arguments that are partly still in internal form. The result again undergoes translation; therefore a print translation should not introduce as head the very constant
that invoked it. The function may raise exception Match to indicate failure; in this event it has no effect.

Only constant atoms - constructor Constant for ASTs and Const for terms can invoke translation functions. This causes another difference between parsing and printing.

Parsing starts with a string and the constants are not yet identified. Only parse tree heads create Constants in the resulting AST, as described in §8.2. Macros and parse AST translations may introduce further Constants. When the final AST is converted to a term, all Constants become Consts, as described in §8.3.

Printing starts with a well-typed term and all the constants are known. So all logical constants and type constructors may invoke print translations. These, and macros, may introduce further constants.

### 8.6.3 Example: a print translation for dependent types

Let us continue the dependent type example (page 92 ) by examining the parse translation for _K and the print translation dependent_tr', which are both builtin. By convention, parse translations have names ending with _tr and print translations have names ending with _tr'. Search for such names in the Isabelle sources to locate more examples.

Here is the parse translation for _K:

```
fun k_tr [t] = Abs ("x", dummyT, incr_boundvars 1 t)
 | k_tr ts = raise TERM ("k_tr", ts);
```

If k _tr is called with exactly one argument $t$, it creates a new Abs node with a body derived from $t$. Since terms given to parse translations are not yet typed, the type of the bound variable in the new Abs is simply dummyT. The function increments all Bound nodes referring to outer abstractions by calling incr_boundvars, a basic term manipulation function defined in Pure/term.ML.

Here is the print translation for dependent types:

```
fun dependent_tr' (q, r) (A :: Abs (x, T, B) :: ts) =
 if 0 mem (loose_bnos B) then
 let val (x', B') = Syntax.variant_abs' (x, dummyT, B) in
 list_comb
 (Const (q, dummyT) $ Syntax.mark_boundT (x', T) $ A $ B', ts)
 end
 else list_comb (Const (r, dummyT) $ A $ B, ts)
 | dependent_tr' _ _ = raise Match;
```

The argument ( $\mathrm{q}, \mathrm{r}$ ) is supplied to the curried function dependent_tr' by a partial application during its installation. For example, we could set up print
translations for both Pi and Sigma by including

```
val print_translation =
 [("Pi", dependent_tr' ("@PROD", "@->")),
 ("Sigma", dependent_tr' ("@SUM", "@*"))];
```

within the ML section. The first of these transforms $\operatorname{Pi}(A, \operatorname{Abs}(x, T, B))$ into $@ \operatorname{PROD}\left(x^{\prime}, A, B^{\prime}\right)$ or $@->(A, B)$, choosing the latter form if $B$ does not depend on $x$. It checks this using loose_bnos, yet another function from Pure/term. ML. Note that $x^{\prime}$ is a version of $x$ renamed away from all names in $B$, and $B^{\prime}$ is the body $B$ with Bound nodes referring to the Abs node replaced by Free ( $x^{\prime}$, dummyT) (but marked as representing a bound variable).

We must be careful with types here. While types of Consts are ignored, type constraints may be printed for some Frees and Vars if show_types is set to true. Variables of type dummyT are never printed with constraint, though. The line

```
let val (x', B') = Syntax.variant_abs' (x, dummyT, B);
```

replaces bound variable occurrences in $B$ by the free variable $x^{\prime}$ with type dummyT. Only the binding occurrence of $x^{\prime}$ is given the correct type T , so this is the only place where a type constraint might appear.

Also note that we are responsible to mark free identifiers that actually represent bound variables. This is achieved by Syntax.variant_abs' and Syntax.mark_boundT above. Failing to do so may cause these names to be printed in the wrong style.

### 8.7 Token translations

Isabelle's meta-logic features quite a lot of different kinds of identifiers, namely class, tfree, tvar, free, bound, var. One might want to have these printed in different styles, e.g. in bold or italic, or even transcribed into something more readable like $\alpha, \alpha^{\prime}, \beta$ instead of ' a , ' aa , ' b for type variables. Token translations provide a means to such ends, enabling the user to install certain ML functions associated with any logical token class and depending on some print mode.

The logical class of identifiers can not necessarily be determined by its syntactic category, though. For example, consider free vs. bound variables. So Isabelle's pretty printing mechanism, starting from fully typed terms, has to be careful to preserve this additional information ${ }^{2}$. In particular, user-supplied print translation functions operating on terms have to be well-behaved in this respect. Free identifiers introduced to represent bound variables have to be marked appropriately (cf. the example at the end of §8.6).

[^4]Token translations may be installed by declaring the token_translation value within the ML section of a theory definition file:
val token_translation: (string * string * (string -> string * int)) list
The elements of this list are of the form $(m, c, f)$, where $m$ is a print mode identifier, $c$ a token class, and $f:$ string $\rightarrow$ string $\times$ int the actual translation function. Assuming that $x$ is of identifier class $c$, and print mode $m$ is the first one of all currently active modes that provide some translation for $c$, then $x$ is output according to $f(x)=\left(x^{\prime}\right.$, len $)$. Thereby $x^{\prime}$ is the modified identifier name and len its visual length approximated in terms of whole characters. Thus $x^{\prime}$ may include non-printing parts like control sequences or markup information for typesetting systems.

## Chapter 9

## Substitution Tactics

Replacing equals by equals is a basic form of reasoning. Isabelle supports several kinds of equality reasoning. Substitution means replacing free occurrences of $t$ by $u$ in a subgoal. This is easily done, given an equality $t=u$, provided the logic possesses the appropriate rule. The tactic hyp_subst_tac performs substitution even in the assumptions. But it works via object-level implication, and therefore must be specially set up for each suitable object-logic.

Substitution should not be confused with object-level rewriting. Given equalities of the form $t=u$, rewriting replaces instances of $t$ by corresponding instances of $u$, and continues until it reaches a normal form. Substitution handles 'one-off' replacements by particular equalities while rewriting handles general equations. Chapter 10 discusses Isabelle's rewriting tactics.

### 9.1 Substitution rules

Many logics include a substitution rule of the form

$$
\begin{equation*}
\llbracket ? a=? b ; ? P(? a) \rrbracket \Longrightarrow ? P(? b) \tag{subst}
\end{equation*}
$$

In backward proof, this may seem difficult to use: the conclusion ?P(?b) admits far too many unifiers. But, if the theorem eqth asserts $t=u$, then eqth RS subst is the derived rule

$$
? P(t) \Longrightarrow ? P(u)
$$

Provided $u$ is not an unknown, resolution with this rule is well-behaved. ${ }^{1}$ To replace $u$ by $t$ in subgoal $i$, use
resolve_tac [eqth RS subst] $i$.
To replace $t$ by $u$ in subgoal $i$, use
resolve_tac [eqth RS ssubst] $i$,
where ssubst is the 'swapped' substitution rule

$$
\begin{equation*}
\llbracket ? a=? b ; ? P(? b) \rrbracket \Longrightarrow ? P(? a) \tag{ssubst}
\end{equation*}
$$

[^5]If sym denotes the symmetry rule $? a=? b \Longrightarrow ? b=? a$, then ssubst is just sym RS subst. Many logics with equality include the rules subst and ssubst, as well as refl, sym and trans (for the usual equality laws). Examples include FOL and HOL, but not CTT (Constructive Type Theory).

Elim-resolution is well-behaved with assumptions of the form $t=u$. To replace $u$ by $t$ or $t$ by $u$ in subgoal $i$, use

```
eresolve_tac [subst] i or eresolve_tac [ssubst] i.
```

Logics HOL, FOL and ZF define the tactic stac by

```
fun stac eqth = CHANGED o rtac (eqth RS ssubst);
```

Now stac eqth is like resolve_tac [eqth RS ssubst] but with the valuable property of failing if the substitution has no effect.

### 9.2 Substitution in the hypotheses

Substitution rules, like other rules of natural deduction, do not affect the assumptions. This can be inconvenient. Consider proving the subgoal

$$
\llbracket c=a ; c=b \rrbracket \Longrightarrow a=b
$$

Calling eresolve_tac [ssubst] $i$ simply discards the assumption $c=a$, since $c$ does not occur in $a=b$. Of course, we can work out a solution. First apply eresolve_tac [subst] $i$, replacing $a$ by $c$ :

$$
c=b \Longrightarrow c=b
$$

Equality reasoning can be difficult, but this trivial proof requires nothing more sophisticated than substitution in the assumptions. Object-logics that include the rule (subst) provide tactics for this purpose:

```
hyp_subst_tac : int -> tactic
bound_hyp_subst_tac : int -> tactic
```

hyp_subst_tac $i$ selects an equality assumption of the form $t=u$ or $u=t$, where $t$ is a free variable or parameter. Deleting this assumption, it replaces $t$ by $u$ throughout subgoal $i$, including the other assumptions.
bound_hyp_subst_tac $i$ is similar but only substitutes for parameters (bound variables). Uses for this are discussed below.

The term being replaced must be a free variable or parameter. Substitution for constants is usually unhelpful, since they may appear in other theorems. For
instance, the best way to use the assumption $0=1$ is to contradict a theorem that states $0 \neq 1$, rather than to replace 0 by 1 in the subgoal!

Substitution for unknowns, such as $? x=0$, is a bad idea: we might prove the subgoal more easily by instantiating ? $x$ to 1 . Substitution for free variables is unhelpful if they appear in the premises of a rule being derived: the substitution affects object-level assumptions, not meta-level assumptions. For instance, replacing $a$ by $b$ could make the premise $P(a)$ worthless. To avoid this problem, use bound_hyp_subst_tac; alternatively, call cut_facts_tac to insert the atomic premises as object-level assumptions.

### 9.3 Setting up hyp_subst_tac

Many Isabelle object-logics, such as FOL, HOL and their descendants, come with hyp_subst_tac already defined. A few others, such as CTT, do not support this tactic because they lack the rule (subst). When defining a new logic that includes a substitution rule and implication, you must set up hyp_subst_tac yourself. It is packaged as the ML functor HypsubstFun, which takes the argument signature HYPSUBST_DATA:

```
signature HYPSUBST_DATA =
 sig
 structure Simplifier : SIMPLIFIER
 val dest_eq : term -> term*term
 val eq_reflection : thm (* a=b ==> a==b *)
 val imp_intr : thm (* (P ==> Q) ==> P-->Q *)
 val rev_mp : thm (* [| P; P-->Q |] ==> Q *)
 val subst : thm (* [l a=b; P(a) |] ==> P(b) *)
 val sym : thm (* a=b ==> b=a *)
 end;
```

Thus, the functor requires the following items:
Simplifier should be an instance of the simplifier (see Chapter 10).
dest_eq should return the pair $(t, u)$ when applied to the mL term that represents $t=u$. For other terms, it should raise exception Match.
eq_reflection is the theorem discussed in §10.6.
imp_intr should be the implies introduction rule $(? P \Longrightarrow ? Q) \Longrightarrow ? P \rightarrow ? Q$.
rev_mp should be the 'reversed' implies elimination rule $\llbracket ? P ; ? P \rightarrow ? Q \rrbracket \Longrightarrow ? Q$.
subst should be the substitution rule $\llbracket ? a=? b ; ? P(? a) \rrbracket \Longrightarrow ? P(? b)$.
sym should be the symmetry rule $? a=? b \Longrightarrow ? b=? a$.

The functor resides in file Provers/hypsubst.mL in the Isabelle distribution directory. It is not sensitive to the precise formalization of the object-logic. It is not concerned with the names of the equality and implication symbols, or the types of formula and terms. Coding the function dest_eq requires knowledge of Isabelle's representation of terms. For FOL it is defined by

```
fun dest_eq (Const("Trueprop",_) $ (Const("op =",_)tu)) = (t,u)
```

Here Trueprop is the coercion from type $o$ to type prop, while op $=$ is the internal name of the infix operator $=$. Pattern-matching expresses the function concisely, using wildcards (_) for the types.

The tactic hyp_subst_tac works as follows. First, it identifies a suitable equality assumption, possibly re-orienting it using sym. Then it moves other assumptions into the conclusion of the goal, by repeatedly caling eresolve_tac [rev_mp]. Then, it uses asm_full_simp_tac or ssubst to substitute throughout the subgoal. (If the equality involves unknowns then it must use ssubst.) Then, it deletes the equality. Finally, it moves the assumptions back to their original positions by calling resolve_tac [imp_intr].

## Chapter 10

## Simplification

This chapter describes Isabelle's generic simplification package, which provides a suite of simplification tactics. It performs conditional and unconditional rewriting and uses contextual information ('local assumptions'). It provides a few general hooks, which can provide automatic case splits during rewriting, for example. The simplifier is set up for many of Isabelle's logics: FOL, ZF, HOL and HOLCF.

The next section is a quick introduction to the simplifier, the later sections explain advanced features.

### 10.1 Simplification for dummies

In some logics (FOL, HOL and ZF), the simplifier is particularly easy to use because it supports the concept of a current simpset. This is a default set of simplification rules. All commands are interpreted relative to the current simpset. For example, in the theory of arithmetic the goal

$$
\text { 1. } 0+(x+0)=x+0+0
$$

can be solved by a single

```
by (Simp_tac 1);
```

The simplifier uses the current simpset, which in the case of arithmetic contains the required theorems $? n+0=? n$ and $0+? n=? n$.

If assumptions of the subgoal are also needed in the simplification process, as in

$$
\text { 1. } x=0 \Rightarrow=>x+x=0
$$

then there is the more powerful

```
by (Asm_simp_tac 1);
```

which solves the above goal.
There are four basic simplification tactics:
Simp_tac $i$ simplifies subgoal $i$ using the current simpset. It may solve the subgoal completely if it has become trivial, using the solver.

Asm_simp_tac is like Simp_tac, but extracts additional rewrite rules from the assumptions.

Full_simp_tac is like Simp_tac, but also simplifies the assumptions (but without using the assumptions to simplify each other or the actual goal.)

Asm_full_simp_tac is like Asm_simp_tac, but also simplifies the assumptions one by one. Working from left to right, it uses each assumption in the simplification of those following.

Asm_full_simp_tac is the most powerful of this quartet but may also loop where some of the others terminate. For example,

$$
\text { 1. } A L L x \cdot f(x)=g(f(g(x)))==>f(0)=f(0)+0
$$

is solved by Simp_tac, but Asm_simp_tac and Asm_simp_tac loop because the rewrite rule $f(? x)=f(g(f(? x)))$ extracted from the assumption does not terminate. Isabelle notices certain simple forms of nontermination, but not this one.
| Since Asm_full_simp_tac works from left to right, it sometimes misses opportunities for simplification: given the subgoal

$$
[|P(f(a)) ; f(a)=t|]==>\ldots
$$

Asm_full_simp_tac will not simplify the first assumption using the second but will leave the assumptions unchanged. See $\S 10.4 .4$ for ways around this problem.

Using the simplifier effectively may take a bit of experimentation. The tactics can be traced by setting trace_simp.

There is not just one global current simpset, but one associated with each theory as well. How are these simpset built up?

1. When loading T.thy, the current simpset is initialized with the union of the simpsets associated with all the ancestors of T. In addition, certain constructs in T may add new rules to the simpset, e.g. datatype and primrec in HOL. Definitions are not added automatically!
2. The script in T.ML may manipulate the current simpset further by explicitly adding/deleting theorems to/from it (see below).
3. After T.ML has been read, the current simpset is associated with theory T.

The current simpset is manipulated by

```
Addsimps, Delsimps: thm list -> unit
```

Addsimps thms adds thms to the current simpset
Delsimps thms deletes thms from the current simpset

Generally useful simplification rules $? n+0=? n$ should be added to the current simpset right after they have been proved. Those of a more specific nature (e.g. the laws of de Morgan, which alter the structure of a formula) should only be added for specific proofs and deleted again afterwards. Conversely, it may also happen that a generally useful rule needs to be removed for a certain proof and is added again afterwards. Well designed simpsets need few temporary additions or deletions.
| The union of the ancestor simpsets (as described above) is not always a good simpset

- for the new theory. If some ancestors have deleted simplification rules because they are no longer wanted, while others have left those rules in, then the union will contain the unwanted rules. If the ancestor simpsets differ in other components (the subgoaler, solver, looper or rule preprocessor: see below), then you cannot be sure which version of that component will be inherited. You may have to set the component explicitly for the new theory's simpset by an assignment of the form simpset := ...
| If you execute proofs interactively, or load them from an ML file without associated
- .thy file, you must set the current simpset by calling set_current_thy " $T$ ", where $T$ is the name of the theory you want to work in. If you have just loaded $T$, this is not necessary.


### 10.2 Simplification sets

The simplification tactics are controlled by simpsets. These consist of several components, including rewrite rules, congruence rules, the subgoaler, the solver and the looper. The simplifier should be set up with sensible defaults so that most simplifier calls specify only rewrite rules. Experienced users can exploit the other components to streamline proofs.

Logics like HOL, which support a current simpset, store its value in an ML reference variable called simpset.

### 10.2.1 Rewrite rules

Rewrite rules are theorems expressing some form of equality:

$$
\begin{aligned}
S u c(? m)+? n & =? m+\operatorname{Suc}(? n) \\
? P \wedge ? P & \leftrightarrow ? P \\
? A \cup ? B & \equiv\{x . x \in ? A \vee x \in ? B\}
\end{aligned}
$$

Conditional rewrites such as $? m<? n \Longrightarrow ? m / ? n=0$ are permitted; the conditions can be arbitrary formulas.

Internally, all rewrite rules are translated into meta-equalities, theorems with conclusion $l h s \equiv r h s$. Each simpset contains a function for extracting equalities
from arbitrary theorems. For example, $\neg(? x \in\})$ could be turned into $? x \in\} \equiv$ False. This function can be installed using setmksimps but only the definer of a logic should need to do this; see $\S 10.6 .2$. The function processes theorems added by addsimps as well as local assumptions.
| The simplifier will accept all standard rewrite rules: those where all unknowns are

- of base type. Hence $? i+(? j+? k)=(? i+? j)+? k$ is ok.

It will also deal gracefully with all rules whose left-hand sides are so-called higherorder patterns [6]. These are terms in $\beta$-normal form (this will always be the case unless you have done something strange) where each occurrence of an unknown is of the form $? F\left(x_{1}, \ldots, x_{n}\right)$, where the $x_{i}$ are distinct bound variables. Hence $(\forall x . ? P(x) \wedge ? Q(x)) \leftrightarrow$ $(\forall x . ? P(x)) \wedge(\forall x . ? Q(x))$ is also ok, in both directions.

In some rare cases the rewriter will even deal with quite general rules: for example $? f(? x) \in \operatorname{range}(? f)=$ True rewrites $g(a) \in \operatorname{range}(g)$ to True, but will fail to match $g(h(b)) \in \operatorname{range}(\lambda x \cdot g(h(x)))$. However, you can replace the offending subterms (in our case ? $f(? x)$, which is not a pattern) by adding new variables and conditions: $? y=$ $? f(? x) \Longrightarrow$ ?y $\in$ range $(? f)=$ True is acceptable as a conditional rewrite rule since conditions can be arbitrary terms.

There is no restriction on the form of the right-hand sides.

### 10.2.2 * Congruence rules

Congruence rules are meta-equalities of the form

$$
\ldots \Longrightarrow f\left(? x_{1}, \ldots, ? x_{n}\right) \equiv f\left(? y_{1}, \ldots, ? y_{n}\right)
$$

This governs the simplification of the arguments of $f$. For example, some arguments can be simplified under additional assumptions:

$$
\llbracket ? P_{1} \leftrightarrow ? Q_{1} ; ? Q_{1} \Longrightarrow ? P_{2} \leftrightarrow ? Q_{2} \rrbracket \Longrightarrow\left(? P_{1} \rightarrow ? P_{2}\right) \equiv\left(? Q_{1} \rightarrow ? Q_{2}\right)
$$

Given this rule, the simplifier assumes $Q_{1}$ and extracts rewrite rules from it when simplifying $P_{2}$. Such local assumptions are effective for rewriting formulae such as $x=0 \rightarrow y+x=y$. The local assumptions are also provided as theorems to the solver; see page 106 below.

Here are some more examples. The congruence rule for bounded quantifiers also supplies contextual information, this time about the bound variable:

$$
\begin{array}{r}
\llbracket ? A=? B ; \bigwedge^{\wedge x \cdot x} \in ? B \Longrightarrow ? P(x)=? Q(x) \rrbracket \Longrightarrow \\
(\forall x \in ? A \cdot ? P(x))=(\forall x \in ? B \cdot ? Q(x))
\end{array}
$$

The congruence rule for conditional expressions can supply contextual information for simplifying the arms:

$$
\llbracket ? p=? q ; ? q \Longrightarrow ? a=? c ; \neg ? q \Longrightarrow ? b=? d \rrbracket \Longrightarrow i f(? p, ? a, ? b) \equiv i f(? q, ? c, ? d)
$$

A congruence rule can also prevent simplification of some arguments. Here is an alternative congruence rule for conditional expressions:

$$
? p=? q \Longrightarrow i f(? p, ? a, ? b) \equiv i f(? q, ? a, ? b)
$$

Only the first argument is simplified; the others remain unchanged. This can make simplification much faster, but may require an extra case split to prove the goal.

Congruence rules are added/deleted using addeqcongs/deleqcongs. Their conclusion must be a meta-equality, as in the examples above. It is more natural to derive the rules with object-logic equality, for example

$$
\llbracket ? P_{1} \leftrightarrow ? Q_{1} ; ? Q_{1} \Longrightarrow ? P_{2} \leftrightarrow ? Q_{2} \rrbracket \Longrightarrow\left(? P_{1} \rightarrow ? P_{2}\right) \leftrightarrow\left(? Q_{1} \rightarrow ? Q_{2}\right)
$$

Each object-logic should define operators called addcongs and delcongs that expects object-equalities and translates them into meta-equalities.

### 10.2.3 *The subgoaler

The subgoaler is the tactic used to solve subgoals arising out of conditional rewrite rules or congruence rules. The default should be simplification itself. Occasionally this strategy needs to be changed. For example, if the premise of a conditional rule is an instance of its conclusion, as in $S u c(? m)<? n \Longrightarrow ? m<? n$, the default strategy could loop.

The subgoaler can be set explicitly with setsubgoaler. For example, the subgoaler

```
fun subgoal_tac ss = assume_tac ORELSE'
 resolve_tac (prems_of_ss ss) ORELSE'
 asm_simp_tac ss;
```

tries to solve the subgoal by assumption or with one of the premises, calling simplification only if that fails; here prems_of_ss extracts the current premises from a simpset.

### 10.2.4 *The solver

The solver is a pair of tactics that attempt to solve a subgoal after simplification. Typically it just proves trivial subgoals such as True and $t=t$. It could use sophisticated means such as blast_tac, though that could make simplification expensive.

Rewriting does not instantiate unknowns. For example, rewriting cannot prove $a \in ? A$ since this requires instantiating ?A. The solver, however, is an arbitrary tactic and may instantiate unknowns as it pleases. This is the only way the simplifier can handle a conditional rewrite rule whose condition contains
extra variables. When a simplification tactic is to be combined with other provers, especially with the classical reasoner, it is important whether it can be considered safe or not. Therefore, the solver is split into a safe and an unsafe part. Both parts can be set independently, using either setSSolver with a safe tactic as argument, or setSolver with an unsafe tactic. Additional solvers, which are tried after the already set solvers, may be added using addSSolver and addSolver.

The standard simplification strategy solely uses the unsafe solver, which is appropriate in most cases. But for special applications where the simplification process is not allowed to instantiate unknowns within the goal, the tactic safe_asm_full_simp_tac is provided. It uses the safe solver for the current subgoal, but applies ordinary unsafe asm_full_simp_tac for recursive internal simplifications (for conditional rules or congruences).

The tactic is presented with the full goal, including the asssumptions. Hence it can use those assumptions (say by calling assume_tac) even inside simp_tac, which otherwise does not use assumptions. The solver is also supplied a list of theorems, namely assumptions that hold in the local context.

The subgoaler is also used to solve the premises of congruence rules, which are usually of the form $s=? x$, where $s$ needs to be simplified and ?x needs to be instantiated with the result. Hence the subgoaler should call the simplifier at some point. The simplifier will then call the solver, which must therefore be prepared to solve goals of the form $t=? x$, usually by reflexivity. In particular, reflexivity should be tried before any of the fancy tactics like blast_tac.

It may even happen that due to simplification the subgoal is no longer an equality. For example False $\leftrightarrow ? Q$ could be rewritten to $\neg$ ? $Q$. To cover this case, the solver could try resolving with the theorem $\neg$ False.

!
If the simplifier aborts with the message Failed congruence proof!, then the subgoaler or solver has failed to prove a premise of a congruence rule. This should never occur under normal circumstances; it indicates that some congruence rule, or possibly the subgoaler or solver, is faulty.

### 10.2.5 *The looper

The looper is a tactic that is applied after simplification, in case the solver failed to solve the simplified goal. If the looper succeeds, the simplification process is started all over again. Each of the subgoals generated by the looper is attacked in turn, in reverse order. A typical looper is case splitting: the expansion of a conditional. Another possibility is to apply an elimination rule on the assumptions. More adventurous loopers could start an induction. The looper is set with setloop. Additional loopers, which are tried after the already set looper, may be added with addloop.

```
infix 4 setsubgoaler setloop addloop
 setSSolver addSSolver setSolver addSolver
 setmksimps addsimps delsimps addeqcongs deleqcongs;
signature SIMPLIFIER =
sig
 type simpset
 val empty_ss: simpset
 val rep_ss: simpset -> {simps: thm list, procs: string list,
 congs: thm list,
 subgoal_tac: simpset -> int -> tactic,
 loop_tac: int -> tactic,
 finish_tac: thm list -> int -> tactic,
 unsafe_finish_tac: thm list -> int -> tactic}
 val setsubgoaler: simpset * (simpset -> int -> tactic) -> simpset
 val setloop: simpset * (int -> tactic) -> simpset
 val addloop: simpset * (int -> tactic) -> simpset
 val setSSolver: simpset * (thm list -> int -> tactic) -> simpset
 val addSSolver: simpset * (thm list -> int -> tactic) -> simpset
 val setSolver: simpset * (thm list -> int -> tactic) -> simpset
 val addSolver: simpset * (thm list -> int -> tactic) -> simpset
 val setmksimps: simpset * (thm -> thm list) -> simpset
 val addsimps: simpset * thm list -> simpset
 val delsimps: simpset * thm list -> simpset
 val addeqcongs: simpset * thm list -> simpset
 val deleqcongs: simpset * thm list -> simpset
 val merge_ss: simpset * simpset -> simpset
 val prems_of_ss: simpset -> thm list
 val simpset: simpset ref
 val Addsimps: thm list -> unit
 val Delsimps: thm list -> unit
 val simp_tac: simpset -> int -> tactic
 val asm_simp_tac: simpset -> int -> tactic
 val full_simp_tac: simpset -> int -> tactic
 val asm_full_simp_tac: simpset -> int -> tactic
 val safe_asm_full_simp_tac: simpset -> int -> tactic
 val Simp_tac: int }->\mathrm{ tactic
 val Asm_simp_tac: int -> tactic
 val Full_simp_tac: int -> tactic
 val Asm_full_simp_tac: int -> tactic
end;
```

Figure 10.1: The simplifier primitives

### 10.3 The simplification tactics

The actual simplification work is performed by the following basic tactics: simp_tac, asm_simp_tac, full_simp_tac and asm_full_simp_tac. They work exactly like their namesakes in $\S 10.1$, except that they are explicitly supplied with a simpset. This is because the ones in $\S 10.1$ are defined in terms of the ones above, e.g.

```
fun Simp_tac i = simp_tac (!simpset) i;
```

where! simpset is the current simpset.
The rewriting strategy of all four tactics is strictly bottom up, except for congruence rules, which are applied while descending into a term. Conditions in conditional rewrite rules are solved recursively before the rewrite rule is applied.

The infix operation addsimps adds rewrite rules to a simpset, while delsimps deletes them. They are used to implement Addsimps and Delsimps, e.g.

```
fun Addsimps thms = (simpset := (!simpset addsimps thms));
```

and can also be used directly, even in the presence of a current simpset. For example

```
Addsimps thms;
by (Simp_tac i);
Delsimps thms;
```

can be compressed into

```
by (simp_tac (!simpset addsimps thms) i);
```

The simpset associated with a particular theory can be retrieved via the name of the theory using the function

```
simpset_of: string -> simpset
```

To remind yourself of what is in a simpset, use the function rep_ss to return its simplification and congruence rules.

### 10.4 Examples using the simplifier

Assume we are working within FOL (cf. FOL/ex/Nat) and that Nat.thy is a theory including the constants 0 , Suc and + , add_0 is the rewrite rule $0+? n=? n$, add_Suc is the rewrite rule $S u c(? m)+? n=S u c(? m+? n)$, induct is the induction rule $\llbracket ? P(0) ; \wedge x . ? P(x) \Longrightarrow ? P(S u c(x)) \rrbracket \Longrightarrow ? P(? n)$.

We augment the implicit simpset of FOL with the basic rewrite rules for natural numbers:

```
Addsimps [add_0, add_Suc];
```


### 10.4.1 A trivial example

Proofs by induction typically involve simplification. Here is a proof that 0 is a right identity:

```
goal Nat.thy "m+0 = m";
 Level O
 m + 0 = m
 1. m + 0 = m
```

The first step is to perform induction on the variable $m$. This returns a base case and inductive step as two subgoals:

```
by (res_inst_tac [("n","m")] induct 1);
 Level 1
 \(m+0=m\)
 1. \(0+0=0\)
 2. \(!!x . x+0=x==\operatorname{Suc}(x)+0=\operatorname{Suc}(x)\)
```

Simplification solves the first subgoal trivially:

```
by (Simp_tac 1);
 Level }
 m + 0 = m
 1. !!x. x + 0 = x ==> Suc(x) + 0 = Suc(x)
```

The remaining subgoal requires Asm_simp_tac in order to use the induction hypothesis as a rewrite rule:

```
by (Asm_simp_tac 1);
 Level 3
 m + 0 = m
 No subgoals!
```


### 10.4.2 An example of tracing

Let us prove a similar result involving more complex terms. The two equations together can be used to prove that addition is commutative.

```
goal Nat.thy "m+Suc(n) = Suc(m+n)";
 Level O
 m + Suc(n) = Suc(m + n)
 1.m+Suc(n)=Suc(m+n)
```

We again perform induction on $m$ and get two subgoals:

```
by (res_inst_tac [("n","m")] induct 1);
 Level 1
 \(m+\operatorname{Suc}(n)=\operatorname{Suc}(m+n)\)
 1. \(0+\operatorname{Suc}(n)=\operatorname{Suc}(0+n)\)
 2. !!x. \(x+\operatorname{Suc}(n)=\operatorname{Suc}(x+n)==>\)
 \(\operatorname{Suc}(x)+\operatorname{Suc}(n)=\operatorname{Suc}(\operatorname{Suc}(x)+n)\)
```

Simplification solves the first subgoal, this time rewriting two occurrences of 0 :

```
by (Simp_tac 1);
 Level 2
 m+Suc(n) = Suc(m + n)
 1. !!x. x + Suc(n) = Suc(x + n) ==>
 Suc(x) + Suc(n) = Suc(Suc(x) + n)
```

Switching tracing on illustrates how the simplifier solves the remaining subgoal:

```
trace_simp := true;
by (Asm_simp_tac 1);
 Adding rewrite rule:
 .x + Suc(n) == Suc(.x + n)
 Rewriting:
 Suc(.x) + Suc(n) == Suc(.x + Suc(n))
 Rewriting:
 .x + Suc(n) == Suc(.x + n)
 Rewriting:
 Suc(.x) + n == Suc(.x + n)
 Rewriting:
 Suc(Suc(.x + n)) = Suc(Suc(.x + n)) == True
 Level 3
 m + Suc(n) = Suc(m + n)
 No subgoals!
```

Many variations are possible. At Level 1 (in either example) we could have solved both subgoals at once using the tactical ALLGOALS:

```
by (ALLGOALS Asm_simp_tac);
 Level }
 m+Suc(n) = Suc(m + n)
 No subgoals!
```


### 10.4.3 Free variables and simplification

Here is a conjecture to be proved for an arbitrary function $f$ satisfying the law $f(\operatorname{Suc}(? n))=\operatorname{Suc}(f(? n))$ :

```
val [prem] = goal Nat.thy
 " (!!n. f(Suc(n)) \(=\operatorname{Suc}(f(n)))==>f(i+j)=i+f(j) " ;\)
 Level 0
 \(f(i+j)=i+f(j)\)
 1. \(f(i+j)=i+f(j)\)
 val prem \(=" f(\operatorname{Suc}(? n))=\operatorname{Suc}(f(? n))\)
 [!!n. f(Suc(n)) = Suc(f(n))]" : thm
```

In the theorem prem, note that $f$ is a free variable while $? n$ is a schematic variable.

```
by (res_inst_tac [("n","i")] induct 1);
 Level 1
 f(i + j) = i + f(j)
 1. f(O + j) = 0 + f(j)
 2. !!x. f(x + j) = x + f(j) ==> f(Suc(x) + j) = Suc(x) + f(j)
```

We simplify each subgoal in turn. The first one is trivial:

```
by (Simp_tac 1);
 Level 2
 f(i + j) = i + f(j)
 1. !!x. f(x + j) = x + f(j) ==> f(Suc(x) + j) = Suc(x) + f(j)
```

The remaining subgoal requires rewriting by the premise, so we add it to the current simpset: ${ }^{1}$

```
by (asm_simp_tac (!simpset addsimps [prem]) 1);
 Level 3
 f(i + j) = i + f(j)
 No subgoals!
```


### 10.4.4 Reordering assumptions

As mentioned above, asm_full_simp_tac may require the assumptions to be permuted to be more effective. Given the subgoal

```
1. [| P(f(a)); Q; f(a) = t; R |] ==> S
```

[^6]we can rotate the assumptions two positions to the right

```
by (rotate_tac ~2 1);
```

to obtain

1. $[|f(a)=t ; R ; P(f(a)) ; Q|]==>S$
which enables asm_full_simp_tac to simplify $P(f(a))$ to $P(t)$.
Since rotation alone cannot produce arbitrary permutations, you can also pick out a particular assumption which needs to be rewritten and move it the the right end of the assumptions. In the above case rotation can be replaced by
```
by (dres_inst_tac [("psi","P(f(a))")] asm_rl 1);
```

which is more directed and leads to

```
1. [| Q; f(a) =t; R; P(f(a)) |] ==> S
```

Note that reordering assumptions usually leads to brittle proofs and should therefore be avoided. Future versions of asm_full_simp_tac may remove the need for such manipulations.

### 10.5 Permutative rewrite rules

A rewrite rule is permutative if the left-hand side and right-hand side are the same up to renaming of variables. The most common permutative rule is commutativity: $x+y=y+x$. Other examples include $(x-y)-z=(x-z)-y$ in arithmetic and $\operatorname{insert}(x, \operatorname{insert}(y, A))=\operatorname{insert}(y, \operatorname{insert}(x, A))$ for sets. Such rules are common enough to merit special attention.

Because ordinary rewriting loops given such rules, the simplifier employs a special strategy, called ordered rewriting. There is a standard lexicographic ordering on terms. A permutative rewrite rule is applied only if it decreases the given term with respect to this ordering. For example, commutativity rewrites $b+$ $a$ to $a+b$, but then stops because $a+b$ is strictly less than $b+a$. The Boyer-Moore theorem prover [1] also employs ordered rewriting.

Permutative rewrite rules are added to simpsets just like other rewrite rules; the simplifier recognizes their special status automatically. They are most effective in the case of associative-commutative operators. (Associativity by itself is not permutative.) When dealing with an AC-operator $f$, keep the following points in mind:

- The associative law must always be oriented from left to right, namely $f(f(x, y), z)=f(x, f(y, z))$. The opposite orientation, if used with commutativity, leads to looping! Future versions of Isabelle may remove this restriction.
- To complete your set of rewrite rules, you must add not just associativity (A) and commutativity (C) but also a derived rule, leftcommutativity (LC): $f(x, f(y, z))=f(y, f(x, z))$.
Ordered rewriting with the combination of $\mathrm{A}, \mathrm{C}$, and LC sorts a term lexicographically:

$$
(b+c)+a \stackrel{A}{\longmapsto} b+(c+a) \stackrel{C}{\longmapsto} b+(a+c) \stackrel{L C}{\longmapsto} a+(b+c)
$$

Martin and Nipkow [5] discuss the theory and give many examples; other algebraic structures are amenable to ordered rewriting, such as boolean rings.

### 10.5.1 Example: sums of natural numbers

This example is set in HOL (see HOL/ex/NatSum). Theory Arith contains natural numbers arithmetic. Its associated simpset contains many arithmetic laws including distributivity of $\times$ over + , while add_ac is a list consisting of the A, C and LC laws for + on type nat. Let us prove the theorem

$$
\sum_{i=1}^{n} i=n \times(n+1) / 2
$$

A functional sum represents the summation operator under the interpretation $\operatorname{sum} f(n+1)=\sum_{i=0}^{n} f i$. We extend Arith using a theory file:

```
NatSum = Arith +
consts sum :: [nat=>nat, nat] => nat
primrec "sum" nat
 "sum f \(0=0 "\)
 "sum \(f(\) Suc \(n)=f(n)+\operatorname{sum} f n "\)
end
```

The primrec declaration automatically adds rewrite rules for sum to the default simpset. We now insert the AC-rules for + :

```
Addsimps add_ac;
```

Our desired theorem now reads sum $(\lambda i . i)(n+1)=n \times(n+1) / 2$. The Isabelle goal has both sides multiplied by 2 :

```
goal NatSum.thy "2 * sum (%i.i) (Suc n) = n * Suc n";
 Level O
 2 * sum (%i. i) (Suc n) = n * Suc n
 1. 2 * sum (%i. i) (Suc n) = n * Suc n
```

Induction should not be applied until the goal is in the simplest form:

```
by (Simp_tac 1);
 Level 1
 2 * sum (%i. i) (Suc n) = n * Suc n
 1. n + (sum (%i. i) n + sum (%i. i) n) = n * n
```

Ordered rewriting has sorted the terms in the left-hand side. The subgoal is now ready for induction:

```
by (induct_tac "n" 1);
 Level 2
 2 * sum (%i. i) (Suc n) = n * Suc n
 1. 0 + (sum (%i. i) 0 + sum (%i. i) 0) = 0 * 0
 2. !!n. n + (sum (%i. i) n + sum (%i. i) n) = n * n
 ==> Suc n + (sum (%i. i) (Suc n) + sum (%i. i) (Suc n)) =
 Suc n * Suc n
```

Simplification proves both subgoals immediately:

```
by (ALLGOALS Asm_simp_tac);
 Level 3
 2 * sum (%i. i) (Suc n) = n * Suc n
 No subgoals!
```

Simplification cannot prove the induction step if we omit add_ac from the simpset. Observe that like terms have not been collected:

```
Level 3
2 * sum (%i. i) (Suc n) = n * Suc n
 1. !!n. n + sum (%i. i) n + (n + sum (%i. i) n) = n + n * n
 ==> n + (n + sum (%i. i) n) + (n + (n + sum (%i. i) n)) =
 n + (n + (n + n * n))
```

Ordered rewriting proves this by sorting the left-hand side. Proving arithmetic theorems without ordered rewriting requires explicit use of commutativity. This is tedious; try it and see!

Ordered rewriting is equally successful in proving $\sum_{i=1}^{n} i^{3}=n^{2} \times(n+1)^{2} / 4$.

### 10.5.2 Re-orienting equalities

Ordered rewriting with the derived rule symmetry can reverse equality signs:

```
val symmetry = prove_goal HOL.thy " (x=y) = (y=x)"
 (fn _ => [Blast_tac 1]);
```

This is frequently useful. Assumptions of the form $s=t$, where $t$ occurs in the conclusion but not $s$, can often be brought into the right form. For example, ordered rewriting with symmetry can prove the goal

$$
f(a)=b \wedge f(a)=c \rightarrow b=c .
$$

Here symmetry reverses both $f(a)=b$ and $f(a)=c$ because $f(a)$ is lexicographically greater than $b$ and $c$. These re-oriented equations, as rewrite rules, replace $b$ and $c$ in the conclusion by $f(a)$.

Another example is the goal $\neg(t=u) \rightarrow \neg(u=t)$. The differing orientations make this appear difficult to prove. Ordered rewriting with symmetry makes the
equalities agree. (Without knowing more about $t$ and $u$ we cannot say whether they both go to $t=u$ or $u=t$.) Then the simplifier can prove the goal outright.

## 10.6 *Setting up the simplifier

Setting up the simplifier for new logics is complicated. This section describes how the simplifier is installed for intuitionistic first-order logic; the code is largely taken from FOL/simpdata.ML.

The simplifier and the case splitting tactic, which reside on separate files, are not part of Pure Isabelle. They must be loaded explicitly:

```
use "../Provers/simplifier.ML";
use "../Provers/splitter.ML";
```

Simplification works by reducing various object-equalities to meta-equality. It requires rules stating that equal terms and equivalent formulae are also equal at the meta-level. The rule declaration part of the file FOL/IFOL.thy contains the two lines

```
eq_reflection "(x=y) ==> (x==y)"
iff_reflection "(P<->Q) ==> (P==Q)"
```

Of course, you should only assert such rules if they are true for your particular logic. In Constructive Type Theory, equality is a ternary relation of the form $a=b \in A$; the type $A$ determines the meaning of the equality essentially as a partial equivalence relation. The present simplifier cannot be used. Rewriting in CTT uses another simplifier, which resides in the file typedsimp. ML and is not documented. Even this does not work for later variants of Constructive Type Theory that use intensional equality [8].

### 10.6.1 A collection of standard rewrite rules

The file begins by proving lots of standard rewrite rules about the logical connectives. These include cancellation and associative laws. To prove them easily, it defines a function that echoes the desired law and then supplies it the theorem prover for intuitionistic FOL:

```
fun int_prove_fun s =
 (writeln s;
 prove_goal IFOL.thy s
 (fn prems => [(cut_facts_tac prems 1),
 (Int.fast_tac 1)]));
```

The following rewrite rules about conjunction are a selection of those proved on FOL/simpdata.ML. Later, these will be supplied to the standard simpset.

```
val conj_rews = map int_prove_fun
 ["P & True <-> P", "True & P <-> P",
 "P & False <-> False", "False & P <-> False",
 "P & P <-> P",
 "P & ~P <-> False", "~P & P <-> False",
 "(P & Q) & R <-> P & (Q & R)"];
```

The file also proves some distributive laws. As they can cause exponential blowup, they will not be included in the standard simpset. Instead they are merely bound to an ML identifier, for user reference.

```
val distrib_rews = map int_prove_fun
 ["P & (Q | R) <-> P&Q | P&R",
 "(Q | R) & P <-> Q&P | R&P",
 "(P | Q --> R) <-> (P --> R) & (Q --> R)"];
```


### 10.6.2 Functions for preprocessing the rewrite rules

The next step is to define the function for preprocessing rewrite rules. This will be installed by calling setmksimps below. Preprocessing occurs whenever rewrite rules are added, whether by user command or automatically. Preprocessing involves extracting atomic rewrites at the object-level, then reflecting them to the meta-level.

To start, the function gen_all strips any meta-level quantifiers from the front of the given theorem. Usually there are none anyway.

```
fun gen_all th = forall_elim_vars (#maxidx(rep_thm th)+1) th;
```

The function atomize analyses a theorem in order to extract atomic rewrite rules. The head of all the patterns, matched by the wildcard _, is the coercion function Trueprop.

```
fun atomize th = case concl_of th of
 _ $ (Const("op &",_) $ _ $ _) => atomize(th RS conjunct1) @
 atomize(th RS conjunct2)
 | _ $ (Const("op -->",_) $ _ $ _) => atomize(th RS mp)
 | _ $ (Const("All",_) $ _) => atomize(th RS spec)
 | _ $ (Const("True",_)) => []
 | _ $ (Const("False",_)) => []
 | _ => [th];
```

There are several cases, depending upon the form of the conclusion:

- Conjunction: extract rewrites from both conjuncts.
- Implication: convert $P \rightarrow Q$ to the meta-implication $P \Longrightarrow Q$ and extract rewrites from $Q$; these will be conditional rewrites with the condition $P$.
- Universal quantification: remove the quantifier, replacing the bound variable by a schematic variable, and extract rewrites from the body.
- True and False contain no useful rewrites.
- Anything else: return the theorem in a singleton list.

The resulting theorems are not literally atomic - they could be disjunctive, for example - but are broken down as much as possible. See the file ZF/simpdata.ML for a sophisticated translation of set-theoretic formulae into rewrite rules.

The simplified rewrites must now be converted into meta-equalities. The rule eq_reflection converts equality rewrites, while iff_reflection converts if-and-only-if rewrites. The latter possibility can arise in two other ways: the negative theorem $\neg P$ is converted to $P \equiv$ False, and any other theorem $P$ is converted to $P \equiv$ True. The rules iff_reflection_F and iff_reflection_T accomplish this conversion.

```
val P_iff_F = int_prove_fun "~P ==> (P <-> False)";
val iff_reflection_F = P_iff_F RS iff_reflection;
val P_iff_T = int_prove_fun "P ==> (P <-> True)";
val iff_reflection_T = P_iff_T RS iff_reflection;
```

The function mk_meta_eq converts a theorem to a meta-equality using the case analysis described above.

```
fun mk_meta_eq th = case concl_of th of
 _ $ (Const("op =",_)$_$_) => th RS eq_reflection
 | _ $ (Const("op <->",_)$_$_) => th RS iff_reflection
 | _ $ (Const("Not",_)$_) => th RS iff_reflection_F
 | _ => th RS iff_reflection_T;
```

The three functions gen_all, atomize and mk_meta_eq will be composed together and supplied below to setmksimps.

### 10.6.3 Making the initial simpset

It is time to assemble these items. We open module Simplifier to gain access to its components. We define the infix operator addcongs to insert congruence rules; given a list of theorems, it converts their conclusions into meta-equalities and passes them to addeqcongs.

```
open Simplifier;
infix addcongs;
fun ss addcongs congs =
 ss addeqcongs (congs RL [eq_reflection,iff_reflection]);
```

The list IFOL_rews contains the default rewrite rules for first-order logic. The first of these is the reflexive law expressed as the equivalence ( $a=a$ ) $\leftrightarrow$ True; the rewrite rule $a=a$ is clearly useless.

```
val IFOL_rews =
 [refl RS P_iff_T] @ conj_rews @ disj_rews @ not_rews @
 imp_rews @ iff_rews @ quant_rews;
```

The list triv_rls contains trivial theorems for the solver. Any subgoal that is simplified to one of these will be removed.

```
val notFalseI = int_prove_fun "~False";
val triv_rls = [TrueI,refl,iff_refl,notFalseI];
```

The basic simpset for intuitionistic FOL starts with empty_ss. It preprocess rewrites using gen_all, atomize and mk_meta_eq. It solves simplified subgoals using triv_rls and assumptions, and by detecting contradictions. It uses asm_simp_tac to tackle subgoals of conditional rewrites. It takes IFOL_rews as rewrite rules. Other simpsets built from IFOL_ss will inherit these items. In particular, FOL_ss extends IFOL_ss with classical rewrite rules such as $\neg \neg P \leftrightarrow P$.

```
fun unsafe_solver prems = FIRST'[resolve_tac (triv_rls @ prems),
 atac, etac FalseE];
fun safe_solver prems = FIRST'[match_tac (triv_rls @ prems),
 eq_assume_tac, ematch_tac [FalseE]];
val IFOL_ss = empty_ss setsubgoaler asm_simp_tac
 setSSolver safe_solver
 setSolver unsafe_solver
 setmksimps (map mk_meta_eq o atomize o gen_all)
 addsimps IFOL_simps
 addcongs [imp_cong];
```

This simpset takes imp_cong as a congruence rule in order to use contextual information to simplify the conclusions of implications:

$$
\llbracket ? P \leftrightarrow ? P^{\prime} ; ? P^{\prime} \Longrightarrow ? Q \leftrightarrow ? Q^{\prime} \rrbracket \Longrightarrow(? P \rightarrow ? Q) \leftrightarrow\left(? P^{\prime} \rightarrow ? Q^{\prime}\right)
$$

By adding the congruence rule conj_cong, we could obtain a similar effect for conjunctions.

### 10.6.4 Case splitting

To set up case splitting, we must prove the theorem below and pass it to mk_case_split_tac. The tactic split_tac uses mk_meta_eq, defined above,
to convert the splitting rules to meta-equalities.

```
val meta_iffD =
 prove_goal FOL.thy "[| P==Q; Q |] ==> P"
 (fn [prem1,prem2] => [rewtac prem1, rtac prem2 1])
fun split_tac splits =
 mk_case_split_tac meta_iffD (map mk_meta_eq splits);
```

The splitter replaces applications of a given function; the right-hand side of the replacement can be anything. For example, here is a splitting rule for conditional expressions:

$$
? P(i f(? Q, ? x, ? y)) \leftrightarrow(? Q \rightarrow ? P(? x)) \wedge(\neg ? Q \rightarrow ? P(? y))
$$

Another example is the elimination operator (which happens to be called split) for Cartesian products:

$$
? P(\operatorname{split}(? f, ? p)) \leftrightarrow(\forall a b . ? p=\langle a, b\rangle \rightarrow ? P(? f(a, b)))
$$

Case splits should be allowed only when necessary; they are expensive and hard to control. Here is a typical example of use, where expand_if is the first rule above:

```
by (simp_tac (!simpset setloop (split_tac [expand_if])) 1);
```


## Chapter 11

## The Classical Reasoner

Although Isabelle is generic, many users will be working in some extension of classical first-order logic. Isabelle's set theory ZF is built upon theory FOL, while higher-order logic conceptually contains first-order logic as a fragment. Theoremproving in predicate logic is undecidable, but many researchers have developed strategies to assist in this task.

Isabelle's classical reasoner is an ML functor that accepts certain information about a logic and delivers a suite of automatic tactics. Each tactic takes a collection of rules and executes a simple, non-clausal proof procedure. They are slow and simplistic compared with resolution theorem provers, but they can save considerable time and effort. They can prove theorems such as Pelletier's [11] problems 40 and 41 in seconds:

$$
\begin{gathered}
(\exists y \cdot \forall x . J(y, x) \leftrightarrow \neg J(x, x)) \rightarrow \neg(\forall x \cdot \exists y \cdot \forall z . J(z, y) \leftrightarrow \neg J(z, x)) \\
(\forall z \cdot \exists y \cdot \forall x \cdot F(x, y) \leftrightarrow F(x, z) \wedge \neg F(x, x)) \rightarrow \neg(\exists z \cdot \forall x \cdot F(x, z))
\end{gathered}
$$

The tactics are generic. They are not restricted to first-order logic, and have been heavily used in the development of Isabelle's set theory. Few interactive proof assistants provide this much automation. The tactics can be traced, and their components can be called directly; in this manner, any proof can be viewed interactively.

The simplest way to apply the classical reasoner (to subgoal $i$ ) is to type

```
by (Blast_tac i);
```

This command quickly proves most simple formulas of the predicate calculus or set theory. To attempt to prove all subgoals using a combination of rewriting and classical reasoning, try

```
by (Auto_tac());
```

To do all obvious logical steps, even if they do not prove the subgoal, type one of the following:

```
by (Clarify_tac i); applies to one subgoal
by Safe_tac; applies to all subgoals
```

You need to know how the classical reasoner works in order to use it effectively. There are many tactics to choose from, including Fast_tac and Best_tac.

We shall first discuss the underlying principles, then present the classical reasoner. Finally, we shall see how to instantiate it for new logics. The logics FOL, ZF, HOL and HOLCF have it already installed.

### 11.1 The sequent calculus

Isabelle supports natural deduction, which is easy to use for interactive proof. But natural deduction does not easily lend itself to automation, and has a bias towards intuitionism. For certain proofs in classical logic, it can not be called natural. The sequent calculus, a generalization of natural deduction, is easier to automate.

A sequent has the form $\Gamma \vdash \Delta$, where $\Gamma$ and $\Delta$ are sets of formulae. ${ }^{1}$ The sequent

$$
P_{1}, \ldots, P_{m} \vdash Q_{1}, \ldots, Q_{n}
$$

is valid if $P_{1} \wedge \ldots \wedge P_{m}$ implies $Q_{1} \vee \ldots \vee Q_{n}$. Thus $P_{1}, \ldots, P_{m}$ represent assumptions, each of which is true, while $Q_{1}, \ldots, Q_{n}$ represent alternative goals. A sequent is basic if its left and right sides have a common formula, as in $P, Q \vdash Q, R$; basic sequents are trivially valid.

Sequent rules are classified as right or left, indicating which side of the $\vdash$ symbol they operate on. Rules that operate on the right side are analogous to natural deduction's introduction rules, and left rules are analogous to elimination rules. Recall the natural deduction rules for first-order logic, from Introduction to Isabelle. The sequent calculus analogue of $(\rightarrow I)$ is the rule

$$
\frac{P, \Gamma \vdash \Delta, Q}{\Gamma \vdash \Delta, P \rightarrow Q}
$$

This breaks down some implication on the right side of a sequent; $\Gamma$ and $\Delta$ stand for the sets of formulae that are unaffected by the inference. The analogue of the pair $(\vee I 1)$ and $(\vee I 2)$ is the single rule

$$
\frac{\Gamma \vdash \Delta, P, Q}{\Gamma \vdash \Delta, P \vee Q}
$$

This breaks down some disjunction on the right side, replacing it by both disjuncts. Thus, the sequent calculus is a kind of multiple-conclusion logic.

To illustrate the use of multiple formulae on the right, let us prove the classical theorem $(P \rightarrow Q) \vee(Q \rightarrow P)$. Working backwards, we reduce this formula to a basic sequent:

$$
\frac{\frac{P, Q \vdash Q, P}{P \vdash Q,(Q \rightarrow P)}}{\frac{\stackrel{\vdash(P \rightarrow Q),(Q \rightarrow P)}{\vdash(P \rightarrow Q) \vee(Q \rightarrow P)}}{\vdash(\vee) R}}
$$

[^7]This example is typical of the sequent calculus: start with the desired theorem and apply rules backwards in a fairly arbitrary manner. This yields a surprisingly effective proof procedure. Quantifiers add few complications, since Isabelle handles parameters and schematic variables. See Chapter 10 of ML for the Working Programmer [9] for further discussion.

### 11.2 Simulating sequents by natural deduction

Isabelle can represent sequents directly, as in the object-logic LK. But natural deduction is easier to work with, and most object-logics employ it. Fortunately, we can simulate the sequent $P_{1}, \ldots, P_{m} \vdash Q_{1}, \ldots, Q_{n}$ by the Isabelle formula

$$
\llbracket P_{1} ; \ldots ; P_{m} ; \neg Q_{2} ; \ldots ; \neg Q_{n} \rrbracket \Longrightarrow Q_{1}
$$

where the order of the assumptions and the choice of $Q_{1}$ are arbitrary. Elimresolution plays a key role in simulating sequent proofs.

We can easily handle reasoning on the left. As discussed in Introduction to Isabelle, elim-resolution with the rules $(\vee E),(\perp E)$ and $(\exists E)$ achieves a similar effect as the corresponding sequent rules. For the other connectives, we use sequent-style elimination rules instead of destruction rules such as $(\wedge E 1,2)$ and $(\forall E)$. But note that the rule $(\neg L)$ has no effect under our representation of sequents!

$$
\frac{\Gamma \vdash \Delta, P}{\neg P, \Gamma \vdash \Delta}
$$

What about reasoning on the right? Introduction rules can only affect the formula in the conclusion, namely $Q_{1}$. The other right-side formulae are represented as negated assumptions, $\neg Q_{2}, \ldots, \neg Q_{n}$. In order to operate on one of these, it must first be exchanged with $Q_{1}$. Elim-resolution with the swap rule has this effect:

$$
\begin{equation*}
\llbracket \neg P ; \neg R \Longrightarrow P \rrbracket \Longrightarrow R \tag{swap}
\end{equation*}
$$

To ensure that swaps occur only when necessary, each introduction rule is converted into a swapped form: it is resolved with the second premise of (swap). The swapped form of $(\wedge I)$, which might be called $(\neg \wedge E)$, is

$$
\llbracket \neg(P \wedge Q) ; \neg R \Longrightarrow P ; \neg R \Longrightarrow Q \rrbracket \Longrightarrow R .
$$

Similarly, the swapped form of $(\rightarrow I)$ is

$$
\llbracket \neg(P \rightarrow Q) ; \llbracket \neg R ; P \rrbracket \Longrightarrow Q \rrbracket \Longrightarrow R
$$

Swapped introduction rules are applied using elim-resolution, which deletes the negated formula. Our representation of sequents also requires the use of ordinary introduction rules. If we had no regard for readability, we could treat the right side more uniformly by representing sequents as

$$
\llbracket P_{1} ; \ldots ; P_{m} ; \neg Q_{1} ; \ldots ; \neg Q_{n} \rrbracket \Longrightarrow \perp .
$$

### 11.3 Extra rules for the sequent calculus

As mentioned, destruction rules such as $(\wedge E 1,2)$ and $(\forall E)$ must be replaced by sequent-style elimination rules. In addition, we need rules to embody the classical equivalence between $P \rightarrow Q$ and $\neg P \vee Q$. The introduction rules $(\vee I 1,2)$ are replaced by a rule that simulates $(\vee R)$ :

$$
(\neg Q \Longrightarrow P) \Longrightarrow P \vee Q
$$

The destruction rule $(\rightarrow E)$ is replaced by

$$
\llbracket P \rightarrow Q ; \neg P \Longrightarrow R ; Q \Longrightarrow R \rrbracket \Longrightarrow R .
$$

Quantifier replication also requires special rules. In classical logic, $\exists x . P$ is equivalent to $\neg \forall x . \neg P$; the rules $(\exists R)$ and $(\forall L)$ are dual:

$$
\frac{\Gamma \vdash \Delta, \exists x \cdot P, P[t / x]}{\Gamma \vdash \Delta, \exists x \cdot P}(\exists R) \quad \frac{P[t / x], \forall x \cdot P, \Gamma \vdash \Delta}{\forall x \cdot P, \Gamma \vdash \Delta}(\forall L)
$$

Thus both kinds of quantifier may be replicated. Theorems requiring multiple uses of a universal formula are easy to invent; consider

$$
(\forall x . P(x) \rightarrow P(f(x))) \wedge P(a) \rightarrow P\left(f^{n}(a)\right),
$$

for any $n>1$. Natural examples of the multiple use of an existential formula are rare; a standard one is $\exists x . \forall y . P(x) \rightarrow P(y)$.

Forgoing quantifier replication loses completeness, but gains decidability, since the search space becomes finite. Many useful theorems can be proved without replication, and the search generally delivers its verdict in a reasonable time. To adopt this approach, represent the sequent rules $(\exists R),(\exists L)$ and $(\forall R)$ by $(\exists I)$, $(\exists E)$ and $(\forall I)$, respectively, and put $(\forall E)$ into elimination form:

$$
\begin{equation*}
\llbracket \forall x . P(x) ; P(t) \Longrightarrow Q \rrbracket \Longrightarrow Q \tag{2}
\end{equation*}
$$

Elim-resolution with this rule will delete the universal formula after a single use. To replicate universal quantifiers, replace the rule by

$$
\begin{equation*}
\llbracket \forall x \cdot P(x) ; \llbracket P(t) ; \forall x \cdot P(x) \rrbracket \Longrightarrow Q \rrbracket \Longrightarrow Q . \tag{3}
\end{equation*}
$$

To replicate existential quantifiers, replace $(\exists I)$ by

$$
\llbracket \neg(\exists x \cdot P(x)) \Longrightarrow P(t) \rrbracket \Longrightarrow \exists x \cdot P(x)
$$

All introduction rules mentioned above are also useful in swapped form.
Replication makes the search space infinite; we must apply the rules with care. The classical reasoner distinguishes between safe and unsafe rules, applying the latter only when there is no alternative. Depth-first search may well go down a blind alley; best-first search is better behaved in an infinite search space. However, quantifier replication is too expensive to prove any but the simplest theorems.

### 11.4 Classical rule sets

Each automatic tactic takes a classical set - a collection of rules, classified as introduction or elimination and as safe or unsafe. In general, safe rules can be attempted blindly, while unsafe rules must be used with care. A safe rule must never reduce a provable goal to an unprovable set of subgoals.

The rule ( $\vee I 1$ ) is unsafe because it reduces $P \vee Q$ to $P$. Any rule is unsafe whose premises contain new unknowns. The elimination rule ( $\forall E_{2}$ ) is unsafe, since it is applied via elim-resolution, which discards the assumption $\forall x . P(x)$ and replaces it by the weaker assumption $P(? t)$. The rule $(\exists I)$ is unsafe for similar reasons. The rule $\left(\forall E_{3}\right)$ is unsafe in a different sense: since it keeps the assumption $\forall x . P(x)$, it is prone to looping. In classical first-order logic, all rules are safe except those mentioned above.

The safe/unsafe distinction is vague, and may be regarded merely as a way of giving some rules priority over others. One could argue that $(\vee E)$ is unsafe, because repeated application of it could generate exponentially many subgoals. Induction rules are unsafe because inductive proofs are difficult to set up automatically. Any inference is unsafe that instantiates an unknown in the proof state - thus match_tac must be used, rather than resolve_tac. Even proof by assumption is unsafe if it instantiates unknowns shared with other subgoals thus eq_assume_tac must be used, rather than assume_tac.

### 11.4.1 Adding rules to classical sets

Classical rule sets belong to the abstract type claset, which supports the following operations (provided the classical reasoner is installed!):

```
empty_cs : claset
print_cs : claset -> unit
addSIs : claset * thm list -> claset infix 4
addSEs : claset * thm list -> claset infix 4
addSDs : claset * thm list -> claset infix 4
addIs : claset * thm list -> claset infix 4
addEs : claset * thm list -> claset infix 4
addDs : claset * thm list -> claset infix 4
delrules : claset * thm list -> claset infix 4
```

The add operations ignore any rule already present in the claset with the same classification (such as Safe Introduction). They print a warning if the rule has already been added with some other classification, but add the rule anyway. Calling delrules deletes all occurrences of a rule from the claset, but see the warning below concerning destruction rules.
empty_cs is the empty classical set.
print_cs $c s$ prints the rules of $c s$.
cs addSIs rules adds safe introduction rules to cs.
cs addSEs rules adds safe elimination rules to $c s$.
cs addSDs rules adds safe destruction rules to cs.
cs addIs rules adds unsafe introduction rules to $c s$.
cs addEs rules adds unsafe elimination rules to $c s$.
cs addDs rules adds unsafe destruction rules to cs.
cs delrules rules deletes rules from cs. It prints a warning for those rules that are not in cs.
! If you added rule using addSDs or addDs, then you must delete it as follows:
cs delrules [make_elim rule]
This is necessary because the operators addSDs and addDs convert the destruction rules to elimination rules by applying make_elim, and then insert them using addSEs and addEs, respectively.

Introduction rules are those that can be applied using ordinary resolution. The classical set automatically generates their swapped forms, which will be applied using elim-resolution. Elimination rules are applied using elim-resolution. In a classical set, rules are sorted by the number of new subgoals they will yield; rules that generate the fewest subgoals will be tried first (see §3.4.1).

### 11.4.2 Modifying the search step

For a given classical set, the proof strategy is simple. Perform as many safe inferences as possible; or else, apply certain safe rules, allowing instantiation of unknowns; or else, apply an unsafe rule. The tactics also eliminate assumptions of the form $x=t$ by substitution if they have been set up to do so (see hyp_subst_tacs in $\S 11.6$ below). They may perform a form of Modus Ponens: if there are assumptions $P \rightarrow Q$ and $P$, then replace $P \rightarrow Q$ by $Q$.

The classical reasoning tactics - except blast_tac! - allow you to modify this basic proof strategy by applying two arbitrary wrapper tacticals to it. This affects each step of the search. Usually they are the identity tacticals, but they could apply another tactic before or after the step tactic. The first one, which is considered to be safe, affects safe_step_tac and all the tactics that call
it. The the second one, which may be unsafe, affects step_tac, slow_step_tac and the tactics that call them.

```
addss : claset * simpset -> claset infix 4
addSbefore : claset * (int -> tactic) -> claset infix 4
addSaltern : claset * (int -> tactic) -> claset infix 4
setSWrapper : claset * ((int -> tactic) ->
 (int -> tactic)) -> claset infix 4
compSWrapper : claset * ((int -> tactic) ->
 (int -> tactic)) -> claset infix 4
addbefore : claset * (int -> tactic) -> claset infix 4
addaltern : claset * (int -> tactic) -> claset infix 4
setWrapper : claset * ((int -> tactic) ->
 (int -> tactic)) -> claset infix 4
compWrapper : claset * ((int -> tactic) ->
 (int -> tactic)) -> claset infix 4
```

The wrapper tacticals underly the operator addss, which combines each search step by simplification. Strictly speaking, addss is not part of the classical reasoner. It should be defined (using addSaltern (CHANGED o (safe_asm_more_full_simp_tac ss)) when the simplifier is installed.
cs addss $s s$ adds the simpset $s s$ to the classical set. The assumptions and goal will be simplified, in a safe way, after the safe steps of the search.
cs addSbefore tac changes the safe wrapper tactical to apply the given tactic before each safe step of the search.
cs addSaltern tac changes the safe wrapper tactical to apply the given tactic when a safe step of the search would fail.
cs setSWrapper tactical specifies a new safe wrapper tactical.
cs compSWrapper tactical composes the tactical with the existing safe wrapper tactical, to combine their effects.
cs addbefore tac changes the (unsafe) wrapper tactical to apply the given tactic, which should be safe, before each step of the search.
cs addaltern tac changes the (unsafe) wrapper tactical to apply the given tactic alternatively after each step of the search.
cs setWrapper tactical specifies a new (unsafe) wrapper tactical.
cs compWrapper tactical composes the tactical with the existing (unsafe) wrapper tactical, to combine their effects.

### 11.5 The classical tactics

If installed, the classical module provides powerful theorem-proving tactics. Most of them have capitalized analogues that use the default claset; see §11.5.7.

### 11.5.1 Semi-automatic tactics

$\begin{array}{ll}\text { clarify_tac } & : \text { claset }->\text { int }->\text { tactic } \\ \text { clarify_step_tac }: ~ c l a s e t ~ & \text { int }->\text { tactic }\end{array}$
Use these when the automatic tactics fail. They perform all the obvious logical inferences that do not split the subgoal. The result is a simpler subgoal that can be tackled by other means, such as by instantiating quantifiers yourself.
clarify_tac cs $i$ performs a series of safe steps on subgoal $i$, using clarify_step_tac.
clarify_step_tac cs $i$ performs a safe step on subgoal $i$. No splitting step is applied; for example, the subgoal $A \wedge B$ is left as a conjunction. Proof by assumption, Modus Ponens, etc., may be performed provided they do not instantiate unknowns. Assumptions of the form $x=t$ may be eliminated. The user-supplied safe wrapper tactical is applied.

### 11.5.2 The tableau prover

The tactic blast_tac searches for a proof using a fast tableau prover, coded directly in ML. It then reconstructs the proof using Isabelle tactics. It is faster and more powerful than the other classical reasoning tactics, but has major limitations too.

- It does not use the wrapper tacticals described above, such as addss.
- It ignores types, which can cause problems in HOL. If it applies a rule whose types are inappropriate, then proof reconstruction will fail.
- It does not perform higher-order unification, as needed by the rule rangeI in HOL and RepFunI in ZF. There are often alternatives to such rules, for example range_eqI and RepFun_eqI.
- The message Function Var's argument not a bound variable relates to the lack of higher-order unification. Function variables may only be applied to parameters of the subgoal.
- Its proof strategy is more general than fast_tac's but can be slower. If blast_tac fails or seems to be running forever, try fast_tac and the other tactics described below.

```
blast_tac : claset -> int -> tactic
Blast.depth_tac : claset -> int -> int -> tactic
Blast.trace : bool ref initially false
```

The two tactics differ on how they bound the number of unsafe steps used in a proof. While blast_tac starts with a bound of zero and increases it successively to 20, Blast.depth_tac applies a user-supplied search bound.
blast_tac cs $i$ tries to prove subgoal $i$ using iterative deepening to increase the search bound.

Blast.depth_tac cs lim $i$ tries to prove subgoal $i$ using a search bound of lim. Often a slow proof using blast_tac can be made much faster by supplying the successful search bound to this tactic instead.
set Blast.trace; causes the tableau prover to print a trace of its search. At each step it displays the formula currently being examined and reports whether the branch has been closed, extended or split.

### 11.5.3 An automatic tactic

```
auto_tac : claset * simpset }->>\mathrm{ tactic
auto : unit -> unit
```

The auto-tactic attempts to prove all subgoals using a combination of simplification and classical reasoning. It is intended for situations where there are a lot of mostly trivial subgoals; it proves all the easy ones, leaving the ones it cannot prove. (Unfortunately, attempting to prove the hard ones may take a long time.) It must be supplied both a simpset and a claset; therefore it is most easily called as Auto_tac, which uses the default claset and simpset (see §11.5.7 below). For interactive use, the shorthand auto(); abbreviates

```
by (Auto_tac());
```


### 11.5.4 Other classical tactics <br> fast_tac : claset $->$ int $->$ tactic <br> best_tac : claset -> int -> tactic <br> slow_tac : claset $->$ int $->$ tactic <br> slow_best_tac : claset -> int -> tactic

These tactics attempt to prove a subgoal using sequent-style reasoning. Unlike blast_tac, they construct proofs directly in Isabelle. Their effect is restricted (by SELECT_GOAL) to one subgoal; they either prove this subgoal or fail. The slow_ versions conduct a broader search. ${ }^{2}$

[^8]The best-first tactics are guided by a heuristic function: typically, the total size of the proof state. This function is supplied in the functor call that sets up the classical reasoner.
fast_tac cs $i$ applies step_tac using depth-first search, to prove subgoal $i$.
best_tac cs $i$ applies step_tac using best-first search, to prove subgoal $i$.
slow_tac cs $i$ applies slow_step_tac using depth-first search, to prove subgoal $i$.
slow_best_tac cs $i$ applies slow_step_tac using best-first search, to prove subgoal $i$.

### 11.5.5 Depth-limited automatic tactics

```
depth_tac : claset -> int -> int -> tactic
deepen_tac : claset -> int -> int -> tactic
```

These work by exhaustive search up to a specified depth. Unsafe rules are modified to preserve the formula they act on, so that it be used repeatedly. They can prove more goals than fast_tac can but are much slower, for example if the assumptions have many universal quantifiers.

The depth limits the number of unsafe steps. If you can estimate the minimum number of unsafe steps needed, supply this value as $m$ to save time.
depth_tac cs $m i$ tries to prove subgoal $i$ by exhaustive search up to depth $m$.
deepen_tac cs $m i$ tries to prove subgoal $i$ by iterative deepening. It calls depth_tac repeatedly with increasing depths, starting with $m$.

### 11.5.6 Single-step tactics

```
safe_step_tac : claset -> int -> tactic
safe_tac : claset -> tactic
inst_step_tac : claset -> int -> tactic
step_tac : claset -> int -> tactic
slow_step_tac : claset -> int -> tactic
```

The automatic proof procedures call these tactics. By calling them yourself, you can execute these procedures one step at a time.
safe_step_tac cs $i$ performs a safe step on subgoal $i$. The safe wrapper tactical is applied to a tactic that may include proof by assumption or Modus Ponens (taking care not to instantiate unknowns), or substitution.
safe_tac cs repeatedly performs safe steps on all subgoals. It is deterministic, with at most one outcome.
inst_step_tac cs $i$ is like safe_step_tac, but allows unknowns to be instantiated.
step_tac cs $i$ is the basic step of the proof procedure. The (unsafe) wrapper tactical is applied to a tactic that tries safe_tac, inst_step_tac, or applies an unsafe rule from $c s$.
slow_step_tac resembles step_tac, but allows backtracking between using safe rules with instantiation (inst_step_tac) and using unsafe rules. The resulting search space is larger.

### 11.5.7 The current claset

Some logics (FOL, HOL and ZF) support the concept of a current claset. This is a default set of classical rules. The underlying idea is quite similar to that of a current simpset described in $\S 10.1$; please read that section, including its warnings. Just like simpsets, clasets can be associated with theories. The tactics

| Blast_tac | : int -> tactic |
| :---: | :---: |
| Auto_tac | unit -> tactic |
| Fast_tac | int -> tactic |
| Best_tac | int -> tactic |
| Deepen_tac | int -> int -> tactic |
| Clarify_tac | int $->$ tactic |
| Clarify_step_tac | int -> tactic |
| Safe_tac | tactic |
| Safe_step_tac | int -> tactic |
| Step_tac | int -> tactic |

make use of the current claset. For example, Blast_tac is defined as

```
fun Blast_tac i st = blast_tac (!claset) i st;
```

and gets the current claset, !claset, only after it is applied to a proof state. The functions

```
AddSIs, AddSEs, AddSDs, AddIs, AddEs, AddDs: thm list -> unit
```

are used to add rules to the current claset. They work exactly like their lower case counterparts, such as addSIs. Calling

```
Delrules : thm list -> unit
```

deletes rules from the current claset.

### 11.5.8 Other useful tactics

| contr_tac | $:$ | int $->$ tactic |
| :--- | :--- | :--- |
| mp_tac | $:$ | int $->$ tactic |
| eq_mp_tac | $:$ | int $->$ tactic |
| swap_res_tac | : thm list $\rightarrow$ int $\rightarrow$ tactic |  |

These can be used in the body of a specialized search.
contr_tac $i$ solves subgoal $i$ by detecting a contradiction among two assumptions of the form $P$ and $\neg P$, or fail. It may instantiate unknowns. The tactic can produce multiple outcomes, enumerating all possible contradictions.
mp_tac $i$ is like contr_tac, but also attempts to perform Modus Ponens in subgoal $i$. If there are assumptions $P \rightarrow Q$ and $P$, then it replaces $P \rightarrow Q$ by $Q$. It may instantiate unknowns. It fails if it can do nothing.
eq_mp_tac $i$ is like mp_tac $i$, but may not instantiate unknowns - thus, it is safe.
swap_res_tac thms $i$ refines subgoal $i$ of the proof state using thms, which should be a list of introduction rules. First, it attempts to prove the goal using assume_tac or contr_tac. It then attempts to apply each rule in turn, attempting resolution and also elim-resolution with the swapped form.

### 11.5.9 Creating swapped rules

```
swapify : thm list -> thm list
joinrules : thm list * thm list -> (bool * thm) list
```

swapify thms returns a list consisting of the swapped versions of thms, regarded as introduction rules.
joinrules (intrs, elims) joins introduction rules, their swapped versions, and elimination rules for use with biresolve_tac. Each rule is paired with false (indicating ordinary resolution) or true (indicating elimresolution).

### 11.6 Setting up the classical reasoner

Isabelle's classical object-logics, including FOL and HOL, have the classical reasoner already set up. When defining a new classical logic, you should set up the reasoner
yourself. It consists of the mL functor ClassicalFun, which takes the argument signature CLASSICAL_DATA:

```
signature CLASSICAL_DATA =
 sig
 val mp : thm
 val not_elim : thm
 val swap : thm
 val sizef : thm -> int
 val hyp_subst_tacs : (int -> tactic) list
 end;
```

Thus, the functor requires the following items:
mp should be the Modus Ponens rule $\llbracket ? P \rightarrow ? Q ; ? P \rrbracket \Longrightarrow ? Q$.
not_elim should be the contradiction rule $\llbracket \neg ? P ; ? P \rrbracket \Longrightarrow ? R$.
swap should be the swap rule $\llbracket \neg ? P ; \neg ? R \Longrightarrow ? P \rrbracket \Longrightarrow ? R$.
sizef is the heuristic function used for best-first search. It should estimate the size of the remaining subgoals. A good heuristic function is size_of_thm, which measures the size of the proof state. Another size function might ignore certain subgoals (say, those concerned with type checking). A heuristic function might simply count the subgoals.
hyp_subst_tacs is a list of tactics for substitution in the hypotheses, typically created by HypsubstFun (see Chapter 9). This list can, of course, be empty. The tactics are assumed to be safe!

The functor is not at all sensitive to the formalization of the object-logic. It does not even examine the rules, but merely applies them according to its fixed strategy. The functor resides in Provers/classical.ML in the Isabelle sources.

## Bibliography

[1] Robert S. Boyer and J Strother Moore. A Computational Logic Handbook. Academic Press, 1988.
[2] E. Charniak, C. K. Riesbeck, and D. V. McDermott. Artificial Intelligence Programming. Lawrence Erlbaum Associates, 1980.
[3] N. G. de Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser Theorem. Indagationes Mathematicae, 34:381-392, 1972.
[4] K. Futatsugi, J.A. Goguen, Jean-Pierre Jouannaud, and J. Meseguer. Principles of OBJ2. In Symposium on Principles of Programming Languages, pages 52-66, 1985.
[5] Ursula Martin and Tobias Nipkow. Ordered rewriting and confluence. In Mark E. Stickel, editor, 10th International Conference on Automated Deduction, LNAI 449, pages 366-380. Springer, 1990.
[6] Tobias Nipkow. Functional unification of higher-order patterns. In M. Vardi, editor, Eighth Annual Symposium on Logic in Computer Science, pages 64-74. ieee Computer Society Press, 1993.
[7] Tobias Nipkow and Christian Prehofer. Type reconstruction for type classes. Journal of Functional Programming, 5(2):201-224, 1995.
[8] Bengt Nordström, Kent Petersson, and Jan Smith. Programming in Martin-Löf's Type Theory. An Introduction. Oxford University Press, 1990.
[9] Lawrence C. Paulson. ML for the Working Programmer. Cambridge University Press, 1991.
[10] Lawrence C. Paulson. ML for the Working Programmer. Cambridge University Press, 2nd edition, 1996.
[11] F. J. Pelletier. Seventy-five problems for testing automatic theorem provers. Journal of Automated Reasoning, 2:191-216, 1986. Errata, JAR 4 (1988), 235-236 and JAR 18 (1997), 135.

## Appendix A

## Syntax of Isabelle Theories

Below we present the full syntax of theory definition files as provided by Pure Isabelle - object-logics may add their own sections. §6.1 explains the meanings of these constructs. The syntax obeys the following conventions:

- Typewriter font denotes terminal symbols.
- id, tid, nat, string and longident are the lexical classes of identifiers, type identifiers, natural numbers, quoted strings (without the need for $\backslash \ldots \backslash$ between lines) and long qualified ML identifiers. The categories id, tid, nat are fully defined in $\S 7$.
- text is all text from the current position to the end of file, verbatim is any text enclosed in $\{\mid \ldots$. . $\}$
- Comments in theories take the form (*...*) and may be nested, just as in ML.
theoryDef

name

extension

section

classes

classDecl

default

sort

types

infix

typeDecl

typevarlist

type

simpleType

arities

arity

consts

syntax

mode

mixfixConstDecl

constDecl

mixfix

trans

pat

rules

defs

constdefs

axclass

instance

witness

oracle

$m l$
ML - text


## Index

!! symbol, 68
in main goal, 8
$\$, \mathbf{6 0}, 85$
\% symbol, 68
claset, 131
simpset, 109
: : symbol, 68, 69
== symbol, 68
==> symbol, 68
=> symbol, 68
=?= symbol, 68
@Enum constant, 91
@Finset constant, 91, 92
[ symbol, 68
[ I symbol, 68
] symbol, 68
_K constant, 93, 95
\{\} symbol, 91
\{ symbol, 68
\} symbol, 68
I] symbol, 68
Abs, 60, 85
abstract_over, 61
abstract_rule, 45
aconv, 61
addaltern, 127
addbefore, 127
addcongs, 106, 118, 119
AddDs, 131
addDs, 126
addeqcongs, 106, 108, 118
AddEs, 131
addEs, 126
AddIs, 131
addIs, 126
addloop, 107, 108
addSaltern, 127
addSbefore, 127
AddSDs, 131
addSDs, 126
AddSEs, 131
addSEs, 126
Addsimps, 103, 108, 109
addsimps, 105, 108, 109, 119
AddSIs, 131
addSIs, 126
addSolver, 107, 108
addss, 127, 128
addSSolver, 107, 108
all_tac, 31
ALLGOALS, 35, 111, 115
ambiguity
of parsed expressions, 78
ancestors_of, 59
any nonterminal, 67
APPEND, 29, 31
APPEND', 36
Appl, 82
aprop nonterminal, 69
ares_tac, 20
args nonterminal, 92
Arith theory, 114
arities
context conditions, 54
Asm_full_simp_tac, 103, 108
asm_full_simp_tac, 23, 108, 109, 112
asm_rl theorem, 22
Asm_simp_tac, 103, 108, 110
asm_simp_tac, 108, 109, 119
associative-commutative operators, biresolution, 47 113
assume, 43
assume_ax, 9, $\mathbf{5 7}$
assume_tac, 18, 125
assumption, 47
assumptions
contradictory, 132
deleting, 23
in simplification, 102, 107
inserting, 20
negated, 123
of main goal, 8-10, 15
reordering, 112
rotating, 23
substitution in, 99
tactics for, 18
ASTs, 82-87
made from parse trees, 83
made from terms, 85
atac, 20
Auto_tac, 131
axclass section, 53
axiomatic type class, 53
axioms
extracting, 57
axioms_of, 57
ba, 12
back, 10
batch execution, 13
bd, 12
bds, 12
be, 12
bes, 12
BEST_FIRST, 32, 33
Best_tac, 131
best_tac, 130
beta_conversion, 45
bicompose, 47
bimatch_tac, 24
bind_thm, 9, 10, 38
binders, 77
biresolve_tac, 24, 132
Blast.depth_tac, 129
Blast.trace, 129
Blast_tac, 131
blast_tac, 129
Bound, 60, 83, 85, 86
bound_hyp_subst_tac, 99
br, 12
BREADTH_FIRST, 32
brs, 12
bw, 13
bws, 13
by, $8,10,11,16$
byev, 8
cd, 3, 55
cert_axm, 62
CHANGED, 31
chop, 10, 14
choplev, 10
Clarify_step_tac, 131
clarify_step_tac, 128
Clarify_tac, 131
clarify_tac, 128
claset
current, 131
claset ML type, 125
classes
context conditions, 54
classical reasoner, 121-133
setting up, 132
tactics, 128
classical sets, 125
ClassicalFun, 133
combination, 45
commit, 2
COMP, 47
compose, 47
compose_tac, 24
compSWrapper, 127
compWrapper, 127
concl_of, 40

COND, 33
congruence rules, 105
Const, 60, 85, 95
Constant, 82, 95
constants, 60
for translations, 72
syntactic, 87
contr_tac, 132
could_unify, 26
cprems_of, 40
cprop_of, 40
CPure theory, 51
CPure.thy, 58
crep_thm, 41
cterm ML type, 62
cterm_instantiate, 39
cterm_of, $8,14,62$
ctyp, 63
ctyp_of, 64
cut_facts_tac, 8, 20, 100
cut_inst_tac, 20
cut_rl theorem, 22
datatype, 103
Deepen_tac, 131
deepen_tac, 130
defer_tac, 21
definitions, see rewriting, meta-level, 21, 53
unfolding, 8,9
delcongs, 106
deleqcongs, 106, 108
delete_tmpfiles, 55
delimiters, 69, 72, 73, 75
delrules, 126
Delsimps, 103, 108, 109
delsimps, 108, 109
dependent_tr', 93,95
DEPTH_FIRST, 32
DEPTH_SOLVE, 32
DEPTH_SOLVE_1, 32
depth_tac, 130
Deriv.drop, 49

Deriv.linear, 49
Deriv.size, 49
Deriv.tree, 49
dest_eq, 100
dest_state, 41
destruct-resolution, 18
DETERM, 33
discrimination nets, 25
distinct_subgoals_tac, 23
dmatch_tac, 18
dres_inst_tac, 19
dresolve_tac, 18
dtac, 20
dummyT, 85, 86, 96
duplicate subgoals removing, 23
elim-resolution, 17
ematch_tac, 18
empty constant, 91
empty_cs, 125
empty_ss, 108, 119
eq_assume_tac, 18, 125
eq_assumption, 47
eq_mp_tac, 132
eq_reflection theorem, 100, 116
eq_thm, 33
eq_thy, 58
equal_elim, 44
equal_intr, 44
equality, 98-101
eres_inst_tac, 19
eresolve_tac, 17
ERROR, 5
error, 5
error messages, 5
eta_contract, 5, 89
etac, 20
EVERY, 30
EVERY', 36
EVERY1, 36
examples
of logic definitions, 79
of macros, 91, 92
of mixfix declarations, 74
of simplification, 109
of translations, 95
exceptions
printing of, 5
exit, 2
extensional, 45
fa, 12
Fast_tac, 131
fast_tac, 130
fd, 12
fds, 12
fe, 12
fes, 12
files
reading, 3,54
filt_resolve_tac, 26
FILTER, 31
filter_goal, 16
filter_thms, 26
findE, 10
findEs, 10
findI, 10
FIRST, 30
FIRST', 36
FIRST1, 36
FIRSTGOAL, 35
flex-flex constraints, 23, 40, 48
flexflex_rule, 48
flexflex_tac, 23
fold_goals_tac, 21
fold_tac, 21
forall_elim, 46
forall_elim_list, 46
forall_elim_var, 46
forall_elim_vars, 46
forall_intr, 45
forall_intr_frees, 45
forall_intr_list, 45
force_strip_shyps, 41
forw_inst_tac, 19
forward proof, 18, 38
forward_tac, 18
fr, 12
Free, 60, 85
freezeT, 46
frs, 12
Full_simp_tac, 103, 108
full_simp_tac, 108, 109
fun type, 63
function applications, 60
get_axiom, 57
get_thm, 57
get_thms, 57
getgoal, 16
gethyps, 16, 34
goal, 8,14
goals_limit, 11
goalw, 8
goalw_cterm, 8
has_fewer_prems, 33
higher-order pattern, 105
hyp_subst_tac, 99
hyp_subst_tacs, 133
HypsubstFun, 100, 133
id nonterminal, 69, 83, 90
identifiers, 69
idt nonterminal, 89
idts nonterminal, 69, 77
IF_UNSOLVED, 33
iff_reflection theorem, 116
imp_intr theorem, 100
implies_elim, 44
implies_elim_list, 44
implies_intr, 44
implies_intr_hyps, 44
implies_intr_list, 44
incr_boundvars, 61, 95
indexname ML type, 60, 70
infixes, 76
insert constant, 91
inst_step_tac, 131
instance section, 53
instantiate, 46
instantiate', 39, 46
instantiation, 18, 39, 46
INTLEAVE, 29, 31
INTLEAVE', 36
invoke_oracle, 64
is nonterminal, 91
joinrules, 132
keep_derivs, 49
$\lambda$-abstractions, 25, 60
$\lambda$-calculus, $43,45,69$
lessb, 25
lexer, 69
lift_rule, 48
lifting, 48
loadpath, 55
logic class, 69, 74
logic nonterminal, 69
Logic.auto_rename, 23
Logic.set_rename_prefix, 22
loose_bnos, 61, 96
macros, 87-93
make_elim, 40, 126
Match exception, 95, 100
match_tac, 18, 125
max_pri, 67,73
merge_ss, 108
merge_theories, 58
meta-assumptions, 34, 42, 43, 47
printing of, 4
meta-equality, 43,44
meta-implication, 43, 44
meta-quantifiers, 43,45
meta-rewriting, $8,13,14, \mathbf{2 1}$, see also tactics, theorems in theorems, 39
meta-rules, see meta-rules, 42-48
METAHYPS, 16, 34
mixfix declarations, 52, 72-77
mk_case_split_tac, 119
ML section, 53, 94, 96
model checkers, 78
mp theorem, 133
mp_tac, 132
MRL, 38
MRS, 38
name tokens, 69
net_bimatch_tac, 25
net_biresolve_tac, 25
net_match_tac, 25
net_resolve_tac, 25
no_tac, 31
None, 27
not_elim theorem, 133
nprems_of, 41
numerals, 69
o type, 79
object, 64
op symbol, 76
option ML type, 27
oracles, 64-65
ORELSE, 29, 31, 35
ORELSE', 36
parameters
removing unused, 23
renaming, $13,22,48$
parents_of, 59
parse trees, 82
parse_ast_translation, 94
parse_rules, 89
parse_translation, 94
pattern, higher-order, 105
pause_tac, 27
Poly/mL compiler, 5
pop_proof, 15
pr, 11
premises, 8, 15
prems_of, 40
prems_of_ss, 108
pretty printing, 73, 75-76, 92

Pretty.setdepth, 4
Pretty.setmargin, 4
PRIMITIVE, 26
primrec, 103
prin, 6, 15
print mode, 52, 96
print modes, 77-78
print_ast_translation, 94
print_cs, 125
print_data, 59
print_depth, 4
print_exn, 6, 37
print_goals, 38
print_mode, 77
print_modes, 72
print_rules, 89
print_syntax, 59, 71
print_tac, 27
print_theory, 59
print_thm, 38
print_translation, 94
printing control, 3-5
printyp, 15
priorities, 66, 73
priority grammars, 66-67
prlev, 11
prlim, 11
productions, 66, 72, 73
copy, 72, 73, 84
proof ML type, 15
proof objects, 48-50
proof state, 7
printing of, 11
proof_timing, 11
proofs, 7-16
inspecting the state, 16
managing multiple, 14
saving and restoring, 15
stacking, 14
starting, 7
timing, 11
PROP symbol, 68
prop type, 63, 69
prop nonterminal, 67, 79
ProtoPure.thy, 58
prove_goal, 11, 14
prove_goalw, 14
prove_goalw_cterm, 14
prth, 37
prthq, 38
prths, 38
prune_params_tac, 23
pttrn nonterminal, 69
pttrns nonterminal, 69
Pure theory, 51, 67, 71
Pure.thy, 58
push_proof, 15
pwd, 3
qed, $\mathbf{9}, 10,57$
qed_goal, 14
qed_goalw, 14
quantifiers, 77
quit, 2
read, 15
read_axm, 62
read_cterm, 62
read_instantiate, 39
read_instantiate_sg, 39
reading
axioms, see assume_ax
goals, see proofs, starting
reflexive, 44
ren, 13
rename_last_tac, 22
rename_params_rule, 48
rename_tac, 22
rep_cterm, 62
rep_ctyp, 64
rep_ss, 108
rep_thm, 41
REPEAT, 30, 31
REPEAT1, 30
REPEAT_DETERM, 30
REPEAT_FIRST, 35

REPEAT_SOME, 35
res_inst_tac, 19, 23, 24
reserved words, 69, 92
reset, 3
resolution, 38, 47
tactics, 17
without lifting, 47
resolve_tac, 17, 125
restore_proof, 15
result, 9, 16, 57
rev_mp theorem, 100
rewrite rules, 104-105
permutative, 113-116
rewrite_goals_rule, 39
rewrite_goals_tac, 21, 39
rewrite_rule, 39
rewrite_tac, 9, $\mathbf{2 1}$
rewriting
object-level, see simplification
ordered, 113
syntactic, 87-93
rewtac, 20
RL, 38
RLN, 38
rotate_proof, 15
rotate_tac, 23
RS, 38
RSN, 38
rtac, 20
rule_by_tactic, 23,40
rules
converting destruction to elimination, 40
safe_asm_full_simp_tac, 107, 108
Safe_step_tac, 131
safe_step_tac, 126, 130
Safe_tac, 131
safe_tac, 130
save_proof, 15
saving your work, 1
search, 29
tacticals, 31-33

SELECT_GOAL, 21, 34
Seq.seq ML type, 26
sequences (lazy lists), 27
sequent calculus, 122
sessions, 1-6
set, 3
set_current_thy, 104
setloop, 107, 108
setmksimps, 105, 108, 119
setSolver, 107, 108, 119
setSSolver, 107, 108, 119
setsubgoaler, 106, 108, 119
setSWrapper, 127
setWrapper, 127
shortcuts
for tactics, 19
for by commands, 11
show_brackets, 4
show_consts, 4
show_hyps, 4
show_sorts, 4, 86, 94
show_types, 4, 86, 89, 96
Sign.sg ML type, 51
Sign.stamp_names_of, 59
Sign.string_of_term, 62
Sign.string_of_typ, 63
sign_of, $8,14,59$
sign_of_thm, 41
signatures, 51, 59, 61, 62, 64
Simp_tac, 102, 108
simp_tac, 108, 109
simplification, 102-120
from classical reasoner, 127
setting up, 116
tactics, 109
simplification sets, 104
simpset
current, 102, 104, 109
simpset, 108
simpset ML type, 108
simpset ML value, 104
simpset_of, 109
size_of_thm, 32, 33, 133
sizef, 133
slow_best_tac, 130
slow_step_tac, 127, 131
slow_tac, 130
Some, 27
SOMEGOAL, 35
sort nonterminal, 69
sort constraints, 68
sort hypotheses, 41
sorts
printing of, 4
split_tac, 119
ssubst theorem, 98
stac, 99
stamps, 51, 59
standard, 40
starting up, 1
Step_tac, 131
step_tac, 127, 131
store_thm, 9
string_of_cterm, 62
string_of_ctyp, 63
string_of_thm, 38
strings, 69
SUBGOAL, 26
subgoal module, 7-16
subgoal_tac, 20
subgoals_of_brl, 24
subgoals_tac, 20
subst theorem, 98, 100
substitution
rules, 98
subthy, 58
swap theorem, 133
swap_res_tac, 132
swapify, 132
sym theorem, 99, 100
symmetric, 44
syn_of, 71
syntax
Pure, 67-72
transformations, 82-96
syntax section, 52

Syntax.ast ML type, 82
Syntax.mark_boundT, 96
Syntax.print_gram, 71
Syntax.print_syntax, 71
Syntax.print_trans, 71
Syntax.stat_norm_ast, 91
Syntax.syntax ML type, 71
Syntax.test_read, 75, 91
Syntax.trace_norm_ast, 91
Syntax.variant_abs', 96
tactic ML type, 17
tacticals, 29-36
conditional, 33
deterministic, 33
for filtering, 31
for restriction to a subgoal, 34
identities for, 30
joining a list of tactics, 30
joining tactic functions, 36
joining two tactics, 29
repetition, 30
scanning for subgoals, 35
searching, 32
tactics, 17-28
assumption, 18, 19
commands for applying, 8
debugging, 15
filtering results of, 31
for composition, 24
for contradiction, 132
for inserting facts, 20
for Modus Ponens, 132
instantiation, 18
matching, 18
meta-rewriting, 19, 21
primitives for coding, 26
resolution, 17, 19, 24, 25
restricting to a subgoal, 34
simplification, 109
substitution, 98-101
tracing, 27
TERM, 62
term ML type, 60,85
terms, 60
certified, 61
made from ASTs, 85
printing of, 15, 62
reading of, 15
TFree, 63
THEN, 29, 31, 35
THEN', 36
THEN_BEST_FIRST, 32
theorems, 37-50
equality of, 33
extracting, 57
extracting proved, 9
joining by resolution, 38
of pure theory, 22
printing of, 37
retrieving, 10
size of, 33
standardizing, 40
storing, 9
taking apart, 40
theories, 51-65
axioms of, 57
constructing, 58
inspecting, 59
loading, 54
parent, 51
pseudo, 56
reloading, 55
removing, 56
theorems of, 57
THEORY exception, 51, 57
theory ML type, 51
Theory.add_oracle, 64
theory_of_thm, 41
thin_tac, 23
THM exception, $37,38,42,47$
thm ML type, 37
thms_containing, 10
thms_of, 57
tid nonterminal, 69, 83, 90
time_use, 3
time_use_thy, 55
timing statistics, 11
toggle, 3
token class, 96
token translations, 96-97
token translation, 97
token_translation, 97
topthm, 16
tpairs_of, 41
trace_BEST_FIRST, 32
trace_DEPTH_FIRST, 32
trace_goalno_tac, 35
trace_REPEAT, 30
trace_simp, 103, 110
tracing
of classical prover, 129
of macros, 91
of searching tacticals, 32
of simplification, 103, 110-111
of tactics, 27
of unification, 42
transfer, 58
transfer_sg, 58
transitive, 45
translations, 93-96
parse, 77, 85
parse AST, 83, 84
print, 77
print AST, 86
translations section, 88
trivial, 48
Trueprop constant, 79
TRY, 30, 31
TRYALL, 35
TVar, 63
tvar nonterminal, 69, 70, 83, 90
typ ML type, 63
Type, 63
type type, 74
type nonterminal, 69
type constraints, 69, 77, 86
type constructors, 63
type identifiers, 69
type synonyms, 52
type unknowns, 63, 69
freezing/thawing of, 46
type variables, 63
typed_print_translation, 94
types, 63
certified, 63
printing of, $4,15,63$
undo, 7, 10, 14
unknowns, 60, 69
unlink_thy, 56
update, 56
uresult, 9, 16, 57
use, 3
use_thy, 54, 55
Var, 60, 85
var nonterminal, 69, 70, 83, 90
Variable, 82
variables
bound, 60
free, 60
variant_abs, 61
varifyT, 46
warning, 5
warnings, 5
writeln, 5
xnum nonterminal, 69, 83, 90
xstr nonterminal, 69, 83, 90
zero_var_indexes, 40


[^0]:    ${ }^{1}$ Tobias Nipkow, of T. U. Munich, wrote most of Chapters 7 and 10, and part of Chapter 6. Carsten Clasohm also contributed to Chapter 6. Markus Wenzel contributed to Chapter 8. Sara Kalvala, Martin Simons and others suggested changes and corrections. The research has been funded by the EPSRC (grants GR/G53279, GR/H40570, GR/K57381, GR/K77051) and by ESPRIT project 6453: Types.

[^1]:    ${ }^{1}$ The default location is in $\sim /$ isabelle/heaps, but this depends on your local configuration.

[^2]:    ${ }^{1} \alpha$-conversion holds if $y$ is not free in $a ;(e x t)$ holds if $x$ is not free in the assumptions, $f$, or $g$.
    ${ }^{2}$ Abstraction holds if $x$ is not free in the assumptions.
    ${ }^{3}(\bigwedge I)$ holds if $x$ is not free in the assumptions.

[^3]:    ${ }^{1}$ This and the following theories are complete working examples, though they specify only syntax, no axioms. The file ZF/ZF.thy presents a full set theory definition, including many macro rules.

[^4]:    ${ }^{2}$ This is done by marking atoms in abstract syntax trees appropriately. The marks are actually visible by print translation functions - they are just special constants applied to atomic asts, for example ("_bound" x).

[^5]:    ${ }^{1}$ Unifying ?P $(u)$ with a formula $Q$ expresses $Q$ in terms of its dependence upon $u$. There are still $2^{k}$ unifiers, if $Q$ has $k$ occurrences of $u$, but Isabelle ensures that the first unifier includes all the occurrences.

[^6]:    ${ }^{1}$ The previous simplifier required congruence rules for function variables like $f$ in order to simplify their arguments. It was more general than the current simplifier, but harder to use and slower. The present simplifier can be given congruence rules to realize non-standard simplification of a function's arguments, but this is seldom necessary.

[^7]:    ${ }^{1}$ For first-order logic, sequents can equivalently be made from lists or multisets of formulae.

[^8]:    ${ }^{2}$ They may, when backtracking from a failed proof attempt, undo even the step of proving a subgoal by assumption.

