
Strategic Principles in the Design of Isabelle

Lawrence C. Paulson

Computer Laboratory

University of Cambridge

Research supported by the EPSRC and ESPRIT

1



Proof Assistants: A Strategic View

Strength over the long term

• automation: essential in an interactive tool

• flexibility: for the differing needs of users

– control over syntax

– a choice of logical formalisms (logical framework!)

– a toolkit for proof strategies

• soundness needs a small trusted kernel

2



Automation & Flexibility. . . How?

• higher-order syntax

• logical variables and unification

• search primitives based on lazy lists

(Can logical frameworks really work?)

a sort of higher-order Prolog (like Dale Miller’s λProlog)

3



Higher-Order Syntax: A Must!

Flexibility: users can define new variable binders

least n. P (n) {x ∈ A | P (x)}
⋃

x∈A

B(x)

case l of [] ⇒ z | x#l′ ⇒ f(x, l′)

Doesn’t require higher-order logic

Alternatives?? Combinators or auxiliary functions

4



Logical Variables

• don’t know subterms can be left unspecified . . .

• . . . until unification completes them

• helpful for proof procedures

• declarative representation of rules

rare in higher-order proof tools

5



Declarative Rules

Define the quantifier ∀x∈A P (x) to be ∀x [x ∈ A → P (x)]

Derive the rule
∀x∈A P (x) a ∈ A

P (a)

Can be displayed and transformed and combined (resolution!)

Alternative representations: code, or higher-order formula

6



Higher-Order + Logical Variables = ?

Higher-order unification (Huet, 1975)

In the worst case. . .

• infinitely many unifiers

• semi-decidable

• complicated algorithm

Pattern unification handles the easy cases (Miller’s Lλ)

7



Tactics Based on Lazy Lists

Tactics describe the search space

• proof state → list of proof states

• result is a lazy list

Tacticals explore the search space

• tactic → tactic

• strategies: depth-first, best-first, iterative deepening, . . .

Strategies are easily combined

8



Automation in Predicate Logic

Tableaux-style provers for intuitionistic and classical FOL

The MESON proof procedure (world’s slowest!)

A generic classical reasoner (here, in ZF set theory):

C 6= ∅ →
⋂

x∈C

[A(x) ∩B(x)] = (
⋂

x∈C

A(x)) ∩ (
⋂

x∈C

B(x))

1/2 second on Pentium

9



More Automation: Inductive Definitions

To formalize

• operational semantics: languages, type theories, . . .

• proof systems

• security

Induction rules proved, not assumed

Proofs generated using tactics & tacticals

Keep the trusted kernel small

10



Some Applications

• temporal reasoning: UNITY, TLA, . . . (TUM and Cambridge)

• combinations of non-classical logics (MPI-Saarbrücken)

• verification of cryptographic protocols (Cambridge)

• Java type safety (TUM)

11



Compiler

Java JVM
Bali BVM

Operational Semantics Operational Semantics

Type System Bytecode Verifier

Type Safety?

Correctness?

12



Bali and BVM

Bali: a large subset of Java

• class, interface, field & method

• inheritance, overriding, & hiding

• overloading, dynamic binding, exceptions. . .

Bali Virtual Machine

• OO concepts (as above)

• integers & arrays

• predefined exceptions

13



Bytecode Verifier BVM

Cornelia Pusch: Isabelle proof of

ok(bytecode) ⇒ no runtime type error

Bali Formalization: 1200 lines 5 weeks

Proof of type safety: 2400 lines 10 weeks

BVM Formalization BVM: 1100 lines 7 weeks

Formalization BV: 600 lines 5 weeks

Proof of type safety: 3000 lines 8 weeks

14



Can Cryptography Make Networks Secure?

Goals of security protocols:

• Authenticity: who sent this message?

• Secrecy: who can receive my message?

Threats:

• Active attacker

• Careless & compromised agents . . . NO code-breaking

15



The Needham-Schroeder Protocol (1978)

1. A → B : {Na, A}Kb

Alice sends Bob an encrypted nonce

2. B → A : {Na,Nb}Ka

Bob returns Na with a nonce of his own

3. A → B : {Nb}Kb

Alice returns Bob’s nonce

16



A Middle-Person Attack (1995)

Villain Charlie can masquerade as Alice to Bob

A C B

{A,Na}Kc {A,Na}Kb

{Nb}Kc {Nb}Kb

Gavin Lowe found this attack 17 years later!

17



Verification Methods

• Logics of belief (BAN, 1989)

– Allows short, abstract proofs but misses many flaws

• State enumeration

– Automatically finds attacks but requires strong assumptions

• Inductive protocol verification

– Trace model of agents

– proofs mechanized using Isabelle/HOL

18



Protocol Verification: Results

• industrial protocols analyzed (TLS, Kerberos, . . . )

• minutes CPU time, weeks human time per protocol

• the power of

– inductive definitions

– the simplifier

– the classical reasoner

• substantial proofs found automatically

19



Conclusions

• logical frameworks can be practical

• lazy lists give the needed flexibility

• higher-order syntax can be combined with logical variables

• ATP techniques can be used in an interactive tool

. . . plus a lot of hard work to make it go!

20


