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Duplicating the cube

(using only ruler and compass)
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… and trisecting the 
angle
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A brief history

Posed by classical Greek mathematicians

Proved impossible in the 19th century 
(Wantzel, 1837)

Recently included on a list of 100 well-
known theorems

John Harrison had already formalised a 
proof using HOL Light.
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An elementary proof

Textbook proofs of the theorem are built 
upon Galois theory or field extensions.

The Isabelle formalization follows, but 
simplifies, Jean-Claude Carrega:

J. C. Carrega. Theory of fields. Rules 
and a pair of compasses. Hermann, 1981. 

Wednesday, 30 January 13



Core concepts
RADICAL VALUES: those 
constructed using the 
operations + − × / √

CONSTRUCTIBLE POINTS: 
those having rational 
coordinates, or 
defined as the 
intersection of

two lines
a line and a circle
two circles
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Simplifying Wantzel’s 
theorem

The full theorem refers to a series of field 
extensions ending in the construction of x — 
which is constructible iff it is the root of an 
irreducible polynomial of degree 2n.

Therefore, certain regular polygons (e.g. 
seven-sided) are not constructible.

Our proof replaces field extensions by radical 
values and only considers cubic equations.
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Lemma 1: 
(on a cubic equation with rational 

coefficients)

If it has a RADICAL root

…then it has a RATIONAL root.
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Lemma 2

All constructible points 
have radical coordinates
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Lemmas 3 and 4: 
These equations have no rational roots

The first corresponds to duplicating the cube
… and the second to trisecting a 60° angle.

Wednesday, 30 January 13



Notes on the Isabelle 
Formalization

MANY tedious calculations

Over 1500 lines; 62 lemmas and theorems

3 times the length of the informal 
mathematics

Wednesday, 30 January 13



Formal preliminaries

points in two dimensions shown to be a 
metric space

basic definitions of plane geometry

radical values (defined inductively)

radical expressions: an abstract syntax for 
radical values
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Normal forms of radical 
expressions

Every nontrivial radical expression e can be 
written in the form a+b√r

… where the radicals in a, b, r are only 
those of e, excluding r itself.
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On cubic equations

Consider a field F⊆� containing the integers.

If cubic equation over this field has a real 
root of the form u+v√s (for u, v, s ∈ F)

…then it has a root in F.

Proof: a huge case analysis
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Simplifying the roots of 
cubic equations

The previous result lets us decrease the 
number of radicals in a root of a cubic

(working with formalised expressions)

Therefore, by induction on the number of 
radicals…

if there is a RADICAL root, then there is a 
RATIONAL root.
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Constructible points

A straightforward inductive definition

THEOREM: the coordinates of constructible 
points are radical values

PROOF: the roots of various quadratic 
equations are radical values.
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Completing the proof: 
detailed calculations

the cubic equations for duplicating the cube 
and trisecting the angle

… have no rational solutions

… and therefore no constructible ones
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Trisecting the angle

cos 60° equals ½, so a 60° angle is 
constructible

cos 20° is the solution of a cubic, and 
therefore not constructible

Therefore, a 60° angle cannot be trisected.
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Final remarks

This was the MPhil project of the first 
author at Cambridge.

Detailed calculations seem inevitable, but 
with some effort, the proofs can be 
simplified.

A formal theory of field extensions would 
allow the full result to be reproduced.
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