Proving the impossibility of

 trisecting an angle and doubling the cubeRalph Romanos and Lawrence Paulson, University of Cambridge

Duplicating the cube

(using only ruler and compass)

... and trisecting the

angle

A brief history

- Posed by classical Greek mathematicians
- Proved impossible in the 19 th century (Wantzel, 1837)
- Recently included on a list of 100 wellknown theorems
- John Harrison had already formalised a proof using HOL Light.

An elementary proof

- Textbook proofs of the theorem are built upon Galois theory or field extensions.
- The Isabelle formalization follows, but simplifies, Jean-Claude Carrega:
J. C. Carrega. Theory of fields. Rules and a pair of compasses. Hermann, 1981.

Core concepts

- RADICAL VALUES: those constructed using the operations $+-x / \sqrt{ }$
- CONSTRUCTIBLE POINTS: those having rational coordinates, or defined as the intersection of
- two lines
- a line and a circle
- two circles

Simplifying Wantzel's theorem

- The full theorem refers to a series of field extensions ending in the construction of $x-$ which is constructible iff it is the root of an irreducible polynomial of degree 2^{n}.
- Therefore, certain regular polygons (e.g. seven-sided) are not constructible.
- Our proof replaces field extensions by radical values and only considers cubic equations.

Lemma 1:

(on a cubic equation with rational coefficients)

$$
x^{3}+a x^{2}+b x+c=0
$$

- If it has a RADICAL root
- ... then it has a RATIONAL root.

Lemma 2

All constructible points have radical coordinates

Lemmas 3 and 4:

These equations have no rational roots

$$
\begin{gathered}
x^{3}-2=0 \\
x^{3}-3 x-1=0
\end{gathered}
$$

The first corresponds to duplicating the cube ... and the second to trisecting a 60° angle.

Notes on the Isabelle Formalization

- MANY tedious calculations
- Over 1500 lines; 62 lemmas and theorems
- 3 times the length of the informal mathematics

Formal preliminaries

- points in two dimensions shown to be a metric space
- basic definitions of plane geometry
- radical values (defined inductively)
- radical expressions: an abstract syntax for radical values

Normal forms of radical expressions

- Every nontrivial radical expression e can be written in the form $a+b \sqrt{ } r$
- ... where the radicals in a, b, r are only those of e, excluding r itself.

On cubic equations

- Consider a field $F \subseteq R$ containing the integers.
- If cubic equation over this field has a real root of the form $u+v \sqrt{ } s$ (for $u, v, s \in F$)
- ...then it has a root in F.
- Proof: a huge case analysis

Simplifying the roots of cubic equations

- The previous result lets us decrease the number of radicals in a root of a cubic
- (working with formalised expressions)
- Therefore, by induction on the number of radicals...
- if there is a RADICAL root, then there is a RATIONAL root.

Constructible points

- A straightforward inductive definition
- THEOREM: the coordinates of constructible points are radical values
- Proof: the roots of various quadratic equations are radical values.

Completing the proof: detailed calculations

- the cubic equations for duplicating the cube and trisecting the angle
- ... have no rational solutions
- ... and therefore no constructible ones

Trisecting the angle

- $\cos 60^{\circ}$ equals $1 / 2$, so a 60° angle is constructible
- $\cos 20^{\circ}$ is the solution of a cubic, and therefore not constructible
- Therefore, a 60° angle cannot be trisected.

Final remarks

- This was the MPhil project of the first author at Cambridge.
- Detailed calculations seem inevitable, but with some effort, the proofs can be simplified.
- A formal theory of field extensions would allow the full result to be reproduced.

