
Source-Level Proof
Reconstruction for
Interactive Proving

Lawrence C. Paulson and Kong Woei Susanto
Computer Laboratory, University of Cambridge

Motivation

❖ Interactive provers are good for specifying complex systems,
but proving theorems requires too much work.

❖ Linking them to automatic provers can reduce the cost of
using them.

❖ Trusting the output of a big system (including the linkup
code) goes against the LCF tradition and is unsafe.

❖ Reconstruction lets us use techniques that are efficient but
unsound.

Source-Level Proof
Reconstruction

❖ The LCF architecture provides a kernel of inference rules,
which is the basis of all proofs.

❖ Automatic tools may include a proof reconstruction phase,
where they justify their reasoning to the proof kernel.

Why not instead deliver proofs in source form? Then users
could inspect and edit them.

Isabelle Overview

❖ Generic proof assistant, supporting higher-order logic, ZF
set theory, etc.

❖ Axiomatic type classes to express concepts such as linear
order and ring through polymorphism.

❖ Extensive lemma libraries: real numbers (including non-
standard analysis), number theory, hardware, ...

❖ Automation: decision procedures, simplifier and prover,
automatically referring to 2000 lemmas.

Automatic Provers

❖ Resolution is a general, powerful technique with full support
for quantifiers and equations.

❖ The provers we use are Vampire, E and SPASS.

❖ Arithmetic is not built-in; however, Isabelle already provides
support for the main decidable theories.

❖ Decision procedures have too narrow a focus. We seek
automation that can be tried on any problem.

Overview of the Linkup

❖ The problem is Skolemized and converted to clause form,
with higher-order features removed (all by inference).

❖ A simple relevance filter chooses a few hundred lemmas to
include with the problem.

❖ Further clauses convey limited information about types and
type classes.

❖ A resolution prover starts up (in the background).

When the user invokes the
“sledgehammer” command...

Obstacles to Reconstruction
with Automatic Provers

❖ Ambiguities: their output typically omits crucial information,
such as which term is affected by rewriting.

❖ Lack of standards: automatic provers generate different
output formats and employ a variety of inference systems.

❖ Complexity: a single automatic prover may use numerous
inference rules with complicated behaviours.

❖ Problem transformations: ATPs re-order literals and make
other changes to the clauses they are given.

Joe Hurd’s Metis Prover

❖ Metis is a clean implementation of resolution, with an ML
interface for LCF-style provers, originally HOL4.

❖ We provide metis as an Isabelle command, with internal
proof reconstruction.

❖ We translate ATP output into a series of metis calls.

❖ Metis cannot replace leading provers such as Vampire, but it
can usually re-run their proofs.

Porting Metis to Isabelle

❖ Conversion to clauses: use Isabelle’s existing code for this task.

❖ The 5 Metis inference rules: implement using Isabelle’s proof
kernel.

❖ During type inference, recover type class information from
the proof.

❖ Ignore clauses and literals that encode type classes.

Approaches to Proof
Reconstruction via Metis

1. A single ca# to metis, with just the needed lemmas

• The ATP merely serves as a relevance filter.

• Parsing is trivial: we merely look for axiom numbers to
see which lemmas were used.

2. A line-by-line reconstruction of the resolution proof

• We translate the ATP proof into an ugly Isabelle proof.

Sutcliffe’s TSTP Format

❖ Thousands of Solutions from Theorem Provers

❖ A standard for returning outcomes of ATP calls

❖ Proof lines have the form

cnf(<name>,<formula_role>,<cnf_formula><annotations>).

axiom,
conjecture, etc.

referenced proof
lines

A TSTP Axiom Line

cnf(216,axiom,
 (c_minus(X,X,X3)=c_HOL_Ozero(X3) |
 ~class_OrderedGroup_Oab__group__add(X3)),
 file('BigO__bigo_bounded2_1', cls_right__minus__eq_1)).

❖ This line expresses the equation

4.1 TSTP Format

TSTP (Thousands of Solutions from Theorem Provers) format defines a language
for communicating proofs. A resolution prover typically produces a list of proof
lines, each containing a clause and a justification referring to previous lines. The
final line contains a contradiction. A proof line in TSTP format has the following
syntax:

cnf(<name>,<formula_role>,<cnf_formula><annotations>).

Here is a description of these items:

– The <name> is a symbol identifying the formula. Although identifiers are
permitted, all ATPs that we know of use positive integers.

– The <formula_role> is axiom for an axiom clause or negated_conjecture
for clauses arising (even indirectly) from the negation of the conjecture.

– The <cnf_formula> is the formula itself. As we use clause form, it is a
disjunction of literals. The disjunction symbol is | and the empty clause
explicitly contains the literal $false.

– Any number of <annotations> may follow. These describe the provenance
of the formula, for example as a named clause in a given file or proved from
previous lines. Proof justifications can vary from one ATP to the next, but
we only need to identify references to previous proof lines.

4.2 A Small Example

Let us examine the proof of a simple goal, one of our standard test problems.
It arises in the middle of an interactive proof; the remaining goal is to prove
0 ≤ f(x) + (−lb(x)) from the two assumptions

∀y. lb(y) ≤ f(y) and ∀y. f(y) ≤ lb(y) + g(y).

The proof is trivial. Ignore the second assumption and in the first one instantiante
y by x; then, move lb(x) across the inequality. Given the equivalent clause form,
E immediately generates a 22-line resolution proof. Below we present about
half of these lines to illustrate some issues involved in the translation. We have
reformatted the lines and shortened some names to improve clarity.

The proof refers to specific axioms from the input file. The first axiom is
X −X = 0.

cnf(216,axiom,
(c_minus(X,X,X3)=c_HOL_Ozero(X3) |
~class_OrderedGroup_Oab__group__add(X3)),
file(’BigO__bigo_bounded2_1’, cls_right__minus__eq_1)).

The variable X3 ranges over types, and the second literal restricts type X3 to
belong to the class OrderedGroup.ab group add (Abelian groups). This type class
was implicit in the original problem through its use of overloaded operators such
as addition. As subtraction (c_minus) and zero (c_HOL_Ozero) are polymorphic,

A TSTP Conjecture Line

cnf(335,negated_conjecture,
 (class_Ring__and__Field_Oordered__idom(t_b)),
 file('BigO__bigo_bounded2_1', tfree_tcs)).

❖ This line expresses type information about the given
problem. (The type variable ‘b is in class ordered_idom.)

❖ Proof reconstruction must ignore it.

A TSTP Proof Step

cnf(366,negated_conjecture,
 (class_OrderedGroup_Opordered__ab__group__add(t_b)),
 inference(spm,[status(thm)],
 [343,335,theory(equality)])).

❖ The E prover’s inferences look like this.

❖ It conveys more information about the type variable ‘b, so
it too must be ignored.

What to Do with Various
Proof Lines

❖ Axiom reference: delete, using instead the lemma name.

❖ Type class inclusion: delete entirely.

❖ Conjecture clause: copy it into the Isabelle proof, as an
assumption.

❖ Inference: copy it into the Isabelle proof, justified by a call to
metis.

Turning TSTP into Isabelle

❖ Parse TSTP format, recovering proof structure.

❖ Use type literals in clauses to recover class constraints on type
variables.

❖ Use Isabelle’s type inference to recover terms.

❖ Use Isabelle’s pretty printer to generate strings.

❖ Combine strings to yield an Isar structured proof.

Collapsing of Proof Steps

We can shorten the proof by combining adjacent steps,
giving metis more work to do!

❖ Some assertions aren’t expressible in Isabelle:
quantifications over types, type class inclusions.

❖ Some inferences are trivial (instantiating variables in
another line) or become trivial once type literals are ignored.

❖ Some proofs are just intolerably long (a hundred lines).

A Typical Structured Proof

FILE “BigO.thy” 17

have 18: "(c ::’b ::ordered_idom) *
(g ::’a ::type ⇒ ’b ::ordered_idom) ((x ::’b ::ordered_idom ⇒ ’a ::type) |c |) =
(f ::’a ::type ⇒ ’b ::ordered_idom) (x |c |)"
by (metis 2 17)

have 19: "
V
(X1 ::’b ::ordered_idom) X3 ::’b ::ordered_idom. |X3 * X1 | ≤ ||X3 || * ||X1 ||"

by (metis 15 Ring_and_Field.abs_le_mult Ring_and_Field.abs_mult)
have 20: "

V
(X1 ::’b ::ordered_idom) X3 ::’b ::ordered_idom. |X3 * X1 | ≤ |X3 | * |X1 |"

by (metis 19 12 12)
have 21: "

V
(X1 ::’b ::ordered_idom) X3 ::’b ::ordered_idom. X3 * X1 ≤ |X3 | * |X1 |"

by (metis 15 20)
have 22: "(f ::’a ::type ⇒ ’b ::ordered_idom)
((x ::’b ::ordered_idom ⇒ ’a ::type) |c ::’b ::ordered_idom |)
≤ |c | * |(g ::’a ::type ⇒ ’b ::ordered_idom) (x |c |) |"
by (metis 21 18)

show 23: "False"
by (metis 22 1)

qed

lemma bigo_bounded: "ALL x. 0 <= f x ==> ALL x. f x <= g x ==>
f : O(g)"

apply (erule bigo_bounded_alt [of f 1 g])
apply simp

done

ML{*ResAtp.problem_name := "BigO__bigo_bounded2"*}
lemma bigo_bounded2: "ALL x. lb x <= f x ==> ALL x. f x <= lb x + g x ==>

f : lb +o O(g)"
apply (rule set_minus_imp_plus)
apply (rule bigo_bounded)
apply (auto simp add: diff_minus func_minus func_plus)
prefer 2
apply (drule_tac x = x in spec)+
apply arith (*not clear that it’s provable otherwise*)

proof (neg_clausify)
fix x
assume 0: "

V
y. lb y ≤ f y"

assume 1: "¬ (0 ::’b) ≤ f x + - lb x"
have 2: "

V
X3. (0 ::’b) + X3 = X3"

by (metis diff_eq_eq right_minus_eq)
have 3: "¬ (0 ::’b) ≤ f x - lb x"
by (metis 1 compare_rls(1))

have 4: "¬ (0 ::’b) + lb x ≤ f x"
by (metis 3 le_diff_eq)

show "False"
by (metis 4 2 0)

qed

ML{*ResAtp.problem_name := "BigO__bigo_abs"*}
lemma bigo_abs: "(%x. abs(f x)) =o O(f)"
apply (unfold bigo_def)
apply auto

ProofGeneral.call_atp;
proof (neg_clausify)

Note that E’s line numbers, which ranged into the thousands, have been
renumbered starting from zero. References to axiom clauses are replaced by the
corresponding Isabelle theorem references, such as le diff eq or compare rls(1).

As of this writing, the default output contains a huge amount of type infor-
mation, most of which is redundant. We have switched this off for our examples
in order to improve readability. Some problems require type information, but we
should generate no more than is necessary. This merely requires some bookkeep-
ing to ensure that (variable, type) and (type variable, class) pairs only appear
once.

FILE “set.thy” 4

"(X = Y ∪ Z) =
(Y ⊆ X ∧ Z ⊆ X ∧ (∀ V. Y ⊆ V ∧ Z ⊆ V −→ X ⊆ V))"

proof (neg_clausify)
fix x
assume 0: "Y ⊆ X ∨ X = Y ∪ Z"
assume 1: "Z ⊆ X ∨ X = Y ∪ Z"
assume 2: "(¬ Y ⊆ X ∨ ¬ Z ⊆ X ∨ Y ⊆ x) ∨ X (= Y ∪ Z"
assume 3: "(¬ Y ⊆ X ∨ ¬ Z ⊆ X ∨ Z ⊆ x) ∨ X (= Y ∪ Z"
assume 4: "(¬ Y ⊆ X ∨ ¬ Z ⊆ X ∨ ¬ X ⊆ x) ∨ X (= Y ∪ Z"
assume 5: "

V
V. ((¬ Y ⊆ V ∨ ¬ Z ⊆ V) ∨ X ⊆ V) ∨ X = Y ∪ Z"

have 6: "LOrder.sup Y Z (= X ∨ ¬ X ⊆ x ∨ ¬ Y ⊆ X ∨ ¬ Z ⊆ X"
by (metis 4 sup_set_eq)

have 7: "Z ⊆ x ∨ LOrder.sup Y Z (= X ∨ ¬ Y ⊆ X"
by (metis 3 sup_set_eq Un_upper2 sup_set_eq 1 sup_set_eq)

have 8: "Z ⊆ x ∨ LOrder.sup Y Z (= X"
by (metis 7 Un_upper1 sup_set_eq 0 sup_set_eq)

have 9: "LOrder.sup Y Z = X ∨ ¬ Z ⊆ X ∨ ¬ Y ⊆ X"
by (metis equalityI 5 sup_set_eq Un_upper2 sup_set_eq Un_upper1 sup_set_eq

Un_least sup_set_eq)
have 10: "Y ⊆ x"
by (metis 2 sup_set_eq Un_upper2 sup_set_eq 1 sup_set_eq Un_upper1 sup_set_eq

0 sup_set_eq 9 Un_upper2 sup_set_eq 1 sup_set_eq Un_upper1 sup_set_eq 0 sup_set_eq)
have 11: "X ⊆ x"
by (metis Un_least sup_set_eq 9 Un_upper2 sup_set_eq 1 sup_set_eq Un_upper1

sup_set_eq 0 sup_set_eq 8 9 Un_upper2 sup_set_eq 1 sup_set_eq Un_upper1 sup_set_eq
0 sup_set_eq 10)
show "False"
by (metis 11 6 Un_upper2 sup_set_eq 1 sup_set_eq Un_upper1 sup_set_eq 0 sup_set_eq

9 Un_upper2 sup_set_eq 1 sup_set_eq Un_upper1 sup_set_eq 0 sup_set_eq)
qed

ML {*ResAtp.problem_name := "set__equal_union"*}
lemma (*equal_union: *)

"(X = Y ∪ Z) =
(Y ⊆ X ∧ Z ⊆ X ∧ (∀ V. Y ⊆ V ∧ Z ⊆ V −→ X ⊆ V))"

(*One shot proof*)
apply (metis Diff_partition Int_Un_distrib Int_absorb1 Int_commute Int_lower1
Int_lower2 Un_Diff_Int Un_Diff_cancel Un_Int_assoc_eq Un_Int_distrib2 Un_commute
Un_left_commute Un_upper1 Un_upper2 equalityE subset_trans sup_set_eq);
done

ML {*ResAtp.problem_name := "set__equal_inter"*}
ML {*ResAtp.rm_simpset()*}
lemma "(X = Y ∩ Z) =

(X ⊆ Y ∧ X ⊆ Z ∧ (∀ V. V ⊆ Y ∧ V ⊆ Z −→ V ⊆ X))"
by (metis Int_absorb2 Int_assoc Int_commute Int_left_commute Int_lower1 Int_lower2
Un_Int_assoc_eq Un_commute subset_refl subset_trans)

ML {*ResAtp.problem_name := "set__equal_inter"*}
ML {*ResAtp.rm_simpset()*}
lemma "(X = Y ∩ Z) =

(X ⊆ Y ∧ X ⊆ Z ∧ (∀ V. V ⊆ Y ∧ V ⊆ Z −→ V ⊆ X))"

Fig. 1. Proof of First Example

Future Ideas and Conclusions

❖ ATPs can help generate their own proof scripts!

❖ Scripts may need type annotations, which at present are
highly repetitions.

❖ Redundant material, such as proofs of known facts, could be
deleted.

❖ Can we produce scripts that look natural?

Acknowlegements

❖ Postdocs: Claire Quigley

❖ PhD student: Jia Meng

❖ Funding: EPSRC project GR/S57198/01 Automation for
Interactive Proof

