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Abstract. Sledgehammer is a component of Isabelle/HOL that employs first-
order automatic theorem provers (ATPs) to discharge goals arising in interactive
proofs. It heuristically selects relevant facts and, if an ATP is successful, produces
a snippet that replays the proof in Isabelle. We extended Sledgehammer to invoke
satisfiability modulo theories (SMT) solvers as well, exploiting its relevance filter
and parallel architecture. Isabelle users are now pleasantly surprised by SMT
proofs for problems beyond the ATPs’ reach. Remarkably, the best SMT solver
performs better than the best ATP on most of our benchmarks.

1 Introduction

It is widely recognized that combining automated reasoning systems of different types
can deliver huge rewards. There have been several attempts to combine interactive the-
orem provers (which are better at formal modeling than at proving theorems) with a
variety of automatic theorem provers (ATPs) [1,7,20,39,42]. One of the most success-
ful such combinations is Sledgehammer [27, 34], which interfaces Isabelle/HOL [31]
with resolution provers for classical first-order logic. Sledgehammer is both effective,
solving approximately one third of non-trivial goals arising in interactive proofs [9], and
easy to use, since it is invoked with a single mouse gesture. It has become indispensable
to Isabelle users and has transformed the way Isabelle is taught to beginners [33].

Given an Isabelle/HOL conjecture, Sledgehammer heuristically selects a few hun-
dred relevant lemmas from Isabelle’s libraries, translates them to unsorted first-order
logic along with the conjecture, and sends the resulting problem to four theorem provers
(Section 2). The provers run in parallel, either locally or remotely via SystemOnTPTP
[40]. Users can keep working during the proof search, although most users find it hard
to think while automatic provers are active in the background and prefer to wait up
to 30 seconds for the responses. Isabelle’s built-in prover Metis [21, 34] reconstructs
resolution proofs in higher-order logic (HOL).

First-order ATPs are powerful and general, but they can usefully be complemented
by other technologies. Satisfiability modulo theories (SMT) is a powerful technology
based on combining a satisfiability solver with decision procedures for first-order theo-
ries, such as equality, integer and real arithmetic, and bit-vector reasoning. SMT solvers
are particularly well suited to discharging large proof obligations arising from program
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verification. Although they are automatic theorem provers in a general sense, they rely
on techniques entirely different from classical resolution. In this paper, we will find it
convenient to reserve the abbreviation ATP for resolution provers.1

There have also been several attempts to combine interactive theorem provers with
SMT solvers, either as oracles [5, 17, 37] or with proof reconstruction [18, 22, 26]. In
previous work, we integrated the SMT solvers CVC3 [4], Yices [16] and Z3 [15] with
Isabelle as oracles and implemented step-by-step proof reconstruction for Z3 [10]. The
resulting smt proof method takes a list of problem-specific facts that are passed to the
SMT solver along with the conjecture (Section 3).

While a motivated user can go a long way with the smt proof method [8], the need
to specify facts and to guess that a conjecture could be solved by SMT makes it hard to
use. As evidence of this, the Isabelle formalizations accepted in the Archive of Formal
Proofs [23] in 2010 and 2011, after smt was introduced in Isabelle, contain 7958 calls
to the simplifier, 928 calls to the internal tableau prover, 219 calls to Metis (virtually all
generated using Sledgehammer), but not even one smt call.

Can typical Isabelle users benefit from SMT solvers? We assumed so and took the
obvious next step, namely to have Sledgehammer run SMT solvers in parallel with
ATPs, reusing the existing relevance filter and parallel architecture (Section 4). This
idea seemed to be promising for a number of reasons:

• ATPs and SMT solvers have complementary strengths. The former handle quanti-
fiers better, whereas the latter excel on large, mostly ground problems.
• The translation of higher-order constructs and types is done differently for the SMT

solvers than for the ATPs—differences that should result in more proved goals.2
• Users should not have to guess whether a problem is more appropriate for ATPs or

SMT solvers. Both classes of prover should be run concurrently.

Such an integration required extensive refactoring of Sledgehammer, a delicate piece of
engineering developed by eight people in Cambridge and Munich over a period of seven
years. The refactoring seemed worthwhile, especially since it also benefits other provers
that we might want to interface with Sledgehammer, such as higher-order ATPs [3, 6].

The Sledgehammer–SMT integration is, to our knowledge, the first of its kind, and
we had no clear idea of how successful it would be as we started the implementation
work. Would the SMT solvers only prove conjectures already provable using the ATPs,
or would they find original proofs? Would the decision procedures be pertinent to typi-
cal interactive goals? Would the SMT solvers scale in the face of hundreds of quantified
facts translated en masse, as opposed to carefully crafted axiomatizations?

The first results with Z3 were disappointing: Given a few hundred facts, the solver
often ran out of memory or terminated due to a segmentation fault. It took some tweak-
ing and help from the Z3 developers to obtain decent results. We eventually added sup-
port for CVC3 and Yices, two solvers that, like Z3, support quantifiers via “triggers”—
patterns that guide quantifier instantiations. Our evaluation on a large benchmark suite
shows that SMT solvers add considerable power to Sledgehammer (Section 5).

1 Instantiation-based provers such as Equinox [12] and iProver [24] are promising, but in case
of success they currently do not deliver a proof, not even the list of used axioms.

2 There are also many efficiency, readability, and robustness advantages of obtaining several
proofs for the same goal from different sources [41].
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2 Sledgehammer

Sledgehammer is Isabelle’s subsystem for harnessing the power of first-order ATPs.
Its processing steps include relevance filtering, translation to classical first-order logic,
parallel ATP invocation, proof reconstruction, and proof minimization.

Relevance Filtering. Sledgehammer employs a simple relevance filter to extract from
Isabelle’s enormous libraries a few hundred lemmas that appear to be relevant to the
problem at hand. The relevance test is based on how many constants (symbols) are
shared between the conjecture and each candidate lemma [28]. Although crude, this
filter greatly improves Sledgehammer’s success rate, because most ATPs perform badly
in the presence of thousands of axioms.

Translation into Classical First-Order Logic. Isabelle’s formalism, polymorphic
higher-order logic [2, 45], is much richer than the ATPs’ unsorted first-order logic.
Sledgehammer uses various techniques to translate HOL formulas to first-order logic
[27]. Many compromises are necessary here. The translation is unsound; the ATP proofs
can be trusted only after they have been reconstructed. Higher-order features compli-
cate the translation: λ-abstractions are rewritten to combinators, and curried functions
are passed varying numbers of arguments by means of an explicit apply operator.

Parallel ATP Invocation. For a number of years, Isabelle has emphasized parallelism
to exploit modern multi-core architectures [46]. Accordingly, Sledgehammer invokes
several ATPs in parallel, with great success: Running E [38], SPASS [44], and Vam-
pire [36] in parallel for five seconds solves as many problems as running a single the-
orem prover for two minutes [9, §8]. Recent versions of Sledgehammer also invoke
SInE [19], a wrapper around E that is designed to cope with large axiom bases.

Proof Reconstruction. As in other LCF-style theorem provers, Isabelle theorems can
only be generated within a small inference kernel. It is possible to bypass this safety
mechanism, generally if some external tool is to be trusted as an oracle, but all oracle
inferences are tracked. Sledgehammer performs true proof reconstruction by running
Isabelle’s built-in resolution prover, Metis, supplying it with the short list of facts used
in the proof found by the external ATP.

The Metis call with the identified facts is all that Sledgehammer includes in the
Isabelle proof text, which can then be replayed without external provers. Since Metis is
given only a handful of facts, it usually finds proofs within milliseconds.

Proof Minimization. Proof reconstruction using Metis loses about 10% of ATP proofs,
partly because some of the proofs are unsound in a typed setting, but also because
Metis times out [9, §3]. Automatic provers frequently use many more facts than are
necessary. Sledgehammer’s minimization tool takes a set of facts returned by a prover
and repeatedly calls it with subsets of the facts to find a minimal set. Depending on the
number of initial facts, it relies on either of these two algorithms:

• The naive linear algorithm attempts to remove one fact at a time. This can require
as many prover invocations as there are facts in the initial set. A refinement is to
inspect the ATP proofs to eliminate more facts at each iteration.
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• The binary algorithm recursively bisects the facts [11, §4.3]. It performs best when
a small fraction of the facts are actually required [9, §7].

Example. In the Isabelle proof below, taken from a formalization of the Robbins con-
jecture [43], four of the five subproofs are discharged by a Metis call generated auto-
matically by Sledgehammer using an ATP:

proof –
let z = “−(x t −y)” and ky = “y t k ⊗ (x t z)”
have “−(x t −ky) = z ” by (simp add: copyp0)
hence “−(−ky t −(−y t z)) = z ” by (metis assms sup_comm)
also have “−(z t −ky) = x ” by (metis assms copyp0 sup_comm)
hence “z =−(−y t −(−ky t z))” by (metis sup_comm)
finally show “−(y t k ⊗ (x t −(x t −y))) =−y ” by (metis eq_intro)

qed

The example is typical of the way Isabelle users employ the tool: If they understand
the problem well enough to propose some intermediate properties, all they need to do
is state a progression of properties in small enough steps and let Sledgehammer or an
automatic Isabelle tactic prove each one.

3 The SMT Proof Method

SMT solvers are available in Isabelle through the smt proof method. It translates the
conjecture and any user-supplied facts to the SMT solvers’ many-sorted first-order
logic, invokes a solver, and (depending on the solver) either trusts the result or attempts
to reconstruct the proof in Isabelle.

Translation into Many-Sorted First-Order Logic. The translation maps HOL equal-
ity and arithmetic operators to the corresponding SMT-LIB 1.2 [35] concepts. The the-
ories of arrays, bit vectors, and algebraic datatypes are not yet exploited.

Many-sorted first-order logic’s support for sorts would seem to make it more appro-
priate to encode HOL typing information than classical first-order logic, but it does not
support polymorphism. Several solutions have been proposed in the literature [14, 25].
Our current approach is to monomorphize the formulas: Polymorphic formulas are iter-
atively instantiated with relevant ground instances of their polymorphic constants. This
process is iterated a bounded number of times to obtain the monomorphized problem.

Partial applications are translated using an explicit apply operator. In contrast with
the combinator approach used by Sledgehammer when communicating with ATPs, the
smt method lifts λ-abstractions into new rules, thereby introducing fresh constants.

Proof Reconstruction. CVC3 and Z3 provide independently checkable proofs of un-
satisfiability. We have implemented proof reconstruction for Z3 and support CVC3 and
Yices as oracles. Reconstruction relies extensively on standard Isabelle proof methods
such as the simplifier, the classical reasoner, and the arithmetic decision procedures.
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Certificates make it possible to store Z3 proofs alongside Isabelle formalizations, al-
lowing SMT proof replay without Z3; only if the formalizations change must the cer-
tificates be regenerated. Using SMT solvers as oracles requires trusting both the solvers
and the smt method’s translation, so it is generally frowned upon.

Example. The periodic integer recurrence relation xi+2 = |xi+1|− xi has period 9. This
property can be proved in Isabelle using the smt method as follows:

lemma “x3 = |x2|− x1 ∧ x4 = |x3|− x2 ∧ x5 = |x4|− x3 ∧ x6 = |x5|− x4 ∧
x7 = |x6|− x5 ∧ x8 = |x7|− x6 ∧ x9 = |x8|− x7 ∧ x10 = |x9|− x8 ∧
x11 = |x10|− x9 =⇒ x1 = x10 ∧ x2 = (x11 :: int)”

by smt

SMT solvers prove the formula almost instantly, and proof reconstruction (if enabled)
takes a few seconds. In contrast, Isabelle’s arithmetic decision procedure requires sev-
eral minutes to prove the same result. This example does not require any problem-
specific facts, but these would have been supplied as arguments in the smt call just like
for metis in the previous section.

4 Combining Sledgehammer and SMT

Extending Sledgehammer with SMT solvers was to a large extent a matter of connect-
ing existing components: Sledgehammer’s relevance filter and minimizer with the smt
method’s translation and proof reconstruction. Figure 1 depicts the resulting architec-
ture, omitting proof reconstruction and minimization.

Relevance filter

E SPASS SInE Z3 CVC3 Yices

Relevance filter

ATP translation SMT tr. SMT translation

Metis
proof

Metis 
or SMT
proof

Metis 
or SMT
proof

Metis 
or SMT
proof

Metis
proof

Metis
proof

Metis
proof

Vampire

Sledgehammer 

Figure 1. Sledgehammer’s extended architecture

Two instances of the relevance filter run in parallel, to account for different sets of
built-in constants. The relevant facts and the conjecture are translated to the ATP or
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SMT version of first-order logic, and the resulting problems are passed to the provers.
The translation for Z3 is done slightly differently than for CVC3 and Yices to take
advantage of the former’s support for nonlinear arithmetic.

4.1 Relevance Filtering

In the old architecture, the available lemmas were rewritten to conjunctive normal form
(CNF) using a naive application of distributive laws before the relevance filter was
invoked [28]. To avoid clausifying thousands of lemmas on each Sledgehammer invo-
cation, the CNF clauses were kept in a cache. This design was technically incompatible
with the (cache-unaware) smt method, and it was already unsatisfactory for ATPs, which
include custom polynomial-time clausifiers [32].

We rewrote the relevance filter so that it operates on arbitrary HOL formulas, trying
to simulate the old behavior. To mimic the penalty associated with Skolem constants in
the CNF-based code, we keep track of polarities and detect quantifiers that give rise to
Skolem constants.

The relevance filter gives more precise results if it ignores HOL constants that
are translated to built-in constructs. For ATPs, this concerns equality, connectives, and
quantifiers, as well as let and if –then–else. SMT solvers support a much larger set of
built-in constructs, notably arithmetic operators. It was straightforward to generalize
the filter code so that it performs its task appropriately for SMT solvers.

Observing that some provers cope better with large fact bases than others, we opti-
mized the the maximum number of relevant facts to include in a problem independently
for each prover (from a library of about 10000 facts). The maxima we obtained are 150
for CVC3 and Yices and 250 for Z3. In comparison, the filter currently selects up to
250 facts for E, 150 for SPASS, 450 for Vampire, and 500 for SInE.

4.2 SMT Solver Invocation

In our first experiments, we simply invoked Z3 as an oracle with the monomorphized
relevant facts, using the same translation as for the smt proof method. The results were
disappointing. Several factors were to blame:

• The translation of hundreds of facts took many seconds.
• It took us a while to get the bugs out of our translation code. Syntax errors in many

generated problems caused Z3 to give up immediately.
• Z3 often ran out of memory after a few seconds or, worse, crashed.

Latent issues both in our translation and in Z3 were magnified by the number of facts in-
volved. Our previous experience with SMT solvers had involved only a handful of facts.

The bottleneck in the translation was monomorphization. Iterative expansion of a
few hundred HOL formulas yielded thousands of monomorphic instances. We reduced
the maximum number of iterations from 10 to 4, to great effect.

The syntax errors were typically caused by confusion between formulas and terms
or the use of a partially applied built-in constant (both of which are legal in HOL).
These were bugs in the smt proof method; we gradually eradicated them.
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We reported the segmentation faults to the Z3 developers, who released an improved
version. The bug was located in Z3’s proof generation facility, which is disabled by
default and hence not as well tested as the rest of the solver. To handle the frequent out-
of-memory conditions, we modified Sledgehammer to retry aborted solver calls with
half the facts. This simple change was enough to increase the success rate dramatically.

4.3 Proof Reconstruction

In case of success, Sledgehammer extracts the facts used in the SMT proof—the un-
satisfiable core—and generates an smt proof method call with these facts supplied as
arguments. For example:

by (smt assms copyp0 sup_comm)

The proof method invokes Z3 to refind the proof whenever and replays it step by step.
The Z3 proof can also be stored alongside the Isabelle formalization as a certificate to
avoid invoking Z3 each time the proof is rechecked. Proof minimization can be done as
for ATP proofs to reduce the number of facts.

To increase the success rate and reduce the dependency on external solvers or certifi-
cates, Sledgehammer first tries Metis for one second. If Metis succeeds, Sledgehammer
generates a Metis call rather than an smt call. Metis will of course fail if the proof
requires theories other than equality.

One of the less academically rewarding aspects of integrating third-party tools is the
effort spent on solving mundane issues. Obtaining an unsatisfiable core from the SMT
solvers turned out to be surprisingly difficult:

• CVC3 returns a full proof, but somehow the proof refers to all facts, whether they
are actually needed or not, and there is no easy way to find out which facts are actu-
ally needed. We rely on Sledgehammer’s proof minimizer and its binary algorithm
to reduce the facts used to a reasonable number.
• Yices can output a minimal core, but for technical reasons only when its native

input syntax is used rather than the standard SMT-LIB 1.2 format. We tried using
off-the-shelf file format converters to translate SMT-LIB 1.2 to 2 then to Yices, but
this repeatedly crashed. In the end, we settled for the same solution as for CVC3.
• For Z3, we could reuse our existing proof parser, which we need to reconstruct

proofs. The proof format is fairly stable, although new releases often come with
various minor changes.

4.4 Redistribution and Distribution

Our goal with Sledgehammer is to help as many Isabelle users as possible. Third-party
provers should ideally be bundled with Isabelle and ready to be used without requiring
configuration. Today, Isabelle includes E and SPASS executables for Linux, Mac OS X,
and Windows; users can download Vampire (whose license forbids redistribution), but
most simply run Vampire remotely on SystemOnTPTP.

For SMT solvers, the situation is similar. Only CVC3 allows redistribution and use
by noncommercial and commercial users alike, and Z3 executables are not available for
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Mac OS X. With the Z3 developers’ express permission, we set up a server in Munich
in the style of SystemOnTPTP for running Z3 (as well as CVC3) remotely.

Remote servers are satisfactory for proof search, at least when they are up and run-
ning and the user has Internet access. They also help distribute the load: Unless the
user’s machine has eight processor cores, it would be reckless to launch four ATPs and
three SMT solvers locally in parallel and expect the user interface to remain snappy.

4.5 Experiment: Generation of Weights and Triggers

SMT solvers work by incrementally building a model for the quantifier-free part of
the problem. Quantifiers are instantiated at each iteration based on the set of active
terms (ground terms which the current partial model can interpret). These instances are
conjoined with the quantifier-free part of the problem, helping refine the model.

To help guide quantifier instantiation and avert an explosion of the number of in-
stances generated, some SMT solvers support extralogical annotations on their quan-
tifiers. We have done some experiments with weights and triggers, which so far have
been somewhat inconclusive.

Weights. Weights are specific to Z3. The greater the weight of the quantifier, the fewer
instantiations are allowed. The instantiations that are allowed are those by terms that
became active early, because they are more likely to be relevant to the problem at hand.

Intuitively, there is an easy way for Sledgehammer to fill in the weights meaning-
fully. The iterative relevance filter yields a list of facts sorted by likely relevance. We
can give a weight of 0 to the most relevant fact included, N to the least relevant fact,
and interpolate in between. If N = 0, we obtain Z3’s default behavior. We currently use
N = 10 with a quadratic interpolation, which seems to help more than it harms.

Triggers. A trigger is a set of patterns that must all match some active term for the in-
stantiation to take place. Patterns are usually subterms of the quantified formula. CVC3,
Yices, and Z3 infer the triggers heuristically, but CVC3 and Z3 also provide a syntax
for user-specified triggers.

We tried to rely on this mechanism to exploit the form of Isabelle/HOL lemmas.
In particular, equations registered for use by the Isabelle simplifier typically define a
function symbol applied to a constructor pattern in terms of a (possibly recursive) right-
hand side. It then makes sense to take the entire left-hand side as the only trigger. When
an instance of the left-hand side is active, the trigger enables the equation’s instantiation.

In stark contrast with the SMT folklore that well chosen triggers are a prerequisite
for success [29], we found that the SMT solvers can be relied on to infer acceptable
triggers and that our scheme for equations is too limited to help much. Perhaps we
should try to add support for other common syntactic forms, such as introduction and
elimination rules, to obtain greater benefits. This remains for future work.

4.6 Example

A gratifying example arose on the Isabelle mailing list [30] barely one week after we
had enabled SMT solvers in the development version of Sledgehammer. A new Isabelle
user was experimenting with a simple arithmetic algebraic datatype:
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datatype arith = Z | Succ arith | Pred arith

He had defined an inductive predicate step that takes two arith values and wanted to
prove the following simple property but did not know how to proceed:

lemma “step (Pred Z) m =⇒ m = Z”

Our colleague Tobias Nipkow helpfully supplied a structured Isabelle proof:

using assms
proof cases

case s_pred_zero thus “m = Z” by simp
next

case (s_pred m′)
from ‘step Z m′’ have “False” by cases
thus “m = Z” by blast

qed

The proof is fairly simple by interactive proving standards, but it nonetheless represents
a few minutes’ work to a seasoned user (and, as we saw, was too difficult for a novice).
Our colleague then tried the development version of Sledgehammer and found a much
shorter proof due to Z3:

by (smt arith.simps(2,4,5,8) step.simps)

Although it involves no theory reasoning beyond equality, the ATPs failed to find it
within 30 seconds because of the presence of too many extraneous facts.

5 Evaluation

In their “Judgment Day” study, Böhme and Nipkow [9] evaluated Sledgehammer with
E, SPASS, and Vampire on 1240 provable proof goals arising in seven representative
formalizations from the Isabelle distribution and the Archive of Formal Proofs. To evalu-
ate the SMT integration, we ran their benchmark suite with the latest versions of Sledge-
hammer on the same seven formalizations.3 We also added two formalizations (QE and
S2S) that rely heavily on arithmetic to exercise the SMT decision procedures.

The formalizations are listed below. The last two columns give the percentage of the
(now) 1591 proof goals that come from each formalization and the features it contains,
where A means arithmetic, I means induction and recursion, L means λ-abstractions,
and S means sets.

Arrow Arrow’s impossibility theorem L S 6.3%
FFT Fast Fourier transform A L 9.1%
FTA Fundamental theorem of algebra A 26.6%
Hoare Completeness of Hoare logic with procedures A I L 12.8%
Jinja Type soundness of a subset of Java I L 11.4%
NS Needham–Schroeder shared-key protocol I 6.2%
QE DNF-based quantifier elimination A L S 12.0%
S2S Sum of two squares A 8.1%
SN Strong normalization of the typed λ-calculus A I 7.2%

3 Our test data set is available at http://www4.in.tum.de/~blanchet/cade2011-data.tgz .
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Arrow FFT FTA Hoare Jinja NS QE S2S SN All Uniq.
E 1.2 25% 14% 61% 41% 33% 28% 23% 38% 59% 40.0% .3%
SPASS 3.7 33% 14% 57% 50% 33% 29% 28% 37% 61% 41.4% .4%
Vampire 1.0 31% 19% 62% 47% 35% 44% 24% 48% 62% 44.3% 1.0%
SInE 0.4 22% 17% 56% 38% 31% 26% 20% 38% 63% 38.0% .3%
CVC3 2.2 33% 19% 51% 47% 37% 25% 21% 57% 55% 40.5% .1%
Yices 1.0.28 29% 16% 50% 50% 38% 28% 21% 58% 59% 40.7% .1%
Z3 2.15 47% 18% 62% 54% 49% 42% 25% 58% 63% 48.6% 3.1%
ATPs 40% 21% 68% 55% 37% 45% 31% 55% 70% 50.0% 6.8%
SMT solvers 50% 23% 65% 64% 50% 42% 26% 66% 63% 52.2% 9.0%
All provers 55% 28% 73% 65% 51% 51% 41% 73% 74% 59.0% –

Figure 2. Success rates on all goals with proof reconstruction

Arrow FFT FTA Hoare Jinja NS QE S2S SN All Uniq.
E 1.2 21% 10% 34% 25% 28% 17% 12% 9% 47% 23.1% .1%
SPASS 3.7 29% 12% 31% 36% 27% 17% 16% 12% 53% 25.6% .7%
Vampire 1.0 21% 17% 40% 33% 32% 36% 8% 19% 51% 28.7% 1.3%
SInE 0.4 19% 14% 29% 21% 26% 13% 9% 11% 53% 21.4% .2%
CVC3 2.2 23% 14% 26% 29% 32% 13% 7% 25% 39% 22.8% .2%
Yices 1.0.28 11% 11% 26% 37% 33% 16% 7% 26% 46% 23.6% .1%
Z3 2.15 35% 13% 41% 45% 48% 34% 7% 28% 47% 33.2% 4.0%
ATPs 31% 18% 42% 41% 32% 38% 19% 26% 63% 33.7% 6.9%
SMT solvers 39% 17% 42% 52% 48% 34% 8% 33% 49% 35.9% 9.1%
All provers 42% 23% 50% 54% 48% 44% 23% 42% 64% 42.8% –

Figure 3. Success rates on “nontrivial” goals with proof reconstruction

We ran the provers for 30 seconds, which corresponds to the default timeout in
Sledgehammer. Even though the tool runs asynchronously, most users cannot think
while it is active; they prefer to wait for it to return, hoping to get a proof for free.
Böhme and Nipkow [9] considered timeouts of 60 and 120 seconds but found that these
have a limited impact on the success rate.

If a proof is found, proof search is followed by reconstruction with a 30-second time
limit. We allotted an extra 30 seconds to CVC3 and Yices to account for the expensive
black-box proof minimization. This might not be entirely fair, but it reflects a compro-
mise between the real power of these solvers and what Isabelle users currently perceive.
Moreover, users are normally patient when they know that a proof has been found and
has reached the minimizer.

Figure 2 gives the success rates for each prover (or class of prover) on each for-
malization together with the unique contributions of each prover. Sledgehammer now
solves 59.0% of the goals, compared with 50.0% without SMT. Much to our surprise,
the best SMT solver, Z3, beats the best ATP, Vampire, with 48.6% versus 44.3%. Z3
also contributes by far the most unique proofs: 3.1% of the goals are proved only by it,
a figure that climbs to 8.5% if we exclude CVC3 and Yices.
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Arrow FFT FTA Hoare Jinja NS QE S2S SN All
Arithmetic 0% 49% 7% 9% 0% 0% 21% 51% 3% 12.9%
Metis 80% 24% 89% 77% 80% 92% 60% 29% 100% 75.9%

Figure 4. Use of arithmetic in successful Z3 proofs and reconstructibility with Metis

Arrow FFT FTA Hoare Jinja NS QE S2S SN All
CVC3 2.2 +3% −2% +1% +3% −4% +5% +13% −8% −5% +0.8%
Yices 1.0.28 −2% −4% +2% 0% −2% −4% +11% +2% −1% +0.8%
Z3 2.15 +2% 0% −5% −2% 0% −1% +10% −1% −3% −0.9%
SMT solvers +2% −2% −3% −3% −1% 0% +10% −3% −3% −1.6%

Figure 5. Absolute success rate differences between SMT solver runs without and with arithmetic
on all goals with proof reconstruction

While it might be tempting to see this evaluation as a direct comparison of provers,
recall that even provers of the same class are not given the same number of facts or the
same options. Sledgehammer is not so much a competition as a combination of provers.

About one third of the goals from the chosen Isabelle formalizations are “trivial”
in the sense that they can be solved directly by standard Isabelle tactics invoked with
no arguments. If we ignore these and focus on the “nontrivial” goals, which users are
especially keen on seeing solved by Sledgehammer, the success rates are somewhat
lower, as shown in Figure 3: The ATPs solve 33.7% of these harder goals, and SMT
solvers increase the success rate to 42.8%.

We also evaluated the extent to which the SMT decision procedures (other than
equality) contribute to the overall result. To this end, we inspected the successful Z3
proofs to determine the percentage of proofs that involve an arithmetic decision proce-
dure. Theory-specific rewrite rules, which do not rely on any decision procedure, are
not counted. Complementarily, we extracted the relevant facts from the Z3 proofs and
passed them to Metis with a 30-second time limit. Figure 4 summarizes the results.
For the formalizations under study, the vast majority of SMT proofs do not require any
theory reasoning and can be reconstructed by a resolution prover.

These results prompted us to benchmark the SMT solvers with Isabelle’s arithmetic
constants left uninterpreted, effectively disabling theory reasoning. We expected a loss
comparable to the use of arithmetic in Z3 proofs, but the actual loss is much smaller. For
some formalizations the success rates actually improved, as shown in Figure 5. Further
experiments indicate that most of the 1.6% decrease in absolute success rates (from
52.2% to 50.6%) can be recovered by passing more facts to the SMT solvers. This is to
be expected: When arithmetic constants are left uninterpreted, more facts are necessary
to reason about them.

Arithmetic decision procedures are therefore not the main reason why the SMT
solvers collectively outperform the ATPs. A more important reason is that many proofs
found by ATPs are type-unsound in higher-order logic and cannot be replayed; in con-
trast, the SMT translation is designed to be sound by exploiting SMT sorts. Moreover,
Metis sometimes fails to rediscover an ATP proof within a reasonable time, whereas
proof reconstruction for Z3 is typically faster and more reliable.
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Looking at the test data more closely, we also noticed that SMT solvers performed
better on higher-order problems, suggesting that the smt method’s translation of λ-ab-
stractions is better suited to the SMT solvers than combinators are to the ATPs. Re-
markably, previous experiments found combinators superior to λ-lifting for ATPs [27].
We need to carry out new experiments to gain clarity on this point.

6 Conclusion

Sledgehammer has enjoyed considerable success since its inception in 2007 and has
become indispensable to most Isabelle users, both novices and experts. It is possibly
the only interface between interactive and automatic theorem provers to achieve such
popularity. It owes its success to its ease of use: Sledgehammer is integral to Isabelle
and works out of the box, using a combination of locally installed provers and remote
servers. It can even be configured to run automatically on all newly entered conjectures.

To Isabelle users, the addition of SMT solvers as backends means that they now
get more proofs without effort. The SMT solvers, led by Z3, compete advantageously
with the resolution-based ATPs and Metis even on non-arithmetic problems. In our
evaluation, they solved about 36% of the nontrivial goals, increasing Sledgehammer’s
success rate from 34% to 43% on these. Running the SMT solvers in parallel with the
ATPs is entirely appropriate, for how is the user supposed to know which class of prover
will perform best?

To users of SMT solvers, the Sledgehammer–SMT integration eases the transition
from automatic proving in first-order logic to interactive proving in higher-order logic.
Other tools, such as HOL-Boogie [8], assist in specific applications. Isabelle/HOL is
powerful enough for the vast majority of hardware and software verification efforts,
and its LCF-style inference kernel provides a trustworthy foundation.

Even the developers of SMT solvers profit from the integration: It helps them reach
a larger audience, and proof reconstruction brings to light bugs in their tools, including
soundness bugs, which might otherwise go undetected.4

While the evaluation and user feedback show that the integration is a resounding
success, much can still be improved. Work is under way to reconstruct Z3 proofs involv-
ing arrays, bit vectors, and algebraic datatypes. The heuristics for trigger generation are
simplistic and would probably benefit from more research. The encoding of HOL types,
based on monomorphization, was never meant to cope with hundreds of facts and could
also benefit from new ideas.

With the notable exceptions of triggers and weights, we treated the SMT solvers
as black boxes. A tighter integration might prove beneficial, as has been observed with
other verification tool chains (e.g., VCC/Boogie/Z3 [13] and PVS/SAL/Yices [37]), but
it would also require much more work. Obtaining an unsatisfiable core from CVC3 and
Yices would be a first small step in the right direction.

The main open question is the extent to which the improvements we obtained by
adding support for SMT provers are due to the smt method’s translation and proof re-
construction as opposed to the nature of SMT provers. To clarify this, we plan to carry
out further experiments with SPASS’s support for sorts and Z3’s unsorted input format.

4 Indeed, we discovered a soundness bug in Yices and another in Z3 while preparing this paper.
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