Verifying the SET Protocol

G Bella & L C Paulson	Cambridge
F Massacci	Siena
P Tramontano	Rome

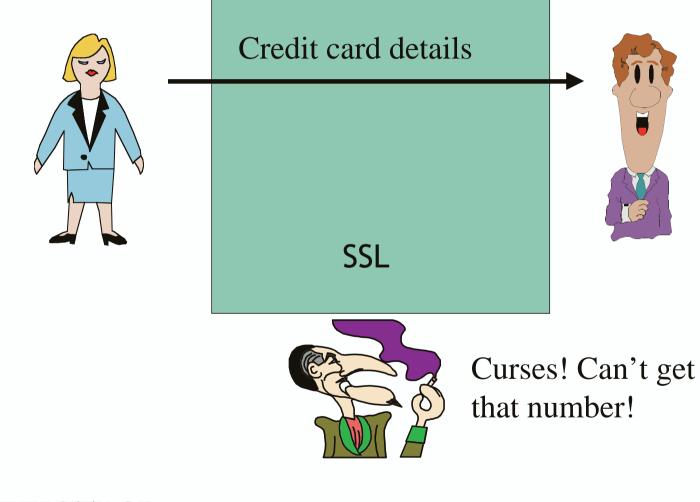
Inductive Protocol Verification

- Define system's operational semantics
- Include honest parties and an attacker
- Model each protocol step in an inductive definition
- Prove security properties by induction
- Mechanize using Isabelle/HOL

Can Big Protocols Be Verified?

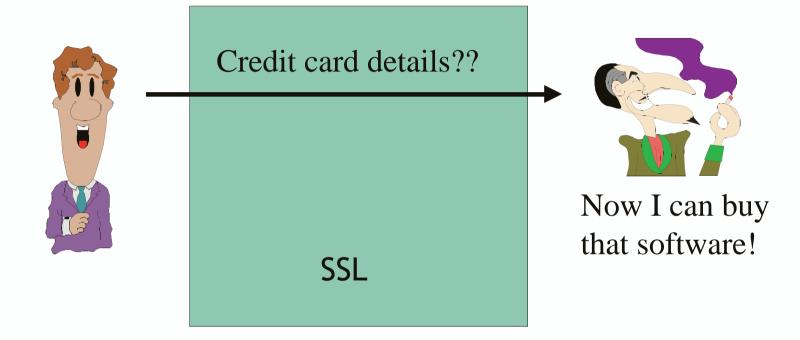
- Can verify some real protocols:
 - Kerberos IV
 - TLS (the new version of SSL)
 - APM's recursive protocol
- Other verification methods available:
 - Model-checking (Lowe)
 - NRL Protocol Analyzer (Meadows)

Growth in Protocol Complexity

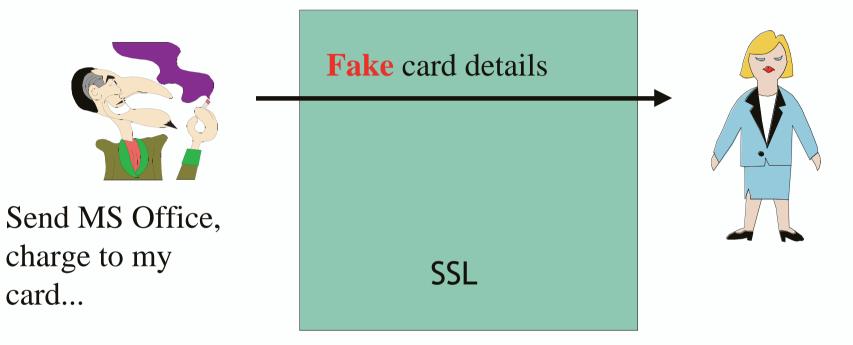

- Needham-Schroeder (1978): 6 pages
- TLS: 80 pages
- SET: 5 main sub-protocols,

3 manuals, nearly 1000 pages

Why so big?



Internet Shopping with SSL

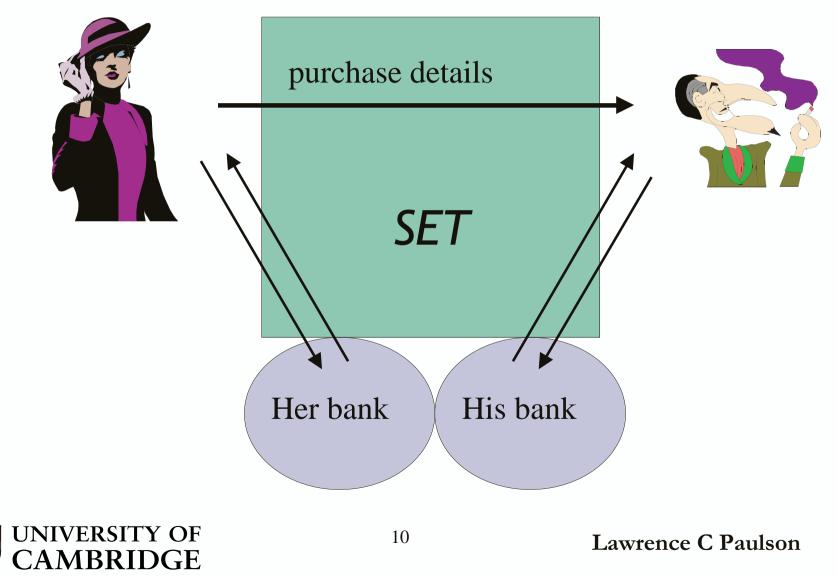


Do We Trust the Merchant?

Do We Trust the Customer?

Basic Ideas of SET

- Legitimate Cardholders and Merchants receive electronic credentials
- Merchants don't see credit card numbers (usually!)
- Payment is made via the parties' banks
- Both sides are protected from fraud



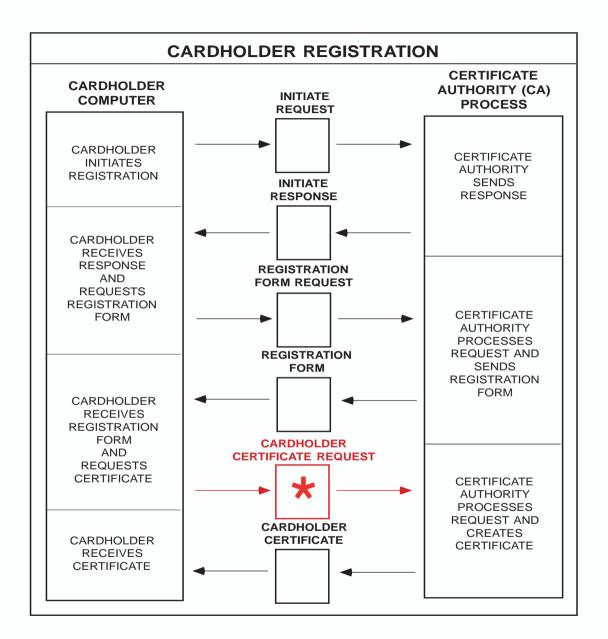
SET Participants

- Issuer = cardholder's bank
- Acquirer = merchant's bank
- Payment gateway pays the merchant
- Certificate authority (CA) issues electronic credentials
- Trust hierarchy: top CAs certify others

Internet Shopping with SET

SET Cryptographic Primitives

- Hashing, to make message digests
- Digital signatures
- Public-key encryption
- Symmetric-key encryption: session keys
- Digital envelopes involving all of these!
- Deep nesting of crypto functions



The 5 Sub-Protocols of SET

- Cardholder registration
- Merchant registration \checkmark
- Purchase request
- Payment authorization
- Payment capture

Lawrence C Paulson

Message 5 in Isabelle

```
[evs5 ∈ set_cr; C = Cardholder k;
Nonce NC3 ∉ used evs5;
Nonce CardSecret ∉ used evs5; NC3≠CardSecret;
Key KC2 ∉ used evs5; KC2 ∈ symKeys;
Key KC3 ∉ used evs5; KC3 ∈ symKeys; KC2≠KC3;
Gets C ... ∈ set evs5; Says C (CA i) ... ∈ set evs5]
⇒ Says C (CA i)
{Crypt KC3 {Agent C, Nonce NC3, Key KC2, Key cardSK,
Crypt (invKey cardSK)
(Hash{Agent C, Nonce NC3, Key KC2,
Key cardSK, Pan(pan C),
Nonce CardSecret})},
Crypt EKi {Key KC3, Pan (pan C), Nonce CardSecret}}
# evs5 ∈ set cr
```


What Did That Mean?

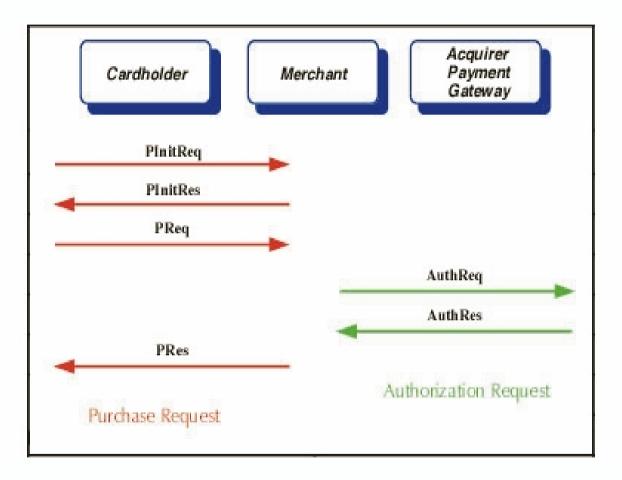
- Cardholder had asked to register a PAN (primary account number)
- Cardholder has received the CA's reply
- Cardholder sends a digital envelope:
 - A public signing key, cardSK
 - A message, signed using the private key
 - *Two* session keys (one for the CA's reply)
 - A secret number, CardSecret

Secrecy of the Card Number

- Intuitively obvious: PAN is always hashed or encrypted
- Huge case-splits caused by nested encryptions
- Two lemmas:
 - Session keys never encrypt PANs
 - Session keys never encrypt private keys

Secrecy of Session Keys

- Three keys, created for digital envelopes
- Dependency: one key protects another
- Main theorem on this dependency relation
- Generalizes an approach used for simpler protocols (Yahalom)



Secrecy of Nonces

- Secret numbers exchanged to generate
 Cardholder's password
- Protected using those session keys
- Similar to the proofs for keys
- Main theorem about the Key/Nonce dependency relationship

The Purchase Phase!

Novel Aspects of SET Purchase

- 3-way agreement: with partial knowledge!
- Cardholder shares Order Information only with Merchant
- Cardholder shares Payment Information only with Payment Gateway
- Cardholder signs hashes of OI, PI
- Non-repudiation: all parties sign messages

Complications in SET Purchase

- Massive redundancy: exponential blow-ups
- Insufficient redundancy (no explicitness), requiring toil to prove trivial facts
- Two message flows: signed and unsigned
- Many digital envelopes
- No clear goals: What should I prove??

Conclusions

- Proofs are big, but not too big!
- Can prove secrecy for several keys and nonces, with dependency chains
- Can handle digital envelopes
- Merchant registration verified similarly— Purchase & Payment phases too!

