Verification of SET: The Purchase Phase

G Bella & L C PaulsonCambridgeF MassacciSiena

Overview of the Model

- Traces of events
 - A sends B message X
 - -A receives X
 - -A stores X
- A powerful attacker
 - is an accepted user
 - attempts all possible splicing attacks
 - has the same specification in all protocols

Agents and Messages

agent $A, B, \ldots = \text{Server} \mid \text{Friend } i \mid \text{Spy}$

message X, Y, ... = Agent A | Nonce N | Key K | $\{X, X'\}$ compound message | Crypt KX

free algebras: we assume PERFECT ENCRYPTION

Maps over Message Sets

• parts *H*: message components

Crypt $KX \mapsto X$

• analz H: accessible components

Crypt $KX, K^{-1} \mapsto X$

• synth H: expressible messages

 $X, K \mapsto \operatorname{Crypt} KX$

RELATIONS are traditional, but FUNCTIONS give us an equational theory

The Function analz H

Crypt $KX \in$ analz H $K^{-1} \in$ analz H

 $X \in \operatorname{analz} H$

$X \in H$	$\{X, Y\} \in \operatorname{analz} H$	$\{X, Y\} \in analz H$
$X \in \operatorname{analz} H$	$X \in analz H$	$Y \in analz H$

Typical derived law:

analz $G \cup$ analz $H \subseteq$ analz $(G \cup H)$

A Few Equations

parts(parts H) = parts H transitivity analz(synth H) = analz $H \cup$ synth H "cut elimination"

Symbolic Evaluation:

analz({Crypt KX} $\cup H$) = $\begin{cases} {Crypt KX} \cup analz({X} \cup H) & \text{if } K^{-1} \in analz H \\ {Crypt KX} \cup analz H & \text{otherwise} \end{cases}$

Can Big Protocols Be Verified?

- Can verify some real protocols:
 - Kerberos IV
 - TLS (the latest version of SSL)
 - APM's recursive protocol
- Other verification methods available:
 - Model-checking (Lowe)
 - NRL Protocol Analyzer (Meadows)
 - Many others (you!)

Internet Shopping with SSL

8

Do We Trust the Merchant?

Do We Trust the Customer?

Basic Ideas of SET

- Legitimate Cardholders and Merchants receive electronic credentials
- Merchants don't need credit card numbers
- Payment is made via the parties' banks
- Both sides are protected from fraud

SET Participants

- Issuer = cardholder's bank
- Acquirer = merchant's bank
- Payment gateway pays the merchant
- Certificate authority (CA) issues credentials
- Trust hierarchy: top CAs certify others

Internet Shopping with SET

SET Cryptographic Primitives

- Hashing, to make message digests
- Digital signatures
- Public-key encryption
- Symmetric-key encryption: session keys
- Digital envelopes involving all of these!
- Deep nesting of crypto functions

The 5 Sub-Protocols of SET

- Cardholder registration
- Merchant registration \checkmark
- Purchase request ✓
- Payment authorization \checkmark
- Payment capture

✓ verified! (whatever that means)

Lawrence C Paulson

★ Let's look at this message

Message 5 in Isabelle

```
[evs5 ∈ set_cr; C = Cardholder k;
Nonce NC3 ∉ used evs5;
Nonce CardSecret ∉ used evs5; NC3≠CardSecret;
Key KC2 ∉ used evs5; KC2 ∈ symKeys;
Key KC3 ∉ used evs5; KC3 ∈ symKeys; KC2≠KC3;
Gets C ... ∈ set evs5; Says C (CA i) ... ∈ set evs5]
⇒ Says C (CA i)
{Crypt KC3 {Agent C, Nonce NC3, Key KC2, Key cardSK,
Crypt (invKey cardSK)
(Hash{Agent C, Nonce NC3, Key KC2,
Key cardSK, Pan(pan C),
Nonce CardSecret})},
Crypt EKi {Key KC3, Pan (pan C), Nonce CardSecret}}
# evs5 ∈ set cr
```


Secrecy of Session Keys

- Three keys, created for digital envelopes
- Dependency: one key protects another
- Main theorem on this dependency relation
- Generalizes an approach used for simpler protocols (Yahalom)
- Similarly, prove secrecy of Nonces

The Purchase Phase!

Purchase Request in Isabelle

$[evsPReqS \in set_pur; C = Cardholder k; M = Merchant i;$	•		
HOD = Hash{Number OrderDesc, Number PurchAmt};	 		
PIHead = {Number LID_C, Number XID, HOD, Number PurchAmt, Age			
Hash{Number XID, Nonce (CardSecret k)}};			
<pre>OIData = {Number XID, Nonce Chall_C, HOD, Nonce Chall_M};</pre>	Forming the dual signature		
PANData = {Pan (pan C), Nonce (PANSecret k)};			
PIData = {{PIHead, PANData}};			
PIDualSigned = {sign (priSK C) {Hash PIData, Hash OIData},			
EXcrypt KC2 EKj {PIHead, Hash OIData} PANDa	ata};		
Gets C (sign (priSK M) $\{\ldots\}$) \in set evsPReqS;			
<pre>trans_details XID = {Agent C, Agent M, Number OrderDesc, Tran</pre>		action	
Number PurchAmt};		ile for VID	
Says C M {Number LID_C, Nonce Chall_C} \in set evsPReqS] deta			
\implies Says C M {PIDualSigned, OIData, Hash PIData}			
$\# evsPReqS \in set_pur$			

Novel Aspects of SET Purchase

- 3-way agreement: with partial knowledge!
- Cardholder shares Order Information only with Merchant
- Cardholder shares Payment Information only with Payment Gateway
- Cardholder signs hashes of OI, PI
- Non-repudiation: all parties sign messages

Complications in SET Purchase

- Massive redundancy: exponential blow-ups
- Insufficient redundancy (no explicitness), requiring toil to prove trivial facts
- Two message flows: signed and unsigned
- Many digital envelopes
- No clear goals: What should I prove?

