MetiTarski: An Automatic Prover for Real-Valued Special Functions

Behzad Akbarpour and Lawrence C. Paulson Computer Laboratory, Cambridge

special functions

* Many application domains concern statements involving the functions sin, cos, In, exp, etc.
* We prove them by combining a resolution theorem prover (Metis) with a decision procedure for real closed fields (QEPCAD).
* MetiTarski works automatically and delivers machine-readable proofs.

the basic idea

* Our approach involves replacing functions by rational function upper or lower bounds.
* The eventual polynomial inequalities belong to a decidable theory: real closed fields (RCF).
* Logical formulae over the reals involving $+-x \leq$ and quantifiers are decidable (Tarski).
we call such formulae algebraic.

bounds for exp

* Special functions can be approximated, e.g. by Taylor series or continued fractions.
* Typical bounds are only valid (or close) over a restricted range of arguments.
* We need several formulas to cover a range of intervals. Here are a few of the options.

$$
\begin{array}{ll}
\exp (x) \geq 1+x+\cdots+x^{n} / n! & (n \text { odd }) \\
\exp (x) \leq 1+x+\cdots+x^{n} / n! & (n \text { even, } x \leq 0) \\
\exp (x) \leq 1 /\left(1-x+x^{2} / 2!-x^{3} / 3!\right) & (x<1.596)
\end{array}
$$

Bounds and their quirks

* Some are extremely accurate at first, but veer away drastically.
* There is no general upper bound for the exponential function.

bounds for In

* based on the continued fraction for $\ln (x+1)$
* much more accurate than the Taylor expansion

$$
\frac{\left(1+19 x+10 x^{2}\right)(x-1)}{3 x\left(3+6 x+x^{2}\right)} \leq \ln x \leq \frac{\left(x^{2}+19 x+10\right)(x-1)}{3\left(3 x^{2}+6 x+1\right)}
$$

RCF decision procedure

* Quantifier elimination reduces a formula to TRUE or FALSE, provided it has no free variables.
* HOL-Light implements Hörmander's decision procedure. It is fairly simple, but it hangs if the polynomial's degree exceeds 6.
* Cylindrical Algebraic Decomposition (due to Collins) is still doubly exponential in the number of variables, but it is polynomial in other parameters. We use QEPCAD B (Hoon Hong, C. W. Brown).

Metis resolution prover

* a full implementation of the superposition calculus
* integrated with interactive theorem provers (HOL4, Isabelle)
* coded in Standard ML

resolution primer

* Resolution provers work with clauses: disjunctions of literals (atoms or their negations).
* They seek to contradict the negation of the goal.
* Each step combines two clauses and yields new clauses, which are simplified and perhaps kept.
* If the empty clause is produced, we have the desired contradiction.

a resolution step

$$
\begin{array}{rlll}
R(x, 1) & \vee P(x) & & \\
\neg R(0, y) & \vee Q(y) & & \\
R(0,1) & \vee P(0) & x \mapsto 0 & \\
\neg R(0,1) \vee Q(1) & y \mapsto 1 & P(0) \vee Q(1)
\end{array}
$$

resolution data flow

modifications to Metis

* algebraic literal deletion, via decision procedure
* algebraic redundancy test (subsumption)
* formula normalization and simplification
* modified Knuth-Bendix ordering
* "dividing out" products

algebraic literal deletion

* Our version of Metis keeps a list of all ground, algebraic clauses (+ - x \leq, no variables).
* Any literal that is inconsistent with those clauses can be deleted.
* Metis simplifies new clauses by calling QEPCAD to detect inconsistent literals.
* Deleting literals brings us closer to the empty clause!

literal deletion examples

* We delete $x^{2}+1<0$, as it has no real solutions.
* Knowing $x y>1$, we delete the literal $x=0$.
* We take adjacent literals into account: in the clause $x^{2}>2 \vee x>3$, we delete $x>3$.

$$
\begin{aligned}
& \text { Specifically, QEPCAD finds } \\
& \exists x\left[x^{2} \leq 2 \wedge x>3\right] \text { to be } \\
& \text { equivalent to FALSE. }
\end{aligned}
$$

algebraic subsumption

** If a new clause is an instance of another, it is redundant and should be DELETED.

* We apply this idea to ground algebraic formulas, deleting any that follow from existing facts.
* Example: knowing $x^{2}>4$ we can delete the clause $x<-1 \vee x>2$.
QEPCAD: $\exists x\left[x^{2}>4 \wedge \rightarrow(x<-1 \vee x>2)\right]$ is equivalent to FALSE.

formula normalization

* How do we suppress redundant equivalent forms such as $2 x+1, x+1+x, 2(x+1)-1$? Horner canonical form is a recursive representation of polynomials.

$$
\begin{aligned}
& a_{n} x^{n}+\cdots+a_{1} x+a_{0} \\
& \quad=a_{0}+x\left(a_{1}+x\left(a_{2}+\cdots x\left(a_{n-1}+x a_{n}\right)\right)\right.
\end{aligned}
$$

The normalised formula is unique and reasonably compact.

normalization example

$$
\begin{aligned}
& 3 x y^{2}+2 x^{2} y z+z x+3 y z \\
& \quad=[y(z 3)]+x([z 1+y(y 3)]+x[y(z 2)]) \\
& \text { first variable second variable }
\end{aligned}
$$

* The "variables" can be arbitrarily non-algebraic sub-expressions.

类 Thus, formulas containing special functions can also be simplified, and the function isolated.

formula simplification

** Finally we simplify the output of the Horner transformation using laws like $0+z=z$ and $1 \times z=z$.

* The maximal function term, say $\ln E$, is isolated (if possible) on one side of an inequality.
* Formulas are converted to rational functions:

$$
\left(\frac{x}{y}\right) \frac{1}{\left(x+\frac{1}{x}\right)}=\frac{x^{2}}{y\left(x^{2}+1\right)}
$$

choosing the best literal

$$
x \leq 2 \vee \exp x \leq 2 \vee \frac{1}{x} \leq u
$$

This is the critical one: it is the most difficult!

And then this one should be tackled next.

Knuth-Bendix ordering

* Superposition is a refinement of resolution, selecting the largest literals using an ordering.
* Since In, exp, ... are complex, we give them high weights. This focuses the search on them.
* The Knuth-Bendix ordering (KBO) also counts occurrences of variables, so t is more complex than u if it contains more variables.

modified KBO

* Our bounds for $f(x)$ contain multiple occurrences of x, so standard KBO regards the bounds as worse than the functions themselves!
* Ludwig and Waldmann (2007) propose a modification of KBO that lets us say e.g. " $\ln (x)$ is more complex than 100 occurrences of x."
* This change greatly improves the is performance for our examples.

dividing out products

* The heuristics presented so far only isolate function occurrences that are additive.
* If a function is MULTIPLIED by an expression u, then we must divide both sides of the inequality by u.
* The outcome depends upon the sign of u.
* In general, u could be positive, negative or zero; its sign does not need to be fixed.

dividing out example

* Given a clause of the form $f(t) \cdot u \leq \nu \vee C$
* deduce the three clauses $f(t) \leq \nu / u \vee u \leq 0 \vee C$

$$
\begin{gathered}
0 \leq v \vee u \neq 0 \vee C \\
f(t) \geq v / u \vee u \geq 0 \vee C
\end{gathered}
$$

* Numerous problems can only be solved using this form of inference.

notes on the axioms

* We omit general laws: transitivity is too prolific!
* The decision procedure, QEPCAD, catches many instances of general laws.
* We build transitivity into our bounding axioms.
** We use Igen (R, X, Y) to express both $X \leq Y$ (when $R=0$) and $X<Y$ (when $R=1$).
* We identify $x<y$ with $\neg(y \leq x)$.

some exp lower bounds

 Covers both$<$ and \leq
Transitivity is
-
built in: to show
cnf(exp_lower_taylor_1, axiom, Y <exp (X), show (~ $\operatorname{lgen}(R, Y, 1+X)$
$1 \operatorname{lgen}(R, Y, \exp (X)))$).
$Y<1+X$.
cnf(exp_lower_bound_cf2,axiom,
$(\sim \operatorname{lgen}(R, Y,(X \wedge 2+6 * X+12) /$
(X^2 $-6 * X+12)$)
I $\operatorname{lgen}(R, Y, \exp (X)))$).

absolute value axioms

* Simply $|X|=X$ if $X \geq 0$ and $|X|=-X$ otherwise.
* It helps to give abs a high weight, discouraging the introduction of occurrences of abs.
cnf(abs_nonnegative, axiom,

$$
\begin{aligned}
& (\sim 0<=X \\
& 1 \operatorname{abs}(X)=X)) .
\end{aligned}
$$

cnf(abs_negative,axiom,

$$
\begin{aligned}
& (0<=X \\
& 1 \operatorname{abs}(X)=-X)) .
\end{aligned}
$$

a few solved problems

problem

seconds

$$
\begin{array}{lr}
|x|<1 \Longrightarrow|\ln (1+x)| \leq-\ln (1-|x|) & 0.153 \\
|\exp (x)-1| \leq \exp (|x|)-1 & 0.318 \\
-1<x \Longrightarrow 2|x| /(2+x) \leq|\ln (1+x)| & 4.266 \\
|x|<1 \Longrightarrow|\ln (1+x)| \leq|x|(1+|x|) /|1+x| & 0.604 \\
0<x \leq \pi / 2 \Longrightarrow 1 / \sin ^{2} x<1 / x^{2}+1-4 / \pi^{2} & 410
\end{array}
$$

hybrid systems

* Many hybrid systems can be specified by systems of linear differential equations. (The HSOLVER Benchmark Database presents 18 examples.)
* We can solve these equations using Maple, typically yielding a problem involving the exponential function.
* MetiTarski can often solve these problems.

collision avoidance system

* differential equations for the velocity, acceleration and gap between two vehicles:

$$
\dot{v}=a, \quad \dot{a}=-3 a-3\left(\nu-v_{f}\right)+g a p-(\nu+10), \quad g \dot{a} p=v_{f}-v
$$

** solution for the gap (as a function of t):

$$
g a p=12-14.2 e^{-0.318 t}+3.24 e^{-1.34 t} \cos (1.16 t)-0.154 e^{-1.34 t} \sin (1.16 t)
$$

* MetiTarski can prove that the gap is positive!

some limitations

粦 No range reduction: proofs about $\exp (20)$ or $\sin (3000)$ are likely to fail.

* Not everything can be proved using upper and lower bounds. Adding laws like $\exp (\mathrm{X}+\mathrm{Y})=$ $\exp (X) \exp (Y)$ greatly increases the search space.
* Problems can have only a few variables or QEPCAD will never terminate.

example of a limitation

* We can prove this theorem if we replace $1 / 2$ by $100 / 201$. Approximating π by a fraction loses information.

$$
0<x<1 / 2 \Longrightarrow \cos (\pi x)>1-2 x
$$

related work?

* SPASS+T and SPASS(T) combine the SPASS prover with various decision procedures.
* Ratschan's RSOLVER solves quantified inequality constraints over the real numbers using constraint programming methods.
* There are many attempts to add quantification to SMT solvers, which solve propositional assertions involving linear arithmetic, etc.

final remarks

* By combining a resolution prover with a decision procedure, we can solve many hard problems.
* The system works by deduction and outputs proofs that could be checked independently.
* A similar architecture would probably perform well using other decision procedures.

acknowledgements

* Assistance from C. W. Brown, A. Cuyt, I. Grant, J. Harrison, J. Hurd, D. Lester, C. Muñoz, U. Waldmann, etc.
* The research was supported by the Engineering and Physical Sciences Research Council [grant number EP/C013409/1].

