
1

Using Machine Learning to Decide When to
Precondition Cylindrical Algebraic Decomposition

With Groebner Bases
Zongyan Huang∗, Matthew England†, James H. Davenport‡, and Lawrence C. Paulson∗

∗University of Cambridge Computer Laboratory, Cambridge CB3 0FD, U.K.
Email: rubyhuang87@gmail.com; lp15@cam.ac.uk

†Coventry University Faculty of Engineering, Environment and Computing, Coventry, CV1 2JH, U.K.
Email: Matthew.England@coventry.ac.uk

‡University of Bath Dept. of Computer Science, Bath, BA2 7AY, U.K.
Email: J.H.Davenport@bath.ac.uk

Abstract—Cylindrical Algebraic Decomposition (CAD) is a
key tool in computational algebraic geometry, particularly for
quantifier elimination over real-closed fields. However, it can be
expensive, with worst case complexity doubly exponential in the
size of the input. Hence it is important to formulate the problem
in the best manner for the CAD algorithm. One possibility is to
precondition the input polynomials using Groebner Basis (GB)
theory. Previous experiments have shown that while this can often
be very beneficial to the CAD algorithm, for some problems it
can significantly worsen the CAD performance.

In the present paper we investigate whether machine learning,
specifically a support vector machine (SVM), may be used to iden-
tify those CAD problems which benefit from GB preconditioning.
We run experiments with over 1000 problems (many times larger
than previous studies) and find that the machine learned choice
does better than the human-made heuristic.

I. INTRODUCTION

A. Cylindrical Algebraic Decomposition

A Cylindrical Algebraic Decomposition (CAD) is a decom-
position of ordered Rn space into cells arranged cylindrically,
meaning the projections of any pair with respect to the given
ordering are either equal or disjoint. Algebraic is actually short
for semi-algebraic as each CAD cell can be described with a
finite sequence of polynomial constraints. A CAD is produced
to be invariant for input: sign- (or order-) invariant for input
polynomials or truth-invariant for input formulae.

CADs and the first algorithm to compute them were intro-
duced by Collins in 1975 [19]. CAD usually has two stages:
projection where an operator is applied recursively on the
input to derive corresponding problems in lower dimensions;
and lifting where CADs are built incrementally by dimension
according to the polynomials identified in projection [1]. The
original motivation was quantifier elimination (QE) in real
closed fields, while other applications include: parametric
optimisation [33], epidemic modelling [13], theorem proving
[48], reasoning with multi-valued functions [22] derivation of
optimal numerical schemes [30], and much more.

CAD has worst case complexity doubly exponential in the
number of variables [23] applicable whatever the data structure
[12]. For some applications there exist algorithms with better

complexity [3], but CAD implementations still remain the best
general purpose approach for many. This may be due to the
numerous approaches used to improve the efficiency of CAD
since Collins’ original work including: improvements to the
projection operator [39], [47], [10], [38]: partial CAD (lift only
when necessary for QE) [21]; and symbolic-numeric lifting
schemes [54], [42]. Some recent advances include making
use of any Boolean structure in the input [6], [7], [27];
local projection approaches [11], [55]; and decompositions via
complex space [18], [5]. For a more detailed introduction to
CAD see for example Bradford et al. [7].

B. Preconditioning with Groebner Bases
A Groebner Basis G is a particular generating set of an

ideal I defined with respect to a monomial ordering. One
definition is that the ideal generated by the leading terms of I
is generated by the leading terms of G. Groebner Bases (GB)
allow properties of the ideal to be deduced such as dimension
and number of zeros and so are one of the main practical
tools for working with polynomial systems. Their properties
and an algorithm to derive a GB for any ideal was introduced
by Buchberger in his PhD thesis of 1965 [14].

Like CAD, there has been much research to improve and
optimise GB calculation, with the F5 algorithm [31] perhaps
the most used approach currently. However, also like CAD
the calculation of GB is necessarily doubly exponential in
the worst case [46] (when using a lexicographic monomial
ordering). Despite this, the computation of GB can often be
done very quickly and would almost certainly be a superior
tool to CAD for any problem involving only polynomial
equalities. From this arises the natural question: is the process
of replacing a conjunction of polynomial equalities in a CAD
problem by their GB a useful precondition for CAD?

I.e. let E = {e1, e2, . . . } be a set of polynomials; G =
{g1, g2, . . . } a GB for E; and B any Boolean combination
of constraints, fi σi 0, where σi ∈ {<,>,≤,≥, 6=,=}) and
F = {f1, f2, . . . } is another set of polynomials. Then

Φ = (e1 = 0 ∧ e2 = 0 ∧ . . . ) ∧B and
Ψ = (g1 = 0 ∧ g2 = 0 ∧ . . . ) ∧B



2

are equivalent and a CAD truth-invariant for either could be
used to solve problems involving Φ (such as eliminating any
quantifiers applied to Φ). So is it worth producing G?

The first attempt to answer this question was given by
Buchberger and Hong in 1991 [15] who used the imple-
mentation of GB [4] to precondition an implementation of
CAD [21] (both in C on top of the SAC-2 system [20]).
Of the ten test problems studied: 6 were improved by the
GB preconditioning, with the speed-up varying from 2-fold to
1700-fold; 1 problem resulted in a 10-fold slow-down; 1 timed
out when GB preconditioning was applied, while it would
complete without it; and the other 2 were intractable both for
CAD alone and the GB preconditioning step.

The problem was recently revisited by Wilson et al. [57].
The authors recreated the experiments of Buchberger and
Hong [15] using QEPCAD-B for the CAD and MAPLE 16
for the GB. As we may expect, there had been a big decrease
in the computation timings, especially the GB: the two test
problems previously intractable [15] could now have the GB
calculated quickly. However, two of the CAD problems were
still hindered by GB preconditioning. The experiments were
then extended to: a wider example set (an additional 12
problems); the alternative CAD implementation in MAPLE-16
[18]; and the case where we further precondition by reducing
inequalities of the system (the set F above) with respect to
the GB. The key conclusion remained that GB preconditioning
would in general benefit CAD (sometimes significantly) but
could on occasion hinder it (to the point of making a tractable
CAD problem intractable). The authors defined a metric to
assist with the decision of when to precondition, the Total
Number of Indeterminates (TNoI) of a set of polynomials A,

TNoI(A) =
∑

a∈A NoI(a) (1)

where NoI(a) is the number of indeterminates in a polynomial
a. Then their heuristic was to build a CAD for the precon-
ditioned polynomials only if the TNoI decreased following
preconditioning. For most of their test problems the heuristic
made the correct choice, but there were examples to the
contrary and little correlation between the change in TNoI
and level of speed-up / slow-down.

C. Contribution and plan

In this paper we consider if machine learning can be applied
to the decision of whether preconditioning CAD input with
GB is beneficial for a particular problem. We work on the
reasonable assumption that GB computation is cheap for the
problems on which CAD is tractable (in fact as shown in [29]
the CAD will compute resultants which overestimate the GB).
Hence we use algebraic features of both the input problem and
the GB itself to decide whether we want to use the GB.

In Section II we describe the dataset and computer algebra
computations used for the experiment and in Section III we
describe the set of features identified to train the machine
learning algorithm: a Support Vector Machine (SVM). Then in
Section IV we describe the initial machine learning experiment
and its results, before running feature selection experiments in
Section V. Finally, we compare the machine learned decision

with the human developed TNoI-based heuristic, draw our
conclusions and discuss future work in Section VI.

This is the second paper of the present authors to consider
the application of SVMs to CAD optimisation. We previously
studied the choice of variable ordering for CAD in [41]. In that
paper 3 existing heuristics were evaluated against a machine
learned choice of which to use. The latter outperformed each
individually and suggested a greater role for machine learning
in such decisions, motivating the present study. The only other
application of machine learning to computer algebra that the
authors are aware of is by Kobayashi et al. [44] who applied
a SVM to decide the order of sub-formulae solving for QE.

II. DATASET AND COMPUTER ALGEBRA

A. Computer Algebra

All the computer algebra computations were conducted in
MAPLE-17. The CAD algorithm used was an implementa-
tion of [18]. This is part of the RegularChains Library1

[16], [17] whose CAD procedures differ from the traditional
projection and lifting framework of Collins, instead first de-
composing Cn cylindrically and then refining to a CAD of
Rn. Previous experiments [57] showed this implementation
has the same issues of GB preconditioning as the traditional
approach. The default MAPLE GB implementation was used:
a meta algorithm calling multiple GB implementations. The
GBs were computed with a purely lexicographical ordering of
monomials based on the same variable ordering as the CAD.

All computations were performed on a 2.4GHz Intel pro-
cessor, however this is not relevant as we evaluated the CAD
performance using cell counts instead of timings, i.e. by
comparing the numbers of cells in the final outputted CADs
produced with and without GB preconditioning. Numerous
previous studies have shown this to be closely correlated to
timings and it has the advantage of being discrete, machine
and (up the theory used) implementation independent. It also
correlates with the cost of any post-processing of the CAD.

B. Dataset

A key difficulty in applying machine learning techniques
to computer algebra is the lack of suitable datasets (sets such
as [56] do not have enough problems). In our previous study
on choosing the variable ordering for CAD [41] we used the
nlsat-dataset [58], which although developed for non-linear
arithmetic SAT-solvers, contained many suitable problems.

For the present experiment we need problems that are
expressed with a conjunction of at least two equalities in
order to build a non-trivial GB. From the nlsat dataset 493
three-variable problems and 403 four-variable problems fit
this criteria, which should have been a sufficient number. GB
preconditioning was applied to each problem and cell counts
from computing the CAD with the original polynomials and
their replacement with the GB were computed and compared.
For each one of these problems the GB preconditioning was
beneficial or made no difference; surprising as the experiments
on much smaller datasets [15], [57] had shown much greater

1http://www.regularchains.org



3

volatility. This points to an undetected uniformity within the
current nlsat dataset. It would need to be widened if it is to
be used more extensively for computer algebra research.

Since existing datasets were not suitable for the present ex-
periment, we had no choice but to generate our own problems.
The generation process aimed for an unbiased dataset which
would be computationally feasible for computing multiple
CADs, and have some comparable structure (number of terms
and polynomials) to existing CAD problems.

In total, 1200 problems were generated using the random
polynomial generator randpoly in MAPLE-17. Each prob-
lem has two sets of three polynomials; the first to represent
conjoined equalities and the second for the other polynomial
constraints (respectively E and F from the description in
Section I-B). The number of variables was at most 3, labelled
x, y, z and under ordering x ≺ y ≺ z; the number of terms
per polynomial at most 2; the coefficients were restricted to
integers in [−20, 20]; and the total degree was varied between
2, 3 and 4 (with 400 problems generated for each).

A time limit of 300 CPU seconds was set for each CAD
computation (all GB computations completed quickly) from
which 1062 problems finished to constitute the final dataset.
Of these, 75% benefited from GB preconditioning. So our
randomly generated dataset matched the previously found
results of [15], [57] with most problems benefiting but not
all and so is suitable for the purpose of this experiment.

III. PROBLEM FEATURES

Table III shows the 28 problem features we identified
(guided by previous work). Here (x, y, z) are the three vari-
able labels used in the problems and proportion means the
percentage of the total. The features were chosen as easily
computable metrics that may affect the cell count of the CAD.
They fall into two sets: those generated from the polynomials
in the original problem and those obtained after applying GB
preconditioning. The abbreviations tds and stds stand for
maximum total degree and sum of total degrees respectively:

tds(F ) = max
f∈F

tds(f), stds(F ) =
∑
f∈F

tds(f).

We also make use of the metric TNoI (see equation (1))
[57]. Finally we included the base 2 logarithm of the ratio
of differences between some of the key metrics. All features
could be calculated immediately within MAPLE.

We note that the stds measure differs from the sotd
heuristic introduced in [25] and used for multiple CAD de-
cisions [8], [26], [28]. This is because stds measures the
input polynomials only, while sotd measures the full set of
CAD projection polynomials, and so is much more expensive.

In addition to training a classifier using all the features
in Table III, we trained classifiers using two subsets: one
containing the features labelled 1−12 concerning the original
set of polynomials; and one the features labelled 13 − 25
concerning the polynomials after GB preconditioning. The
latter set has one extra feature, the number of polynomials,
as this varies after GB calculation but was always 6 to start
with. We refer to the first subset as before features, the second
as after features and the full set as all features.

TABLE I
INITIAL FEATURE SET

Description
1 TNoI before GB.
2 stds before GB.
3 tds of polynomials before GB.
4 Max degree of x in polynomials before GB.
5 Max degree of y in polynomials before GB.
6 Max degree of z in polynomials before GB.
7 Proportion of polynomials with x before GB.
8 Proportion of polynomials with y before GB.
9 Proportion of polynomials with z before GB.
10 Proportion of monomials with x before GB.
11 Proportion of monomials with y before GB.
12 Proportion of monomials with z before GB.
13 Number of polynomials after GB.
14 TNoI after GB.
15 stds after GB.
16 tds of polynomials after GB.
17 Max degree of x in polynomials after GB.
18 Max degree of y in polynomials after GB.
19 Max degree of z in polynomials after GB.
20 Proportion of polynomials with x after GB.
21 Proportion of polynomials with y after GB.
22 Proportion of polynomials with z after GB.
23 Proportion of monomials with x after GB.
24 Proportion of monomials with y after GB.
25 Proportion of monomials with z after GB.
26 log2(TNoI before GB) - log2(TNoI after GB)
27 log2(stds before GB) - log2(stds after GB)
28 log2(tds before GB) - log2(tds after GB)

Example: Consider sets of polynomials

E := {−12yz − 3z, 17x2 − 6, −2yz + 5x}
F := {−2yz − 9y, −15x2 − 19y, 6xz + 3}.

The GB computed for E is

G := {17x2 − 6, 4y + 1, z + 10x}

and the all features vector becomes[
12, 12, 2, 2, 1, 1, 23 ,

2
3 ,

2
3 ,

1
3 ,

5
12 ,

5
12 ,

6, 10, 10, 2, 2, 1, 1, 23 ,
1
2 ,

1
2 ,

1
3 ,

1
3 ,

1
4 ,

0.263, 2.263, 0
]
,

with the before features and after features vectors formed from
the first and second line respectively.

The feature generation process was applied to create the
three training sets separately (although the feature labels used
were all as in Table III). Each problem was labelled +1 if
GB preconditioning is beneficial for CAD construction, or
−1 otherwise. After feature generation the training data was
standardised so each feature had zero mean and unit variance
across the training set. The same standardisation was then
applied to features in the test set.

IV. MACHINE LEARNED CHOICES

A. Introduction

Machine learning deals with the design of programs that
learn rules from data. This is an attractive alternative to
manually constructing them when the underlying functional
relationship is complex, as appears to be the case here.



4

In the last decade, the use of machine learning has spread
rapidly following the invention of the Support Vector Machine
(SVM) (see for example [51]). This gives a powerful and
robust method for both: Classification, the assignment of
input examples into a given set of classes; and Regression, a
supervised pattern analysis in which the output is real-valued.
The standard SVM classifier takes a set of input data and
predicts one of two possible classes from the input. Given a set
of examples, each marked as belonging to one of two classes,
an SVM training algorithm builds a model that assigns new
examples into one of the classes. The examples used to fit the
model are called training examples. An important concept in
the SVM theory is the use of a kernel function to map data into
a high dimensional feature space and then separate samples in
the transformed space [53]. Kernel functions enable operations
in feature space without ever computing the coordinates of
the data in that space, rather they compute the inner products
between all pairs of data vectors, which is generally cheaper.

For our experiment we used SVM-LIGHT2 [43]; an imple-
mentation of SVMs in C.

B. Cross-validation and grid-search

The 1062 problems were partitioned into 80% training (849
problems) and 20% test (213 problems), stratified to maintain
relative proportions of positive and negative examples. The
classification was done using the radial basis function (RBF)
kernel. This was chosen after earlier experiments applying
machine learning to an automated theorem prover found the
RBF kernel to perform well with similar simple algebraic
features [9]. The RBF function is defined as:

K(x, x′) = exp
(
−γ||x− x′||2

)
(2)

where x and x′ are feature vectors. The process depends on
kernel parameter γ and another parameter C which governs
the trade-off between margin and training error, and finding the
optimal values of these is not trivial. Matthews’ Correlation
Coefficient (MCC) [45], [2] is often used to evaluate choices.
This takes into account true and false positives and negatives
(labelled tp, fp, tn and fn accordingly):

MCC =
tp ∗ tn− fp ∗ fn√

(tp + fp)(tp + fn)(tn + fp)(tn + fn)
. (3)

In the case where one of the terms in the denominator is zero
the entire denominator is set to 1. The MCC measure has
the value 1 if perfect prediction is attained, 0 if the classifier
is performing as a random classifier, and −1 if the classifier
exactly disagrees with the data.

A grid-search optimisation procedure along with a five-
fold stratified cross validation was used, involving a search
over a range of (γ,C) values to find the pair which would
maximize equation (3). We tested a commonly used range
of values in our grid search process [40]: γ varied between
{2−15, 2−14, 2−13, . . . , 23}; and C varied between {2−5, 2−4,
2−3, . . . , 215}. Following the completion of the grid-search,
the values giving optimal MCC results were selected. This
procedure was repeated for the three feature sets.

2http://svmlight.joachims.org

TABLE II
ACCURACY OF PREDICTIONS

Feature Set Number % of test set

All features 162 76%
Before features 159 75%
After features 167 78%

C. Results for the three feature sets

The classification accuracy was used to measure the ef-
ficacy of the machine learning selection process under the
3 feature sets. The test set of 213 problems contained 159
positive samples and 54 negative samples (i.e. 75% of the
test problems benefited from GB preconditioning). The results
of the machine learned choices are summarised in Table II.
First we note that when making a choice based on the before
features training set 75% of the problems were predicted
accurately. I.e. making a decision based on these features
results in no more correct decisions than blindly deciding to
GB precondition each and every time. However, the other two
feature sets resulted in superior decisions. Although only a
small improvement on preconditioning blindly, we recall that
the wrong choice can give large changes to the size of the
CAD or even change the tractability of the problem [57].

The results indicate that the features of the GB itself are re-
quired to decide whether to use the preconditioning. However,
earlier research showed that a variable completely useless by
itself can provide a significant performance improvement when
taken in conjunction with others [34]. To be confident about
which features were significant and which were superfluous,
further feature selection experiments are required and we will
see that the optimal feature subset must contain features from
both before and after the GB computation.

V. FEATURE SELECTION

There is a strong indication that not all features contribute
to the machine learning process. Moreover, a reduced feature
set can be beneficial for better understanding the underlying
connections. Consequently, we applied some feature selection
methods. Both filter and wrapper methods were applied as
discussed in the following subsections.

The feature selection experiments were conducted with
WEKA (Waikato Environment for Knowledge Analysis) [35],
a Java machine learning library which supports tasks such
as data preprocessing, clustering, classification, regression and
feature selection. Each data point is also represented as a fixed
number of features. The inputs are samples of 29 features,
where the first 28 are the real-valued features from Table III,
and the final one is a nominal feature denoting its class.

A. The filter method

A correlation based feature selection method, was applied
as described in [37]. Unlike other filter methods [36], these
measure the rank of feature subsets instead of individual
features. A feature subset which contains features highly
correlated with the class but uncorrelated with each other is
preferred. The metric below is used to measure the quality of a

http://svmlight.joachims.org


5

feature subset, and takes into account feature-class correlation
as well as feature-feature correlation.

Gs =
krci√

k + k(k − 1)rii′
(4)

Here, k is the number of features in the subset, rci denotes
the average feature-class correlation of feature i, and rii′ the
average feature-feature correlation between feature i and i′.
The numerator of equation (4) indicates how much relevance
there is between the class and a set of features, while the
denominator measures the redundancy among the features. The
higher Gs, the better the feature subset.

To apply this heuristic we must calculate the correlations.
With the exception of the class attribute all 28 features are con-
tinuous, so in order to have a common measure for computing
the correlations we first discretize using the method of Fayyad
and Irani [32]. After that, a correlation measure based on the
information-theoretical concept of entropy is used, which is a
measure of the uncertainty of a random variable. We define
the entropy of a variable X [52] as

H(X) = −
∑

i p(xi) log2

(
p(xi)

)
. (5)

The entropy of X after observing values of another variable
Y is then defined as

H(X|Y ) = −
∑

j p(yj)
∑

i p(xi|yj) log2

(
p(xi|yj)

)
, (6)

where p(xi) is the prior probabilities for all values of X , and
p(xi|yi) is the posterior probabilities of X given the values of
Y . The information gain (IG) [50] measures the amount by
which the entropy of X decreases by additional information
about X provided by Y , and it is given by

IG(X,Y ) = H(X)−H(X|Y ). (7)

The symmetrical uncertainty (SU) (a modified information
gain measure) is then used to measure the correlation between
two discrete variables (X and Y) [49]:

SU(X,Y ) = 2.0×
(
H(X)−H(X|Y )

H(X) +H(Y )

)
. (8)

Treating each feature as well as the class as random vari-
ables, we can apply this as our correlation measure. More
specifically, we simply use SU(c, i) to measure the correlation
between a feature i and a class c, and SU(i, i

′
) to measure

the correlation between features i and i′. These values are then
substituted as rci and rii′ in equation (4).

Recall that our aim here is to find the optimal subset of
features which maximises the metric given in equation (4).
The size of our feature set is 28 meaning there are 228 − 1 '
2.7 × 108 possible subsets, too many for exhaustive search.
Instead a greedy stepwise forward selection search strategy
was used for searching the space of feature subsets, which
works by adding the current best feature at each round. The
search begins with the empty set, and in each step the metric,
as defined in equation (4), is computed for every single feature
addition, and the feature with the best score improvement is
added. If at some step none of the remaining features provide
an improvement, the algorithm stops, and the current feature
set is returned. The best feature subset found with this method

TABLE III
FEATURE SELECTION BY THE FILTER METHOD

Description

14 TNoI after GB.
13 Number of polynomials after GB.
2 stds before GB.
26 log2(TNoI before GB) - log2(TNoI after GB)
21 Proportion of polynomials with y after GB.
15 stds after GB.
23 Proportion of monomials with x after GB.
19 Max degree of z in polynomials after GB.
25 Proportion of monomials with z after GB.
27 log2(stds before GB) - log2(stds after GB)

(which may not be the absolute optimal subset of features) is
shown in Table III, ordered by importance.

B. The wrapper method

The wrapper feature selection method evaluates attributes
using accuracy estimates provided by the target learning
algorithm. Evaluation of each feature set was conducted with
a SVM with RBF kernel function. The SVM algorithm is run
on the dataset, with the same data partitions as described in
Section IV-B. Similarly, a five-fold cross validation was carried
out. The feature subset with the highest average accuracy was
chosen as the final set on which to run the SVM algorithm.

In each training / validation fold, starting with an empty
set of features: each feature was added; a model was fitted
to the training dataset; the classifier was then tested on the
validation set. This was done on all the features, resulting in
a score for each reflecting the accuracy of the classifier. The
final score for each feature was its average over the five folds.
Having obtained a score for all features in the manner above,
the feature with the highest score was then added in the feature
set. The same greedy procedure as used for the filter method
in Section V-A was applied to obtain the best feature subset.

Due to the large number of cases, the parameters (C, γ)
were selected from an optimised sub range instead of the
full grid search used in Section IV-B. The reduced range
suffices to demonstrate the performance of a reduced feature
set. In those previous experiments we found that C taken
from {25, 26, 27, 28, 29, 210} and γ taken from {2−5, 2−6,
2−7, 2−8, 2−9, 2−10} provided good classifier performance.

The 36 pairs of (C, γ) values were tested and an optimal
feature subset with the highest accuracy was found for each.
Then the one with the highest accuracy was selected as the
final set, which is shown in Table IV ordered by importance.
We see that most of the features selected (9, 12 and 22) related
to variable z. Recall that the projection order used in the CAD
was always x ≺ y ≺ z, i.e. the variable z is projected first.
Hence it makes sense that this variable would have the greatest
effect and thus be identified in the feature selection.

We examined the performance on further reduced feature
sets, obtained by the feature ranking of the wrapper method.
Fig. 1 shows the overall prediction accuracies. For instance,
the predictor obtained from only using a single feature (the
best ranked feature was TNoI after GB for both filter and



6

TABLE IV
FEATURE SELECTION BY THE WRAPPER METHOD

Description
14 TNoI after GB.
9 Proportion of polynomials with z before GB.
22 Proportion of polynomials with z after GB.
4 Max degree of x in polynomials before GB.
12 Proportion of monomials with z before GB.

Fig. 1. Performance of a sample run with different sizes of feature sets

wrapper methods) achieved an accuracy score of 0.756 in that
run, with the performance steadily increasing with the size of
the feature set until the fifth feature. Taking any sixth feature
into the set did not improve the performance noticeably, and
hence resulted in the cut-off chosen by the wrapper method.

As the wrapper method identified only a few features an
error analysis on the misclassified data points is feasible. Fig. 2
shows 40 misclassified points and their features 4 and 14,
while Fig. 3 shows the remaining features. It is interesting that
feature 4 of all misclassified samples is either 1 or 2, when for
the whole dataset roughly a third of samples had this feature
value 3 or 4. This indicates that the algorithm performs better
on instances with a higher maximum degree of x among all
polynomials before GB preconditioning.

C. Results with reduced feature sets

Having obtained the reduced feature sets, we ran the
experiment again to evaluate the new choices. The dataset
was again repartitioned into 80% training and 20% test set,
stratified to maintain relative class proportions in both training
and test partitions. Again, a five-fold cross validation and
a finer grid-search optimisation procedure over the range of
(C, γ) pairs was conducted as described previously. The
classifier with maximum averaged MCC was selected and
the resulting classifier was then evaluated. The testing data
was also reduced to contain only the features selected. The
classification accuracy was used to measure the performance
of the classifier. In order to better estimate the generalisation
performance of classifiers with reduced feature sets, the data
was permuted and partitioned into 80% training and 20% test
again and the whole process was repeated 50 times. For each

Fig. 2. Feature 4 and 14 of misclassified data

Fig. 3. Feature 9,12 and 22 of misclassified data

run, each training set was standardised to have zero mean
and unit variance, with the same offset and scaling applied
subsequently to the corresponding test partition.

Fig. 4 shows boxplots of the accuracies generated by 50
runs of the five-fold cross validation. Both reduced feature sets
generated similar results and show a large improvement on the
base case where GB preconditioning is always used before
CAD construction. The average overall prediction accuracy
of the filter subset and the wrapper subset is 79% and 78%
respectively (Fig. 1 shows a higher rate but that was just for
one sample run). All 50 runs of the wrapper subset performed
above the base line, while the top three quartiles of the results
of both sets achieve higher than 77% percentage accuracy.



7

Fig. 4. Boxplots of 50 runs of the 5-fold cross validation with both the
suggested feature sets

VI. CONCLUSION AND FUTURE WORK

A. Comparison with human developed heuristic

We may compare the machine learned choice with the
human developed TNoI heuristic [57], whose performance
on the 213 test problems is shown in Table V. It correctly
predicted whether GB preconditioning was beneficial for 118
examples, only 55%. So for this dataset it would have been bet-
ter on average to precondition blindly than to make a decision
using TNoI alone. The TNoI heuristic performed better in the
experiments by Wilson et al. [57]. Those experiments involved
only 22 problems (compared to 213 in the test set here)
but they were human constructed to have certain geometric
properties while the ones here were random.

We also note that the TNoI heuristic actually performed
quite differently for positive and negative examples of our
dataset, as shown by the separated data in Table V. It was
able to identify most of the cases where GB-preconditioning
is detrimental but failed to identify many of the cases where it
was beneficial. The TNoI after GB was identified as important
by both feature methods, but it seems to need to be used in
conjunction with other features to be effective here.

B. Summary

We investigated the application of machine learning to the
problem of predicting when GB preconditioning is beneficial
to CAD. We had to create a new dataset of random polyno-
mials for the experiment. We acknowledge that it would be
preferable to run such a test on an established dataset but this
was not available. Of course, such a random datasets could be
enlarged to increase variety almost indefinitely, but we needed
to keep the experiment within computationally feasible bound-
aries. We emphasise the interesting initial finding in Section
II-B that supposedly varied established sets can have hidden
uniformity; and highlight that our generated dataset matched

TABLE V
THE PERFORMANCE OF THE TNOI-BASED HEURISTIC [57]

Total Correct Prediction
GB beneficial 158 77 (48%)
GB not beneficial 54 41 (76%)
Total 213 118 (55%)

previously reported results [15], [57] for the topic of study
with most, but not all, benefiting from GB preconditioning.

A machine learned choice on whether to precondition was
found to yield better results than either always precondition-
ing blindly, or using the previously human developed TNoI
heuristic [57]. Two feature selection experiments showed that a
small feature subset could be used. The two subsets identified
were different but both needed features from before and
after the GB preconditioning. For one, having fewer features
actually improved the learning efficiency to 79%. Although a
modest improvement on applying GB preconditioning blindly,
we recall that the wrong choice can give large changes to the
size of the CAD or even change the tractability of the problem.

C. Future Work

There are many possible extensions to this project:
• To see how the learned choice performs on a non-random,

dataset. There is a large set derived from university math-
ematics entrance exams [44], which is not yet publicly
available but may be in the future.

• There are further CAD optimisations for multiple equali-
ties under development [27], [29], [24] which may affect
the role of GB preconditioning from CAD.

• In the present paper the variable ordering for CAD and
the monomial ordering for GB were fixed. In reality, such
decisions may also need to be made; but the variable
ordering can affect the choice of whether to use GB
preconditioning and vice versa.

Finally, we note there are other algorithm optimisation deci-
sions for CAD, and indeed elsewhere in computer algebra.

Acknowledgements

Thanks to David Wilson and James Bridge, our collab-
orators on [41], for useful conversations on the topic of
machine learning to optimise computer algebra. This work
was supported by EPSRC grant EP/J003247/1 and EU H2020-
FETOPEN-2016-2017-CSA project SC2 (712689).

REFERENCES

[1] D. Arnon, G.E. Collins, and S. McCallum. Cylindrical algebraic
decomposition I: The basic algorithm. SIAM J. Computing, 13:865–
877, 1984.

[2] P. Baldi, S. Brunak, Y. Chauvin, C.A.F. Andersen, and H. Nielsen.
Assessing the accuracy of prediction algorithms for classification: An
overview. Bioinformatics, 16(5):412–424, 2000.

[3] S. Basu, R. Pollack, and M.F. Roy. Algorithms in Real Algebraic
Geometry. Vol. 10 of Algorithms & Comp. in Math. Springer, 2006.

[4] W. Böge, R. Gebauer, and H. Kredel. Gröbner bases using SAC2. In
EUROCAL ’85, (LNCS 204), pages 272–274. Springer, 1985.

[5] R. Bradford, C. Chen, J.H. Davenport, M. England, M. Moreno Maza,
and D. Wilson. Truth table invariant cylindrical algebraic decomposition
by regular chains. In Computer Algebra in Scientific Computing, (LNCS
8660), pages 44–58. Springer International Publishing, 2014.



8

[6] R. Bradford, J.H. Davenport, M. England, S. McCallum, and D. Wilson.
Cylindrical algebraic decompositions for boolean combinations. In Proc.
ISSAC ’13, pages 125–132. ACM, 2013.

[7] R. Bradford, J.H. Davenport, M. England, S. McCallum, and D. Wilson.
Truth table invariant cylindrical algebraic decomposition. J. Symbolic
Computation, 76:1–35 2016.

[8] R. Bradford, J.H. Davenport, M. England, and D. Wilson. Optimising
problem formulations for cylindrical algebraic decomposition. In In-
telligent Computer Mathematics, (LNCS 7961), pages 19–34. Springer
Berlin Heidelberg, 2013.

[9] J.P. Bridge, S.B. Holden, and L.C. Paulson. Machine learning for first-
order theorem proving. J. Automated Reasoning, pages 1–32, 2014.

[10] C.W. Brown. Improved projection for cylindrical algebraic decomposi-
tion. J. Symbolic Computation, 32(5):447–465, 2001.

[11] C.W. Brown. Constructing a single open cell in a cylindrical algebraic
decomposition. In Proc. ISSAC ’13, pages 133–140. ACM, 2013.

[12] C.W. Brown and J.H. Davenport. The complexity of quantifier elimina-
tion and cylindrical algebraic decomposition. In Proc. ISSAC ’07, pages
54–60. ACM, 2007.

[13] C.W. Brown, M. El Kahoui, D. Novotni, and A. Weber. Algorithmic
methods for investigating equilibria in epidemic modelling. J. Symbolic
Computation, 41:1157–1173, 2006.

[14] B. Buchberger. PhD thesis (1965): An algorithm for finding the basis
elements of the residue class ring of a zero dimensional polynomial
ideal. J. Symbolic Computation, 41(3-4):475–511, 2006.

[15] B. Buchberger and H. Hong. Speeding up quantifier elimination by
Gröbner bases. Tech. Report, 91-06. RISC, Johannes Kepler Uni., 1991.

[16] C. Chen and M. Moreno Maza. Real quantifier elimination in the
RegularChains library. In Mathematical Software – ICMS 2014, (LNCS
8592), pages 283–290. Springer Heidelberg, 2014.

[17] C. Chen and M. Moreno Maza. Quantifier elimination by cylindrical
algebraic decomposition based on regular chains. J. Symbolic Compu-
tation, 75:74–93, 2016.

[18] C. Chen, M. Moreno Maza, B. Xia, and L. Yang. Computing cylindrical
algebraic decomposition via triangular decomposition. In Proc. ISSAC
’09, pages 95–102. ACM, 2009.

[19] G.E. Collins. Quantifier elimination for real closed fields by cylindrical
algebraic decomposition. In Proc. 2nd GI Conference on Automata
Theory and Formal Languages, pages 134–183. Springer-Verlag, 1975.

[20] G.E. Collins. The SAC-2 computer algebra system. In EUROCAL ’85,
(LNCS 204), pages 34–35. Springer, 1985.

[21] G.E. Collins and H. Hong. Partial cylindrical algebraic decomposition
for quantifier elimination. J. Symbolic Computation, 12:299–328, 1991.

[22] J.H. Davenport, R. Bradford, M. England, and D. Wilson. Program
verification in the presence of complex numbers, functions with branch
cuts etc. In Proc. SYNASC ’12, pages 83–88. IEEE, 2012.

[23] J.H. Davenport and J. Heintz. Real quantifier elimination is doubly
exponential. J. Symbolic Computation, 5(1-2):29–35, 1988.

[24] J.H. Davenport and M. England. Need polynomial systems be doubly
exponential? In Mathematical Software – ICMS 2016, (LNCS 9725),
pages 157–164. Springer International Publishing, 2016.

[25] A. Dolzmann, A. Seidl, and T. Sturm. Efficient projection orders for
CAD. In Proc. ISSAC ’04, pages 111–118. ACM, 2004.

[26] M. England, R. Bradford, C. Chen, J.H. Davenport, M. Moreno Maza,
and D. Wilson. Problem formulation for truth-table invariant cylindrical
algebraic decomposition by incremental triangular decomposition. In In-
telligent Computer Mathematics, (LNCS 8543), pages 45–60. Springer,
2014.

[27] M. England, R. Bradford, and J.H. Davenport. Improving the use of
equational constraints in cylindrical algebraic decomposition. In Proc.
ISSAC ’15, pages 165–172. ACM, 2015.

[28] M. England, R. Bradford, J.H. Davenport, and D. Wilson. Choosing
a variable ordering for truth-table invariant cylindrical algebraic de-
composition by incremental triangular decomposition. In Mathematical
Software – ICMS 2014, (LNCS 8592), pages 450–457. Springer, 2014.

[29] M. England and J.H. Davenport. The complexity of cylindrical algebraic
decomposition with respect to polynomial degree. In Computer Algebra
in Scientific Computing, (LNCS 9890), pages 172–192. Springer, 2016.

[30] M. Erascu and H. Hong. Synthesis of optimal numerical algorithms
using real quantifier elimination (Case Study: Square root computation).
In Proc. ISSAC ’14, pages 162–169. ACM, 2014.

[31] J.C. Faugère. A new efficient algorithm for computing groebner bases
without reduction to zero (F5). In Proc. ISSAC ’02, pages 75–83. ACM,
2002.

[32] U.M. Fayyad and K.B. Irani. Multi-interval discretization of continuous-
valued attributes for classification learning. In Proc. of the International

Joint Conference on Uncertainty in AI, pages 1022–1027, 1993. Avail-
able at: http://trs-new.jpl.nasa.gov/dspace/handle/2014/35171,

[33] I.A. Fotiou, P.A. Parrilo, and M. Morari. Nonlinear parametric optimiza-
tion using cylindrical algebraic decomposition. In Proc. CDC-ECC ’05,
pages 3735–3740, 2005.

[34] I. Guyon and A. Elisseeff. An introduction to variable and feature
selection. J. Machine Learning Research, 3:1157–1182, 2003.

[35] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I.H.
Witten. The WEKA data mining software: An update. SIGKDD
Explorations Newsletter, 11(1):10–18, 2009.

[36] M.A. Hall. Correlation-based feature selection for discrete and numeric
class machine learning. In Proc. of the Seventeenth International
Conference on Machine Learning, ICML ’00, pages 359–366. Morgan
Kaufmann Publishers Inc., 2000.

[37] M.A. Hall and G. Holmes. Benchmarking attribute selection techniques
for discrete class data mining. IEEE Transactions on Knowledge and
Data Engineering, 15(6):1437–1447, 2003.

[38] J. Han, L. Dai, and B. Xia. Constructing fewer open cells by gcd
computation in CAD projection. In Proc. ISSAC ’14, pages 240–247.
ACM, 2014.

[39] H. Hong. An improvement of the projection operator in cylindrical
algebraic decomposition. In Proc. ISSAC ’90, pages 261–264. ACM,
1990.

[40] C. Hsu, C. Chang, and C. Lin. A practical guide to support vector
classification. Tech. Report, Department of Computer Science, National
Taiwan Uni., 2003.

[41] Z. Huang, M. England, D. Wilson, J.H. Davenport, L. Paulson, and
J. Bridge. Applying machine learning to the problem of choosing
a heuristic to select the variable ordering for cylindrical algebraic
decomposition. In Intelligent Computer Mathematics, (LNCS 8543),
pages 92–107. Springer, 2014.

[42] H. Iwane, H. Yanami, H. Anai, and K. Yokoyama. An effective imple-
mentation of a symbolic-numeric cylindrical algebraic decomposition
for quantifier elimination. In Proc. SNC ’09, pages 55–64, 2009.

[43] T. Joachims. Making large-scale support vector machine learning
practical. In B. Schölkopf, C.J.C. Burges, and A.J. Smola, editors,
Advances in Kernel Methods, pages 169–184. MIT Press, 1999.

[44] M. Kobayashi, H. Iwane, T. Matsuzaki, and H. Anai. Efficient subfor-
mula orders for real quantifier elimination of non-prenex formulas. In
Mathematical Aspects of Computer and Information Sciences (MACIS
’15), (LNCS 9582), pages 236–251. Springer, 2016.

[45] B.W. Matthews. Comparison of the predicted and observed secondary
structure of T4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-
Protein Structure, 405(2):442–451, 1975.

[46] E.W. Mayr and A.R. Meyer. The complexity of the word problems
for commutative semigroups and polynomial ideals. Advances in
Mathematics, 46(3):305–329, 1982.

[47] S. McCallum. An improved projection operation for cylindrical algebraic
decomposition. In B. Caviness and J. Johnson, editors, Quantifier
Elimination and Cylindrical Algebraic Decomposition, Texts & Mono.
Symbolic Computation, pages 242–268. Springer-Verlag, 1998.

[48] L.C. Paulson. Metitarski: Past and future. In Interactive Theorem
Proving, (LNCS 7406), pages 1–10. Springer, 2012.

[49] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numeri-
cal Recipes in C (2nd Ed.): The Art of Scientific Computing. Cambridge
Uni. Press, 1992.

[50] J.R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–
106, 1986.

[51] B. Schölkopf, K. Tsuda, and J.-P. Vert. Kernel methods in computational
biology. MIT Press, 2004.

[52] Claude E. Shannon. A mathematical theory of communication. Mobile
Computing and Communications Review, 5(1):3–55, 2001. Reprint of
original 1948 publication.

[53] J. Shawe-Taylor and N. Cristianini. Kernel methods for pattern analysis.
Cambridge Uni. Press, 2004.

[54] A. Strzeboński. Cylindrical algebraic decomposition using validated
numerics. J. Symbolic Computation, 41(9):1021–1038, 2006.

[55] A. Strzeboński. Cylindrical algebraic decomposition using local projec-
tions. In Proc. ISSAC ’14, pages 389–396. ACM, 2014.

[56] D.J. Wilson, R.J. Bradford, and J.H. Davenport. A repository for CAD
examples. ACM Comm. Computer Algebra, 46(3):67–69, 2012.

[57] D.J. Wilson, R.J. Bradford, and J.H. Davenport. Speeding up cylindrical
algebraic decomposition by Gröbner bases. In Intelligent Computer
Mathematics (LNCS 7362), pages 280–294. Springer, 2012.

[58] The benchmarks used in solving nonlinear arithmetic.
Available from: http://cs.nyu.edu/∼dejan/nonlinear/

http://trs-new.jpl.nasa.gov/dspace/handle/2014/35171
http://cs.nyu.edu/~dejan/nonlinear/

