MetiTarski's Menagerie of Cooperating Systems

Lawrence C Paulson

Computer laboratory
University of: Gambridge

1. On Combining Systems

Combining Systems is Hard!

- Example 1: Integrating decision procedures into heuristic theorem provers. A case study of linear arithmetic" (Boyer and Moore, 1988)
- Example 2: Beachability programming in HOL98 using BDDs" (MJC Gordon, 2000)
- Example 3. Isabelle's Sledgehammer (2007)
- Example 4: Resolution + RCF = MetiTarski (2008)

Adding Linear Arithmetic to the Boyer/Moore Prover

* Simply adding their (custom-made!) decision procedure to the Boyer/Moore prover had little effect.
- Deep integration with the rewriter was necessary: their decision procedure was ho black box.
" Final version like the software for the space shuttle"

Adding BDDs to HOL98

* What's the point of BDDs here? Proof assistants don't need to check huge tautologies. But.
- Mike Gordon added the BDD data stricture to HOL.
* assertions relating formulas to their BDDS
- BDD.level operations directly available
- This package was general enough to implement model checking in HOL!

Adding ATPs to Isabelle

- Similar integrations were attempted before, but how to make it usable for novices - and useful to experts?
- Sledgehammer provides automatic...
- problem translation (into FO or whatever)
- lemma selection (out of the entire lemma library)
- process management (remote invocations, etc.)
- ATPs are invoked as black boxes - and are not trusted!

Combining Clause Methods with Decision Procedures

* SMT: propositional over approximation
- DPLL $(\Gamma+\mathcal{T})$: a calculus for DPL + superposition
- MetiTarskl a modified resolution prover
- using decision procedures to simplify clauses...
\checkmark and to delete redundant ones

2. MetiTarski

MetiTarski: the Key Ideas

* proving statements about exp, In, sin, cos, $\tan ^{-1}$ - via
- axioms bounding the functions by rational functions
- heuristics to isolate and remove function occurrences
- decision procedures for real arithmetic (RCF)
(Real polynomial arit thmetic is decidable!
-though doubly exponential...)

Some Upper/Lower Bounds

$$
\begin{aligned}
& \exp (x) \geqslant 1+x+\quad+x^{n} / n! \\
& \text { (nodd) } \\
& \exp (x) \leqslant 1+x+\quad+\quad x / n! \\
& \exp (x)-1 /\left(1+x+x^{2} / 21-x / 3!\right)(x+1.596)
\end{aligned}
$$

Taylor series,

continued fractions, ...

$$
\begin{aligned}
& x-1,<\ln x<x-1 \\
& \frac{(1+5 x)(x-1)}{2 x(2+x)} \leqslant \ln x \leqslant \frac{(x+5)(x-1)}{2(2 x+1)}
\end{aligned}
$$

Division Laws, abs, etc...

$$
\begin{aligned}
& 7(x \leqslant y-z) \vee x / z \leqslant y \mid z \leqslant 0 \\
& 7(x<y / z) \vee x<z \leqslant y y z \leqslant 0 \\
& 1 x+z \leqslant y) \vee x \leqslant y / z \vee z \leqslant 0 \\
& n(x / z \leqslant y) y x \leqslant y<z \vee z \leqslant 0 \\
& x \geqslant 0-x=x \\
& x<0 \Rightarrow|x|=-x
\end{aligned}
$$

Analysing A Simple Problem

$*$ isolate occurrences of functions

* replace them by the bounds

How do we bring about these transformations?

- replace division by multiplication
- call decision procedure

Architectural Alternatives

Roll your own tableau prover?
Analytica (1993)
Weierstrass (2001)
we have full control - must micromanage the proof search

Hack an existing resolution prover?
no calculus-it's ad-hoc (what is "the algorithm"?)

3. Details of the Integration

Resolution Refresher Course

- Resolution operates on clauses: disjunctions of literals.
- Resolving two clauses yields a new one
*The aim is to contradict the negation of the goal - by deriving the empty clause.

Algebraic Literal Deletion

- Retain a list of the ground polynomial clauses (no variables):
- Delete any literal that is inconsistent with them.....
- by calling an RGF decision procedure.
- Deleting iterals helps to derive the empty clause.
-This process yields a fine graine d integration between resolution and a decision procedure.

Literal Deletion Examples

- Unsatisfiable literals such as $p^{2}<0$ are deleted
* If $x(y+1)>1$ is known, then $x=0$ will be deleted.
- The context includes the negations of adjacent literals in the clause $z^{2}>3$. - -
the decision procedure reduces 3z $\left[z^{2}<3 \wedge z>5\right]$ to false.

A Tiny Proof: $\forall x\left|e^{x}-1\right| \leqslant e^{|x|}-1$

To Summarise...

Replace functions by rational function upper or lower bounds,
and then get rid of division.
We obtain conjunctions of polynomial inequalities,

... which are decidable.

Resolution theorem proving applies these steps "in its own way".

A Few Easy Examples...

$$
\begin{aligned}
& 0<t \wedge 0<\nu_{f} \rightarrow\left(\left(1.565+313 v_{f}\right) \cos (116 t)\right. \\
& \left.\left.+01340+00268 v_{f}\right) \sin (116 t)\right) e^{1 / 34 t} \\
& \left(6.55+1.31 v_{f}\right) \text { e } v_{f}+10 \geqslant 0 \\
& 0 \leqslant x \wedge x \leqslant 289 \wedge s^{2}+c^{2}=1 / \\
& 1.51-023 e^{019 x} \quad(2.35 c+42 s) e^{00024 x}>-2 \\
& 0 \leqslant x \wedge 0 \leqslant y \Rightarrow y \tanh (x) \leqslant \sinh (y x)
\end{aligned}
$$

Our Decision Procedures

QEPCAD (Hoon Hong, C. W. Brown et al.)
venerable - very fast for univariate problems

Mathematica (Wolfram research) much faster than QEPCAD for 3-4 variables

Z3 (de Moura et al., Microsoft Research) an SMT solver with non-linear reasoning

Integration Issues

- QEPCAD was purposely designed for human use
- not as a back end.
- With Z3 we go beyond black box integration. feeding back models to speed later execution.
- Machinelearning can help identify the best decision procedure for a given problem.
- Many integration issues are trivial (e.g, buffer blocking) but vexing.

4. Applications

MetiTarski's Applications

* Analogue circuit verifí cation (Denman et al.; 2009)
- Linear hybrid systems (Akbarpour \& LGP, 2009)
- Abstracting nonpolynomial dynamical systems: (Denman, 2012)
- KeYmaeralinkup nonlinear hybrid systems (Sogokon et al)
- PVS linkup. NASA collision-avoidance projects (Muñoz \& Denman)

(What are Hybrid Systems?)

* dynamical systems where the state space has
- discrete modes (with transitions to other modes)
- continuous dynamics in each mode
- simple examples bouncing ball, water tank
- any computer controlled physical process
- autopilots, driverless trains, automated factories, ...

The Theromstat (sorn)

off
(cooling down)
on
(warming up)

KeYmaera

* a verification tool for hy brid systems (Platzer)
- extends the KeY interactive prover with a dynamic logic
- a free-variable tableau calculus
" "differential induction"
- integration with RGF decision procedures
- MetiTarski extends its language from polynomials to allow transcendental functions.

KeYmaera + MetiTarski

Some KeYmaera Examples

- Damped penduluin, described by the second order differential equation $x+2 d \omega x+\omega^{2} x=0$
- Ultimately, MetiTarski has to prove (his takes $1 / 4$ sec) $t \geqslant 010-1 \times 1 \times-1-\operatorname{xe}-\left(4 \cos \left(\frac{8 t}{5}\right)+3 \sin \left(\frac{8 t}{5}\right)\right) \leqslant 4$
- Stability proofs using Lyapunov functions

MetiTarski + PVS

* Trusted interface, complementing PVS support of interval methods for polynomial estimation
- It's being tried within NASAS ACCORD project.
- MetiTarski has been effective in early experiments
- but there's much more to do.

Future Possibilities

- Refinements to the RGF decision process
- Integration with lsabelle?
- Formal proofs of all upper/lower bounds
- Can decision procedures return certificates?
- Machine learning within the decision procedures

The Cambridge Team

James Bridge

William Denman

(to 2008: Behzad Akbarpour)

Acknowledgements

- Edinburgh: Paul Jackson, G Passmore, A Sogokon; Manchester Eva Navarro
* Assistance from C. W. Brown. A. Cuyt J. H. Davenport, J. Harrison, J. Hurd, D. Lester, C. Muñoz, U. Waldmann, etc.
- The research was supported by the Engineering and Physical Sciences Research Council [grant numbers EP/ C013409/1/EP/011005/1.EP/1010335/1].

