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Abstract

The use of higher order logic �simple type theory� is often limited
by its restrictive type system� Set theory allows many constructions
on sets that are not possible on types in higher order logic� This
paper presents a comparison of two theorem provers supporting set
theory� namely HOL�ST and Isabelle�ZF� based on a formalization
of the inverse limit construction of domain theory� this construction
cannot be formalized in higher order logic directly� We argue that
whilst the combination of higher order logic and set theory in HOL�ST
has advantages over the �rst order set theory in Isabelle�ZF� the proof
infrastructure of Isabelle�ZF has better support for set theory proofs
than HOL�ST� Proofs in Isabelle�ZF are both considerably shorter and
easier to write�

� Introduction

Though higher order logic �simple type theory� is a useful framework for
doing mathematics� there are situations where it is too weak� due to its
simple type system� One can then use a stronger type theory� or observe
that many constructions that are not possible on types in higher order logic
would be possible on sets in set theory �which is completely untyped�� Set
theory might therefore provide a simple alternative to the increasing interest
in applying stronger type theories in theorem proving�

Paulson has done a lot of pioneering work on mechanizing set theory� He
has developed a very large amount of set theory in his Isabelle�ZF system
��� ��� which is an extension of a 	rst order logic instantiation of the generic



theorem prover Isabelle �
� with axioms of Zermelo�Fraenkel �ZF� set theo�
ry� Gordon has also been experimenting with mechanizing set theory in an
attempt to combine the usefulness of higher order logic with the expressive
power of set theory in a single system ���� A prototype system� called HOL�
ST� has been implemented by extending the existing HOL system �� with
axioms of ZF set theory �this is not a conservative extension��

A larger case study on HOL�ST was presented in ���� By formalizing the
inverse limit construction of domain theory� which would not be possible
in HOL directly ���� the case study demonstrated how one can make essen�
tial use of the additional expressive power of set theory� The inverse limit
construction is a method to give solutions to recursive domain equations
that may involve non�trivial constructions such as the �continuous� function
space� In ���� it was used to obtain a non�trivial model D� of the untyped
��calculus� i�e� D� was proved to be isomorphic to its own �continuous�
function space�

D� �� �D� � D���

This paper presents a comparison of HOL�ST and Isabelle�ZF based on
a formalization of the inverse limit construction in both systems� We con�
centrate on their di�erent support for the formalization� i�e� for de	nitions�
theorems and proofs� but do not give a detailed presentation of the for�
malization �see ����� The version of the inverse limit construction employed
here is based on categorical methods using embedding project pairs� see e�g�
��� ��� ����

Comparing systems is di�cult� The lack of some feature supported by
one system does not mean that it could not be supported by another� In
this paper� we have chosen to freeze time in the sense that the systems are
compared in their state when this project started �Autumn �

�� The size
and scope of the paper could easily grow out of hand if we had to argue about
the alternatives for implementing all di�erences �and better proof support
in general��

The rest of the paper is organized as follows� In Section �� we introduce
the HOL system brie�y� Then the set theories of HOL�ST and Isabelle�ZF
are introduced in Section �� The comparison starts in Section  where we
consider the de	nitions of the formalizations� It continues in Section � which
discusses how the systems support the proofs of theorems of the formaliza�
tion� Section � summarizes the conclusions� This paper assumes that the
reader is familiar with Isabelle�



� The HOL System

The HOL system is a mechanized proof�assistant for proving theorems in
higher order logic� It implements on an expressive higher order logic �the
HOL logic� and is built on top of a functional programming environment
ML �which stands for Meta Language�� The HOL logic is a typed logic
with terms� types� and theorems represented in ML� The logic� which is
described further below� is organized in theories each of which contains a
set of types� constants� de	nitions� axioms and theorems� The purpose of
the HOL system is to provide tools for constructing such theories�

Theories can be extended with new constants and types by giving def�
initions and axioms� De	nitional extension is safe� which means that it
preserves consistency of the HOL logic� because new constants and types
are de	ned in terms of existing ones� Axiomatic extension is not safe and
usually not accepted in the HOL community�

The representation of theorems in ML as an abstract type guarantees
that theorems can only be created by formal proof� A proof is a derivation
using a number of inference rules� pre�proved theorems and axioms� An in�
ference rule is a function in ML which takes a number of theorems �premises�
as arguments and produces a theorem as a result� All inference rules are
derived from eight primitive rules� possibly using other so�called derived in�
ference rules� Conversions are special cases of inference rules which take no
theorem arguments but instead a term argument�

Inference rules support forward proofs of theorems� However� a more
natural goal�directed �or backwards� proof style is also supported�by the
subgoal package� This allows proofs of theorems to be constructed by ap�
plying tactics interactively� in order to reduce goal terms to truth� A tactic
is an ML function which typically implements the backwards use of one or
more inference rules�

��� Logic

While Isabelle �
� is a generic theorem prover� the HOL system �� is not�
It has only one hardwired logic� This is a higher order logic which is very
similar to the higher order logic instantiation of Isabelle� which in turn shares
some notions with the Isabelle meta logic�

The HOL logic is a polymorphic �classical� higher order logic �simply
typed ��calculus�� As in Isabelle�s meta logic� a term can be a constant� a
variable� an abstraction� or an application� A term must be well�typed in the



usual sense� The syntax of types and terms is a bit di�erent than in Isabelle�
In HOL� the function type is written as ��� �� �� and functions can be
curried �f��� �� ��� �� ��� �� ��n �� ������� or uncurried �g��� �

�� � ��� � �n �� �������� where � is the operator for the product type�
Function application is then written as f x� � � � xn and g�x�� � � � � xn�� re�
spectively� The ��abstraction is written as �x� e� Recall that in Isabelle�s
meta logic all functions must be uncurried and function application is always
written using parentheses f�x�� � � � � xn��

Among others� the HOL logic provides the following symbols�

� Conjunction 	�� disjunction �	� negation 
� implication ����

� Equality ��

� Universal quanti	cation �� existential quanti	cation �

� Choice operator ��

Only the choice operator requires further explanation� It is a binder like
the quanti	ers which is used to obtain an arbitrary �	xed� value such that
a certain predicate is satis	ed� if this is not possible� it yields any value of
the underlying type of the predicate �all types are non�empty to allow this��

Among the built�in types of the HOL system we 	nd bool� which denotes
the type of boolean truth values T and F� and num� which denotes the type
of natural numbers whose elements are constructed from � and SUC�

��� Theorem Proving

The theorem proving infrastructure of Isabelle is mainly provided by the
principle of resolution� which is based on �higher�order� uni	cation� This
elegantly supports a very small number of tools for forward and backward
proof� By forward resolution� a theorem can be used like a HOL inference
rule� whilst backward resolution turns the theorem into a HOL tactic� In
HOL there is a separate ML function for each inference rule and tactic�

In some sence� theorem proving in HOL is more primitive than in Is�
abelle� HOL�s notion of resolution is a derived form of a one way matching
modus ponens which is performed on the assumptions of a goal using a
conditional theorem� Further� it does not support quanti	er reasoning via
unknown variables as in Isabelle� Existentials must be instantiated manually
and on the spot �though some very primitive user�contributed tools exist��



� Set Theory

HOL�ST and Isabelle�ZF provide two slightly di�erent ZF�like set theories�
Isabelle�ZF is an axiomatic extension of the object logic FOL� which pro�
vides a 	rst order logic� HOL�ST is an axiomatic extension of HOL�s higher
order logic� This means that HOL�s set theory is slightly more powerful
than Isabelle�s �see ����� though we shall not exploit this in an essential way
in this paper� Apart from this di�erence in logic� the two axiomatizations
of set theory are essentially the same� We will not consider the axioms of
the set theories in this paper since they are not important� they are easy to
look up in ��� and �
�� Instead we will focus on syntactic issues� to introduce
set theory syntax used later�

��� Representation and Notation

HOL is extended with set theory by declaring a new type V and a new
constant ���� �set membership� of type ��V�V��bool��� and then postulating
eight new axioms about V and ����� Similarly� Isabelle�FOL is extended by
declaring a new type i and a new constant ��� �set membership� of type
��i�i� �� o�� and then postulating the eight axioms of set theory� In
Isabelle�ZF� the type i �for individuals� instantiates the many�sorted 	rst
order logic� Hence� we can quantify over sets as in ALL x� x�X ��� f�x��Y

�elements of sets are themselves sets�� which could equivalently be written
as ALL x�X� f�x��Y� and compare sets by the FOL equality �� The subset
relation � is written Subset in HOL�ST and �� in Isabelle�ZF�

Both systems provide a notation for set abstraction fx � X j P �x�g� In
Isabelle�ZF this is written �x�X � P�x�� and in HOL�ST �x��X � P x��

��� Pairs and Numbers

Isabelle�FOL does not provide pairs or natural numbers but these are pro�
vided in set theory� Pairs are written �x�y�� which is a set and therefore
has type i� and the usual destructors fst and snd are provided �both have
the type �i �� i��� The binary product X � Y consists of all pairs whose
	rst component is in X and whose second component is in Y� In HOL�ST�
we use pairs of higher order logic� but pairs are also available in set theory�

�In the type of the set membership operator� note that elements of sets are themselves
sets� Generally speaking� new sets must be constructed from existing sets some way� in
principle starting from the empty set and then using axioms�



In Isabelle�ZF� the set nat provides natural numbers� so ��nat and
succ�n��nat� for any n�nat� In HOL�ST� natural numbers are available as
both the type ��num� and the set Num� The type and the set are isomorphic
with translation functions called num�Num and Num�num� The HOL constants
� and SUC are used with the translation functions to build members of Num�

��� Functions and Dependent Products

We distinguish between set and logical functions� Set functions are ele�
ments of the function set� written X��Y in both systems� A set function is
represented by a set of pairs� which must satisfy the obvious conditions to
specify a function �de	nedness and uniqueness�� In HOL�ST� logical func�
tions are functions of higher order logic� In Isabelle�ZF� logical functions
are functions of the meta logic �the object logic FOL does not provide func�
tions�� Set function application is written f �� x in HOL�ST and f � x in
Isabelle�ZF� If f is in X��Y and x in X then we can conclude that f applied
to x is in Y� otherwise not�

Set functions may be written using a certain �dependent� lambda ab�
straction whose syntax is Fn x��X� b�x� in HOL�ST and lam x�X� b�x�

in Isabelle�ZF� The lambda abstraction consists of all set theory pairs of
the form �x�b�x��� where x is in X� Set function identity is written as id in
Isabelle�ZF and as Id in HOL�ST� Set function composition is written as O
in both systems�

Finally� both systems also provide a dependent product construction�
The syntax is PI x��X� Y�x� in HOL�ST �see ���� and PROD x�X� Y�x� in
Isabelle�ZF� The elements of a dependent product are sets of pairs� corre�
sponding to set functions that map elements x of the 	rst set X to elements
of the second �dependent� set Y�x��

� De�nitions

In this section� we study the de	nitions of two formalizations of the inverse
limit construction in HOL�ST and Isabelle�ZF� We try to compare the de	�
nitions and discuss the issue of which notions to represent in the meta logic
of Isabelle�ZF and which to represent in 	rst order logic and set theory�
This is related to the question of whether to work in higher order logic or
set theory in HOL�ST�



��� Basic Concepts

Recall that domain theory is the study of complete partial orders �cpos� and
continuous functions� A partial order is usually thought of as a set with an
associated ordering relation which is re�exive� transitive and antisymmetric
on all elements of the set� A complete partial order is a partial order in
which all non�decreasing chains �sequences� of elements of the partial order
have a least upper bound� Continuous functions are monotonic functions
that preserve such least upper bounds�

The di�erences between HOL�ST and Isabelle�ZF appear already in the
	rst de	nitions of basic concepts of domain theory� In HOL�ST� we can
represent the notion of partial order as a higher order logic pair consisting
of a set and a relation� The predicate po for partial orders can then be
de	ned by

po D �

��x �� set D� rel D x x� 	�

��x y z �� set D� rel D x y 	� rel D y z ��� rel D x z� 	�

��x y �� set D� rel D x y 	� rel D y x ��� �x � y���

where the type of po is ��V��V��V��bool��� and for convenience

set D � FST D

rel D � SND D�

Neither Isabelle�s meta logic nor Isabelle�FOL support pairs� So� our
only choice is to use pairs of set theory� though� alternatively� we could rep�
resent a partial order as a relation� de	ning the set as the re�exive elements�
We chose the pair approach because it is closer to the HOL�ST formaliza�
tion� which was done 	rst� and because we then avoid proofs to show what
the elements of the set component of cpo constructions are� Hence� the type
of the constant po is �i��i� in Isabelle�ZF� Its de	nition is the same as
the one above� though the right�hand side uses symbols of 	rst order logic
instead of higher order logic� The set and rel constants are de	ned by

�set�D� �� fst�D��

�rel�D� x� y� �� �x� y� � snd�D���

This makes rel a meta logic function of type ��i�i�i� �� o�� set has
type �i �� i�� It later turns out �when we consider subcpos� that it would
have been more appropriate to de	ne rel slightly di�erently as a meta
logic function of just one argument �D� which returns a set function �or



relation� of two arguments �x and y�� In terms� we would then write the less
convenient rel�D� � x � y �or �x� y� � rel�D�� instead of the present
rel�D� x� y��

Next� we introduce the notion of a chain� which is a sequence of values
in non�decreasing order�

chain D X �

��n� �X n� �� �set D�� 	� ��n� rel D�X n��X�n � �����

Hence� in HOL�ST a chain is represented as a logical function of type
��num��V�� Complete partial orders are then de	ned as follows

cpo D � po D 	� ��X� chain D X ��� �x� islub D X x��

where the notion of least upper bound �lub� is de	ned by

isub D X x � x �� �set D� 	� ��n� rel D�X n�x�

islub D X x �

isub D X x 	� ��y� isub D X y ��� rel D x y��

Using Hilbert�s choice operator we can give an expression for the least upper
bound �if it exists��

lub D X � ��x� islub D X x��

In Isabelle�ZF� neither the meta logic nor 	rst order logic support natural
numbers so we must turn to the set of natural numbers� called nat� to
represent in	nite sequences this way� One could represent chains as a meta
logic function of type �i��i�� where the 	rst i would correspond to the set
of natural numbers and the second would correspond to the underlying set of
a cpo� However� this representation is problematic� In the de	nition of cpo
we must quantify over chains but in 	rst order logic this is impossible since
we can only quantify over individuals� not meta logic functions like such
chains of type �i��i�� Hence� in Isabelle� chains must be represented as
functions in set theory� thus� chains have type i� The Isabelle�ZF de	nition
of chain looks as follows�

�chain�D�X� ��

X�nat��set�D� � �ALL n�nat� rel�D�X�n�X��succ�n������

which use more set theory than the HOL�ST de	nition� The 	rst order logic
de	nition of cpo is



�cpo�D� ��

po�D� � �ALL X� chain�D�X� ��� �EX x� islub�D�X�x�����

where islub is de	ned as in HOL�ST� As above� we de	ne a constant for
the least upper bound but we use the de	nite description operator instead
of Hilbert�s choice operator �which is not available� though it probably could
be axiomatized��

�lub�D� X� �� THE x� islub�D� X� x���

The term �THE x� P�x�� is read �the x such that P �x�� and requires both
existence and uniqueness� In contrast� the HOL logic provides the choice
operator� which just requires existence� and this is inherited by set theory�
which thus automatically satis	es the axiom of choice� The use of the def�
inite description operator made a few proofs slightly more complicated in
Isabelle�ZF than in HOL�ST� due to the additional obligation of proving
uniqueness�

A consequence of representing chains as functions in set theory is that
the type checking� which ensures arguments of chains are numbers� must be
done manually� Similarly� proving that chains are functions� and not just
relations� and proving that they are functions on the right domains must be
done manually as well �though usually the ��abstraction is used and then
it is only necessary to check the body of this due to a pre�proved theorem��
Thus� proving that terms are chains is more complicated in Isabelle�ZF than
in HOL�ST�

��� Continuous Functions

Monotonic and continuous functions have essentially the same de	nitions in
the two systems� We only list the HOL�ST de	nitions�

mono�D�E� �

�f �� �set D� �� �set E� �

�x y �� set D� rel D x y ��� rel E�f �� x��f �� y��

cont�D�E� �

�f �� mono�D�E� �

�X� chain D X ��� �f���lub D X� � lub E��n� f���X n�����

Functions are represented in set theory because we wish continuous functions
to constitute a cpo� called the continuous function space� and the underlying
set of a cpo must be a set� The continuous function space construction is
de	ned as follows in HOL�ST�



cf�D�E� �

cont�D�E����f g� �x �� set D� rel E�f �� x��g �� x���

However� the construction is de	ned slightly di�erently in Isabelle�ZF� due
to the fact that the cpo pair� and more importantly the underlying relation�
must be de	ned in set theory entirely�

�cf�D�E� ��

�cont�D�E��

�y � cont�D�E� � cont�D�E��

ALL x�set�D�� rel�E��fst�y���x��snd�y���x�����

In Isabelle�ZF� the relation must be constructed from existing sets� i�e� it
must be constructed from the domains D and E in the function space� In con�
trast� the HOL�ST relation is just a higher order logic function� The Isabelle
relation not only looks more complicated� due to additional type checking�
it is also more complicated to use� Each time we de	ne a construction on
cpos� which we do twice below� we will experience a similar complication
due to the set relation�

��� The Inverse Limit Construction

Next� we consider the de	nitions of some concepts associated with the in�
verse limit construction� Inverse limits may be viewed as �least upper
bounds� of �chains� of cpos� not just of chains of elements of cpos as above�
The ordering on elements of cpos is generalized to the notion of embed�
ding morphisms between cpos� A certain constant Dinf� parameterized by
a chain of cpos� can be proven once and for all to yield the inverse limit of
the chain� This cannot be de	ned in higher order logic directly �assuming
that the underlying set of a cpo is represented as a subset of a HOL type� as
in ����� since it yields a cpo of in	nite tuples whose components may be in
di�erent cpos �subsets of types�� De	ning the construction in higher order
logic would require a �probably di�cult� conservative derivation of a univer�
sal type with dependent products� However� formalizing the construction is
straightforward in set theory� exploiting the dependent product construction
on sets �see Section �����

Embedding morphisms come in pairs with projections� forming the so�
called embedding projection pairs� The HOL�ST de	nition of �embedding�
projection pairs is stated as follows�



projpair�D�E��e�p� �

e �� �cont�D�E�� 	�

p �� �cont�E�D�� 	�

�p O e � Id�set D�� 	�

rel�cf�E�E���e O p��Id�set E���

The Isabelle�ZF de	nition is similar� The conditions make sure that the
structure of E is richer than that of D �and can contain it�� D is embedded
into E by e �one�one� which in turn is projected onto D by p�

Embeddings uniquely determine projections �and vice versa�� Hence� it
is enough to consider embeddings

emb�D�E�e � �p� projpair�D�E��e�p��

and de	ne the associated projections� or retracts as they are often called�
using the choice operator�

Rp�D�E�e � ��p� projpair�D�E��e�p���

Again� these are the HOL�ST de	nitions� the Isabelle�ZF de	nitions are
similar �though the de	nite description operator is used instead of the choice
operator as in Section ����

Embeddings are used to form chains of cpos in a similar way to the
formation of chains from elements of cpos� Recall that standard chains are
represented as logical functions of type ��num��V� in HOL�ST and as set
functions of type i in Isabelle�ZF� We choose to stick to this di�erence
when representing embedding chains of cpos� Hence� the HOL�ST de	nition
is stated like this�

emb�chain DD ee �

��n� cpo�DD n�� 	� ��n� emb�DD n�DD�SUC n���ee n���

And the Isabelle�ZF de	nition is�

�emb�chain�DD� ee� ��

�ALL n�nat� cpo�DD � n�� �

�ALL n�nat� emb�DD � n� DD � succ�n�� ee � n����

We do not quantify over embedding chains in any de	nitions immediately
and therefore we could perhaps represent such chains as meta logic functions
of type �i��i� in Isabelle� However� the above choice is safer� in case it turns
out that we later wish to quantify over chains�



One is often in a situation where a function can be represented in the
meta logic or in the object logic �set theory�� In general� one should only
choose the 	rst alternative if the function is not really part of a formalization
and thus never would appear in the right�hand side of de	nitions �without
its arguments�� Hence� it is 	ne to use meta logic functions for constants in
abbreviations �but one must be careful which I was not when I de	ned rel

and rho�emb� see below�� However� a choice must be made when functions
are arguments of constants� For instance� due to the above criteria� we would
use a meta logic function for the predicate of the following construction

�mkcpo�D� P� ��

��x� set�D� � P�x���

�x� set�D� � set�D� � rel�D� fst�x�� snd�x������

which is useful for constructing a subcpo of a cpo by restricting the set com�
ponent according to a predicate� Thus� the type of mkcpo is ��i�i��o���i��
But most constants with function arguments would have a type of the form
��i�i���o�� e�g� emb�chain above� where functions are set functions�

The notion of subcpo is de	ned as follows in Isabelle�ZF�

�subcpo�D� E� ��

set�D� �� set�E� �

�ALL x�set�D��

ALL y�set�D�� rel�D� x� y� ��� rel�E� x� y�� �

�ALL X� chain�D� X� ��� lub�E� X� � set�D����

Both this and the previous de	nition of mkcpo have simpler formulations in
HOL�ST�

mkcpo D P � �x �� set D � P x��rel D

subcpo D E �

�set D� Subset �set E� 	�

�rel D � rel E� 	�

��X� chain D X ��� �lub E X� �� �set D���

In both Isabelle�ZF de	nitions� the complications are due to a mismatch
between the type of �rel�D��� namely ��i�i���o�� and the type of the
relation component of cpos� namely i� As mentioned above� we probably
made a bad choice in not representing �rel�D�� as a set function �or a
set relation� instead of as a logical function� The problem in the mkcpo

de	nition arises due to the fact that each component of a pair must be



a set� The problem in the subcpo de	nition is that meta logic functions
cannot be compared using FOL equality ��

The constant mkcpo is used to de	ne the inverse limit construction on
cpos as a subcpo of the in	nite Cartesian product cpo� Let us 	rst consider
the HOL�ST de	nition of the in	nite product�

iprod DD �

�PI n �� Num� set�DD�Num�num n����

��x y� �n� rel�DD n��x �� �num�Num n���y �� �num�Num n����

The relation is de	ned componentwise and the set is the in	nite tuples
whose i�th component is in �DD i�� in general� the dependent product
�PI x �� X� Y�x�� consists of the functions that map an element x of X
to an element of Y�x�� This construction cannot be de	ned on HOL types
�though it might be possible to derive a universal type with this construc�
tion�� The annoying num�Num and Num�num conversions could be avoided
by using the set of numbers Num instead of the type of numbers ��num� to
represent chains of cpos� However� the present choice makes proofs simpler
in the long run �see ����� The reason for this is associated with the choice
of using the type of numbers in the representation of ordinary chains� To
avoid the translation functions� we would have to stay within set theory all
the time� since the dependent product construction is only available there�

The Isabelle�ZF de	nition of the in	nite product construction is�

�iprod�DD� ��

�PROD n�nat� set�DD � n��

�x� �PROD n�nat� set�DD�n�� � �PROD n�nat� set�DD�n�� �

ALL n�nat� rel�DD � n� fst�x� � n� snd�x� � n�����

Here� the translation functions are avoided since we do not have the choice
of leaving set theory� However� for the same reason� the de	nition and use
of the componentwise relation is much more complicated� since the relation
must be a set constructed from existing sets�

The de	nitions of the inverse limit construction are essentially the same
in the two system� both use the mkcpo constant� The HOL�ST de	nition is
stated as follows�

Dinf DD ee �

mkcpo

�iprod DD�

��x�



�n�

�Rp�DD n�DD�SUC n���ee n�� �� �x �� �num�Num�SUC n��� �

x �� �num�Num n���

The only di�erence is that the Isabelle�ZF de	nition quanti	es over elements
of the set of natural numbers �instead of over elements of the type as above�
and it does not use translation functions� Informally� the underlying set
of Dinf is de	ned as the subset of all in	nite tuples x on which the n�th
projection �retract� eRn maps the �n � ���st index to the n�th index for all
n� eR

n
�xn��� � xn� The underlying relation is inherited from the in	nite

product construction�
It takes a fairly large development to prove that Dinf yields an inverse

limit of any chain of cpos� For the proof� we need an embedding of any
element �DD n� of the chain ��DD�ee�� into the inverse limit �Dinf DD

ee�� This embedding is de	ned as follows in HOL�ST

rho�emb DD ee n �

�Fn x �� set�DD n��

Fn m �� Num� �eps DD ee n�Num�num m�� �� x��

which was copied almost directly to Isabelle�ZF �removing the translation
function��

�rho�emb�DD� ee� n� ��

lam x�set�DD � n�� lam m�nat� eps�DD� ee� n� m� � x��

The de	nitions of the constant called eps in both systems are not important
here�� While the de	nition of rho emb worked 	ne in HOL�ST we realized
at a later stage that the Isabelle�ZF de	nition should have been

�rho�emb�DD� ee� ��

lam n�nat� lam x�set�DD�n�� lam m�nat� eps�DD�ee�n�m��x��

where rho�emb is a logical function of just two arguments instead of three�
thus� while �rho emb�DD�ee�� above was a logical function of type �i ��

i�� it should have been a set function �of type i�� The present representation
would be unfortunate if we wanted to de	ne a constant for the property
that Dinf always yields the inverse limit of a cpo� This is not possible
using a meta logic function for �rho emb�DD�ee��� since the de	nition would

�By composing embeddings �and projections� eps generalizes the embeddings �ee n�

between consecutive cpos of a chain to convert between any two cpos�



need to quantify over such sequences of embeddings� Furthermore� similar
sequences like the sequences of cpos DD and embeddings ee are represented
as object logic functions� So� a constant may be a meta logic function of
some arguments and an object logic function of other arguments� If one is
not careful the wrong choices are made�

� Proofs

In the previous section� we concentrated on the di�erences between using
HOL�ST and Isabelle�ZF to formalize the de	nitions of the inverse limit
construction of domain theory� In this section� we discuss how the two
systems support the proofs of related theorems �see ��� for a more detailed
discussion��

Due to limitations of Isabelle�s 	rst�order set theory� we were forced to
work in set theory in situations where we could stay in higher order logic in
HOL�ST� As mentioned above� this obviously yields more complicated proofs
in Isabelle� in the sense of more type conditions to prove� For instance� in a
backward proof of a statement saying that two functions are related by the
continuous function space relation� we would 	rst rewrite with the HOL�ST
theorem

rel�cf�D�E��f g �

��x� x �� �set D� ��� rel E�f �� x��g �� x���

but in the Isabelle�ZF the 	rst step would be to resolve with the theorem

��� ��x� x � set�D� ��� rel�E� f � x� g � x��

f � cont�D� E�� g � cont�D� E� �� ���

rel�cf�D� E�� f� g���

which� in contrast to the HOL�ST theorem� contains type assumptions� The
same thing is true of the other constructions on cpos� like the in	nite Carte�
sian product and the inverse limit constructions� Similarly� the necessity
of representing chains as set functions yields a number of additional proof
obligations in the Isabelle�ZF proofs�

Despite these additional proof obligations� Isabelle proofs are usually
shorter in terms of number of lines� and easier to write� Usually� backward
proofs are reduced in size �number of lines� by more than ��� and in some
cases by ���� The main reasons for this are Isabelle�s support for unknown
variables for quanti	er reasoning and the design of its proof infrastructure�



The main method of proof in Isabelle is based on resolution �with higher
order uni	cation�� which supports both the forward and the backward style
of proof� In fact� the same theorem can be used as an inference rule by
forward resolution and as a tactic by backward resolution� In this way�
Isabelle elegantly avoids the need for a large collection of ML functions
implementing derived inference rules and tactics� Furthermore� it supports a
compact notation for proofs since the main resolution tactic can be employed
with a theorem list argument� and repeated�

Further� the notion of resolution in Isabelle supports �real� backward
proof better than in HOL� One almost always works from the conclusion of
a goal backward towards the assumptions� which is supported by Isabelle
resolution tactics� In HOL� one often ends up doing a lot of sometimes
ugly assumption hacking working forward using HOL resolution from the
assumptions towards the conclusion� More natural backward strategies like
conditional rewriting and a matching modus ponens style strategy �which
may be viewed as a simpli	ed version of Isabelle resolution� are not sup�
ported well in HOL�

Real backward strategies are useful due the fact that many theorems
have assumptions� It is irritating to have to 	rst derive the antecedents of
theorems for HOL resolution� On the other hand� a negative consequence of
using theorems in a real backward fashion is that existential quanti	ers are
often introduced� For instance� this happens when we employ the transitivity
of a cpo relation or the fact that function composition preserves the function
set �or continuity or embeddings��

��� g � A �� B� f � B �� C �� ��� f O g � A �� C��

In HOL� we must provide witnesses for existentials on the spot and manually�
But in Isabelle� both universally and existentially quanti	ed variables are
represented as unknown variables that are usually instantiated behind the
scenes in proofs� possibly in stages�

Finally� the Isabelle subgoal module provides a kind of �at structure on
proof states which makes it possible to access all goals at any time and to
prove many �or all� subgoals by just repeating a tactic�no matter where
the subgoals would appear in a HOL proof tree� Isabelle takes care of
applying the theorems for resolution� instantiating unknowns and proving
the assumptions by adding them as new subgoals� we do not have to think
about the tree structure of proofs and about which tactics �or theorems� to
apply where�



� Conclusions

We have presented a comparison of HOL�ST and Isabelle�ZF based on a
case study from domain theory� The case study formalizes an important con�
struction which yields the inverse limit of any embedding projection chains
of cpos� This formalization exploits set theory in an essential way since it
requires a dependent product construction that cannot be de	ned on HOL
types� The main observations say that HOL�ST is supported by the powerful
HOL logic whereas Isabelle�ZF provides better proof support for set theory�
The HOL logic gives a more convenient set theory because set and type the�
oretic reasoning can be mixed to advantage� However� generally speaking�
HOL lacks ways of handling conditional theorems conveniently� and does not
provide the support for unknown variables for quanti	er reasoning available
in Isabelle� Set theory introduces a lot of set membership assumptions in
theorems as well as the need for real backward proof strategies and good
support for quanti	er reasoning�

It is advantageous to be able to exploit higher order logic where pos�
sible� as in HOL�ST� since one of the main disadvantages of set theory is
the presence of explicit type �set membership� conditions� This means that
type checking is done late by theorem proving whereas in higher order logic
type checking is done early in ML� Furthermore� type checking is automatic
in HOL but cannot be fully automated in set theory� On the other hand�
a disadvantage of mixing higher order logic and set theory as in HOL�ST
is the need for translation functions to identify HOL types with their cor�
responding sets� Therefore� it is not obvious whether set theory in higher
order logic is right� or just more support for set theory in 	rst order logic is
needed�
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