
Isabelle’s Object-Logics

Lawrence C. Paulson
Computer Laboratory

University of Cambridge
lcp@cl.cam.ac.uk

With Contributions by Tobias Nipkow and Markus Wenzel1

24 November 1997

1Tobias Nipkow revised and extended the chapter on HOL. Markus Wenzel made
numerous improvements. Philippe de Groote wrote the first version of the logic LK
and contributed to ZF. Tobias Nipkow developed HOL, LCF and Cube. Philippe Noël
and Martin Coen made many contributions to ZF. Martin Coen developed Modal with
assistance from Rajeev Goré. The research has been funded by the EPSRC (grants
GR/G53279, GR/H40570, GR/K57381, GR/K77051) and by ESPRIT project 6453:
Types.

Contents

1 Basic Concepts 1
1.1 Syntax definitions . 2
1.2 Proof procedures . 3

2 First-Order Logic 5
2.1 Syntax and rules of inference . 5
2.2 Generic packages . 6
2.3 Intuitionistic proof procedures . 6
2.4 Classical proof procedures . 11
2.5 An intuitionistic example . 11
2.6 An example of intuitionistic negation 13
2.7 A classical example . 15
2.8 Derived rules and the classical tactics 17

2.8.1 Deriving the introduction rule 18
2.8.2 Deriving the elimination rule 18
2.8.3 Using the derived rules . 19
2.8.4 Derived rules versus definitions 21

3 Zermelo-Fraenkel Set Theory 23
3.1 Which version of axiomatic set theory? 23
3.2 The syntax of set theory . 24
3.3 Binding operators . 26
3.4 The Zermelo-Fraenkel axioms . 29
3.5 From basic lemmas to function spaces 32

3.5.1 Fundamental lemmas . 32
3.5.2 Unordered pairs and finite sets 36
3.5.3 Subset and lattice properties 36
3.5.4 Ordered pairs . 37
3.5.5 Relations . 39
3.5.6 Functions . 40

3.6 Further developments . 40
3.7 Simplification rules . 50
3.8 The examples directories . 50
3.9 A proof about powersets . 52
3.10 Monotonicity of the union operator 54
3.11 Low-level reasoning about functions 56

i

CONTENTS ii

4 Higher-Order Logic 59
4.1 Syntax . 59

4.1.1 Types and classes . 61
4.1.2 Binders . 62
4.1.3 The let and case constructions 63

4.2 Rules of inference . 63
4.3 A formulation of set theory . 67

4.3.1 Syntax of set theory . 67
4.3.2 Axioms and rules of set theory 70
4.3.3 Properties of functions . 71

4.4 Generic packages . 71
4.4.1 Simplification and substitution 75
4.4.2 Classical reasoning . 76

4.5 Types . 76
4.5.1 Product and sum types . 76
4.5.2 The type of natural numbers, nat 80
4.5.3 The type constructor for lists, list 81
4.5.4 Introducing new types . 81

4.6 Datatype declarations . 86
4.6.1 Basics . 86
4.6.2 Defining datatypes . 88
4.6.3 Examples . 89

4.7 Recursive function definitions . 91
4.7.1 Primitive recursive functions 92
4.7.2 Well-founded recursive functions 93

4.8 Inductive and coinductive definitions 96
4.8.1 The result structure . 97
4.8.2 The syntax of a (co)inductive definition 97
4.8.3 Example of an inductive definition 99

4.9 The examples directories . 99
4.10 Example: Cantor’s Theorem . 101

5 First-Order Sequent Calculus 104
5.1 Unification for lists . 104
5.2 Syntax and rules of inference . 106
5.3 Tactics for the cut rule . 108
5.4 Tactics for sequents . 109
5.5 Packaging sequent rules . 110
5.6 Proof procedures . 111

5.6.1 Method A . 111
5.6.2 Method B . 112

5.7 A simple example of classical reasoning 112
5.8 A more complex proof . 114

CONTENTS iii

6 Constructive Type Theory 116
6.1 Syntax . 118
6.2 Rules of inference . 118
6.3 Rule lists . 124
6.4 Tactics for subgoal reordering . 125
6.5 Rewriting tactics . 125
6.6 Tactics for logical reasoning . 126
6.7 A theory of arithmetic . 127
6.8 The examples directory . 127
6.9 Example: type inference . 129
6.10 An example of logical reasoning 130
6.11 Example: deriving a currying functional 133
6.12 Example: proving the Axiom of Choice 134

CONTENTS iv

Chapter 1

Basic Concepts

Several logics come with Isabelle. Many of them are sufficiently developed to
serve as comfortable reasoning environments. They are also good starting points
for defining new logics. Each logic is distributed with sample proofs, some of
which are described in this document.

FOL is many-sorted first-order logic with natural deduction. It comes in both
constructive and classical versions.

ZF is axiomatic set theory, using the Zermelo-Fraenkel axioms [45]. It is built
upon classical FOL.

CCL is Martin Coen’s Classical Computational Logic, which is the basis of a
preliminary method for deriving programs from proofs [7]. It is built upon
classical FOL.

LCF is a version of Scott’s Logic for Computable Functions, which is also imple-
mented by the lcf system [32]. It is built upon classical FOL.

HOL is the higher-order logic of Church [6], which is also implemented by Gor-
don’s hol system [16]. This object-logic should not be confused with Isa-
belle’s meta-logic, which is also a form of higher-order logic.

HOLCF is a version of lcf, defined as an extension of HOL.

CTT is a version of Martin-Löf’s Constructive Type Theory [29], with extensional
equality. Universes are not included.

LK is another version of first-order logic, a classical sequent calculus. Sequents
have the form A1, . . . ,Am ⊢ B1, . . . ,Bn ; rules are applied using associative
matching.

Modal implements the modal logics T , S4, and S43. It is built upon LK.

Cube is Barendregt’s λ-cube.

1

CHAPTER 1. BASIC CONCEPTS 2

The logics CCL, LCF, HOLCF, Modal and Cube are currently undocumented. All
object-logics’ sources are distributed with Isabelle (see the directory src). They
are also available for browsing on the WWW at:

http://www4.informatik.tu-muenchen.de/~nipkow/isabelle/

Note that this is not necessarily consistent with your local sources!

You should not read this manual before reading Introduction to Isabelle and
performing some Isabelle proofs. Consult the Reference Manual for more infor-
mation on tactics, packages, etc.

1.1 Syntax definitions

The syntax of each logic is presented using a context-free grammar. These gram-
mars obey the following conventions:

• identifiers denote nonterminal symbols

• typewriter font denotes terminal symbols

• parentheses (. . .) express grouping

• constructs followed by a Kleene star, such as id∗ and (. . .)∗ can be repeated 0
or more times

• alternatives are separated by a vertical bar, |

• the symbol for alphanumeric identifiers is id

• the symbol for scheme variables is var

To reduce the number of nonterminals and grammar rules required, Isabelle’s
syntax module employs priorities, or precedences. Each grammar rule is given
by a mixfix declaration, which has a priority, and each argument place has a
priority. This general approach handles infix operators that associate either to
the left or to the right, as well as prefix and binding operators.

In a syntactically valid expression, an operator’s arguments never involve an
operator of lower priority unless brackets are used. Consider first-order logic,
where ∃ has lower priority than ∨, which has lower priority than ∧. There,
P ∧ Q ∨ R abbreviates (P ∧ Q) ∨ R rather than P ∧ (Q ∨ R). Also, ∃x . P ∨ Q
abbreviates ∃x .(P∨Q) rather than (∃x .P)∨Q . Note especially that P∨(∃x .Q)
becomes syntactically invalid if the brackets are removed.

A binder is a symbol associated with a constant of type (σ ⇒ τ) ⇒ τ ′.
For instance, we may declare ∀ as a binder for the constant All , which has type
(α ⇒ o) ⇒ o. This defines the syntax ∀x . t to mean All(λx . t). We can also

CHAPTER 1. BASIC CONCEPTS 3

write ∀x1 . . . xm . t to abbreviate ∀x1 ∀xm . t ; this is possible for any constant
provided that τ and τ ′ are the same type. HOL’s description operator εx .P x has
type (α ⇒ bool) ⇒ α and can bind only one variable, except when α is bool . ZF’s
bounded quantifier ∀x ∈ A . P(x) cannot be declared as a binder because it has
type [i , i ⇒ o] ⇒ o. The syntax for binders allows type constraints on bound
variables, as in

∀(x ::α) (y ::β) z ::γ . Q(x , y , z)

To avoid excess detail, the logic descriptions adopt a semi-formal style. Infix
operators and binding operators are listed in separate tables, which include their
priorities. Grammar descriptions do not include numeric priorities; instead, the
rules appear in order of decreasing priority. This should suffice for most purposes;
for full details, please consult the actual syntax definitions in the .thy files.

Each nonterminal symbol is associated with some Isabelle type. For example,
the formulae of first-order logic have type o. Every Isabelle expression of type o
is therefore a formula. These include atomic formulae such as P , where P is a
variable of type o, and more generally expressions such as P(t , u), where P , t
and u have suitable types. Therefore, ‘expression of type o’ is listed as a separate
possibility in the grammar for formulae.

1.2 Proof procedures

Most object-logics come with simple proof procedures. These are reasonably
powerful for interactive use, though often simplistic and incomplete. You can do
single-step proofs using resolve_tac and assume_tac, referring to the inference
rules of the logic by ml identifiers.

For theorem proving, rules can be classified as safe or unsafe. A rule is safe
if applying it to a provable goal always yields provable subgoals. If a rule is safe
then it can be applied automatically to a goal without destroying our chances of
finding a proof. For instance, all the rules of the classical sequent calculus lk are
safe. Universal elimination is unsafe if the formula ∀x . P(x) is deleted after use.
Other unsafe rules include the following:

P
P ∨ Q

(∨I 1)
P → Q P

Q
(→E)

P [t/x]

∃x . P
(∃I)

Proof procedures use safe rules whenever possible, delaying the application
of unsafe rules. Those safe rules are preferred that generate the fewest subgoals.
Safe rules are (by definition) deterministic, while the unsafe rules require search.
The design of a suitable set of rules can be as important as the strategy for
applying them.

Many of the proof procedures use backtracking. Typically they attempt to
solve subgoal i by repeatedly applying a certain tactic to it. This tactic, which

CHAPTER 1. BASIC CONCEPTS 4

is known as a step tactic, resolves a selection of rules with subgoal i . This may
replace one subgoal by many; the search persists until there are fewer subgoals
in total than at the start. Backtracking happens when the search reaches a dead
end: when the step tactic fails. Alternative outcomes are then searched by a
depth-first or best-first strategy.

Chapter 2

First-Order Logic

Isabelle implements Gentzen’s natural deduction systems nj and nk. Intuition-
istic first-order logic is defined first, as theory IFOL. Classical logic, theory FOL,
is obtained by adding the double negation rule. Basic proof procedures are pro-
vided. The intuitionistic prover works with derived rules to simplify implications
in the assumptions. Classical FOL employs Isabelle’s classical reasoner, which
simulates a sequent calculus.

2.1 Syntax and rules of inference

The logic is many-sorted, using Isabelle’s type classes. The class of first-order
terms is called term and is a subclass of logic. No types of individuals are pro-
vided, but extensions can define types such as nat::term and type constructors
such as list::(term)term (see the examples directory, FOL/ex). Below, the type
variable α ranges over class term; the equality symbol and quantifiers are poly-
morphic (many-sorted). The type of formulae is o, which belongs to class logic.
Figure 2.1 gives the syntax. Note that a~=b is translated to ¬(a = b).

Figure 2.2 shows the inference rules with their ml names. Negation is defined
in the usual way for intuitionistic logic; ¬P abbreviates P → ⊥. The bicondi-
tional (↔) is defined through ∧ and →; introduction and elimination rules are
derived for it.

The unique existence quantifier, ∃!x . P(x), is defined in terms of ∃ and ∀.
An Isabelle binder, it admits nested quantifications. For instance, ∃!x y . P(x , y)
abbreviates ∃!x . ∃!y . P(x , y); note that this does not mean that there exists a
unique pair (x , y) satisfying P(x , y).

Some intuitionistic derived rules are shown in Fig. 2.3, again with their ml
names. These include rules for the defined symbols ¬, ↔ and ∃!. Natural deduc-
tion typically involves a combination of forward and backward reasoning, par-
ticularly with the destruction rules (∧E), (→E), and (∀E). Isabelle’s backward
style handles these rules badly, so sequent-style rules are derived to eliminate
conjunctions, implications, and universal quantifiers. Used with elim-resolution,
allE eliminates a universal quantifier while all_dupE re-inserts the quantified
formula for later use. The rules conj_impE, etc., support the intuitionistic proof
procedure (see §2.3).

5

CHAPTER 2. FIRST-ORDER LOGIC 6

See the files FOL/IFOL.thy, FOL/IFOL.ML and FOL/intprover.ML for com-
plete listings of the rules and derived rules.

2.2 Generic packages

FOL instantiates most of Isabelle’s generic packages.

• It instantiates the simplifier. Both equality (=) and the biconditional
(↔) may be used for rewriting. Tactics such as Asm_simp_tac and
Full_simp_tac use the default simpset (!simpset), which works for most
purposes. Named simplification sets include IFOL_ss, for intuitionistic first-
order logic, and FOL_ss, for classical logic. See the file FOL/simpdata.ML

for a complete listing of the simplification rules.

• It instantiates the classical reasoner. See §2.4 for details.

• FOL provides the tactic hyp_subst_tac, which substitutes for an equality
throughout a subgoal and its hypotheses. This tactic uses FOL’s general
substitution rule.

! Reducing a = b ∧ P(a) to a = b ∧ P(b) is sometimes advantageous. The left part
of a conjunction helps in simplifying the right part. This effect is not available

by default: it can be slow. It can be obtained by including conj_cong in a simpset,
addcongs [conj_cong].

2.3 Intuitionistic proof procedures

Implication elimination (the rules mp and impE) pose difficulties for automated
proof. In intuitionistic logic, the assumption P → Q cannot be treated like
¬P ∨Q . Given P → Q , we may use Q provided we can prove P ; the proof of P
may require repeated use of P → Q . If the proof of P fails then the whole branch
of the proof must be abandoned. Thus intuitionistic propositional logic requires
backtracking.

For an elementary example, consider the intuitionistic proof of Q from P → Q
and (P → Q) → P . The implication P → Q is needed twice:

P → Q

(P → Q) → P P → Q

P
(→E)

Q
(→E)

The theorem prover for intuitionistic logic does not use impE. Instead, it sim-
plifies implications using derived rules (Fig. 2.3). It reduces the antecedents of

CHAPTER 2. FIRST-ORDER LOGIC 7

name meta-type description
Trueprop o ⇒ prop coercion to prop

Not o ⇒ o negation (¬)
True o tautology (⊤)

False o absurdity (⊥)

Constants

symbol name meta-type priority description
ALL All (α ⇒ o) ⇒ o 10 universal quantifier (∀)
EX Ex (α ⇒ o) ⇒ o 10 existential quantifier (∃)
EX! Ex1 (α ⇒ o) ⇒ o 10 unique existence (∃!)

Binders

symbol meta-type priority description
= [α, α] ⇒ o Left 50 equality (=)
& [o, o] ⇒ o Right 35 conjunction (∧)
| [o, o] ⇒ o Right 30 disjunction (∨)

--> [o, o] ⇒ o Right 25 implication (→)
<-> [o, o] ⇒ o Right 25 biconditional (↔)

Infixes

formula = expression of type o
| term = term
| term ~= term
| ~ formula
| formula & formula
| formula | formula
| formula --> formula
| formula <-> formula
| ALL id id∗ . formula
| EX id id∗ . formula
| EX! id id∗ . formula

Grammar

Figure 2.1: Syntax of FOL

CHAPTER 2. FIRST-ORDER LOGIC 8

refl a=a
subst [| a=b; P(a) |] ==> P(b)

Equality rules

conjI [| P; Q |] ==> P&Q
conjunct1 P&Q ==> P
conjunct2 P&Q ==> Q

disjI1 P ==> P|Q
disjI2 Q ==> P|Q
disjE [| P|Q; P ==> R; Q ==> R |] ==> R

impI (P ==> Q) ==> P-->Q
mp [| P-->Q; P |] ==> Q

FalseE False ==> P

Propositional rules

allI (!!x. P(x)) ==> (ALL x.P(x))
spec (ALL x.P(x)) ==> P(x)

exI P(x) ==> (EX x.P(x))
exE [| EX x.P(x); !!x. P(x) ==> R |] ==> R

Quantifier rules

True_def True == False-->False
not_def ~P == P-->False
iff_def P<->Q == (P-->Q) & (Q-->P)
ex1_def EX! x. P(x) == EX x. P(x) & (ALL y. P(y) --> y=x)

Definitions

Figure 2.2: Rules of intuitionistic logic

CHAPTER 2. FIRST-ORDER LOGIC 9

sym a=b ==> b=a
trans [| a=b; b=c |] ==> a=c
ssubst [| b=a; P(a) |] ==> P(b)

Derived equality rules

TrueI True

notI (P ==> False) ==> ~P
notE [| ~P; P |] ==> R

iffI [| P ==> Q; Q ==> P |] ==> P<->Q
iffE [| P <-> Q; [| P-->Q; Q-->P |] ==> R |] ==> R
iffD1 [| P <-> Q; P |] ==> Q
iffD2 [| P <-> Q; Q |] ==> P

ex1I [| P(a); !!x. P(x) ==> x=a |] ==> EX! x. P(x)
ex1E [| EX! x.P(x); !!x.[| P(x); ALL y. P(y) --> y=x |] ==> R

|] ==> R

Derived rules for ⊤, ¬, ↔ and ∃!

conjE [| P&Q; [| P; Q |] ==> R |] ==> R
impE [| P-->Q; P; Q ==> R |] ==> R
allE [| ALL x.P(x); P(x) ==> R |] ==> R
all_dupE [| ALL x.P(x); [| P(x); ALL x.P(x) |] ==> R |] ==> R

Sequent-style elimination rules

conj_impE [| (P&Q)-->S; P-->(Q-->S) ==> R |] ==> R
disj_impE [| (P|Q)-->S; [| P-->S; Q-->S |] ==> R |] ==> R
imp_impE [| (P-->Q)-->S; [| P; Q-->S |] ==> Q; S ==> R |] ==> R
not_impE [| ~P --> S; P ==> False; S ==> R |] ==> R
iff_impE [| (P<->Q)-->S; [| P; Q-->S |] ==> Q; [| Q; P-->S |] ==> P;

S ==> R |] ==> R
all_impE [| (ALL x.P(x))-->S; !!x.P(x); S ==> R |] ==> R
ex_impE [| (EX x.P(x))-->S; P(a)-->S ==> R |] ==> R

Intuitionistic simplification of implication

Figure 2.3: Derived rules for intuitionistic logic

CHAPTER 2. FIRST-ORDER LOGIC 10

implications to atoms and then uses Modus Ponens: from P → Q and P de-
duce Q . The rules conj_impE and disj_impE are straightforward: (P ∧Q) → S
is equivalent to P → (Q → S), and (P ∨Q) → S is equivalent to the conjunction
of P → S and Q → S . The other . . . _impE rules are unsafe; the method requires
backtracking. All the rules are derived in the same simple manner.

Dyckhoff has independently discovered similar rules, and (more importantly)
has demonstrated their completeness for propositional logic [12]. However, the
tactics given below are not complete for first-order logic because they discard
universally quantified assumptions after a single use.

mp_tac : int -> tactic
eq_mp_tac : int -> tactic
IntPr.safe_step_tac : int -> tactic
IntPr.safe_tac : tactic
IntPr.inst_step_tac : int -> tactic
IntPr.step_tac : int -> tactic
IntPr.fast_tac : int -> tactic
IntPr.best_tac : int -> tactic

Most of these belong to the structure IntPr and resemble the tactics of Isabelle’s
classical reasoner.

mp_tac i attempts to use notE or impE within the assumptions in subgoal i .
For each assumption of the form ¬P or P → Q , it searches for another
assumption unifiable with P . By contradiction with ¬P it can solve the
subgoal completely; by Modus Ponens it can replace the assumption P → Q
by Q . The tactic can produce multiple outcomes, enumerating all suitable
pairs of assumptions.

eq_mp_tac i is like mp_tac i, but may not instantiate unknowns — thus, it is
safe.

IntPr.safe_step_tac i performs a safe step on subgoal i . This may include
proof by assumption or Modus Ponens (taking care not to instantiate un-
knowns), or hyp_subst_tac.

IntPr.safe_tac repeatedly performs safe steps on all subgoals. It is determin-
istic, with at most one outcome.

IntPr.inst_step_tac i is like safe_step_tac, but allows unknowns to be in-
stantiated.

IntPr.step_tac i tries safe_tac or inst_step_tac, or applies an unsafe rule.
This is the basic step of the intuitionistic proof procedure.

IntPr.fast_tac i applies step_tac, using depth-first search, to solve subgoal i .

CHAPTER 2. FIRST-ORDER LOGIC 11

excluded_middle ~P | P

disjCI (~Q ==> P) ==> P|Q
exCI (ALL x. ~P(x) ==> P(a)) ==> EX x.P(x)
impCE [| P-->Q; ~P ==> R; Q ==> R |] ==> R
iffCE [| P<->Q; [| P; Q |] ==> R; [| ~P; ~Q |] ==> R |] ==> R
notnotD ~~P ==> P
swap ~P ==> (~Q ==> P) ==> Q

Figure 2.4: Derived rules for classical logic

IntPr.best_tac i applies step_tac, using best-first search (guided by the size
of the proof state) to solve subgoal i .

Here are some of the theorems that IntPr.fast_tac proves automatically. The
latter three date from Principia Mathematica (*11.53, *11.55, *11.61) [49].

~~P & ~~(P --> Q) --> ~~Q
(ALL x y. P(x) --> Q(y)) <-> ((EX x. P(x)) --> (ALL y. Q(y)))
(EX x y. P(x) & Q(x,y)) <-> (EX x. P(x) & (EX y. Q(x,y)))
(EX y. ALL x. P(x) --> Q(x,y)) --> (ALL x. P(x) --> (EX y. Q(x,y)))

2.4 Classical proof procedures

The classical theory, FOL, consists of intuitionistic logic plus the rule

[¬P]
....
P
P

(classical)

Natural deduction in classical logic is not really all that natural. FOL derives
classical introduction rules for ∨ and ∃, as well as classical elimination rules
for → and ↔, and the swap rule (see Fig. 2.4).

The classical reasoner is installed. Tactics such as Blast_tac and Best_tac

use the default claset (!claset), which works for most purposes. Named clasets
include prop_cs, which includes the propositional rules, and FOL_cs, which also
includes quantifier rules. See the file FOL/cladata.ML for lists of the classical
rules, and the Reference Manual for more discussion of classical proof methods.

2.5 An intuitionistic example

Here is a session similar to one in Logic and Computation [32, pages 222–3].
Isabelle treats quantifiers differently from lcf-based theorem provers such as

CHAPTER 2. FIRST-ORDER LOGIC 12

hol. The proof begins by entering the goal in intuitionistic logic, then applying
the rule (→I).

goal IFOL.thy "(EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))";
Level 0

(EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))

1. (EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))

by (resolve_tac [impI] 1);
Level 1

(EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))

1. EX y. ALL x. Q(x,y) ==> ALL x. EX y. Q(x,y)

In this example, we shall never have more than one subgoal. Applying (→I)
replaces --> by ==>, making ∃y .∀x .Q(x , y) an assumption. We have the choice
of (∃E) and (∀I); let us try the latter.

by (resolve_tac [allI] 1);
Level 2

(EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))

1. !!x. EX y. ALL x. Q(x,y) ==> EX y. Q(x,y)

Applying (∀I) replaces the ALL x by !!x, changing the universal quantifier from
object (∀) to meta (

∧
). The bound variable is a parameter of the subgoal. We

now must choose between (∃I) and (∃E). What happens if the wrong rule is
chosen?

by (resolve_tac [exI] 1);
Level 3

(EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))

1. !!x. EX y. ALL x. Q(x,y) ==> Q(x,?y2(x))

The new subgoal 1 contains the function variable ?y2. Instantiating ?y2 can
replace ?y2(x) by a term containing x, even though x is a bound variable. Now
we analyse the assumption ∃y . ∀x . Q(x , y) using elimination rules:

by (eresolve_tac [exE] 1);
Level 4

(EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))

1. !!x y. ALL x. Q(x,y) ==> Q(x,?y2(x))

Applying (∃E) has produced the parameter y and stripped the existential quan-
tifier from the assumption. But the subgoal is unprovable: there is no way to
unify ?y2(x) with the bound variable y. Using choplev we can return to the
critical point. This time we apply (∃E):

choplev 2;
Level 2

(EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))

1. !!x. EX y. ALL x. Q(x,y) ==> EX y. Q(x,y)

CHAPTER 2. FIRST-ORDER LOGIC 13

by (eresolve_tac [exE] 1);
Level 3

(EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))

1. !!x y. ALL x. Q(x,y) ==> EX y. Q(x,y)

We now have two parameters and no scheme variables. Applying (∃I) and (∀E)
produces two scheme variables, which are applied to those parameters. Parame-
ters should be produced early, as this example demonstrates.

by (resolve_tac [exI] 1);
Level 4

(EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))

1. !!x y. ALL x. Q(x,y) ==> Q(x,?y3(x,y))

by (eresolve_tac [allE] 1);
Level 5

(EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))

1. !!x y. Q(?x4(x,y),y) ==> Q(x,?y3(x,y))

The subgoal has variables ?y3 and ?x4 applied to both parameters. The obvious
projection functions unify ?x4(x,y) with x and ?y3(x,y) with y.

by (assume_tac 1);
Level 6

(EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))

No subgoals!

The theorem was proved in six tactic steps, not counting the abandoned ones.
But proof checking is tedious; IntPr.fast_tac proves the theorem in one step.

goal IFOL.thy "(EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))";
Level 0

(EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))

1. (EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))

by (IntPr.fast_tac 1);
Level 1

(EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))

No subgoals!

2.6 An example of intuitionistic negation

The following example demonstrates the specialized forms of implication elimina-
tion. Even propositional formulae can be difficult to prove from the basic rules;
the specialized rules help considerably.

Propositional examples are easy to invent. As Dummett notes [11, page 28],
¬P is classically provable if and only if it is intuitionistically provable; therefore,

CHAPTER 2. FIRST-ORDER LOGIC 14

P is classically provable if and only if ¬¬P is intuitionistically provable.1 Proving
¬¬P intuitionistically is much harder than proving P classically.

Our example is the double negation of the classical tautology (P → Q) ∨
(Q → P). When stating the goal, we command Isabelle to expand negations to
implications using the definition ¬P ≡ P → ⊥. This allows use of the special
implication rules.

goalw IFOL.thy [not_def] "~ ~ ((P-->Q) | (Q-->P))";
Level 0

~ ~ ((P --> Q) | (Q --> P))

1. ((P --> Q) | (Q --> P) --> False) --> False

The first step is trivial.

by (resolve_tac [impI] 1);
Level 1

~ ~ ((P --> Q) | (Q --> P))

1. (P --> Q) | (Q --> P) --> False ==> False

By (→ E) it would suffice to prove (P → Q)∨ (Q → P), but that formula is not
a theorem of intuitionistic logic. Instead we apply the specialized implication rule
disj_impE. It splits the assumption into two assumptions, one for each disjunct.

by (eresolve_tac [disj_impE] 1);
Level 2

~ ~ ((P --> Q) | (Q --> P))

1. [| (P --> Q) --> False; (Q --> P) --> False |] ==> False

We cannot hope to prove P → Q or Q → P separately, but their negations are
inconsistent. Applying imp_impE breaks down the assumption ¬(P → Q), asking
to show Q while providing new assumptions P and ¬Q .

by (eresolve_tac [imp_impE] 1);
Level 3

~ ~ ((P --> Q) | (Q --> P))

1. [| (Q --> P) --> False; P; Q --> False |] ==> Q

2. [| (Q --> P) --> False; False |] ==> False

Subgoal 2 holds trivially; let us ignore it and continue working on subgoal 1.
Thanks to the assumption P , we could prove Q → P ; applying imp_impE is
simpler.

by (eresolve_tac [imp_impE] 1);
Level 4

~ ~ ((P --> Q) | (Q --> P))

1. [| P; Q --> False; Q; P --> False |] ==> P

2. [| P; Q --> False; False |] ==> Q

3. [| (Q --> P) --> False; False |] ==> False

1Of course this holds only for propositional logic, not if P is allowed to contain quantifiers.

CHAPTER 2. FIRST-ORDER LOGIC 15

The three subgoals are all trivial.

by (REPEAT (eresolve_tac [FalseE] 2));
Level 5

~ ~ ((P --> Q) | (Q --> P))

1. [| P; Q --> False; Q; P --> False |] ==> P

by (assume_tac 1);
Level 6

~ ~ ((P --> Q) | (Q --> P))

No subgoals!

This proof is also trivial for IntPr.fast_tac.

2.7 A classical example

To illustrate classical logic, we shall prove the theorem ∃y . ∀x . P(y) → P(x).
Informally, the theorem can be proved as follows. Choose y such that ¬P(y), if
such exists; otherwise ∀x . P(x) is true. Either way the theorem holds.

The formal proof does not conform in any obvious way to the sketch given
above. The key inference is the first one, exCI; this classical version of (∃I) allows
multiple instantiation of the quantifier.

goal FOL.thy "EX y. ALL x. P(y)-->P(x)";
Level 0

EX y. ALL x. P(y) --> P(x)

1. EX y. ALL x. P(y) --> P(x)

by (resolve_tac [exCI] 1);
Level 1

EX y. ALL x. P(y) --> P(x)

1. ALL y. ~ (ALL x. P(y) --> P(x)) ==> ALL x. P(?a) --> P(x)

We can either exhibit a term ?a to satisfy the conclusion of subgoal 1, or produce
a contradiction from the assumption. The next steps are routine.

by (resolve_tac [allI] 1);
Level 2

EX y. ALL x. P(y) --> P(x)

1. !!x. ALL y. ~ (ALL x. P(y) --> P(x)) ==> P(?a) --> P(x)

by (resolve_tac [impI] 1);
Level 3

EX y. ALL x. P(y) --> P(x)

1. !!x. [| ALL y. ~ (ALL x. P(y) --> P(x)); P(?a) |] ==> P(x)

CHAPTER 2. FIRST-ORDER LOGIC 16

By the duality between ∃ and ∀, applying (∀E) in effect applies (∃I) again.

by (eresolve_tac [allE] 1);
Level 4

EX y. ALL x. P(y) --> P(x)

1. !!x. [| P(?a); ~ (ALL xa. P(?y3(x)) --> P(xa)) |] ==> P(x)

In classical logic, a negated assumption is equivalent to a conclusion. To get this
effect, we create a swapped version of (∀I) and apply it using eresolve_tac; we
could equivalently have applied (∀I) using swap_res_tac.

allI RSN (2,swap);
val it = "[| ~ (ALL x. ?P1(x)); !!x. ~ ?Q ==> ?P1(x) |] ==> ?Q" : thm

by (eresolve_tac [it] 1);
Level 5

EX y. ALL x. P(y) --> P(x)

1. !!x xa. [| P(?a); ~ P(x) |] ==> P(?y3(x)) --> P(xa)

The previous conclusion, P(x), has become a negated assumption.

by (resolve_tac [impI] 1);
Level 6

EX y. ALL x. P(y) --> P(x)

1. !!x xa. [| P(?a); ~ P(x); P(?y3(x)) |] ==> P(xa)

The subgoal has three assumptions. We produce a contradiction between the
assumptions ~P(x) and P(?y3(x)). The proof never instantiates the unknown ?a.

by (eresolve_tac [notE] 1);
Level 7

EX y. ALL x. P(y) --> P(x)

1. !!x xa. [| P(?a); P(?y3(x)) |] ==> P(x)

by (assume_tac 1);
Level 8

EX y. ALL x. P(y) --> P(x)

No subgoals!

The civilised way to prove this theorem is through deepen_tac, which automat-
ically uses the classical version of (∃I):

goal FOL.thy "EX y. ALL x. P(y)-->P(x)";
Level 0

EX y. ALL x. P(y) --> P(x)

1. EX y. ALL x. P(y) --> P(x)

by (Deepen_tac 0 1);
Depth = 0

Depth = 2

Level 1

EX y. ALL x. P(y) --> P(x)

No subgoals!

CHAPTER 2. FIRST-ORDER LOGIC 17

If this theorem seems counterintuitive, then perhaps you are an intuitionist. In
constructive logic, proving ∃y . ∀x . P(y) → P(x) requires exhibiting a particular
term t such that ∀x .P(t) → P(x), which we cannot do without further knowledge
about P .

2.8 Derived rules and the classical tactics

Classical first-order logic can be extended with the propositional connective
if (P ,Q ,R), where

if (P ,Q ,R) ≡ P ∧ Q ∨ ¬P ∧ R. (if)

Theorems about if can be proved by treating this as an abbreviation, replacing
if (P ,Q ,R) by P ∧Q ∨¬P ∧R in subgoals. But this duplicates P , causing an ex-
ponential blowup and an unreadable formula. Introducing further abbreviations
makes the problem worse.

Natural deduction demands rules that introduce and eliminate if (P ,Q ,R)
directly, without reference to its definition. The simple identity

if (P ,Q ,R) ↔ (P → Q) ∧ (¬P → R)

suggests that the if -introduction rule should be

[P]
....
Q

[¬P]
....
R

if (P ,Q ,R)
(if I)

The if -elimination rule reflects the definition of if (P ,Q ,R) and the elimination
rules for ∨ and ∧.

if (P ,Q ,R)

[P ,Q]
....
S

[¬P ,R]
....
S

S
(if E)

Having made these plans, we get down to work with Isabelle. The theory of
classical logic, FOL, is extended with the constant if :: [o, o, o] ⇒ o. The axiom
if_def asserts the equation (if).

If = FOL +
consts if :: [o,o,o]=>o
rules if_def "if(P,Q,R) == P&Q | ~P&R"
end

The derivations of the introduction and elimination rules demonstrate the meth-
ods for rewriting with definitions. Classical reasoning is required, so we use
blast_tac.

CHAPTER 2. FIRST-ORDER LOGIC 18

2.8.1 Deriving the introduction rule

The introduction rule, given the premises P =⇒ Q and ¬P =⇒ R, concludes
if (P ,Q ,R). We propose the conclusion as the main goal using goalw, which uses
if_def to rewrite occurrences of if in the subgoal.

val prems = goalw If.thy [if_def]
"[| P ==> Q; ~ P ==> R |] ==> if(P,Q,R)";

Level 0

if(P,Q,R)

1. P & Q | ~ P & R

The premises (bound to the ml variable prems) are passed as introduction rules
to blast_tac. Remember that !claset refers to the default classical set.

by (blast_tac (!claset addIs prems) 1);
Level 1

if(P,Q,R)

No subgoals!

qed "ifI";

2.8.2 Deriving the elimination rule

The elimination rule has three premises, two of which are themselves rules. The
conclusion is simply S .

val major::prems = goalw If.thy [if_def]
"[| if(P,Q,R); [| P; Q |] ==> S; [| ~ P; R |] ==> S |] ==> S";
Level 0

S

1. S

The major premise contains an occurrence of if , but the version returned by
goalw (and bound to the ml variable major) has the definition expanded. Now
cut_facts_tac inserts major as an assumption in the subgoal, so that blast_tac
can break it down.

by (cut_facts_tac [major] 1);
Level 1

S

1. P & Q | ~ P & R ==> S

by (blast_tac (!claset addIs prems) 1);
Level 2

S

No subgoals!

qed "ifE";

As you may recall from Introduction to Isabelle, there are other ways of treating
definitions when deriving a rule. We can start the proof using goal, which does
not expand definitions, instead of goalw. We can use rew_tac to expand defini-

CHAPTER 2. FIRST-ORDER LOGIC 19

tions in the subgoals — perhaps after calling cut_facts_tac to insert the rule’s
premises. We can use rewrite_rule, which is a meta-inference rule, to expand
definitions in the premises directly.

2.8.3 Using the derived rules

The rules just derived have been saved with the ml names ifI and ifE. They
permit natural proofs of theorems such as the following:

if (P , if (Q ,A,B), if (Q ,C ,D)) ↔ if (Q , if (P ,A,C), if (P ,B ,D))

if (if (P ,Q ,R),A,B) ↔ if (P , if (Q ,A,B), if (R,A,B))

Proofs also require the classical reasoning rules and the ↔ introduction rule
(called iffI: do not confuse with ifI).

To display the if -rules in action, let us analyse a proof step by step.

goal If.thy
"if(P, if(Q,A,B), if(Q,C,D)) <-> if(Q, if(P,A,C), if(P,B,D))";

Level 0

if(P,if(Q,A,B),if(Q,C,D)) <-> if(Q,if(P,A,C),if(P,B,D))

1. if(P,if(Q,A,B),if(Q,C,D)) <-> if(Q,if(P,A,C),if(P,B,D))

by (resolve_tac [iffI] 1);
Level 1

if(P,if(Q,A,B),if(Q,C,D)) <-> if(Q,if(P,A,C),if(P,B,D))

1. if(P,if(Q,A,B),if(Q,C,D)) ==> if(Q,if(P,A,C),if(P,B,D))

2. if(Q,if(P,A,C),if(P,B,D)) ==> if(P,if(Q,A,B),if(Q,C,D))

The if -elimination rule can be applied twice in succession.

by (eresolve_tac [ifE] 1);
Level 2

if(P,if(Q,A,B),if(Q,C,D)) <-> if(Q,if(P,A,C),if(P,B,D))

1. [| P; if(Q,A,B) |] ==> if(Q,if(P,A,C),if(P,B,D))

2. [| ~ P; if(Q,C,D) |] ==> if(Q,if(P,A,C),if(P,B,D))

3. if(Q,if(P,A,C),if(P,B,D)) ==> if(P,if(Q,A,B),if(Q,C,D))

by (eresolve_tac [ifE] 1);
Level 3

if(P,if(Q,A,B),if(Q,C,D)) <-> if(Q,if(P,A,C),if(P,B,D))

1. [| P; Q; A |] ==> if(Q,if(P,A,C),if(P,B,D))

2. [| P; ~ Q; B |] ==> if(Q,if(P,A,C),if(P,B,D))

3. [| ~ P; if(Q,C,D) |] ==> if(Q,if(P,A,C),if(P,B,D))

4. if(Q,if(P,A,C),if(P,B,D)) ==> if(P,if(Q,A,B),if(Q,C,D))

In the first two subgoals, all assumptions have been reduced to atoms. Now if -
introduction can be applied. Observe how the if -rules break down occurrences

CHAPTER 2. FIRST-ORDER LOGIC 20

of if when they become the outermost connective.

by (resolve_tac [ifI] 1);
Level 4

if(P,if(Q,A,B),if(Q,C,D)) <-> if(Q,if(P,A,C),if(P,B,D))

1. [| P; Q; A; Q |] ==> if(P,A,C)

2. [| P; Q; A; ~ Q |] ==> if(P,B,D)

3. [| P; ~ Q; B |] ==> if(Q,if(P,A,C),if(P,B,D))

4. [| ~ P; if(Q,C,D) |] ==> if(Q,if(P,A,C),if(P,B,D))

5. if(Q,if(P,A,C),if(P,B,D)) ==> if(P,if(Q,A,B),if(Q,C,D))

by (resolve_tac [ifI] 1);
Level 5

if(P,if(Q,A,B),if(Q,C,D)) <-> if(Q,if(P,A,C),if(P,B,D))

1. [| P; Q; A; Q; P |] ==> A

2. [| P; Q; A; Q; ~ P |] ==> C

3. [| P; Q; A; ~ Q |] ==> if(P,B,D)

4. [| P; ~ Q; B |] ==> if(Q,if(P,A,C),if(P,B,D))

5. [| ~ P; if(Q,C,D) |] ==> if(Q,if(P,A,C),if(P,B,D))

6. if(Q,if(P,A,C),if(P,B,D)) ==> if(P,if(Q,A,B),if(Q,C,D))

Where do we stand? The first subgoal holds by assumption; the second and third,
by contradiction. This is getting tedious. We could use the classical reasoner,
but first let us extend the default claset with the derived rules for if .

AddSIs [ifI];
AddSEs [ifE];

Now we can revert to the initial proof state and let blast_tac solve it.

choplev 0;
Level 0

if(P,if(Q,A,B),if(Q,C,D)) <-> if(Q,if(P,A,C),if(P,B,D))

1. if(P,if(Q,A,B),if(Q,C,D)) <-> if(Q,if(P,A,C),if(P,B,D))

by (Blast_tac 1);
Level 1

if(P,if(Q,A,B),if(Q,C,D)) <-> if(Q,if(P,A,C),if(P,B,D))

No subgoals!

This tactic also solves the other example.

goal If.thy "if(if(P,Q,R), A, B) <-> if(P, if(Q,A,B), if(R,A,B))";
Level 0

if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,A,B))

1. if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,A,B))

by (Blast_tac 1);
Level 1

if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,A,B))

No subgoals!

CHAPTER 2. FIRST-ORDER LOGIC 21

2.8.4 Derived rules versus definitions

Dispensing with the derived rules, we can treat if as an abbreviation, and let
blast_tac prove the expanded formula. Let us redo the previous proof:

choplev 0;
Level 0

if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,A,B))

1. if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,A,B))

This time, simply unfold using the definition of if :

by (rewtac if_def);
Level 1

if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,A,B))

1. (P & Q | ~ P & R) & A | ~ (P & Q | ~ P & R) & B <->

P & (Q & A | ~ Q & B) | ~ P & (R & A | ~ R & B)

We are left with a subgoal in pure first-order logic, which is why the classi-
cal reasoner can prove it given FOL_cs alone. (We could, of course, have used
Blast_tac.)

by (blast_tac FOL_cs 1);
Level 2

if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,A,B))

No subgoals!

Expanding definitions reduces the extended logic to the base logic. This approach
has its merits — especially if the prover for the base logic is good — but can
be slow. In these examples, proofs using the default claset (which includes the
derived rules) run about six times faster than proofs using FOL_cs.

Expanding definitions also complicates error diagnosis. Suppose we are having
difficulties in proving some goal. If by expanding definitions we have made it
unreadable, then we have little hope of diagnosing the problem.

Attempts at program verification often yield invalid assertions. Let us try to
prove one:

goal If.thy "if(if(P,Q,R), A, B) <-> if(P, if(Q,A,B), if(R,B,A))";
Level 0

if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,B,A))

1. if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,B,A))

by (Blast_tac 1);
by: tactic failed

CHAPTER 2. FIRST-ORDER LOGIC 22

This failure message is uninformative, but we can get a closer look at the situation
by applying Step_tac.

by (REPEAT (Step_tac 1));
Level 1

if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,B,A))

1. [| A; ~ P; R; ~ P; R |] ==> B

2. [| B; ~ P; ~ R; ~ P; ~ R |] ==> A

3. [| ~ P; R; B; ~ P; R |] ==> A

4. [| ~ P; ~ R; A; ~ B; ~ P |] ==> R

Subgoal 1 is unprovable and yields a countermodel: P and B are false while R
and A are true. This truth assignment reduces the main goal to true ↔ false,
which is of course invalid.

We can repeat this analysis by expanding definitions, using just the rules of
FOL:

choplev 0;
Level 0

if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,B,A))

1. if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,B,A))

by (rewtac if_def);
Level 1

if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,B,A))

1. (P & Q | ~ P & R) & A | ~ (P & Q | ~ P & R) & B <->

P & (Q & A | ~ Q & B) | ~ P & (R & B | ~ R & A)

by (blast_tac FOL_cs 1);
by: tactic failed

Again we apply step_tac:

by (REPEAT (step_tac FOL_cs 1));
Level 2

if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,B,A))

1. [| A; ~ P; R; ~ P; R; ~ False |] ==> B

2. [| A; ~ P; R; R; ~ False; ~ B; ~ B |] ==> Q

3. [| B; ~ P; ~ R; ~ P; ~ A |] ==> R

4. [| B; ~ P; ~ R; ~ Q; ~ A |] ==> R

5. [| B; ~ R; ~ P; ~ A; ~ R; Q; ~ False |] ==> A

6. [| ~ P; R; B; ~ P; R; ~ False |] ==> A

7. [| ~ P; ~ R; A; ~ B; ~ R |] ==> P

8. [| ~ P; ~ R; A; ~ B; ~ R |] ==> Q

Subgoal 1 yields the same countermodel as before. But each proof step has taken
six times as long, and the final result contains twice as many subgoals.

Expanding definitions causes a great increase in complexity. This is why the
classical prover has been designed to accept derived rules.

Chapter 3

Zermelo-Fraenkel Set Theory

The theory ZF implements Zermelo-Fraenkel set theory [17, 45] as an extension
of FOL, classical first-order logic. The theory includes a collection of derived
natural deduction rules, for use with Isabelle’s classical reasoner. Much of it is
based on the work of Noël [28].

A tremendous amount of set theory has been formally developed, including the
basic properties of relations, functions, ordinals and cardinals. Significant results
have been proved, such as the Schröder-Bernstein Theorem, the Wellordering
Theorem and a version of Ramsey’s Theorem. General methods have been de-
veloped for solving recursion equations over monotonic functors; these have been
applied to yield constructions of lists, trees, infinite lists, etc. The Recursion
Theorem has been proved, admitting recursive definitions of functions over well-
founded relations. Thus, we may even regard set theory as a computational logic,
loosely inspired by Martin-Löf’s Type Theory.

Because ZF is an extension of FOL, it provides the same packages, namely
hyp_subst_tac, the simplifier, and the classical reasoner. The default simpset
and claset are usually satisfactory. Named simpsets include ZF_ss (basic set
theory rules) and rank_ss (for proving termination of well-founded recursion).
Named clasets include ZF_cs (basic set theory) and le_cs (useful for reasoning
about the relations < and ≤).

ZF has a flexible package for handling inductive definitions, such as inference
systems, and datatype definitions, such as lists and trees. Moreover it handles
coinductive definitions, such as bisimulation relations, and codatatype definitions,
such as streams. There is a paper [34] describing the package, but its examples use
an obsolete declaration syntax. Please consult the version of the paper distributed
with Isabelle.

Recent reports [33, 35] describe ZF less formally than this chapter. Isabelle
employs a novel treatment of non-well-founded data structures within the stan-
dard zf axioms including the Axiom of Foundation [40].

3.1 Which version of axiomatic set theory?

The two main axiom systems for set theory are Bernays-Gödel (bg) and Zermelo-
Fraenkel (zf). Resolution theorem provers can use bg because it is finite [4,

23

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 24

43]. zf does not have a finite axiom system because of its Axiom Scheme of
Replacement. This makes it awkward to use with many theorem provers, since
instances of the axiom scheme have to be invoked explicitly. Since Isabelle has
no difficulty with axiom schemes, we may adopt either axiom system.

These two theories differ in their treatment of classes, which are collections
that are ‘too big’ to be sets. The class of all sets, V , cannot be a set without
admitting Russell’s Paradox. In bg, both classes and sets are individuals; x ∈ V
expresses that x is a set. In zf, all variables denote sets; classes are identified
with unary predicates. The two systems define essentially the same sets and
classes, with similar properties. In particular, a class cannot belong to another
class (let alone a set).

Modern set theorists tend to prefer zf because they are mainly concerned with
sets, rather than classes. bg requires tiresome proofs that various collections are
sets; for instance, showing x ∈ {x} requires showing that x is a set.

3.2 The syntax of set theory

The language of set theory, as studied by logicians, has no constants. The tra-
ditional axioms merely assert the existence of empty sets, unions, powersets,
etc.; this would be intolerable for practical reasoning. The Isabelle theory de-
clares constants for primitive sets. It also extends FOL with additional syntax
for finite sets, ordered pairs, comprehension, general union/intersection, general
sums/products, and bounded quantifiers. In most other respects, Isabelle imple-
ments precisely Zermelo-Fraenkel set theory.

Figure 3.1 lists the constants and infixes of ZF, while Figure 3.2 presents the
syntax translations. Finally, Figure 3.3 presents the full grammar for set theory,
including the constructs of FOL.

Local abbreviations can be introduced by a let construct whose syntax ap-
pears in Fig. 3.3. Internally it is translated into the constant Let. It can be
expanded by rewriting with its definition, Let_def.

Apart from let, set theory does not use polymorphism. All terms in ZF have
type i , which is the type of individuals and has class term. The type of first-order
formulae, remember, is o.

Infix operators include binary union and intersection (A ∪ B and A ∩ B), set
difference (A − B), and the subset and membership relations. Note that a~:b
is translated to ¬(a ∈ b). The union and intersection operators (

∪
A and

∩
A)

form the union or intersection of a set of sets;
∪

A means the same as
∪

x∈A x . Of
these operators, only

∪
A is primitive.

The constant Upair constructs unordered pairs; thus Upair(A,B) denotes
the set {A,B} and Upair(A,A) denotes the singleton {A}. General union is
used to define binary union. The Isabelle version goes on to define the constant

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 25

name meta-type description
Let [α, α ⇒ β] ⇒ β let binder

0 i empty set
cons [i , i] ⇒ i finite set constructor

Upair [i , i] ⇒ i unordered pairing
Pair [i , i] ⇒ i ordered pairing
Inf i infinite set
Pow i ⇒ i powerset

Union Inter i ⇒ i set union/intersection
split [[i , i] ⇒ i , i] ⇒ i generalized projection

fst snd i ⇒ i projections
converse i ⇒ i converse of a relation

succ i ⇒ i successor
Collect [i , i ⇒ o] ⇒ i separation
Replace [i , [i , i] ⇒ o] ⇒ i replacement

PrimReplace [i , [i , i] ⇒ o] ⇒ i primitive replacement
RepFun [i , i ⇒ i] ⇒ i functional replacement

Pi Sigma [i , i ⇒ i] ⇒ i general product/sum
domain i ⇒ i domain of a relation
range i ⇒ i range of a relation
field i ⇒ i field of a relation

Lambda [i , i ⇒ i] ⇒ i λ-abstraction
restrict [i , i] ⇒ i restriction of a function

The [i ⇒ o] ⇒ i definite description
if [o, i , i] ⇒ i conditional

Ball Bex [i , i ⇒ o] ⇒ o bounded quantifiers

Constants

symbol meta-type priority description
‘‘ [i , i] ⇒ i Left 90 image
-‘‘ [i , i] ⇒ i Left 90 inverse image
‘ [i , i] ⇒ i Left 90 application

Int [i , i] ⇒ i Left 70 intersection (∩)
Un [i , i] ⇒ i Left 65 union (∪)
- [i , i] ⇒ i Left 65 set difference (−)

: [i , i] ⇒ o Left 50 membership (∈)
<= [i , i] ⇒ o Left 50 subset (⊆)

Infixes

Figure 3.1: Constants of ZF

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 26

external internal description
a ~: b ~(a : b) negated membership

{a1, . . ., an} cons(a1,. . .,cons(an,0)) finite set
<a1, . . ., an−1, an> Pair(a1,...,Pair(an−1,an)...) ordered n-tuple

{x:A . P [x]} Collect(A,λx . P [x]) separation
{y . x:A, Q [x , y]} Replace(A,λx y . Q [x , y]) replacement

{b[x] . x:A} RepFun(A,λx . b[x]) functional replacement
INT x:A . B [x] Inter({B [x] . x:A}) general intersection
UN x:A . B [x] Union({B [x] . x:A}) general union

PROD x:A . B [x] Pi(A,λx . B [x]) general product
SUM x:A . B [x] Sigma(A,λx . B [x]) general sum

A -> B Pi(A,λx . B) function space
A * B Sigma(A,λx . B) binary product

THE x . P [x] The(λx . P [x]) definite description
lam x:A . b[x] Lambda(A,λx . b[x]) λ-abstraction

ALL x:A . P [x] Ball(A,λx . P [x]) bounded ∀
EX x:A . P [x] Bex(A,λx . P [x]) bounded ∃

Figure 3.2: Translations for ZF

cons:

A ∪ B ≡
∪

(Upair(A,B))

cons(a,B) ≡ Upair(a, a) ∪ B

The {a1, . . .} notation abbreviates finite sets constructed in the obvious manner
using cons and ∅ (the empty set):

{a, b, c} ≡ cons(a, cons(b, cons(c, ∅)))

The constant Pair constructs ordered pairs, as in Pair(a,b). Ordered
pairs may also be written within angle brackets, as <a,b>. The n-tuple
<a1,...,an−1,an> abbreviates the nest of pairs

Pair(a1,. . . ,Pair(an−1,an). . .).
In ZF, a function is a set of pairs. A ZF function f is simply an individual

as far as Isabelle is concerned: its Isabelle type is i , not say i ⇒ i . The infix
operator ‘ denotes the application of a function set to its argument; we must
write f ‘x , not f (x). The syntax for image is f “A and that for inverse image
is f−“A.

3.3 Binding operators

The constant Collect constructs sets by the principle of separation. The syntax
for separation is {x:A.P [x]}, where P [x] is a formula that may contain free

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 27

term = expression of type i
| let id = term; . . . ; id = term in term
| { term (,term)∗ }

| < term (,term)∗ >

| { id:term . formula }

| { id . id:term, formula }

| { term . id:term }

| term ‘‘ term
| term -‘‘ term
| term ‘ term
| term * term
| term Int term
| term Un term
| term - term
| term -> term
| THE id . formula
| lam id:term . term
| INT id:term . term
| UN id:term . term
| PROD id:term . term
| SUM id:term . term

formula = expression of type o
| term : term
| term ~: term
| term <= term
| term = term
| term ~= term
| ~ formula
| formula & formula
| formula | formula
| formula --> formula
| formula <-> formula
| ALL id:term . formula
| EX id:term . formula
| ALL id id∗ . formula
| EX id id∗ . formula
| EX! id id∗ . formula

Figure 3.3: Full grammar for ZF

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 28

occurrences of x . It abbreviates the set Collect(A,λx . P [x]), which consists of
all x ∈ A that satisfy P [x]. Note that Collect is an unfortunate choice of name:
some set theories adopt a set-formation principle, related to replacement, called
collection.

The constant Replace constructs sets by the principle of replacement. The
syntax {y.x:A,Q [x , y]} denotes the set Replace(A,λx y . Q [x , y]), which con-
sists of all y such that there exists x ∈ A satisfying Q [x , y]. The Replacement
Axiom has the condition that Q must be single-valued over A: for all x ∈ A there
exists at most one y satisfying Q [x , y]. A single-valued binary predicate is also
called a class function.

The constant RepFun expresses a special case of replacement, where Q [x , y]
has the form y = b[x]. Such a Q is trivially single-valued, since it is just the graph
of the meta-level function λx .b[x]. The resulting set consists of all b[x] for x ∈ A.
This is analogous to the ml functional map, since it applies a function to every
element of a set. The syntax is {b[x].x:A}, which expands to RepFun(A,λx .
b[x]).

General unions and intersections of indexed families of sets, namely
∪

x∈A B [x]
and

∩
x∈A B [x], are written UN x:A.B [x] and INT x:A.B [x]. Their meaning is

expressed using RepFun as∪
({B [x] . x ∈ A}) and

∩
({B [x] . x ∈ A}).

General sums
∑

x∈A B [x] and products
∏

x∈A B [x] can be constructed in set the-
ory, where B [x] is a family of sets over A. They have as special cases A × B
and A → B , where B is simply a set. This is similar to the situation in Con-
structive Type Theory (set theory has ‘dependent sets’) and calls for similar
syntactic conventions. The constants Sigma and Pi construct general sums and
products. Instead of Sigma(A,B) and Pi(A,B) we may write SUM x:A.B [x]
and PROD x:A.B [x]. The special cases as A*B and A->B abbreviate general
sums and products over a constant family.1 Isabelle accepts these abbreviations
in parsing and uses them whenever possible for printing.

As mentioned above, whenever the axioms assert the existence and uniqueness
of a set, Isabelle’s set theory declares a constant for that set. These constants
can express the definite description operator ιx . P [x], which stands for the
unique a satisfying P [a], if such exists. Since all terms in ZF denote something, a
description is always meaningful, but we do not know its value unless P [x] defines
it uniquely. Using the constant The, we may write descriptions as The(λx .P [x])
or use the syntax THE x.P [x].

Function sets may be written in λ-notation; λx ∈ A . b[x] stands for the set
of all pairs ⟨x , b[x]⟩ for x ∈ A. In order for this to be a set, the function’s

1Unlike normal infix operators, * and -> merely define abbreviations; there are no con-
stants op * and op ->.

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 29

domain A must be given. Using the constant Lambda, we may express function
sets as Lambda(A,λx . b[x]) or use the syntax lam x:A.b[x].

Isabelle’s set theory defines two bounded quantifiers:

∀x ∈ A . P [x] abbreviates ∀x . x ∈ A → P [x]

∃x ∈ A . P [x] abbreviates ∃x . x ∈ A ∧ P [x]

The constants Ball and Bex are defined accordingly. Instead of Ball(A,P) and
Bex(A,P) we may write ALL x:A.P [x] and EX x:A.P [x].

3.4 The Zermelo-Fraenkel axioms

The axioms appear in Fig. 3.4. They resemble those presented by Suppes [45].
Most of the theory consists of definitions. In particular, bounded quantifiers
and the subset relation appear in other axioms. Object-level quantifiers and
implications have been replaced by meta-level ones wherever possible, to simplify
use of the axioms. See the file ZF/ZF.thy for details.

The traditional replacement axiom asserts

y ∈ PrimReplace(A,P) ↔ (∃x ∈ A . P(x , y))

subject to the condition that P(x , y) is single-valued for all x ∈ A. The Isabelle
theory defines Replace to apply PrimReplace to the single-valued part of P ,
namely

(∃!z . P(x , z)) ∧ P(x , y).

Thus y ∈ Replace(A,P) if and only if there is some x such that P(x ,−) holds
uniquely for y . Because the equivalence is unconditional, Replace is much easier
to use than PrimReplace; it defines the same set, if P(x , y) is single-valued. The
nice syntax for replacement expands to Replace.

Other consequences of replacement include functional replacement (RepFun)
and definite descriptions (The). Axioms for separation (Collect) and unordered
pairs (Upair) are traditionally assumed, but they actually follow from replace-
ment [45, pages 237–8].

The definitions of general intersection, etc., are straightforward. Note the
definition of cons, which underlies the finite set notation. The axiom of infinity
gives us a set that contains 0 and is closed under successor (succ). Although this
set is not uniquely defined, the theory names it (Inf) in order to simplify the
construction of the natural numbers.

Further definitions appear in Fig. 3.5. Ordered pairs are defined in the stan-
dard way, ⟨a, b⟩ ≡ {{a}, {a, b}}. Recall that Sigma(A,B) generalizes the Carte-
sian product of two sets. It is defined to be the union of all singleton sets {⟨x , y⟩},
for x ∈ A and y ∈ B(x). This is a typical usage of general union.

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 30

Let_def Let(s, f) == f(s)

Ball_def Ball(A,P) == ALL x. x:A --> P(x)
Bex_def Bex(A,P) == EX x. x:A & P(x)

subset_def A <= B == ALL x:A. x:B
extension A = B <-> A <= B & B <= A

Union_iff A : Union(C) <-> (EX B:C. A:B)
Pow_iff A : Pow(B) <-> A <= B
foundation A=0 | (EX x:A. ALL y:x. ~ y:A)

replacement (ALL x:A. ALL y z. P(x,y) & P(x,z) --> y=z) ==>
b : PrimReplace(A,P) <-> (EX x:A. P(x,b))

The Zermelo-Fraenkel Axioms

Replace_def Replace(A,P) ==
PrimReplace(A, %x y. (EX!z.P(x,z)) & P(x,y))

RepFun_def RepFun(A,f) == {y . x:A, y=f(x)}
the_def The(P) == Union({y . x:{0}, P(y)})
if_def if(P,a,b) == THE z. P & z=a | ~P & z=b
Collect_def Collect(A,P) == {y . x:A, x=y & P(x)}
Upair_def Upair(a,b) ==

{y. x:Pow(Pow(0)), (x=0 & y=a) | (x=Pow(0) & y=b)}

Consequences of replacement

Inter_def Inter(A) == {x:Union(A) . ALL y:A. x:y}
Un_def A Un B == Union(Upair(A,B))
Int_def A Int B == Inter(Upair(A,B))
Diff_def A - B == {x:A . x~:B}

Union, intersection, difference

Figure 3.4: Rules and axioms of ZF

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 31

cons_def cons(a,A) == Upair(a,a) Un A
succ_def succ(i) == cons(i,i)
infinity 0:Inf & (ALL y:Inf. succ(y): Inf)

Finite and infinite sets

Pair_def <a,b> == {{a,a}, {a,b}}
split_def split(c,p) == THE y. EX a b. p=<a,b> & y=c(a,b)
fst_def fst(A) == split(%x y.x, p)
snd_def snd(A) == split(%x y.y, p)
Sigma_def Sigma(A,B) == UN x:A. UN y:B(x). {<x,y>}

Ordered pairs and Cartesian products

converse_def converse(r) == {z. w:r, EX x y. w=<x,y> & z=<y,x>}
domain_def domain(r) == {x. w:r, EX y. w=<x,y>}
range_def range(r) == domain(converse(r))
field_def field(r) == domain(r) Un range(r)
image_def r ‘‘ A == {y : range(r) . EX x:A. <x,y> : r}
vimage_def r -‘‘ A == converse(r)‘‘A

Operations on relations

lam_def Lambda(A,b) == {<x,b(x)> . x:A}
apply_def f‘a == THE y. <a,y> : f
Pi_def Pi(A,B) == {f: Pow(Sigma(A,B)). ALL x:A. EX! y. <x,y>: f}
restrict_def restrict(f,A) == lam x:A.f‘x

Functions and general product

Figure 3.5: Further definitions of ZF

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 32

The projections fst and snd are defined in terms of the generalized projection
split. The latter has been borrowed from Martin-Löf’s Type Theory, and is often
easier to use than fst and snd.

Operations on relations include converse, domain, range, and image. The set
Pi(A,B) generalizes the space of functions between two sets. Note the simple
definitions of λ-abstraction (using RepFun) and application (using a definite de-
scription). The function restrict(f ,A) has the same values as f , but only over
the domain A.

3.5 From basic lemmas to function spaces

Faced with so many definitions, it is essential to prove lemmas. Even trivial
theorems like A ∩ B = B ∩ A would be difficult to prove from the definitions
alone. Isabelle’s set theory derives many rules using a natural deduction style.
Ideally, a natural deduction rule should introduce or eliminate just one operator,
but this is not always practical. For most operators, we may forget its definition
and use its derived rules instead.

3.5.1 Fundamental lemmas

Figure 3.6 presents the derived rules for the most basic operators. The rules for
the bounded quantifiers resemble those for the ordinary quantifiers, but note that
ballE uses a negated assumption in the style of Isabelle’s classical reasoner. The
congruence rules ball_cong and bex_cong are required by Isabelle’s simplifier,
but have few other uses. Congruence rules must be specially derived for all
binding operators, and henceforth will not be shown.

Figure 3.6 also shows rules for the subset and equality relations (proof by
extensionality), and rules about the empty set and the power set operator.

Figure 3.7 presents rules for replacement and separation. The rules for
Replace and RepFun are much simpler than comparable rules for PrimReplace

would be. The principle of separation is proved explicitly, although most proofs
should use the natural deduction rules for Collect. The elimination rule
CollectE is equivalent to the two destruction rules CollectD1 and CollectD2,
but each rule is suited to particular circumstances. Although too many rules can
be confusing, there is no reason to aim for a minimal set of rules. See the file
ZF/ZF.ML for a complete listing.

Figure 3.8 presents rules for general union and intersection. The empty inter-
section should be undefined. We cannot have

∩
(∅) = V because V , the universal

class, is not a set. All expressions denote something in ZF set theory; the def-
inition of intersection implies

∩
(∅) = ∅, but this value is arbitrary. The rule

InterI must have a premise to exclude the empty intersection. Some of the laws
governing intersections require similar premises.

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 33

ballI [| !!x. x:A ==> P(x) |] ==> ALL x:A. P(x)
bspec [| ALL x:A. P(x); x: A |] ==> P(x)
ballE [| ALL x:A. P(x); P(x) ==> Q; ~ x:A ==> Q |] ==> Q

ball_cong [| A=A’; !!x. x:A’ ==> P(x) <-> P’(x) |] ==>
(ALL x:A. P(x)) <-> (ALL x:A’. P’(x))

bexI [| P(x); x: A |] ==> EX x:A. P(x)
bexCI [| ALL x:A. ~P(x) ==> P(a); a: A |] ==> EX x:A.P(x)
bexE [| EX x:A. P(x); !!x. [| x:A; P(x) |] ==> Q |] ==> Q

bex_cong [| A=A’; !!x. x:A’ ==> P(x) <-> P’(x) |] ==>
(EX x:A. P(x)) <-> (EX x:A’. P’(x))

Bounded quantifiers

subsetI (!!x.x:A ==> x:B) ==> A <= B
subsetD [| A <= B; c:A |] ==> c:B
subsetCE [| A <= B; ~(c:A) ==> P; c:B ==> P |] ==> P
subset_refl A <= A
subset_trans [| A<=B; B<=C |] ==> A<=C

equalityI [| A <= B; B <= A |] ==> A = B
equalityD1 A = B ==> A<=B
equalityD2 A = B ==> B<=A
equalityE [| A = B; [| A<=B; B<=A |] ==> P |] ==> P

Subsets and extensionality

emptyE a:0 ==> P
empty_subsetI 0 <= A
equals0I [| !!y. y:A ==> False |] ==> A=0
equals0D [| A=0; a:A |] ==> P

PowI A <= B ==> A : Pow(B)
PowD A : Pow(B) ==> A<=B

The empty set; power sets

Figure 3.6: Basic derived rules for ZF

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 34

ReplaceI [| x: A; P(x,b); !!y. P(x,y) ==> y=b |] ==>
b : {y. x:A, P(x,y)}

ReplaceE [| b : {y. x:A, P(x,y)};
!!x. [| x: A; P(x,b); ALL y. P(x,y)-->y=b |] ==> R

|] ==> R

RepFunI [| a : A |] ==> f(a) : {f(x). x:A}
RepFunE [| b : {f(x). x:A};

!!x.[| x:A; b=f(x) |] ==> P |] ==> P

separation a : {x:A. P(x)} <-> a:A & P(a)
CollectI [| a:A; P(a) |] ==> a : {x:A. P(x)}
CollectE [| a : {x:A. P(x)}; [| a:A; P(a) |] ==> R |] ==> R
CollectD1 a : {x:A. P(x)} ==> a:A
CollectD2 a : {x:A. P(x)} ==> P(a)

Figure 3.7: Replacement and separation

UnionI [| B: C; A: B |] ==> A: Union(C)
UnionE [| A : Union(C); !!B.[| A: B; B: C |] ==> R |] ==> R

InterI [| !!x. x: C ==> A: x; c:C |] ==> A : Inter(C)
InterD [| A : Inter(C); B : C |] ==> A : B
InterE [| A : Inter(C); A:B ==> R; ~ B:C ==> R |] ==> R

UN_I [| a: A; b: B(a) |] ==> b: (UN x:A. B(x))
UN_E [| b : (UN x:A. B(x)); !!x.[| x: A; b: B(x) |] ==> R

|] ==> R

INT_I [| !!x. x: A ==> b: B(x); a: A |] ==> b: (INT x:A. B(x))
INT_E [| b : (INT x:A. B(x)); a: A |] ==> b : B(a)

Figure 3.8: General union and intersection

pairing a:Upair(b,c) <-> (a=b | a=c)
UpairI1 a : Upair(a,b)
UpairI2 b : Upair(a,b)
UpairE [| a : Upair(b,c); a = b ==> P; a = c ==> P |] ==> P

Figure 3.9: Unordered pairs

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 35

UnI1 c : A ==> c : A Un B
UnI2 c : B ==> c : A Un B
UnCI (~c : B ==> c : A) ==> c : A Un B
UnE [| c : A Un B; c:A ==> P; c:B ==> P |] ==> P

IntI [| c : A; c : B |] ==> c : A Int B
IntD1 c : A Int B ==> c : A
IntD2 c : A Int B ==> c : B
IntE [| c : A Int B; [| c:A; c:B |] ==> P |] ==> P

DiffI [| c : A; ~ c : B |] ==> c : A - B
DiffD1 c : A - B ==> c : A
DiffD2 c : A - B ==> c ~: B
DiffE [| c : A - B; [| c:A; ~ c:B |] ==> P |] ==> P

Figure 3.10: Union, intersection, difference

consI1 a : cons(a,B)
consI2 a : B ==> a : cons(b,B)
consCI (~ a:B ==> a=b) ==> a: cons(b,B)
consE [| a : cons(b,A); a=b ==> P; a:A ==> P |] ==> P

singletonI a : {a}
singletonE [| a : {b}; a=b ==> P |] ==> P

Figure 3.11: Finite and singleton sets

succI1 i : succ(i)
succI2 i : j ==> i : succ(j)
succCI (~ i:j ==> i=j) ==> i: succ(j)
succE [| i : succ(j); i=j ==> P; i:j ==> P |] ==> P
succ_neq_0 [| succ(n)=0 |] ==> P
succ_inject succ(m) = succ(n) ==> m=n

Figure 3.12: The successor function

the_equality [| P(a); !!x. P(x) ==> x=a |] ==> (THE x. P(x)) = a
theI EX! x. P(x) ==> P(THE x. P(x))

if_P P ==> if(P,a,b) = a
if_not_P ~P ==> if(P,a,b) = b

mem_asym [| a:b; b:a |] ==> P
mem_irrefl a:a ==> P

Figure 3.13: Descriptions; non-circularity

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 36

Union_upper B:A ==> B <= Union(A)
Union_least [| !!x. x:A ==> x<=C |] ==> Union(A) <= C

Inter_lower B:A ==> Inter(A) <= B
Inter_greatest [| a:A; !!x. x:A ==> C<=x |] ==> C <= Inter(A)

Un_upper1 A <= A Un B
Un_upper2 B <= A Un B
Un_least [| A<=C; B<=C |] ==> A Un B <= C

Int_lower1 A Int B <= A
Int_lower2 A Int B <= B
Int_greatest [| C<=A; C<=B |] ==> C <= A Int B

Diff_subset A-B <= A
Diff_contains [| C<=A; C Int B = 0 |] ==> C <= A-B

Collect_subset Collect(A,P) <= A

Figure 3.14: Subset and lattice properties

3.5.2 Unordered pairs and finite sets

Figure 3.9 presents the principle of unordered pairing, along with its derived rules.
Binary union and intersection are defined in terms of ordered pairs (Fig. 3.10).
Set difference is also included. The rule UnCI is useful for classical reasoning
about unions, like disjCI; it supersedes UnI1 and UnI2, but these rules are often
easier to work with. For intersection and difference we have both elimination and
destruction rules. Again, there is no reason to provide a minimal rule set.

Figure 3.11 is concerned with finite sets: it presents rules for cons, the finite
set constructor, and rules for singleton sets. Figure 3.12 presents derived rules for
the successor function, which is defined in terms of cons. The proof that succ

is injective appears to require the Axiom of Foundation.
Definite descriptions (THE) are defined in terms of the singleton set {0}, but

their derived rules fortunately hide this (Fig. 3.13). The rule theI is difficult to
apply because of the two occurrences of ?P . However, the_equality does not
have this problem and the files contain many examples of its use.

Finally, the impossibility of having both a ∈ b and b ∈ a (mem_asym) is
proved by applying the Axiom of Foundation to the set {a, b}. The impossibility
of a ∈ a is a trivial consequence.

See the file ZF/upair.ML for full proofs of the rules discussed in this section.

3.5.3 Subset and lattice properties

The subset relation is a complete lattice. Unions form least upper bounds; non-
empty intersections form greatest lower bounds. Figure 3.14 shows the corre-

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 37

Pair_inject1 <a,b> = <c,d> ==> a=c
Pair_inject2 <a,b> = <c,d> ==> b=d
Pair_inject [| <a,b> = <c,d>; [| a=c; b=d |] ==> P |] ==> P
Pair_neq_0 <a,b>=0 ==> P

fst_conv fst(<a,b>) = a
snd_conv snd(<a,b>) = b
split split(%x y.c(x,y), <a,b>) = c(a,b)

SigmaI [| a:A; b:B(a) |] ==> <a,b> : Sigma(A,B)

SigmaE [| c: Sigma(A,B);
!!x y.[| x:A; y:B(x); c=<x,y> |] ==> P |] ==> P

SigmaE2 [| <a,b> : Sigma(A,B);
[| a:A; b:B(a) |] ==> P |] ==> P

Figure 3.15: Ordered pairs; projections; general sums

sponding rules. A few other laws involving subsets are included. Proofs are in
the file ZF/subset.ML.

Reasoning directly about subsets often yields clearer proofs than reasoning
about the membership relation. Section 3.9 below presents an example of this,
proving the equation Pow(A) ∩ Pow(B) = Pow(A ∩ B).

3.5.4 Ordered pairs

Figure 3.15 presents the rules governing ordered pairs, projections and general
sums. File ZF/pair.ML contains the full (and tedious) proof that {{a}, {a, b}}
functions as an ordered pair. This property is expressed as two destruction
rules, Pair_inject1 and Pair_inject2, and equivalently as the elimination rule
Pair_inject.

The rule Pair_neq_0 asserts ⟨a, b⟩ ≠ ∅. This is a property of {{a}, {a, b}},
and need not hold for other encodings of ordered pairs. The non-standard ordered
pairs mentioned below satisfy ⟨∅; ∅⟩ = ∅.

The natural deduction rules SigmaI and SigmaE assert that Sigma(A,B) con-
sists of all pairs of the form ⟨x , y⟩, for x ∈ A and y ∈ B(x). The rule SigmaE2

merely states that ⟨a, b⟩ ∈ Sigma(A,B) implies a ∈ A and b ∈ B(a).
In addition, it is possible to use tuples as patterns in abstractions:

%<x,y>.t stands for split(%x y.t)

Nested patterns are translated recursively: %<x,y,z>.t ; %<x,<y,z>>.t ;

split(%x.%<y,z>.t) ; split(%x.split(%y z.t)). The reverse translation is
performed upon printing.

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 38

domainI <a,b>: r ==> a : domain(r)
domainE [| a : domain(r); !!y. <a,y>: r ==> P |] ==> P
domain_subset domain(Sigma(A,B)) <= A

rangeI <a,b>: r ==> b : range(r)
rangeE [| b : range(r); !!x. <x,b>: r ==> P |] ==> P
range_subset range(A*B) <= B

fieldI1 <a,b>: r ==> a : field(r)
fieldI2 <a,b>: r ==> b : field(r)
fieldCI (~ <c,a>:r ==> <a,b>: r) ==> a : field(r)

fieldE [| a : field(r);
!!x. <a,x>: r ==> P;
!!x. <x,a>: r ==> P

|] ==> P

field_subset field(A*A) <= A

Figure 3.16: Domain, range and field of a relation

imageI [| <a,b>: r; a:A |] ==> b : r‘‘A
imageE [| b: r‘‘A; !!x.[| <x,b>: r; x:A |] ==> P |] ==> P

vimageI [| <a,b>: r; b:B |] ==> a : r-‘‘B
vimageE [| a: r-‘‘B; !!x.[| <a,x>: r; x:B |] ==> P |] ==> P

Figure 3.17: Image and inverse image

! The translation between patterns and split is performed automatically by the
parser and printer. Thus the internal and external form of a term may differ, which

affects proofs. For example the term (%<x,y>.<y,x>)<a,b> requires the theorem split
to rewrite to <b,a>.

In addition to explicit λ-abstractions, patterns can be used in any variable
binding construct which is internally described by a λ-abstraction. Some impor-
tant examples are

Let: let pattern = t in u

Choice: THE pattern . P

Set operations: UN pattern:A. B

Comprehension: { pattern:A . P }

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 39

fun_is_rel f: Pi(A,B) ==> f <= Sigma(A,B)

apply_equality [| <a,b>: f; f: Pi(A,B) |] ==> f‘a = b
apply_equality2 [| <a,b>: f; <a,c>: f; f: Pi(A,B) |] ==> b=c

apply_type [| f: Pi(A,B); a:A |] ==> f‘a : B(a)
apply_Pair [| f: Pi(A,B); a:A |] ==> <a,f‘a>: f
apply_iff f: Pi(A,B) ==> <a,b>: f <-> a:A & f‘a = b

fun_extension [| f : Pi(A,B); g: Pi(A,D);
!!x. x:A ==> f‘x = g‘x |] ==> f=g

domain_type [| <a,b> : f; f: Pi(A,B) |] ==> a : A
range_type [| <a,b> : f; f: Pi(A,B) |] ==> b : B(a)

Pi_type [| f: A->C; !!x. x:A ==> f‘x: B(x) |] ==> f: Pi(A,B)
domain_of_fun f: Pi(A,B) ==> domain(f)=A
range_of_fun f: Pi(A,B) ==> f: A->range(f)

restrict a : A ==> restrict(f,A) ‘ a = f‘a
restrict_type [| !!x. x:A ==> f‘x: B(x) |] ==>

restrict(f,A) : Pi(A,B)

Figure 3.18: Functions

lamI a:A ==> <a,b(a)> : (lam x:A. b(x))
lamE [| p: (lam x:A. b(x)); !!x.[| x:A; p=<x,b(x)> |] ==> P

|] ==> P

lam_type [| !!x. x:A ==> b(x): B(x) |] ==> (lam x:A.b(x)) : Pi(A,B)

beta a : A ==> (lam x:A.b(x)) ‘ a = b(a)
eta f : Pi(A,B) ==> (lam x:A. f‘x) = f

Figure 3.19: λ-abstraction

3.5.5 Relations

Figure 3.16 presents rules involving relations, which are sets of ordered pairs. The
converse of a relation r is the set of all pairs ⟨y , x ⟩ such that ⟨x , y⟩ ∈ r ; if r is
a function, then converse(r) is its inverse. The rules for the domain operation,
namely domainI and domainE, assert that domain(r) consists of all x such that
r contains some pair of the form ⟨x , y⟩. The range operation is similar, and the
field of a relation is merely the union of its domain and range.

Figure 3.17 presents rules for images and inverse images. Note that these
operations are generalisations of range and domain, respectively. See the file
ZF/domrange.ML for derivations of the rules.

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 40

fun_empty 0: 0->0
fun_single {<a,b>} : {a} -> {b}

fun_disjoint_Un [| f: A->B; g: C->D; A Int C = 0 |] ==>
(f Un g) : (A Un C) -> (B Un D)

fun_disjoint_apply1 [| a:A; f: A->B; g: C->D; A Int C = 0 |] ==>
(f Un g)‘a = f‘a

fun_disjoint_apply2 [| c:C; f: A->B; g: C->D; A Int C = 0 |] ==>
(f Un g)‘c = g‘c

Figure 3.20: Constructing functions from smaller sets

3.5.6 Functions

Functions, represented by graphs, are notoriously difficult to reason about. The
file ZF/func.ML derives many rules, which overlap more than they ought. This
section presents the more important rules.

Figure 3.18 presents the basic properties of Pi(A,B), the generalized func-
tion space. For example, if f is a function and ⟨a, b⟩ ∈ f , then f ‘a = b
(apply_equality). Two functions are equal provided they have equal domains
and deliver equals results (fun_extension).

By Pi_type, a function typing of the form f ∈ A → C can be refined to
the dependent typing f ∈ ∏

x∈A B(x), given a suitable family of sets {B(x)}x∈A.
Conversely, by range_of_fun, any dependent typing can be flattened to yield a
function type of the form A → C ; here, C = range(f).

Among the laws for λ-abstraction, lamI and lamE describe the graph of the
generated function, while beta and eta are the standard conversions. We essen-
tially have a dependently-typed λ-calculus (Fig. 3.19).

Figure 3.20 presents some rules that can be used to construct functions ex-
plicitly. We start with functions consisting of at most one pair, and may form
the union of two functions provided their domains are disjoint.

3.6 Further developments

The next group of developments is complex and extensive, and only highlights
can be covered here. It involves many theories and ML files of proofs.

Figure 3.21 presents commutative, associative, distributive, and idempo-
tency laws of union and intersection, along with other equations. See file
ZF/equalities.ML.

Theory Bool defines {0, 1} as a set of booleans, with the usual operators
including a conditional (Fig. 3.22). Although ZF is a first-order theory, you can
obtain the effect of higher-order logic using bool-valued functions, for example.

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 41

Int_absorb A Int A = A
Int_commute A Int B = B Int A
Int_assoc (A Int B) Int C = A Int (B Int C)
Int_Un_distrib (A Un B) Int C = (A Int C) Un (B Int C)

Un_absorb A Un A = A
Un_commute A Un B = B Un A
Un_assoc (A Un B) Un C = A Un (B Un C)
Un_Int_distrib (A Int B) Un C = (A Un C) Int (B Un C)

Diff_cancel A-A = 0
Diff_disjoint A Int (B-A) = 0
Diff_partition A<=B ==> A Un (B-A) = B
double_complement [| A<=B; B<= C |] ==> (B - (C-A)) = A
Diff_Un A - (B Un C) = (A-B) Int (A-C)
Diff_Int A - (B Int C) = (A-B) Un (A-C)

Union_Un_distrib Union(A Un B) = Union(A) Un Union(B)
Inter_Un_distrib [| a:A; b:B |] ==>

Inter(A Un B) = Inter(A) Int Inter(B)

Int_Union_RepFun A Int Union(B) = (UN C:B. A Int C)

Un_Inter_RepFun b:B ==>
A Un Inter(B) = (INT C:B. A Un C)

SUM_Un_distrib1 (SUM x:A Un B. C(x)) =
(SUM x:A. C(x)) Un (SUM x:B. C(x))

SUM_Un_distrib2 (SUM x:C. A(x) Un B(x)) =
(SUM x:C. A(x)) Un (SUM x:C. B(x))

SUM_Int_distrib1 (SUM x:A Int B. C(x)) =
(SUM x:A. C(x)) Int (SUM x:B. C(x))

SUM_Int_distrib2 (SUM x:C. A(x) Int B(x)) =
(SUM x:C. A(x)) Int (SUM x:C. B(x))

Figure 3.21: Equalities

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 42

bool_def bool == {0,1}
cond_def cond(b,c,d) == if(b=1,c,d)
not_def not(b) == cond(b,0,1)
and_def a and b == cond(a,b,0)
or_def a or b == cond(a,1,b)
xor_def a xor b == cond(a,not(b),b)

bool_1I 1 : bool
bool_0I 0 : bool
boolE [| c: bool; c=1 ==> P; c=0 ==> P |] ==> P
cond_1 cond(1,c,d) = c
cond_0 cond(0,c,d) = d

Figure 3.22: The booleans

The constant 1 is translated to succ(0).
Theory Sum defines the disjoint union of two sets, with injections and a case

analysis operator (Fig. 3.23). Disjoint unions play a role in datatype definitions,
particularly when there is mutual recursion [35].

Theory QPair defines a notion of ordered pair that admits non-well-founded
tupling (Fig. 3.24). Such pairs are written <a;b>. It also defines the eliminator
qsplit, the converse operator qconverse, and the summation operator QSigma.
These are completely analogous to the corresponding versions for standard or-
dered pairs. The theory goes on to define a non-standard notion of disjoint sum
using non-standard pairs. All of these concepts satisfy the same properties as
their standard counterparts; in addition, <a;b> is continuous. The theory sup-
ports coinductive definitions, for example of infinite lists [40].

The Knaster-Tarski Theorem states that every monotone function over a com-
plete lattice has a fixedpoint. Theory Fixedpt proves the Theorem only for a
particular lattice, namely the lattice of subsets of a set (Fig. 3.25). The theory
defines least and greatest fixedpoint operators with corresponding induction and
coinduction rules. These are essential to many definitions that follow, including
the natural numbers and the transitive closure operator. The (co)inductive defi-
nition package also uses the fixedpoint operators [34]. See Davey and Priestley [9]
for more on the Knaster-Tarski Theorem and my paper [35] for discussion of the
Isabelle proofs.

Monotonicity properties are proved for most of the set-forming operations:
union, intersection, Cartesian product, image, domain, range, etc. These are
useful for applying the Knaster-Tarski Fixedpoint Theorem. The proofs them-
selves are trivial applications of Isabelle’s classical reasoner. See file ZF/mono.ML.

The theory Perm is concerned with permutations (bijections) and related con-
cepts. These include composition of relations, the identity relation, and three spe-
cialized function spaces: injective, surjective and bijective. Figure 3.26 displays
many of their properties that have been proved. These results are fundamental

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 43

symbol meta-type priority description
+ [i , i] ⇒ i Right 65 disjoint union operator

Inl Inr i ⇒ i injections
case [i ⇒ i , i ⇒ i , i] ⇒ i conditional for A + B

sum_def A+B == {0}*A Un {1}*B
Inl_def Inl(a) == <0,a>
Inr_def Inr(b) == <1,b>
case_def case(c,d,u) == split(%y z. cond(y, d(z), c(z)), u)

sum_InlI a : A ==> Inl(a) : A+B
sum_InrI b : B ==> Inr(b) : A+B

Inl_inject Inl(a)=Inl(b) ==> a=b
Inr_inject Inr(a)=Inr(b) ==> a=b
Inl_neq_Inr Inl(a)=Inr(b) ==> P

sumE2 u: A+B ==> (EX x. x:A & u=Inl(x)) | (EX y. y:B & u=Inr(y))

case_Inl case(c,d,Inl(a)) = c(a)
case_Inr case(c,d,Inr(b)) = d(b)

Figure 3.23: Disjoint unions

QPair_def <a;b> == a+b
qsplit_def qsplit(c,p) == THE y. EX a b. p=<a;b> & y=c(a,b)
qfsplit_def qfsplit(R,z) == EX x y. z=<x;y> & R(x,y)
qconverse_def qconverse(r) == {z. w:r, EX x y. w=<x;y> & z=<y;x>}
QSigma_def QSigma(A,B) == UN x:A. UN y:B(x). {<x;y>}

qsum_def A <+> B == ({0} <*> A) Un ({1} <*> B)
QInl_def QInl(a) == <0;a>
QInr_def QInr(b) == <1;b>
qcase_def qcase(c,d) == qsplit(%y z. cond(y, d(z), c(z)))

Figure 3.24: Non-standard pairs, products and sums

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 44

bnd_mono_def bnd_mono(D,h) ==
h(D)<=D & (ALL W X. W<=X --> X<=D --> h(W) <= h(X))

lfp_def lfp(D,h) == Inter({X: Pow(D). h(X) <= X})
gfp_def gfp(D,h) == Union({X: Pow(D). X <= h(X)})

lfp_lowerbound [| h(A) <= A; A<=D |] ==> lfp(D,h) <= A

lfp_subset lfp(D,h) <= D

lfp_greatest [| bnd_mono(D,h);
!!X. [| h(X) <= X; X<=D |] ==> A<=X

|] ==> A <= lfp(D,h)

lfp_Tarski bnd_mono(D,h) ==> lfp(D,h) = h(lfp(D,h))

induct [| a : lfp(D,h); bnd_mono(D,h);
!!x. x : h(Collect(lfp(D,h),P)) ==> P(x)

|] ==> P(a)

lfp_mono [| bnd_mono(D,h); bnd_mono(E,i);
!!X. X<=D ==> h(X) <= i(X)

|] ==> lfp(D,h) <= lfp(E,i)

gfp_upperbound [| A <= h(A); A<=D |] ==> A <= gfp(D,h)

gfp_subset gfp(D,h) <= D

gfp_least [| bnd_mono(D,h);
!!X. [| X <= h(X); X<=D |] ==> X<=A

|] ==> gfp(D,h) <= A

gfp_Tarski bnd_mono(D,h) ==> gfp(D,h) = h(gfp(D,h))

coinduct [| bnd_mono(D,h); a: X; X <= h(X Un gfp(D,h)); X <= D
|] ==> a : gfp(D,h)

gfp_mono [| bnd_mono(D,h); D <= E;
!!X. X<=D ==> h(X) <= i(X)

|] ==> gfp(D,h) <= gfp(E,i)

Figure 3.25: Least and greatest fixedpoints

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 45

symbol meta-type priority description
O [i , i] ⇒ i Right 60 composition (◦)

id i ⇒ i identity function
inj [i , i] ⇒ i injective function space

surj [i , i] ⇒ i surjective function space
bij [i , i] ⇒ i bijective function space

comp_def r O s == {xz : domain(s)*range(r) .
EX x y z. xz=<x,z> & <x,y>:s & <y,z>:r}

id_def id(A) == (lam x:A. x)
inj_def inj(A,B) == { f: A->B. ALL w:A. ALL x:A. f‘w=f‘x --> w=x }
surj_def surj(A,B) == { f: A->B . ALL y:B. EX x:A. f‘x=y }
bij_def bij(A,B) == inj(A,B) Int surj(A,B)

left_inverse [| f: inj(A,B); a: A |] ==> converse(f)‘(f‘a) = a
right_inverse [| f: inj(A,B); b: range(f) |] ==>

f‘(converse(f)‘b) = b

inj_converse_inj f: inj(A,B) ==> converse(f): inj(range(f), A)
bij_converse_bij f: bij(A,B) ==> converse(f): bij(B,A)

comp_type [| s<=A*B; r<=B*C |] ==> (r O s) <= A*C
comp_assoc (r O s) O t = r O (s O t)

left_comp_id r<=A*B ==> id(B) O r = r
right_comp_id r<=A*B ==> r O id(A) = r

comp_func [| g:A->B; f:B->C |] ==> (f O g):A->C
comp_func_apply [| g:A->B; f:B->C; a:A |] ==> (f O g)‘a = f‘(g‘a)

comp_inj [| g:inj(A,B); f:inj(B,C) |] ==> (f O g):inj(A,C)
comp_surj [| g:surj(A,B); f:surj(B,C) |] ==> (f O g):surj(A,C)
comp_bij [| g:bij(A,B); f:bij(B,C) |] ==> (f O g):bij(A,C)

left_comp_inverse f: inj(A,B) ==> converse(f) O f = id(A)
right_comp_inverse f: surj(A,B) ==> f O converse(f) = id(B)

bij_disjoint_Un
[| f: bij(A,B); g: bij(C,D); A Int C = 0; B Int D = 0 |] ==>
(f Un g) : bij(A Un C, B Un D)

restrict_bij [| f:inj(A,B); C<=A |] ==> restrict(f,C): bij(C, f‘‘C)

Figure 3.26: Permutations

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 46

to a treatment of equipollence and cardinality.
Theory Nat defines the natural numbers and mathematical induction, along

with a case analysis operator. The set of natural numbers, here called nat, is
known in set theory as the ordinal ω.

Theory Arith defines primitive recursion and goes on to develop arithmetic on
the natural numbers (Fig. 3.27). It defines addition, multiplication, subtraction,
division, and remainder. Many of their properties are proved: commutative,
associative and distributive laws, identity and cancellation laws, etc. The most
interesting result is perhaps the theorem a mod b + (a/b) × b = a. Division
and remainder are defined by repeated subtraction, which requires well-founded
rather than primitive recursion; the termination argument relies on the divisor’s
being non-zero.

Theory Univ defines a ‘universe’ univ(A), for constructing datatypes such as
trees. This set contains A and the natural numbers. Vitally, it is closed under
finite products: univ(A) × univ(A) ⊆ univ(A). This theory also defines the
cumulative hierarchy of axiomatic set theory, which traditionally is written Vα

for an ordinal α. The ‘universe’ is a simple generalization of Vω.
Theory QUniv defines a ‘universe’ quniv(A), for constructing codatatypes

such as streams. It is analogous to univ(A) (and is defined in terms of it) but is
closed under the non-standard product and sum.

Theory Finite (Figure 3.28) defines the finite set operator; Fin(A) is the
set of all finite sets over A. The theory employs Isabelle’s inductive definition
package, which proves various rules automatically. The induction rule shown is
stronger than the one proved by the package. The theory also defines the set of
all finite functions between two given sets.

Figure 3.29 presents the set of lists over A, list(A). The definition employs
Isabelle’s datatype package, which defines the introduction and induction rules
automatically, as well as the constructors and case operator (list_case). See
file ZF/List.ML. The file ZF/ListFn.thy proceeds to define structural recursion
and the usual list functions.

The constructions of the natural numbers and lists make use of a suite of
operators for handling recursive function definitions. I have described the devel-
opments in detail elsewhere [35]. Here is a brief summary:

• Theory Trancl defines the transitive closure of a relation (as a least fixed-
point).

• Theory WF proves the Well-Founded Recursion Theorem, using an elegant
approach of Tobias Nipkow. This theorem permits general recursive defini-
tions within set theory.

• Theory Ord defines the notions of transitive set and ordinal number. It
derives transfinite induction. A key definition is less than: i < j if and

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 47

symbol meta-type priority description
nat i set of natural numbers

nat_case [i , i ⇒ i , i] ⇒ i conditional for nat
rec [i , i , [i , i] ⇒ i] ⇒ i recursor for nat
#* [i , i] ⇒ i Left 70 multiplication

div [i , i] ⇒ i Left 70 division
mod [i , i] ⇒ i Left 70 modulus
#+ [i , i] ⇒ i Left 65 addition
#- [i , i] ⇒ i Left 65 subtraction

nat_def nat == lfp(lam r: Pow(Inf). {0} Un {succ(x). x:r}

nat_case_def nat_case(a,b,k) ==
THE y. k=0 & y=a | (EX x. k=succ(x) & y=b(x))

rec_def rec(k,a,b) ==
transrec(k, %n f. nat_case(a, %m. b(m, f‘m), n))

add_def m#+n == rec(m, n, %u v.succ(v))
diff_def m#-n == rec(n, m, %u v. rec(v, 0, %x y.x))
mult_def m#*n == rec(m, 0, %u v. n #+ v)
mod_def m mod n == transrec(m, %j f. if(j:n, j, f‘(j#-n)))
div_def m div n == transrec(m, %j f. if(j:n, 0, succ(f‘(j#-n))))

nat_0I 0 : nat
nat_succI n : nat ==> succ(n) : nat

nat_induct
[| n: nat; P(0); !!x. [| x: nat; P(x) |] ==> P(succ(x))
|] ==> P(n)

nat_case_0 nat_case(a,b,0) = a
nat_case_succ nat_case(a,b,succ(m)) = b(m)

rec_0 rec(0,a,b) = a
rec_succ rec(succ(m),a,b) = b(m, rec(m,a,b))

mult_type [| m:nat; n:nat |] ==> m #* n : nat
mult_0 0 #* n = 0
mult_succ succ(m) #* n = n #+ (m #* n)
mult_commute [| m:nat; n:nat |] ==> m #* n = n #* m
add_mult_dist [| m:nat; k:nat |] ==> (m #+ n) #* k = (m #* k) #+ (n #* k)
mult_assoc

[| m:nat; n:nat; k:nat |] ==> (m #* n) #* k = m #* (n #* k)
mod_quo_equality

[| 0:n; m:nat; n:nat |] ==> (m div n)#*n #+ m mod n = m

Figure 3.27: The natural numbers

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 48

Fin.emptyI 0 : Fin(A)
Fin.consI [| a: A; b: Fin(A) |] ==> cons(a,b) : Fin(A)

Fin_induct
[| b: Fin(A);

P(0);
!!x y. [| x: A; y: Fin(A); x~:y; P(y) |] ==> P(cons(x,y))

|] ==> P(b)

Fin_mono A<=B ==> Fin(A) <= Fin(B)
Fin_UnI [| b: Fin(A); c: Fin(A) |] ==> b Un c : Fin(A)
Fin_UnionI C : Fin(Fin(A)) ==> Union(C) : Fin(A)
Fin_subset [| c<=b; b: Fin(A) |] ==> c: Fin(A)

Figure 3.28: The finite set operator

only if i and j are both ordinals and i ∈ j . As a special case, it includes
less than on the natural numbers.

• Theory Epsilon derives ε-induction and ε-recursion, which are generalisa-
tions of transfinite induction and recursion. It also defines rank(x), which
is the least ordinal α such that x is constructed at stage α of the cumulative
hierarchy (thus x ∈ Vα+1).

Other important theories lead to a theory of cardinal numbers. They have
not yet been written up anywhere. Here is a summary:

• Theory Rel defines the basic properties of relations, such as (ir)reflexivity,
(a)symmetry, and transitivity.

• Theory EquivClass develops a theory of equivalence classes, not using the
Axiom of Choice.

• Theory Order defines partial orderings, total orderings and wellorderings.

• Theory OrderArith defines orderings on sum and product sets. These
can be used to define ordinal arithmetic and have applications to cardinal
arithmetic.

• Theory OrderType defines order types. Every wellordering is equivalent to
a unique ordinal, which is its order type.

• Theory Cardinal defines equipollence and cardinal numbers.

• Theory CardinalArith defines cardinal addition and multiplication, and
proves their elementary laws. It proves that there is no greatest cardinal.
It also proves a deep result, namely κ⊗ κ = κ for every infinite cardinal κ;
see Kunen [19, page 29]. None of these results assume the Axiom of Choice,
which complicates their proofs considerably.

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 49

list i ⇒ i lists over some set
list_case [i , [i , i] ⇒ i , i] ⇒ i conditional for list(A)
list_rec [i , i , [i , i , i] ⇒ i] ⇒ i recursor for list(A)

map [i ⇒ i , i] ⇒ i mapping functional
length i ⇒ i length of a list

rev i ⇒ i reverse of a list
@ [i , i] ⇒ i Right 60 append for lists

flat i ⇒ i append of list of lists

list_rec_def list_rec(l,c,h) ==
Vrec(l, %l g.list_case(c, %x xs. h(x, xs, g‘xs), l))

map_def map(f,l) == list_rec(l, 0, %x xs r. <f(x), r>)
length_def length(l) == list_rec(l, 0, %x xs r. succ(r))
app_def xs@ys == list_rec(xs, ys, %x xs r. <x,r>)
rev_def rev(l) == list_rec(l, 0, %x xs r. r @ <x,0>)
flat_def flat(ls) == list_rec(ls, 0, %l ls r. l @ r)

NilI Nil : list(A)
ConsI [| a: A; l: list(A) |] ==> Cons(a,l) : list(A)

List.induct
[| l: list(A);

P(Nil);
!!x y. [| x: A; y: list(A); P(y) |] ==> P(Cons(x,y))

|] ==> P(l)

Cons_iff Cons(a,l)=Cons(a’,l’) <-> a=a’ & l=l’
Nil_Cons_iff ~ Nil=Cons(a,l)

list_mono A<=B ==> list(A) <= list(B)

list_rec_Nil list_rec(Nil,c,h) = c
list_rec_Cons list_rec(Cons(a,l), c, h) = h(a, l, list_rec(l,c,h))

map_ident l: list(A) ==> map(%u.u, l) = l
map_compose l: list(A) ==> map(h, map(j,l)) = map(%u.h(j(u)), l)
map_app_distrib xs: list(A) ==> map(h, xs@ys) = map(h,xs) @ map(h,ys)
map_type

[| l: list(A); !!x. x: A ==> h(x): B |] ==> map(h,l) : list(B)
map_flat

ls: list(list(A)) ==> map(h, flat(ls)) = flat(map(map(h),ls))

Figure 3.29: Lists

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 50

The following developments involve the Axiom of Choice (AC):

• Theory AC asserts the Axiom of Choice and proves some simple equivalent
forms.

• Theory Zorn proves Hausdorff’s Maximal Principle, Zorn’s Lemma and the
Wellordering Theorem, following Abrial and Laffitte [1].

• Theory Cardinal_AC uses AC to prove simplified theorems about the cardi-
nals. It also proves a theorem needed to justify infinitely branching datatype
declarations: if κ is an infinite cardinal and |X (α)| ≤ κ for all α < κ then
|∪α<κ X (α)| ≤ κ.

• Theory InfDatatype proves theorems to justify infinitely branching data-
types. Arbitrary index sets are allowed, provided their cardinalities have an
upper bound. The theory also justifies some unusual cases of finite branch-
ing, involving the finite powerset operator and the finite function space
operator.

3.7 Simplification rules

ZF does not merely inherit simplification from FOL, but modifies it extensively.
File ZF/simpdata.ML contains the details.

The extraction of rewrite rules takes set theory primitives into account.
It can strip bounded universal quantifiers from a formula; for example,
∀x ∈ A . f (x) = g(x) yields the conditional rewrite rule x ∈ A =⇒ f (x) = g(x).
Given a ∈ {x ∈ A . P(x)} it extracts rewrite rules from a ∈ A and P(a). It can
also break down a ∈ A ∩ B and a ∈ A − B .

The default simplification set contains congruence rules for all the binding
operators of ZF. It contains all the conversion rules, such as fst and snd, as well
as the rewrites shown in Fig. 3.30. See the file ZF/simpdata.ML for a fuller list.

3.8 The examples directories

Directory HOL/IMP contains a mechanised version of a semantic equivalence proof
taken from Winskel [50]. It formalises the denotational and operational semantics
of a simple while-language, then proves the two equivalent. It contains several
datatype and inductive definitions, and demonstrates their use.

The directory ZF/ex contains further developments in ZF set theory. Here is
an overview; see the files themselves for more details. I describe much of this
material in other publications [33, 35, 34].

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 51

a ∈ ∅ ↔ ⊥
a ∈ A ∪ B ↔ a ∈ A ∨ a ∈ B

a ∈ A ∩ B ↔ a ∈ A ∧ a ∈ B

a ∈ A − B ↔ a ∈ A ∧ ¬(a ∈ B)

⟨a, b⟩ ∈ Sigma(A,B) ↔ a ∈ A ∧ b ∈ B(a)

a ∈ Collect(A,P) ↔ a ∈ A ∧ P(a)

(∀x ∈ ∅ . P(x)) ↔ ⊤
(∀x ∈ A . ⊤) ↔ ⊤

Figure 3.30: Some rewrite rules for set theory

• File misc.ML contains miscellaneous examples such as Cantor’s Theorem,
the Schröder-Bernstein Theorem and the ‘Composition of homomorphisms’
challenge [4].

• Theory Ramsey proves the finite exponent 2 version of Ramsey’s Theorem,
following Basin and Kaufmann’s presentation [3].

• Theory Integ develops a theory of the integers as equivalence classes of
pairs of natural numbers.

• Theory Primrec develops some computation theory. It inductively defines
the set of primitive recursive functions and presents a proof that Acker-
mann’s function is not primitive recursive.

• Theory Primes defines the Greatest Common Divisor of two natural num-
bers and and the “divides” relation.

• Theory Bin defines a datatype for two’s complement binary integers, then
proves rewrite rules to perform binary arithmetic. For instance, 1359 ×
−2468 = −3354012 takes under 14 seconds.

• Theory BT defines the recursive data structure bt(A), labelled binary trees.

• Theory Term defines a recursive data structure for terms and term lists.
These are simply finite branching trees.

• Theory TF defines primitives for solving mutually recursive equations over
sets. It constructs sets of trees and forests as an example, including induc-
tion and recursion rules that handle the mutual recursion.

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 52

• Theory Prop proves soundness and completeness of propositional logic [35].
This illustrates datatype definitions, inductive definitions, structural induc-
tion and rule induction.

• Theory ListN inductively defines the lists of n elements [30].

• Theory Acc inductively defines the accessible part of a relation [30].

• Theory Comb defines the datatype of combinators and inductively defines
contraction and parallel contraction. It goes on to prove the Church-Rosser
Theorem. This case study follows Camilleri and Melham [5].

• Theory LList defines lazy lists and a coinduction principle for proving
equations between them.

3.9 A proof about powersets

To demonstrate high-level reasoning about subsets, let us prove the equation
Pow(A) ∩ Pow(B) = Pow(A ∩ B). Compared with first-order logic, set theory
involves a maze of rules, and theorems have many different proofs. Attempting
other proofs of the theorem might be instructive. This proof exploits the lattice
properties of intersection. It also uses the monotonicity of the powerset operation,
from ZF/mono.ML:

Pow_mono A<=B ==> Pow(A) <= Pow(B)

We enter the goal and make the first step, which breaks the equation into two
inclusions by extensionality:

goal thy "Pow(A Int B) = Pow(A) Int Pow(B)";
Level 0

Pow(A Int B) = Pow(A) Int Pow(B)

1. Pow(A Int B) = Pow(A) Int Pow(B)

by (resolve_tac [equalityI] 1);
Level 1

Pow(A Int B) = Pow(A) Int Pow(B)

1. Pow(A Int B) <= Pow(A) Int Pow(B)

2. Pow(A) Int Pow(B) <= Pow(A Int B)

Both inclusions could be tackled straightforwardly using subsetI. A shorter proof
results from noting that intersection forms the greatest lower bound:

by (resolve_tac [Int_greatest] 1);
Level 2

Pow(A Int B) = Pow(A) Int Pow(B)

1. Pow(A Int B) <= Pow(A)

2. Pow(A Int B) <= Pow(B)

3. Pow(A) Int Pow(B) <= Pow(A Int B)

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 53

Subgoal 1 follows by applying the monotonicity of Pow to A ∩ B ⊆ A; subgoal 2
follows similarly:

by (resolve_tac [Int_lower1 RS Pow_mono] 1);
Level 3

Pow(A Int B) = Pow(A) Int Pow(B)

1. Pow(A Int B) <= Pow(B)

2. Pow(A) Int Pow(B) <= Pow(A Int B)

by (resolve_tac [Int_lower2 RS Pow_mono] 1);
Level 4

Pow(A Int B) = Pow(A) Int Pow(B)

1. Pow(A) Int Pow(B) <= Pow(A Int B)

We are left with the opposite inclusion, which we tackle in the straightforward
way:

by (resolve_tac [subsetI] 1);
Level 5

Pow(A Int B) = Pow(A) Int Pow(B)

1. !!x. x : Pow(A) Int Pow(B) ==> x : Pow(A Int B)

The subgoal is to show x ∈ Pow(A∩B) assuming x ∈ Pow(A)∩Pow(B); eliminating
this assumption produces two subgoals. The rule IntE treats the intersection like
a conjunction instead of unfolding its definition.

by (eresolve_tac [IntE] 1);
Level 6

Pow(A Int B) = Pow(A) Int Pow(B)

1. !!x. [| x : Pow(A); x : Pow(B) |] ==> x : Pow(A Int B)

The next step replaces the Pow by the subset relation (⊆).

by (resolve_tac [PowI] 1);
Level 7

Pow(A Int B) = Pow(A) Int Pow(B)

1. !!x. [| x : Pow(A); x : Pow(B) |] ==> x <= A Int B

We perform the same replacement in the assumptions. This is a good demon-
stration of the tactic dresolve_tac:

by (REPEAT (dresolve_tac [PowD] 1));
Level 8

Pow(A Int B) = Pow(A) Int Pow(B)

1. !!x. [| x <= A; x <= B |] ==> x <= A Int B

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 54

The assumptions are that x is a lower bound of both A and B , but A ∩ B is the
greatest lower bound:

by (resolve_tac [Int_greatest] 1);
Level 9

Pow(A Int B) = Pow(A) Int Pow(B)

1. !!x. [| x <= A; x <= B |] ==> x <= A

2. !!x. [| x <= A; x <= B |] ==> x <= B

To conclude the proof, we clear up the trivial subgoals:

by (REPEAT (assume_tac 1));
Level 10

Pow(A Int B) = Pow(A) Int Pow(B)

No subgoals!

We could have performed this proof in one step by applying Blast_tac. Let us
go back to the start:

choplev 0;
Level 0

Pow(A Int B) = Pow(A) Int Pow(B)

1. Pow(A Int B) = Pow(A) Int Pow(B)

by (Blast_tac 1);
Depth = 0

Depth = 1

Depth = 2

Depth = 3

Level 1

Pow(A Int B) = Pow(A) Int Pow(B)

No subgoals!

Past researchers regarded this as a difficult proof, as indeed it is if all the symbols
are replaced by their definitions.

3.10 Monotonicity of the union operator

For another example, we prove that general union is monotonic: C ⊆ D implies∪
(C) ⊆ ∪

(D). To begin, we tackle the inclusion using subsetI:

val [prem] = goal thy "C<=D ==> Union(C) <= Union(D)";
Level 0

Union(C) <= Union(D)

1. Union(C) <= Union(D)

val prem = "C <= D [C <= D]" : thm

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 55

by (resolve_tac [subsetI] 1);
Level 1

Union(C) <= Union(D)

1. !!x. x : Union(C) ==> x : Union(D)

Big union is like an existential quantifier — the occurrence in the assumptions
must be eliminated early, since it creates parameters.

by (eresolve_tac [UnionE] 1);
Level 2

Union(C) <= Union(D)

1. !!x B. [| x : B; B : C |] ==> x : Union(D)

Now we may apply UnionI, which creates an unknown involving the parame-
ters. To show x ∈ ∪

(D) it suffices to show that x belongs to some element,
say ?B2(x ,B), of D .

by (resolve_tac [UnionI] 1);
Level 3

Union(C) <= Union(D)

1. !!x B. [| x : B; B : C |] ==> ?B2(x,B) : D

2. !!x B. [| x : B; B : C |] ==> x : ?B2(x,B)

Combining subsetD with the premise C ⊆ D yields ?a ∈ C =⇒ ?a ∈ D , which
reduces subgoal 1:

by (resolve_tac [prem RS subsetD] 1);
Level 4

Union(C) <= Union(D)

1. !!x B. [| x : B; B : C |] ==> ?B2(x,B) : C

2. !!x B. [| x : B; B : C |] ==> x : ?B2(x,B)

The rest is routine. Note how ?B2(x ,B) is instantiated.

by (assume_tac 1);
Level 5

Union(C) <= Union(D)

1. !!x B. [| x : B; B : C |] ==> x : B

by (assume_tac 1);
Level 6

Union(C) <= Union(D)

No subgoals!

Again, Blast_tac can prove the theorem in one step, provided we somehow sup-
ply it with prem. We can add prem RS subsetD to the claset as an introduction

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 56

rule:

by (blast_tac (!claset addIs [prem RS subsetD]) 1);
Depth = 0

Depth = 1

Depth = 2

Level 1

Union(C) <= Union(D)

No subgoals!

As an alternative, we could add premise to the assumptions, either using
cut_facts_tac or by stating the original goal using !!:

goal thy "!!C D. C<=D ==> Union(C) <= Union(D)";
Level 0

Union(C) <= Union(D)

1. !!C D. C <= D ==> Union(C) <= Union(D)

by (Blast_tac 1);

The file ZF/equalities.ML has many similar proofs. Reasoning about general
intersection can be difficult because of its anomalous behaviour on the empty set.
However, Blast_tac copes well with these. Here is a typical example, borrowed
from Devlin [10, page 12]:

a:C ==> (INT x:C. A(x) Int B(x)) = (INT x:C.A(x)) Int (INT x:C.B(x))

In traditional notation this is

a ∈ C =⇒
∩

x∈C

(
A(x) ∩ B(x)

)
=

(∩
x∈C

A(x)
)
∩

(∩
x∈C

B(x)
)

3.11 Low-level reasoning about functions

The derived rules lamI, lamE, lam_type, beta and eta support reasoning about
functions in a λ-calculus style. This is generally easier than regarding functions
as sets of ordered pairs. But sometimes we must look at the underlying repre-
sentation, as in the following proof of fun_disjoint_apply1. This states that
if f and g are functions with disjoint domains A and C , and if a ∈ A, then
(f ∪ g)‘a = f ‘a:

val prems = goal thy
"[| a:A; f: A->B; g: C->D; A Int C = 0 |] ==> \

\ (f Un g)‘a = f‘a";
Level 0

(f Un g) ‘ a = f ‘ a

1. (f Un g) ‘ a = f ‘ a

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 57

Isabelle has produced the output above; the ml top-level now echoes the binding
of prems.

val prems = ["a : A [a : A]",

"f : A -> B [f : A -> B]",

"g : C -> D [g : C -> D]",

"A Int C = 0 [A Int C = 0]"] : thm list

Using apply_equality, we reduce the equality to reasoning about ordered pairs.
The second subgoal is to verify that f ∪ g is a function.

by (resolve_tac [apply_equality] 1);
Level 1

(f Un g) ‘ a = f ‘ a

1. <a,f ‘ a> : f Un g

2. f Un g : (PROD x:?A. ?B(x))

We must show that the pair belongs to f or g ; by UnI1 we choose f :

by (resolve_tac [UnI1] 1);
Level 2

(f Un g) ‘ a = f ‘ a

1. <a,f ‘ a> : f

2. f Un g : (PROD x:?A. ?B(x))

To show ⟨a, f ‘a⟩ ∈ f we use apply_Pair, which is essentially the converse of
apply_equality:

by (resolve_tac [apply_Pair] 1);
Level 3

(f Un g) ‘ a = f ‘ a

1. f : (PROD x:?A2. ?B2(x))

2. a : ?A2

3. f Un g : (PROD x:?A. ?B(x))

Using the premises f ∈ A → B and a ∈ A, we solve the two subgoals from
apply_Pair. Recall that a Π-set is merely a generalized function space, and
observe that ?A2 is instantiated to A.

by (resolve_tac prems 1);
Level 4

(f Un g) ‘ a = f ‘ a

1. a : A

2. f Un g : (PROD x:?A. ?B(x))

by (resolve_tac prems 1);
Level 5

(f Un g) ‘ a = f ‘ a

1. f Un g : (PROD x:?A. ?B(x))

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 58

To construct functions of the form f ∪ g , we apply fun_disjoint_Un:

by (resolve_tac [fun_disjoint_Un] 1);
Level 6

(f Un g) ‘ a = f ‘ a

1. f : ?A3 -> ?B3

2. g : ?C3 -> ?D3

3. ?A3 Int ?C3 = 0

The remaining subgoals are instances of the premises. Again, observe how un-
knowns are instantiated:

by (resolve_tac prems 1);
Level 7

(f Un g) ‘ a = f ‘ a

1. g : ?C3 -> ?D3

2. A Int ?C3 = 0

by (resolve_tac prems 1);
Level 8

(f Un g) ‘ a = f ‘ a

1. A Int C = 0

by (resolve_tac prems 1);
Level 9

(f Un g) ‘ a = f ‘ a

No subgoals!

See the files ZF/func.ML and ZF/WF.ML for more examples of reasoning about
functions.

Chapter 4

Higher-Order Logic

The theory HOL implements higher-order logic. It is based on Gordon’s hol sys-
tem [16], which itself is based on Church’s original paper [6]. Andrews’s book [2]
is a full description of the original Church-style higher-order logic. Experience
with the hol system has demonstrated that higher-order logic is widely appli-
cable in many areas of mathematics and computer science, not just hardware
verification, hol’s original raison d’être. It is weaker than ZF set theory but
for most applications this does not matter. If you prefer ml to Lisp, you will
probably prefer HOL to ZF.

The syntax of HOL1 follows λ-calculus and functional programming. Function
application is curried. To apply the function f of type τ1 ⇒ τ2 ⇒ τ3 to the
arguments a and b in HOL, you simply write f a b. There is no ‘apply’ operator
as in ZF. Note that f (a, b) means “f applied to the pair (a, b)” in HOL. We write
ordered pairs as (a, b), not ⟨a, b⟩ as in ZF.

HOL has a distinct feel, compared with ZF and CTT. It identifies object-level
types with meta-level types, taking advantage of Isabelle’s built-in type checker.
It identifies object-level functions with meta-level functions, so it uses Isabelle’s
operations for abstraction and application.

These identifications allow Isabelle to support HOL particularly nicely, but they
also mean that HOL requires more sophistication from the user — in particular, an
understanding of Isabelle’s type system. Beginners should work with show_types

(or even show_sorts) set to true.

4.1 Syntax

Figure 4.1 lists the constants (including infixes and binders), while Fig. 4.2
presents the grammar of higher-order logic. Note that a~=b is translated to
¬(a = b).

! HOL has no if-and-only-if connective; logical equivalence is expressed using equality.
But equality has a high priority, as befitting a relation, while if-and-only-if typically

1Earlier versions of Isabelle’s HOL used a different syntax. Ancient releases of Isabelle in-
cluded still another version of HOL, with explicit type inference rules [39]. This version no longer
exists, but ZF supports a similar style of reasoning.

59

CHAPTER 4. HIGHER-ORDER LOGIC 60

name meta-type description
Trueprop bool ⇒ prop coercion to prop

Not bool ⇒ bool negation (¬)
True bool tautology (⊤)
False bool absurdity (⊥)

If [bool , α, α] ⇒ α conditional
Let [α, α ⇒ β] ⇒ β let binder

Constants

symbol name meta-type description
@ Eps (α ⇒ bool) ⇒ α Hilbert description (ε)

! or ALL All (α ⇒ bool) ⇒ bool universal quantifier (∀)
? or EX Ex (α ⇒ bool) ⇒ bool existential quantifier (∃)

?! or EX! Ex1 (α ⇒ bool) ⇒ bool unique existence (∃!)
LEAST Least (α :: ord ⇒ bool) ⇒ α least element

Binders

symbol meta-type priority description
o [β ⇒ γ, α ⇒ β] ⇒ (α ⇒ γ) Left 55 composition (◦)
= [α, α] ⇒ bool Left 50 equality (=)
< [α :: ord , α] ⇒ bool Left 50 less than (<)

<= [α :: ord , α] ⇒ bool Left 50 less than or equals (≤)
& [bool , bool] ⇒ bool Right 35 conjunction (∧)
| [bool , bool] ⇒ bool Right 30 disjunction (∨)

--> [bool , bool] ⇒ bool Right 25 implication (→)

Infixes

Figure 4.1: Syntax of HOL

CHAPTER 4. HIGHER-ORDER LOGIC 61

term = expression of class term
| @ id . formula
| let id = term; . . . ; id = term in term
| if formula then term else term
| LEAST id . formula

formula = expression of type bool
| term = term
| term ~= term
| term < term
| term <= term
| ~ formula
| formula & formula
| formula | formula
| formula --> formula
| ! id id∗ . formula | ALL id id∗ . formula
| ? id id∗ . formula | EX id id∗ . formula
| ?! id id∗ . formula | EX! id id∗ . formula

Figure 4.2: Full grammar for HOL

has the lowest priority. Thus, ¬¬P = P abbreviates ¬¬(P = P) and not (¬¬P) = P .
When using = to mean logical equivalence, enclose both operands in parentheses.

4.1.1 Types and classes

The universal type class of higher-order terms is called term. By default, explicit
type variables have class term. In particular the equality symbol and quantifiers
are polymorphic over class term.

The type of formulae, bool , belongs to class term; thus, formulae are terms.
The built-in type fun, which constructs function types, is overloaded with arity
(term, term) term. Thus, σ ⇒ τ belongs to class term if σ and τ do, allowing
quantification over functions.

HOL offers various methods for introducing new types. See §4.5 and §4.6.
Theory Ord defines the syntactic class ord of order signatures; the relations

< and ≤ are polymorphic over this class, as are the functions mono, min and
max, and the LEAST operator. Ord also defines a subclass order of ord which
axiomatizes partially ordered types (w.r.t. ≤).

Three other syntactic type classes — plus, minus and times — permit over-
loading of the operators +, - and *. In particular, - is instantiated for set differ-
ence and subtraction on natural numbers.

CHAPTER 4. HIGHER-ORDER LOGIC 62

If you state a goal containing overloaded functions, you may need to include
type constraints. Type inference may otherwise make the goal more polymorphic
than you intended, with confusing results. For example, the variables i , j and k
in the goal i ≤ j =⇒ i ≤ j + k have type α :: {ord , plus}, although you may have
expected them to have some numeric type, e.g. nat . Instead you should have
stated the goal as (i :: nat) ≤ j =⇒ i ≤ j + k , which causes all three variables to
have type nat .

! If resolution fails for no obvious reason, try setting show_types to true, causing
Isabelle to display types of terms. Possibly set show_sorts to true as well, causing

Isabelle to display type classes and sorts.
Where function types are involved, Isabelle’s unification code does not guar-

antee to find instantiations for type variables automatically. Be prepared to use
res_inst_tac instead of resolve_tac, possibly instantiating type variables. Setting
Unify.trace_types to true causes Isabelle to report omitted search paths during
unification.

4.1.2 Binders

Hilbert’s description operator εx . P [x] stands for some x satisfying P , if such
exists. Since all terms in HOL denote something, a description is always mean-
ingful, but we do not know its value unless P defines it uniquely. We may write
descriptions as Eps(λx . P [x]) or use the syntax @x.P [x].

Existential quantification is defined by

∃x . P x ≡ P(εx . P x).

The unique existence quantifier, ∃!x .P , is defined in terms of ∃ and ∀. An Isabelle
binder, it admits nested quantifications. For instance, ∃!x y . P x y abbreviates
∃!x .∃!y .P x y ; note that this does not mean that there exists a unique pair (x , y)
satisfying P x y .

Quantifiers have two notations. As in Gordon’s hol system, HOL uses ! and ?

to stand for ∀ and ∃. The existential quantifier must be followed by a space; thus
?x is an unknown, while ? x.f x=y is a quantification. Isabelle’s usual notation
for quantifiers, ALL and EX, is also available. Both notations are accepted for
input. The ml reference HOL_quantifiers governs the output notation. If set
to true, then ! and ? are displayed; this is the default. If set to false, then ALL

and EX are displayed.
If τ is a type of class ord, P a formula and x a variable of type τ , then

the term LEAST x . P [x] is defined to be the least (w.r.t. ≤) x such that P x
holds (see Fig. 4.4). The definition uses Hilbert’s ε choice operator, so Least is
always meaningful, but may yield nothing useful in case there is not a unique

CHAPTER 4. HIGHER-ORDER LOGIC 63

refl t = (t::’a)
subst [| s = t; P s |] ==> P (t::’a)
ext (!!x::’a. (f x :: ’b) = g x) ==> (%x.f x) = (%x.g x)
impI (P ==> Q) ==> P-->Q
mp [| P-->Q; P |] ==> Q
iff (P-->Q) --> (Q-->P) --> (P=Q)
selectI P(x::’a) ==> P(@x.P x)
True_or_False (P=True) | (P=False)

Figure 4.3: The HOL rules

least element satisfying P .2

All these binders have priority 10.

! The low priority of binders means that they need to be enclosed in parenthesis when
they occur in the context of other operations. For example, instead of P ∧ ∀x . Q

you need to write P ∧ (∀x . Q).

4.1.3 The let and case constructions

Local abbreviations can be introduced by a let construct whose syntax appears
in Fig. 4.2. Internally it is translated into the constant Let. It can be expanded
by rewriting with its definition, Let_def.

HOL also defines the basic syntax

case e of c1 => e1 | . . . | cn => en

as a uniform means of expressing case constructs. Therefore case and of are
reserved words. Initially, this is mere syntax and has no logical meaning. By
declaring translations, you can cause instances of the case construct to denote
applications of particular case operators. This is what happens automatically for
each datatype definition (see §4.6).

! Both if and case constructs have as low a priority as quantifiers, which re-
quires additional enclosing parentheses in the context of most other operations.

For example, instead of f x = if . . . then . . . else . . . you need to write f x =
(if . . . then . . . else . . .).

4.2 Rules of inference

Figure 4.3 shows the primitive inference rules of HOL, with their ml names. Some
of the rules deserve additional comments:

2Class ord does not require much of its instances, so ≤ need not be a well-ordering, not even
an order at all!

CHAPTER 4. HIGHER-ORDER LOGIC 64

True_def True == ((%x::bool.x)=(%x.x))
All_def All == (%P. P = (%x.True))
Ex_def Ex == (%P. P(@x.P x))
False_def False == (!P.P)
not_def not == (%P. P-->False)
and_def op & == (%P Q. !R. (P-->Q-->R) --> R)
or_def op | == (%P Q. !R. (P-->R) --> (Q-->R) --> R)
Ex1_def Ex1 == (%P. ? x. P x & (! y. P y --> y=x))

o_def op o == (%(f::’b=>’c) g x::’a. f(g x))
if_def If P x y ==

(%P x y. @z::’a.(P=True --> z=x) & (P=False --> z=y))
Let_def Let s f == f s
Least_def Least P == @x. P(x) & (ALL y. P(y) --> x <= y)"

Figure 4.4: The HOL definitions

ext expresses extensionality of functions.

iff asserts that logically equivalent formulae are equal.

selectI gives the defining property of the Hilbert ε-operator. It is a form of the
Axiom of Choice. The derived rule select_equality (see below) is often
easier to use.

True_or_False makes the logic classical.3

HOL follows standard practice in higher-order logic: only a few connectives
are taken as primitive, with the remainder defined obscurely (Fig. 4.4). Gordon’s
hol system expresses the corresponding definitions [16, page 270] using object-
equality (=), which is possible because equality in higher-order logic may equate
formulae and even functions over formulae. But theory HOL, like all other Isabelle
theories, uses meta-equality (==) for definitions.

! The definitions above should never be expanded and are shown for completeness
only. Instead users should reason in terms of the derived rules shown below or,

better still, using high-level tactics (see §4.4).

Some of the rules mention type variables; for example, refl mentions the
type variable ’a. This allows you to instantiate type variables explicitly by
calling res_inst_tac.

Some derived rules are shown in Figures 4.5 and 4.6, with their ml names.
These include natural rules for the logical connectives, as well as sequent-style
elimination rules for conjunctions, implications, and universal quantifiers.

3In fact, the ε-operator already makes the logic classical, as shown by Diaconescu; see
Paulson [39] for details.

CHAPTER 4. HIGHER-ORDER LOGIC 65

sym s=t ==> t=s
trans [| r=s; s=t |] ==> r=t
ssubst [| t=s; P s |] ==> P t
box_equals [| a=b; a=c; b=d |] ==> c=d
arg_cong x = y ==> f x = f y
fun_cong f = g ==> f x = g x
cong [| f = g; x = y |] ==> f x = g y
not_sym t ~= s ==> s ~= t

Equality

TrueI True
FalseE False ==> P

conjI [| P; Q |] ==> P&Q
conjunct1 [| P&Q |] ==> P
conjunct2 [| P&Q |] ==> Q
conjE [| P&Q; [| P; Q |] ==> R |] ==> R

disjI1 P ==> P|Q
disjI2 Q ==> P|Q
disjE [| P | Q; P ==> R; Q ==> R |] ==> R

notI (P ==> False) ==> ~ P
notE [| ~ P; P |] ==> R
impE [| P-->Q; P; Q ==> R |] ==> R

Propositional logic

iffI [| P ==> Q; Q ==> P |] ==> P=Q
iffD1 [| P=Q; P |] ==> Q
iffD2 [| P=Q; Q |] ==> P
iffE [| P=Q; [| P --> Q; Q --> P |] ==> R |] ==> R

Logical equivalence

Figure 4.5: Derived rules for HOL

CHAPTER 4. HIGHER-ORDER LOGIC 66

allI (!!x. P x) ==> !x. P x
spec !x.P x ==> P x
allE [| !x.P x; P x ==> R |] ==> R
all_dupE [| !x.P x; [| P x; !x.P x |] ==> R |] ==> R

exI P x ==> ? x. P x
exE [| ? x. P x; !!x. P x ==> Q |] ==> Q

ex1I [| P a; !!x. P x ==> x=a |] ==> ?! x. P x
ex1E [| ?! x.P x; !!x. [| P x; ! y. P y --> y=x |] ==> R

|] ==> R

select_equality [| P a; !!x. P x ==> x=a |] ==> (@x.P x) = a

Quantifiers and descriptions

ccontr (~P ==> False) ==> P
classical (~P ==> P) ==> P
excluded_middle ~P | P

disjCI (~Q ==> P) ==> P|Q
exCI (! x. ~ P x ==> P a) ==> ? x.P x
impCE [| P-->Q; ~ P ==> R; Q ==> R |] ==> R
iffCE [| P=Q; [| P;Q |] ==> R; [| ~P; ~Q |] ==> R |] ==> R
notnotD ~~P ==> P
swap ~P ==> (~Q ==> P) ==> Q

Classical logic

if_P P ==> (if P then x else y) = x
if_not_P ~ P ==> (if P then x else y) = y
expand_if P(if Q then x else y) = ((Q --> P x) & (~Q --> P y))

Conditionals

Figure 4.6: More derived rules

CHAPTER 4. HIGHER-ORDER LOGIC 67

Note the equality rules: ssubst performs substitution in backward proofs,
while box_equals supports reasoning by simplifying both sides of an equation.

The following simple tactics are occasionally useful:

strip_tac i applies allI and impI repeatedly to remove all outermost universal
quantifiers and implications from subgoal i .

case_tac "P" i performs case distinction on P for subgoal i : the latter is re-
placed by two identical subgoals with the added assumptions P and ¬P ,
respectively.

4.3 A formulation of set theory

Historically, higher-order logic gives a foundation for Russell and Whitehead’s
theory of classes. Let us use modern terminology and call them sets, but note
that these sets are distinct from those of ZF set theory, and behave more like ZF

classes.

• Sets are given by predicates over some type σ. Types serve to define uni-
verses for sets, but type checking is still significant.

• There is a universal set (for each type). Thus, sets have complements, and
may be defined by absolute comprehension.

• Although sets may contain other sets as elements, the containing set must
have a more complex type.

Finite unions and intersections have the same behaviour in HOL as they do in ZF.
In HOL the intersection of the empty set is well-defined, denoting the universal
set for the given type.

4.3.1 Syntax of set theory

HOL’s set theory is called Set. The type α set is essentially the same as α ⇒ bool .
The new type is defined for clarity and to avoid complications involving function
types in unification. The isomorphisms between the two types are declared ex-
plicitly. They are very natural: Collect maps α ⇒ bool to α set , while op :

maps in the other direction (ignoring argument order).
Figure 4.7 lists the constants, infixes, and syntax translations. Figure 4.8

presents the grammar of the new constructs. Infix operators include union and
intersection (A ∪ B and A ∩ B), the subset and membership relations, and the
image operator ‘‘. Note that a~:b is translated to ¬(a ∈ b).

CHAPTER 4. HIGHER-ORDER LOGIC 68

name meta-type description
{} α set the empty set

insert [α, α set] ⇒ α set insertion of element
Collect (α ⇒ bool) ⇒ α set comprehension

Compl α set ⇒ α set complement
INTER [α set , α ⇒ β set] ⇒ β set intersection over a set
UNION [α set , α ⇒ β set] ⇒ β set union over a set
Inter (α set)set ⇒ α set set of sets intersection
Union (α set)set ⇒ α set set of sets union

Pow α set ⇒ (α set)set powerset

range (α ⇒ β) ⇒ β set range of a function

Ball Bex [α set , α ⇒ bool] ⇒ bool bounded quantifiers

Constants

symbol name meta-type priority description
INT INTER1 (α ⇒ β set) ⇒ β set 10 intersection over a type
UN UNION1 (α ⇒ β set) ⇒ β set 10 union over a type

Binders

symbol meta-type priority description
‘‘ [α ⇒ β, α set] ⇒ β set Left 90 image

Int [α set , α set] ⇒ α set Left 70 intersection (∩)
Un [α set , α set] ⇒ α set Left 65 union (∪)
: [α, α set] ⇒ bool Left 50 membership (∈)

<= [α set , α set] ⇒ bool Left 50 subset (⊆)

Infixes

Figure 4.7: Syntax of the theory Set

CHAPTER 4. HIGHER-ORDER LOGIC 69

external internal description
a ~: b ~(a : b) non-membership

{a1, . . .} insert a1 . . . {} finite set
{x.P [x]} Collect(λx . P [x]) comprehension

INT x:A.B [x] INTER A λx . B [x] intersection
UN x:A.B [x] UNION A λx . B [x] union

! x:A.P [x] or ALL x:A.P [x] Ball A λx . P [x] bounded ∀
? x:A.P [x] or EX x:A.P [x] Bex A λx . P [x] bounded ∃

Translations

term = other terms. . .
| {}

| { term (,term)∗ }

| { id . formula }

| term ‘‘ term
| term Int term
| term Un term
| INT id:term . term
| UN id:term . term
| INT id id∗ . term
| UN id id∗ . term

formula = other formulae. . .
| term : term
| term ~: term
| term <= term
| ! id:term . formula | ALL id:term . formula
| ? id:term . formula | EX id:term . formula

Full Grammar

Figure 4.8: Syntax of the theory Set (continued)

CHAPTER 4. HIGHER-ORDER LOGIC 70

The {a1, . . .} notation abbreviates finite sets constructed in the obvious man-
ner using insert and {}:

{a, b, c} ≡ insert a (insert b (insert c {}))

The set {x.P [x]} consists of all x (of suitable type) that satisfy P [x], where
P [x] is a formula that may contain free occurrences of x . This syntax expands to
Collect(λx .P [x]). It defines sets by absolute comprehension, which is impossible
in ZF; the type of x implicitly restricts the comprehension.

The set theory defines two bounded quantifiers:

∀x ∈ A . P [x] abbreviates ∀x . x ∈ A → P [x]

∃x ∈ A . P [x] abbreviates ∃x . x ∈ A ∧ P [x]

The constants Ball and Bex are defined accordingly. Instead of Ball A P and
Bex A P we may write ! x:A.P [x] and ? x:A.P [x]. Isabelle’s usual quan-
tifier symbols, ALL and EX, are also accepted for input. As with the primitive
quantifiers, the ml reference HOL_quantifiers specifies which notation to use
for output.

Unions and intersections over sets, namely
∪

x∈A B [x] and
∩

x∈A B [x], are writ-
ten UN x:A.B [x] and INT x:A.B [x].

Unions and intersections over types, namely
∪

x B [x] and
∩

x B [x], are writ-
ten UN x.B [x] and INT x.B [x]. They are equivalent to the previous union and
intersection operators when A is the universal set.

The operators
∪

A and
∩

A act upon sets of sets. They are not binders, but
are equal to

∪
x∈A x and

∩
x∈A x , respectively.

4.3.2 Axioms and rules of set theory

Figure 4.9 presents the rules of theory Set. The axioms mem_Collect_eq and
Collect_mem_eq assert that the functions Collect and op : are isomorphisms.
Of course, op : also serves as the membership relation.

All the other axioms are definitions. They include the empty set, bounded
quantifiers, unions, intersections, complements and the subset relation. They also
include straightforward constructions on functions: image (‘‘) and range.

Figures 4.10 and 4.11 present derived rules. Most are obvious and resemble
rules of Isabelle’s ZF set theory. Certain rules, such as subsetCE, bexCI and
UnCI, are designed for classical reasoning; the rules subsetD, bexI, Un1 and Un2

are not strictly necessary but yield more natural proofs. Similarly, equalityCE
supports classical reasoning about extensionality, after the fashion of iffCE. See
the file HOL/Set.ML for proofs pertaining to set theory.

Figure 4.12 presents lattice properties of the subset relation. Unions form
least upper bounds; non-empty intersections form greatest lower bounds. Rea-
soning directly about subsets often yields clearer proofs than reasoning about the
membership relation. See the file HOL/subset.ML.

CHAPTER 4. HIGHER-ORDER LOGIC 71

mem_Collect_eq (a : {x.P x}) = P a
Collect_mem_eq {x.x:A} = A

empty_def {} == {x.False}
insert_def insert a B == {x.x=a} Un B
Ball_def Ball A P == ! x. x:A --> P x
Bex_def Bex A P == ? x. x:A & P x
subset_def A <= B == ! x:A. x:B
Un_def A Un B == {x.x:A | x:B}
Int_def A Int B == {x.x:A & x:B}
set_diff_def A - B == {x.x:A & x~:B}
Compl_def Compl A == {x. ~ x:A}
INTER_def INTER A B == {y. ! x:A. y: B x}
UNION_def UNION A B == {y. ? x:A. y: B x}
INTER1_def INTER1 B == INTER {x.True} B
UNION1_def UNION1 B == UNION {x.True} B
Inter_def Inter S == (INT x:S. x)
Union_def Union S == (UN x:S. x)
Pow_def Pow A == {B. B <= A}
image_def f‘‘A == {y. ? x:A. y=f x}
range_def range f == {y. ? x. y=f x}

Figure 4.9: Rules of the theory Set

Figure 4.13 presents many common set equalities. They include commutative,
associative and distributive laws involving unions, intersections and complements.
For a complete listing see the file HOL/equalities.ML.

! Blast_tac proves many set-theoretic theorems automatically. Hence you seldom
need to refer to the theorems above.

4.3.3 Properties of functions

Figure 4.14 presents a theory of simple properties of functions. Note that inv f
uses Hilbert’s ε to yield an inverse of f . See the file HOL/Fun.ML for a complete
listing of the derived rules. Reasoning about function composition (the opera-
tor o) and the predicate surj is done simply by expanding the definitions.

There is also a large collection of monotonicity theorems for constructions on
sets in the file HOL/mono.ML.

4.4 Generic packages

HOL instantiates most of Isabelle’s generic packages, making available the simpli-
fier and the classical reasoner.

CHAPTER 4. HIGHER-ORDER LOGIC 72

CollectI [| P a |] ==> a : {x.P x}
CollectD [| a : {x.P x} |] ==> P a
CollectE [| a : {x.P x}; P a ==> W |] ==> W

ballI [| !!x. x:A ==> P x |] ==> ! x:A. P x
bspec [| ! x:A. P x; x:A |] ==> P x
ballE [| ! x:A. P x; P x ==> Q; ~ x:A ==> Q |] ==> Q

bexI [| P x; x:A |] ==> ? x:A. P x
bexCI [| ! x:A. ~ P x ==> P a; a:A |] ==> ? x:A.P x
bexE [| ? x:A. P x; !!x. [| x:A; P x |] ==> Q |] ==> Q

Comprehension and Bounded quantifiers

subsetI (!!x.x:A ==> x:B) ==> A <= B
subsetD [| A <= B; c:A |] ==> c:B
subsetCE [| A <= B; ~ (c:A) ==> P; c:B ==> P |] ==> P

subset_refl A <= A
subset_trans [| A<=B; B<=C |] ==> A<=C

equalityI [| A <= B; B <= A |] ==> A = B
equalityD1 A = B ==> A<=B
equalityD2 A = B ==> B<=A
equalityE [| A = B; [| A<=B; B<=A |] ==> P |] ==> P

equalityCE [| A = B; [| c:A; c:B |] ==> P;
[| ~ c:A; ~ c:B |] ==> P

|] ==> P

The subset and equality relations

Figure 4.10: Derived rules for set theory

CHAPTER 4. HIGHER-ORDER LOGIC 73

emptyE a : {} ==> P

insertI1 a : insert a B
insertI2 a : B ==> a : insert b B
insertE [| a : insert b A; a=b ==> P; a:A ==> P |] ==> P

ComplI [| c:A ==> False |] ==> c : Compl A
ComplD [| c : Compl A |] ==> ~ c:A

UnI1 c:A ==> c : A Un B
UnI2 c:B ==> c : A Un B
UnCI (~c:B ==> c:A) ==> c : A Un B
UnE [| c : A Un B; c:A ==> P; c:B ==> P |] ==> P

IntI [| c:A; c:B |] ==> c : A Int B
IntD1 c : A Int B ==> c:A
IntD2 c : A Int B ==> c:B
IntE [| c : A Int B; [| c:A; c:B |] ==> P |] ==> P

UN_I [| a:A; b: B a |] ==> b: (UN x:A. B x)
UN_E [| b: (UN x:A. B x); !!x.[| x:A; b:B x |] ==> R |] ==> R

INT_I (!!x. x:A ==> b: B x) ==> b : (INT x:A. B x)
INT_D [| b: (INT x:A. B x); a:A |] ==> b: B a
INT_E [| b: (INT x:A. B x); b: B a ==> R; ~ a:A ==> R |] ==> R

UnionI [| X:C; A:X |] ==> A : Union C
UnionE [| A : Union C; !!X.[| A:X; X:C |] ==> R |] ==> R

InterI [| !!X. X:C ==> A:X |] ==> A : Inter C
InterD [| A : Inter C; X:C |] ==> A:X
InterE [| A : Inter C; A:X ==> R; ~ X:C ==> R |] ==> R

PowI A<=B ==> A: Pow B
PowD A: Pow B ==> A<=B

imageI [| x:A |] ==> f x : f‘‘A
imageE [| b : f‘‘A; !!x.[| b=f x; x:A |] ==> P |] ==> P

rangeI f x : range f
rangeE [| b : range f; !!x.[| b=f x |] ==> P |] ==> P

Figure 4.11: Further derived rules for set theory

CHAPTER 4. HIGHER-ORDER LOGIC 74

Union_upper B:A ==> B <= Union A
Union_least [| !!X. X:A ==> X<=C |] ==> Union A <= C

Inter_lower B:A ==> Inter A <= B
Inter_greatest [| !!X. X:A ==> C<=X |] ==> C <= Inter A

Un_upper1 A <= A Un B
Un_upper2 B <= A Un B
Un_least [| A<=C; B<=C |] ==> A Un B <= C

Int_lower1 A Int B <= A
Int_lower2 A Int B <= B
Int_greatest [| C<=A; C<=B |] ==> C <= A Int B

Figure 4.12: Derived rules involving subsets

Int_absorb A Int A = A
Int_commute A Int B = B Int A
Int_assoc (A Int B) Int C = A Int (B Int C)
Int_Un_distrib (A Un B) Int C = (A Int C) Un (B Int C)

Un_absorb A Un A = A
Un_commute A Un B = B Un A
Un_assoc (A Un B) Un C = A Un (B Un C)
Un_Int_distrib (A Int B) Un C = (A Un C) Int (B Un C)

Compl_disjoint A Int (Compl A) = {x.False}
Compl_partition A Un (Compl A) = {x.True}
double_complement Compl(Compl A) = A
Compl_Un Compl(A Un B) = (Compl A) Int (Compl B)
Compl_Int Compl(A Int B) = (Compl A) Un (Compl B)

Union_Un_distrib Union(A Un B) = (Union A) Un (Union B)
Int_Union A Int (Union B) = (UN C:B. A Int C)
Un_Union_image (UN x:C.(A x) Un (B x)) = Union(A‘‘C) Un Union(B‘‘C)

Inter_Un_distrib Inter(A Un B) = (Inter A) Int (Inter B)
Un_Inter A Un (Inter B) = (INT C:B. A Un C)
Int_Inter_image (INT x:C.(A x) Int (B x)) = Inter(A‘‘C) Int Inter(B‘‘C)

Figure 4.13: Set equalities

CHAPTER 4. HIGHER-ORDER LOGIC 75

name meta-type description
inj surj (α ⇒ β) ⇒ bool injective/surjective
inj_onto [α ⇒ β, α set] ⇒ bool injective over subset

inv (α ⇒ β) ⇒ (β ⇒ α) inverse function

inj_def inj f == ! x y. f x=f y --> x=y
surj_def surj f == ! y. ? x. y=f x
inj_onto_def inj_onto f A == !x:A. !y:A. f x=f y --> x=y
inv_def inv f == (%y. @x. f(x)=y)

Figure 4.14: Theory Fun

4.4.1 Simplification and substitution

The simplifier is available in HOL. Tactics such as Asm_simp_tac and
Full_simp_tac use the default simpset (!simpset), which works for most pur-
poses. A quite minimal simplification set for higher-order logic is HOL_ss, even
more frugal is HOL_basic_ss. Equality (=), which also expresses logical equiv-
alence, may be used for rewriting. See the file HOL/simpdata.ML for a complete
listing of the basic simplification rules.

See the Reference Manual for details of substitution and simplification.

! Reducing a = b ∧ P(a) to a = b ∧ P(b) is sometimes advantageous. The left part
of a conjunction helps in simplifying the right part. This effect is not available

by default: it can be slow. It can be obtained by including conj_cong in a simpset,
addcongs [conj_cong].

If the simplifier cannot use a certain rewrite rule — either because of non-
termination or because its left-hand side is too flexible — then you might try
stac:

stac thm i , where thm is of the form lhs = rhs , replaces in subgoal i instances
of lhs by corresponding instances of rhs . In case of multiple instances of
lhs in subgoal i , backtracking may be necessary to select the desired ones.

If thm is a conditional equality, the instantiated condition becomes an ad-
ditional (first) subgoal.

HOL provides the tactic hyp_subst_tac, which substitutes for an equality
throughout a subgoal and its hypotheses. This tactic uses HOL’s general substi-
tution rule.

Case splitting

HOL also provides convenient means for case splitting during rewriting. Goals
containing a subterm of the form if b then...else... often require a case

CHAPTER 4. HIGHER-ORDER LOGIC 76

distinction on b. This is expressed by the theorem expand_if:

?P(if ?b then ?x else ?y) = ((?b → ?P(?x)) ∧ (¬?b → ?P(?y))) (∗)

For example, a simple instance of (∗) is

x ∈ (if x ∈ A then A else {x}) = ((x ∈ A → x ∈ A) ∧ (x /∈ A → x ∈ {x}))

Because (∗) is too general as a rewrite rule for the simplifier (the left-hand side
is not a higher-order pattern in the sense of the Reference Manual), there is a
special infix function addsplits (analogous to addsimps) of type simpset * thm

list -> simpset that adds rules such as (∗) to a simpset, as in

by(simp_tac (!simpset addsplits [expand_if]) 1);

The effect is that after each round of simplification, one occurrence of if is split
acording to expand_if, until all occurences of if have been eliminated.

In general, addsplits accepts rules of the form

?P(c ?x1 . . . ?xn) = rhs

where c is a constant and rhs is arbitrary. Note that (∗) is of the right form be-
cause internally the left-hand side is ?P(If ?b ?x ?y). Important further examples
are splitting rules for case expressions (see §4.5.3 and §4.6.1).

4.4.2 Classical reasoning

HOL derives classical introduction rules for ∨ and ∃, as well as classical elimination
rules for → and ↔, and the swap rule; recall Fig. 4.6 above.

The classical reasoner is installed. Tactics such as Blast_tac and Best_tac

use the default claset (!claset), which works for most purposes. Named clasets
include prop_cs, which includes the propositional rules, and HOL_cs, which also
includes quantifier rules. See the file HOL/cladata.ML for lists of the classical
rules, and the Reference Manual for more discussion of classical proof methods.

4.5 Types

This section describes HOL’s basic predefined types (α× β, α + β, nat and α list)
and ways for introducing new types in general. The most important type con-
struction, the datatype, is treated separately in §4.6.

4.5.1 Product and sum types

Theory Prod (Fig. 4.15) defines the product type α × β, with the ordered pair
syntax (a, b). General tuples are simulated by pairs nested to the right:

CHAPTER 4. HIGHER-ORDER LOGIC 77

symbol meta-type description
Pair [α, β] ⇒ α × β ordered pairs (a, b)
fst α × β ⇒ α first projection
snd α × β ⇒ β second projection

split [[α, β] ⇒ γ, α × β] ⇒ γ generalized projection
Sigma [α set , α ⇒ β set] ⇒ (α × β)set general sum of sets

Sigma_def Sigma A B == UN x:A. UN y:B x. {(x,y)}

Pair_eq ((a,b) = (a’,b’)) = (a=a’ & b=b’)
Pair_inject [| (a, b) = (a’,b’); [| a=a’; b=b’ |] ==> R |] ==> R
PairE [| !!x y. p = (x,y) ==> Q |] ==> Q

fst_conv fst (a,b) = a
snd_conv snd (a,b) = b
surjective_pairing p = (fst p,snd p)

split split c (a,b) = c a b
expand_split R(split c p) = (! x y. p = (x,y) --> R(c x y))

SigmaI [| a:A; b:B a |] ==> (a,b) : Sigma A B
SigmaE [| c:Sigma A B; !!x y.[| x:A; y:B x; c=(x,y) |] ==> P |] ==> P

Figure 4.15: Type α × β

CHAPTER 4. HIGHER-ORDER LOGIC 78

external internal
τ1 × . . . × τn τ1 × (. . . (τn−1 × τn) . . .)
(t1, . . . , tn) (t1, (. . . , (tn−1, tn) . . .)

In addition, it is possible to use tuples as patterns in abstractions:

%(x,y).t stands for split(%x y.t)

Nested patterns are also supported. They are translated stepwise: %(x,y,z).t
; %(x,(y,z)).t ; split(%x.%(y,z).t) ; split(%x.split(%y z.t)). The
reverse translation is performed upon printing.

! The translation between patterns and split is performed automatically by the
parser and printer. Thus the internal and external form of a term may differ, which

can affects proofs. For example the term (%(x,y).(y,x))(a,b) requires the theorem
split (which is in the default simpset) to rewrite to (b,a).

In addition to explicit λ-abstractions, patterns can be used in any variable
binding construct which is internally described by a λ-abstraction. Some impor-
tant examples are

Let: let pattern = t in u

Quantifiers: ! pattern:A. P

Choice: @ pattern . P

Set operations: UN pattern:A. B

Sets: { pattern . P }

There is a simple tactic which supports reasoning about patterns:

split_all_tac i replaces in subgoal i all !!-quantified variables of product type
by individual variables for each component. A simple example:

1. !!p. (%(x,y,z). (x, y, z)) p = p

by(split_all_tac 1);
1. !!x xa ya. (%(x,y,z). (x, y, z)) (x, xa, ya) = (x, xa, ya)

Theory Prod also introduces the degenerate product type unit which contains
only a single element named () with the property

unit_eq u = ()

Theory Sum (Fig. 4.16) defines the sum type α + β which associates to the
right and has a lower priority than ∗: τ1 + τ2 + τ3 ∗ τ4 means τ1 + (τ2 + (τ3 ∗ τ4)).

The definition of products and sums in terms of existing types is not shown.
The constructions are fairly standard and can be found in the respective theory
files.

CHAPTER 4. HIGHER-ORDER LOGIC 79

symbol meta-type description
Inl α ⇒ α + β first injection
Inr β ⇒ α + β second injection

sum_case [α ⇒ γ, β ⇒ γ, α + β] ⇒ γ conditional

Inl_not_Inr Inl a ~= Inr b

inj_Inl inj Inl
inj_Inr inj Inr

sumE [| !!x. P(Inl x); !!y. P(Inr y) |] ==> P s

sum_case_Inl sum_case f g (Inl x) = f x
sum_case_Inr sum_case f g (Inr x) = g x

surjective_sum sum_case (%x. f(Inl x)) (%y. f(Inr y)) s = f s
expand_sum_case R(sum_case f g s) = ((! x. s = Inl(x) --> R(f(x))) &

(! y. s = Inr(y) --> R(g(y))))

Figure 4.16: Type α + β

symbol meta-type priority description
0 nat zero

Suc nat ⇒ nat successor function
* [nat ,nat] ⇒ nat Left 70 multiplication

div [nat ,nat] ⇒ nat Left 70 division
mod [nat ,nat] ⇒ nat Left 70 modulus
+ [nat ,nat] ⇒ nat Left 65 addition
- [nat ,nat] ⇒ nat Left 65 subtraction

Constants and infixes

nat_induct [| P 0; !!n. P n ==> P(Suc n) |] ==> P n

Suc_not_Zero Suc m ~= 0
inj_Suc inj Suc
n_not_Suc_n n~=Suc n

Basic properties

Figure 4.17: The type of natural numbers, nat

CHAPTER 4. HIGHER-ORDER LOGIC 80

0+n = n
(Suc m)+n = Suc(m+n)

m-0 = m
0-n = n
Suc(m)-Suc(n) = m-n

0*n = 0
Suc(m)*n = n + m*n

mod_less m<n ==> m mod n = m
mod_geq [| 0<n; ~m<n |] ==> m mod n = (m-n) mod n

div_less m<n ==> m div n = 0
div_geq [| 0<n; ~m<n |] ==> m div n = Suc((m-n) div n)

Figure 4.18: Recursion equations for the arithmetic operators

4.5.2 The type of natural numbers, nat

The theory NatDef defines the natural numbers in a roundabout but traditional
way. The axiom of infinity postulates a type ind of individuals, which is non-
empty and closed under an injective operation. The natural numbers are induc-
tively generated by choosing an arbitrary individual for 0 and using the injective
operation to take successors. This is a least fixedpoint construction. For details
see the file NatDef.thy.

Type nat is an instance of class ord, which makes the overloaded functions of
this class (esp. < and <=, but also min, max and LEAST) available on nat . Theory
Nat builds on NatDef and shows that <= is a partial order, so nat is also an
instance of class order.

Theory Arith develops arithmetic on the natural numbers. It defines addition,
multiplication and subtraction. Theory Divides defines division, remainder and
the “divides” relation. The numerous theorems proved include commutative,
associative, distributive, identity and cancellation laws. See Figs. 4.17 and 4.18.
The recursion equations for the operators +, - and * on nat are part of the default
simpset.

Functions on nat can be defined by primitive or well-founded recursion; see
§4.7. A simple example is addition. Here, op + is the name of the infix operator +,
following the standard convention.

primrec "op +" nat
" 0 + n = n"
"Suc m + n = Suc(m + n)"

There is also a case-construct of the form

case e of 0 => a | Suc m => b

CHAPTER 4. HIGHER-ORDER LOGIC 81

Note that Isabelle insists on precisely this format; you may not even change
the order of the two cases. Both primrec and case are realized by a recursion
operator nat_rec, the details of which can be found in theory NatDef.

Tactic induct_tac "n" i performs induction on variable n in subgoal i using
theorem nat_induct. There is also the derived theorem less_induct:

[| !!n. [| ! m. m<n --> P m |] ==> P n |] ==> P n

Reasoning about arithmetic inequalities can be tedious. A minimal amount
of automation is provided by the tactic trans_tac of type int -> tactic that
deals with simple inequalities. Note that it only knows about 0, Suc, < and <=.
The following goals are all solved by trans_tac 1:

1. ... ==> m <= Suc(Suc m)

1. [| ... i <= j ... Suc j <= k ... |] ==> i < k

1. [| ... Suc m <= n ... ~ m < n ... |] ==> ...

For a complete description of the limitations of the tactic and how to avoid some
of them, see the comments at the start of the file Provers/nat_transitive.ML.

If trans_tac fails you, try to find relevant arithmetic results in the library.
The theory NatDef contains theorems about < and <=, the theory Arith contains
theorems about +, - and *, and theory Divides contains theorems about div

and mod. Use the find-functions to locate them (see the Reference Manual).

4.5.3 The type constructor for lists, list

Figure 4.19 presents the theory List: the basic list operations with their types
and syntax. Type α list is defined as a datatype with the constructors [] and #.
As a result the generic structural induction and case analysis tactics induct tac

and exhaust tac also become available for lists. A case construct of the form

case e of [] => a | x#xs => b

is defined by translation. For details see §4.6. There is also a case splitting rule
split_list_case

P(case e of [] => a | x#xs => f x xs) =
((e = [] → P(a)) ∧ (∀x xs . e = x#xs → P(f x xs)))

which can be fed to addsplits just like expand_if (see §4.4.1).
List provides a basic library of list processing functions defined by primitive

recursion (see §4.7.1). The recursion equations are shown in Fig. 4.20.

4.5.4 Introducing new types

The HOL-methodology dictates that all extensions to a theory should be defi-
nitional. The type definition mechanism that meets this criterion is typedef.

CHAPTER 4. HIGHER-ORDER LOGIC 82

symbol meta-type priority description
[] α list empty list
[α, α list] ⇒ α list Right 65 list constructor

null α list ⇒ bool emptiness test
hd α list ⇒ α head
tl α list ⇒ α list tail

last α list ⇒ α last element
butlast α list ⇒ α list drop last element

@ [α list , α list] ⇒ α list Left 65 append
map (α ⇒ β) ⇒ (α list ⇒ β list) apply to all

filter (α ⇒ bool) ⇒ (α list ⇒ α list) filter functional
set α list ⇒ α set elements
mem [α, α list] ⇒ bool Left 55 membership

foldl (β ⇒ α ⇒ β) ⇒ β ⇒ α list ⇒ β iteration
concat (α list)list ⇒ α list concatenation

rev α list ⇒ α list reverse
length α list ⇒ nat length

nth nat ⇒ α list ⇒ α indexing
take, drop nat ⇒ α list ⇒ α list take or drop a prefix
takeWhile,
dropWhile (α ⇒ bool) ⇒ α list ⇒ α list take or drop a prefix

Constants and infixes

external internal description
[x1, . . ., xn] x1 # · · · # xn # [] finite list

[x:l. P] filter (λx .P) l list comprehension

Translations

Figure 4.19: The theory List

CHAPTER 4. HIGHER-ORDER LOGIC 83

null [] = True
null (x#xs) = False

hd (x#xs) = x
tl (x#xs) = xs
tl [] = []

[] @ ys = ys
(x#xs) @ ys = x # xs @ ys

map f [] = []
map f (x#xs) = f x # map f xs

filter P [] = []
filter P (x#xs) = (if P x then x#filter P xs else filter P xs)

set [] = {}
set (x#xs) = insert x (set xs)

x mem [] = False
x mem (y#ys) = (if y=x then True else x mem ys)

foldl f a [] = a
foldl f a (x#xs) = foldl f (f a x) xs

concat([]) = []
concat(x#xs) = x @ concat(xs)

rev([]) = []
rev(x#xs) = rev(xs) @ [x]

length([]) = 0
length(x#xs) = Suc(length(xs))

nth 0 xs = hd xs
nth (Suc n) xs = nth n (tl xs)

take n [] = []
take n (x#xs) = (case n of 0 => [] | Suc(m) => x # take m xs)

drop n [] = []
drop n (x#xs) = (case n of 0 => x#xs | Suc(m) => drop m xs)

takeWhile P [] = []
takeWhile P (x#xs) = (if P x then x#takeWhile P xs else [])

dropWhile P [] = []
dropWhile P (x#xs) = (if P x then dropWhile P xs else xs)

Figure 4.20: Recursions equations for list processing functions

CHAPTER 4. HIGHER-ORDER LOGIC 84

Note that type synonyms, which are inherited from Pure and described elsewhere,
are just syntactic abbreviations that have no logical meaning.

! Types in HOL must be non-empty; otherwise the quantifier rules would be unsound,
because ∃x . x = x is a theorem [39, §7].

A type definition identifies the new type with a subset of an existing type.
More precisely, the new type is defined by exhibiting an existing type τ , a
set A :: τ set , and a theorem of the form x : A. Thus A is a non-empty subset
of τ , and the new type denotes this subset. New functions are defined that es-
tablish an isomorphism between the new type and the subset. If type τ involves
type variables α1, . . . , αn , then the type definition creates a type constructor
(α1, . . . , αn)ty rather than a particular type.

typedef

typedef
�� ���

� (
����name)

����
�
�

type =
����set witness

type

typevarlist name �
� (

����infix)
����

�
�

set

string

witness

�
� (

����id)
����

�
�

Figure 4.21: Syntax of type definitions

The syntax for type definitions is shown in Fig. 4.21. For the definition of
‘typevarlist’ and ‘infix’ see the appendix of the Reference Manual . The remaining
nonterminals have the following meaning:

type: the new type constructor (α1, . . . , αn)ty with optional infix annotation.

name: an alphanumeric name T for the type constructor ty , in case ty is a
symbolic name. Defaults to ty .

CHAPTER 4. HIGHER-ORDER LOGIC 85

set: the representing subset A.

witness: name of a theorem of the form a : A proving non-emptiness. It can be
omitted in case Isabelle manages to prove non-emptiness automatically.

If all context conditions are met (no duplicate type variables in ‘typevarlist’, no
extra type variables in ‘set’, and no free term variables in ‘set’), the following
components are added to the theory:

• a type ty :: (term, . . . , term)term

• constants

T :: τ set

Rep T :: (α1, . . . , αn)ty ⇒ τ

Abs T :: τ ⇒ (α1, . . . , αn)ty

• a definition and three axioms

T def T ≡ A
Rep T Rep T x ∈ T
Rep T inverse Abs T (Rep T x) = x
Abs T inverse y ∈ T =⇒ Rep T (Abs T y) = y

stating that (α1, . . . , αn)ty is isomorphic to A by Rep T and its inverse
Abs T .

Below are two simple examples of HOL type definitions. Non-emptiness is proved
automatically here.

typedef unit = "{True}"

typedef (prod)
(’a, ’b) "*" (infixr 20)

= "{f . EX (a::’a) (b::’b). f = (%x y. x = a & y = b)}"

Type definitions permit the introduction of abstract data types in a safe way,
namely by providing models based on already existing types. Given some abstract
axiomatic description P of a type, this involves two steps:

1. Find an appropriate type τ and subset A which has the desired properties
P , and make a type definition based on this representation.

2. Prove that P holds for ty by lifting P from the representation.

You can now forget about the representation and work solely in terms of the
abstract properties P .

CHAPTER 4. HIGHER-ORDER LOGIC 86

! If you introduce a new type (constructor) ty axiomatically, i.e. by declaring the
type and its operations and by stating the desired axioms, you should make sure

the type has a non-empty model. You must also have a clause

arities ty :: (term, . . ., term) term

in your theory file to tell Isabelle that ty is in class term, the class of all HOL types.

4.6 Datatype declarations

Inductive datatypes, similar to those of ml, frequently appear in non-trivial ap-
plications of HOL. In principle, such types could be defined by hand via typedef

(see §4.5.4), but this would be far too tedious. The datatype definition package
of HOL automates such chores. It generates freeness theorems and induction rules
from a very simple description of the new type provided by the user.

4.6.1 Basics

The general HOL datatype definition is of the following form:

datatype (α1, . . . , αn) t = C1 τ11 . . . τ1k1 | . . . | Cm τm1 . . . τmkm

where αi are type variables, Ci are distinct constructor names and τij are types.
The latter may be one of the following:

• type variables α1, . . . , αn ,

• types (β1, . . . , βl) t ′ where t ′ is a previously declared type constructor or
type synonym and {β1, . . . , βl} ⊆ {α1, . . . , αn},

• the newly defined type (α1, . . . , αn) t .

Recursive occurences of (α1, . . . , αn) t are quite restricted. To ensure that the new
type is non-empty, at least one constructor must consist of only non-recursive type
components. If you would like one of the τij to be a complex type expression τ
you need to declare a new type synonym syn = τ first and use syn in place of τ .
Of course this does not work if τ mentions the recursive type itself, thus ruling
out problematic cases like datatype t = C (t ⇒ t), but also unproblematic
ones like datatype t = C (t list).

The constructors are automatically defined as functions of their respective
type:

Cj :: [τj1, . . . , τjkj] ⇒ (α1, . . . , αn)t

These functions have certain freeness properties — they are distinct:

Ci x1 . . . xki ̸= Cj y1 . . . ykj for all i ̸= j .

CHAPTER 4. HIGHER-ORDER LOGIC 87

and they are injective:

(Cj x1 . . . xkj = Cj y1 . . . ykj) = (x1 = y1 ∧ . . . ∧ xkj = ykj)

Because the number of inequalities is quadratic in the number of constructors, a
different representation is used if there are 7 or more of them. In that case every
constructor term is mapped to a natural number:

t ord (Ci x1 . . . xki) = i − 1

Then distinctness of constructor terms is expressed by:

t ord x ̸= t ord y =⇒ x ̸= y .

Generally, the following structural induction rule is provided:∧
x1 . . . xk1 . [[P xr11 ; . . . ;P xr1l1

]] =⇒ P (C1 x1 . . . xk1)
...∧

x1 . . . xkm . [[P xrm1 ; . . . ;P xrmlm
]] =⇒ P (Cm x1 . . . xkm)

P x

where {rj1, . . . , rjlj } = {i ∈ {1, . . . kj} | τji = (α1, . . . , αn)t} =: Recj , i.e. the
property P can be assumed for all arguments of the recursive type.

For convenience, the following additional constructions are predefined for each
datatype.

The case construct

The type comes with an ml-like case-construct:

case e of C1 x11 . . . x1k1 ⇒ e1
...
| Cm xm1 . . . xmkm ⇒ em

where the xij are either identifiers or nested tuple patterns as in §4.5.1.

! In contrast to ml, all constructors must be present, their order is fixed, and nested
patterns are not supported (with the exception of tuples). Violating this restriction

results in strange error messages.

To perform case distinction on a goal containing a case-construct, the theorem
split_t_casesplit_t_case is provided:

P(t case f1 . . . fm e) = ((∀x1 . . . xk1 . e = C1 x1 . . . xk1 → P(f1 x1 . . . xk1))
∧ . . . ∧
(∀x1 . . . xkm . e = Cm x1 . . . xkm → P(fm x1 . . . xkm)))

where t_case is the internal name of the case-construct. This theorem can be
added to a simpset via addsplits (see §4.4.1).

CHAPTER 4. HIGHER-ORDER LOGIC 88

typedecl

typevarlist id =
���� cons�

� |
����

�
�

cons

name �
� typ�

�
�
�

�
�

�
�mixfix

�
�

typ

id�
�tid

� (
����typevarlist id)

����

�
�
�

Figure 4.22: Syntax of datatype declarations

The function size

Theory Arith declares an overloaded function size of type α ⇒ nat . Each
datatype defines a particular instance of size according to the following scheme:

size(Cj xj1 . . . xjk1) =

{
0 if Recj = ∅
size(xrj1) + · · · + size(xrjlj

) + 1 if Recj = {rj1, . . . , rjlj }

where Recj is defined above. Viewing datatypes as generalized trees, the size of
a leaf is 0 and the size of a node is the sum of the sizes of its subtrees +1.

4.6.2 Defining datatypes

A datatype is defined in a theory definition file using the keyword datatype.
The definition following this must conform to the syntax of typedecl specified in
Fig. 4.22 and must obey the rules in the previous section. As a result the theory
is extended with the new type, the constructors, and the theorems listed in the
previous section.

! Every theory containing a datatype declaration must be based, directly or indirectly,
on the theory Arith, if necessary by including it explicitly as a parent.

CHAPTER 4. HIGHER-ORDER LOGIC 89

Most of the theorems about the datatype become part of the default simpset
and you never need to see them again because the simplifier applies them auto-
matically. Only induction is invoked by hand:

induct_tac "x" i applies structural induction on variable x to subgoal i , pro-
vided the type of x is a datatype or type nat .

In some cases, induction is overkill and a case distinction over all constructors of
the datatype suffices:

exhaust_tac "u" i performs an exhaustive case analysis for the term u whose
type must be a datatype or type nat . If the datatype has n constructors C1,
. . .Cn , subgoal i is replaced by n new subgoals which contain the additional
assumption u = Cj x1 . . . xkj for j = 1, . . ., n.

! Induction is only allowed on a free variable that should not occur among the
premises of the subgoal. Exhaustion works for arbitrary terms.

For the technically minded, we give a more detailed description. Reading the
theory file produces an ml structure which, in addition to the usual components,
contains a structure named t for each datatype t defined in the file. Each structure
t contains the following elements:

val distinct : thm list
val inject : thm list
val induct : thm
val cases : thm list
val simps : thm list
val induct_tac : string -> int -> tactic

distinct, inject and induct contain the theorems described above. For user
convenience, distinct contains inequalities in both directions. The reduction
rules of the case-construct are in cases. All theorems from distinct, inject
and cases are combined in simps.

4.6.3 Examples

The datatype α mylist

We want to define the type α mylist .4 To do this we have to build a new theory
that contains the type definition. We start from the basic HOL theory.

MyList = HOL +
datatype ’a mylist = Nil | Cons ’a (’a mylist)

end

4This is just an example, there is already a list type in HOL, of course.

CHAPTER 4. HIGHER-ORDER LOGIC 90

After loading the theory (with use_thy "MyList"), we can prove Cons x xs ̸= xs .
To ease the induction applied below, we state the goal with x quantified at the
object-level. This will be stripped later using qed_spec_mp.

goal MyList.thy "!x. Cons x xs ~= xs";
Level 0

! x. Cons x xs ~= xs

1. ! x. Cons x xs ~= xs

This can be proved by the structural induction tactic:

by (induct_tac "xs" 1);
Level 1

! x. Cons x xs ~= xs

1. ! x. Cons x Nil ~= Nil

2. !!a mylist.

! x. Cons x mylist ~= mylist ==>

! x. Cons x (Cons a mylist) ~= Cons a mylist

The first subgoal can be proved using the simplifier. Isabelle has already added
the freeness properties of lists to the default simplification set.

by (Simp_tac 1);
Level 2

! x. Cons x xs ~= xs

1. !!a mylist.

! x. Cons x mylist ~= mylist ==>

! x. Cons x (Cons a mylist) ~= Cons a mylist

Similarly, we prove the remaining goal.

by (Asm_simp_tac 1);
Level 3

! x. Cons x xs ~= xs

No subgoals!

qed_spec_mp "not_Cons_self";
val not_Cons_self = "Cons x xs ~= xs";

Because both subgoals could have been proved by Asm_simp_tac we could have
done that in one step:

by (ALLGOALS Asm_simp_tac);

The datatype α mylist with mixfix syntax

In this example we define the type α mylist again but this time we want to write
[] for Nil and we want to use infix notation # for Cons. To do this we simply

CHAPTER 4. HIGHER-ORDER LOGIC 91

add mixfix annotations after the constructor declarations as follows:

MyList = HOL +
datatype ’a mylist =
Nil ("[]") |
Cons ’a (’a mylist) (infixr "#" 70)

end

Now the theorem in the previous example can be written x#xs ~= xs. The proof
is the same.

A datatype for weekdays

This example shows a datatype that consists of 7 constructors:

Days = Arith +
datatype days = Mon | Tue | Wed | Thu | Fri | Sat | Sun

end

Because there are more than 6 constructors, the theory must be based on Arith.
Inequality is expressed via a function days_ord. The theorem Mon ~= Tue is not
directly contained among the distinctness theorems, but the simplifier can prove
it thanks to rewrite rules inherited from theory Arith:

goal Days.thy "Mon ~= Tue";
by (Simp_tac 1);

You need not derive such inequalities explicitly: the simplifier will dispose of
them automatically.

4.7 Recursive function definitions

Isabelle/HOL provides two means of declaring recursive functions.

• Primitive recursion is available only for datatypes, and it is highly re-
strictive. Recursive calls are only allowed on the argument’s immediate
constituents. On the other hand, it is the form of recursion most often
wanted, and it is easy to use.

• Well-founded recursion requires that you supply a well-founded relation
that governs the recursion. Recursive calls are only allowed if they make the
argument decrease under the relation. Complicated recursion forms, such
as nested recursion, can be dealt with. Termination can even be proved
at a later time, though having unsolved termination conditions around can
make work difficult.5

5This facility is based on Konrad Slind’s TFL package [44]. Thanks are due to Konrad for
implementing TFL and assisting with its installation.

CHAPTER 4. HIGHER-ORDER LOGIC 92

A theory file may contain any number of recursive function definitions, which
may be intermixed with other declarations. Every recursive function must already
have been declared as a constant.

These declarations do not assert new axioms. Instead, they define the function
using a recursion operator. Both HOL and ZF derive the theory of well-founded
recursion from first principles [35]. Primitive recursion over some datatype relies
on the recursion operator provided by the datatype package. With either form of
function definition, Isabelle proves the desired recursion equations as theorems.

4.7.1 Primitive recursive functions

Datatypes come with a uniform way of defining functions, primitive recur-
sion. In principle, one can define primitive recursive functions by asserting their
reduction rules as new axioms. Here is an example:

Append = MyList +
consts app :: [’a mylist, ’a mylist] => ’a mylist
rules

app_Nil "app [] ys = ys"
app_Cons "app (x#xs) ys = x#app xs ys"

end

But asserting axioms brings the danger of accidentally asserting an inconsistency,
as in app [] ys = us.

The primrec declaration is a safe means of defining primitive recursive func-
tions on datatypes:

Append = MyList +
consts app :: [’a mylist, ’a mylist] => ’a mylist
primrec app MyList.mylist

"app [] ys = ys"
"app (x#xs) ys = x#app xs ys"

end

Isabelle will now check that the two rules do indeed form a primitive recursive
definition, preserving consistency. For example

primrec app MyList.mylist
"app [] ys = us"

is rejected with an error message Extra variables on rhs.

The general form of a primitive recursive definition is

primrec function type
reduction rules

where

• function is the name of the function, either as an id or a string.

CHAPTER 4. HIGHER-ORDER LOGIC 93

• type is the name of the datatype, either as an id or in the long form T.t
(T is the name of the theory where the datatype has been declared, t the
name of the datatype). The long form is required if the datatype and the
primrec sections are in different theories.

• reduction rules specify one or more equations of the form

f x1 . . . xm (C y1 . . . yk) z1 . . . zn = r

such that C is a constructor of the datatype, r contains only the free
variables on the left-hand side, and all recursive calls in r are of the form
f . . . yi . . . for some i . There must be exactly one reduction rule for each
constructor. The order is immaterial. Also note that all reduction rules are
added to the default simpset!

If you would like to refer to some rule by name, then you must prefix each
rule with an identifier. These identifiers, like those in the rules section of
a theory, will be visible at the ml level.

The primitive recursive function can have infix or mixfix syntax:

Append = MyList +
consts "@" :: [’a mylist, ’a mylist] => ’a mylist (infixr 60)
primrec "op @" MyList.mylist

"[] @ ys = ys"
"(x#xs) @ ys = x#(xs @ ys)"

end

The reduction rules for @ become part of the default simpset, which leads to
short proofs:

goal Append.thy "(xs @ ys) @ zs = xs @ (ys @ zs)";
by (induct tac "xs" 1);
by (ALLGOALS Asm simp tac);

4.7.2 Well-founded recursive functions

Well-founded recursion can express any function whose termination can be proved
by showing that each recursive call makes the argument smaller in a suitable
sense. The recursion need not involve datatypes and there are few syntactic
restrictions. Nested recursion and pattern-matching are allowed.

Here is a simple example, the Fibonacci function. The first line declares fib
to be a constant. The well-founded relation is simply < (on the natural numbers).

CHAPTER 4. HIGHER-ORDER LOGIC 94

Pattern-matching is used here: 1 is a macro for Suc 0.

consts fib :: "nat => nat"
recdef fib "less_than"

"fib 0 = 0"
"fib 1 = 1"
"fib (Suc(Suc x)) = (fib x + fib (Suc x))"

The well-founded relation defines a notion of “smaller” for the function’s ar-
gument type. The relation ≺ is well-founded provided it admits no infinitely
decreasing chains

· · · ≺ xn ≺ · · · ≺ x1.

If the function’s argument has type τ , then ≺ should be a relation over τ : it must
have type (τ × τ)set .

Proving well-foundedness can be tricky, so HOL provides a collection of opera-
tors for building well-founded relations. The package recognizes these operators
and automatically proves that the constructed relation is well-founded. Here are
those operators, in order of importance:

• less_than is “less than” on the natural numbers. (It has type (nat ×
nat)set , while < has type [nat , nat] ⇒ bool .

• measure f , where f has type τ ⇒ nat , is the relation ≺ on type τ such that
x ≺ y iff f (x) < f (y). Typically, f takes the recursive function’s arguments
(as a tuple) and returns a result expressed in terms of the function size.
It is called a measure function. Recall that size is overloaded and is
defined on all datatypes (see §4.6.1).

• inv image f R is a generalization of measure. It specifies a relation such
that x ≺ y iff f (x) is less than f (y) according to R, which must itself be a
well-founded relation.

• R1**R2 is the lexicographic product of two relations. It is a relation on
pairs and satisfies (x1, x2) ≺ (y1, y2) iff x1 is less than y1 according to R1 or
x1 = y1 and x2 is less than y2 according to R2.

• finite_psubset is the proper subset relation on finite sets.

We can use measure to declare Euclid’s algorithm for the greatest common
divisor. The measure function, λ(m, n) .n, specifies that the recursion terminates
because argument n decreases.

recdef gcd "measure ((%(m,n).n) ::nat*nat=>nat)"
"gcd (m, n) = (if n=0 then m else gcd(n, m mod n))"

CHAPTER 4. HIGHER-ORDER LOGIC 95

The general form of a primitive recursive definition is

recdef function rel
congs congruence rules (optional)
simpset simplification set (optional)
reduction rules

where

• function is the name of the function, either as an id or a string.

• rel is a HOL expression for the well-founded termination relation.

• congruence rules are required only in highly exceptional circumstances.

• the simplification set is used to prove that the supplied relation is well-
founded. It is also used to prove the termination conditions: assertions
that arguments of recursive calls decrease under rel. By default, simplifi-
cation uses !simpset, which is sufficient to prove well-foundedness for the
built-in relations listed above.

• reduction rules specify one or more recursion equations. Each left-hand
side must have the form f t , where f is the function and t is a tuple of
distinct variables. If more than one equation is present then f is defined by
pattern-matching on components of its argument whose type is a datatype.
The patterns must be exhaustive and non-overlapping.

Unlike with primrec, the reduction rules are not added to the default
simpset, and individual rules may not be labelled with identifiers. How-
ever, the identifier f .rules is visible at the ml level as a list of theorems.

With the definition of gcd shown above, Isabelle is unable to prove one ter-
mination condition. It remains as a precondition of the recursion theorems.

gcd.rules;
["! m n. n ~= 0 --> m mod n < n

==> gcd (?m, ?n) = (if ?n = 0 then ?m else gcd (?n, ?m mod ?n))"]

: thm list

The theory Primes (on the examples directory HOL/ex) illustrates how to prove
termination conditions afterwards. The function Tfl.tgoalw is like the standard
function goalw, which sets up a goal to prove, but its argument should be the
identifier f .rules and its effect is to set up a proof of the termination conditions:

Tfl.tgoalw thy [] gcd.rules;
Level 0

! m n. n ~= 0 --> m mod n < n

1. ! m n. n ~= 0 --> m mod n < n

CHAPTER 4. HIGHER-ORDER LOGIC 96

This subgoal has a one-step proof using simp_tac. Once the theorem is proved, it
can be used to eliminate the termination conditions from elements of gcd.rules.
Theory Unify on directory HOL/Subst is a much more complicated example of
this process, where the termination conditions can only be proved by complicated
reasoning involving the recursive function itself.

Isabelle can prove the gcd function’s termination condition automatically if
supplied with the right simpset.

recdef gcd "measure ((%(m,n).n) ::nat*nat=>nat)"
simpset "!simpset addsimps [mod_less_divisor, zero_less_eq]"
"gcd (m, n) = (if n=0 then m else gcd(n, m mod n))"

A recdef definition also returns an induction rule specialized for the recursive
function. For the gcd function above, the induction rule is

gcd.induct;
"(!!m n. n ~= 0 --> ?P n (m mod n) ==> ?P m n) ==> ?P ?u ?v" : thm

This rule should be used to reason inductively about the gcd function. It usu-
ally makes the induction hypothesis available at all recursive calls, leading to
very direct proofs. If any termination conditions remain unproved, they will be
additional premises of this rule.

4.8 Inductive and coinductive definitions

An inductive definition specifies the least set R closed under given rules. (Ap-
plying a rule to elements of R yields a result within R.) For example, a structural
operational semantics is an inductive definition of an evaluation relation. Dually,
a coinductive definition specifies the greatest set R consistent with given rules.
(Every element of R can be seen as arising by applying a rule to elements of R.)
An important example is using bisimulation relations to formalize equivalence of
processes and infinite data structures.

A theory file may contain any number of inductive and coinductive definitions.
They may be intermixed with other declarations; in particular, the (co)inductive
sets must be declared separately as constants, and may have mixfix syntax or
be subject to syntax translations.

Each (co)inductive definition adds definitions to the theory and also proves
some theorems. Each definition creates an ml structure, which is a substructure
of the main theory structure.

This package is derived from the ZF one, described in a separate paper,6 which
you should refer to in case of difficulties. The package is simpler than ZF’s thanks
to HOL’s automatic type-checking. The type of the (co)inductive determines the

6It appeared in CADE [34]; a longer version is distributed with Isabelle.

CHAPTER 4. HIGHER-ORDER LOGIC 97

domain of the fixedpoint definition, and the package does not use inference rules
for type-checking.

4.8.1 The result structure

Many of the result structure’s components have been discussed in the paper;
others are self-explanatory.

thy is the new theory containing the recursive sets.

defs is the list of definitions of the recursive sets.

mono is a monotonicity theorem for the fixedpoint operator.

unfold is a fixedpoint equation for the recursive set (the union of the recursive
sets, in the case of mutual recursion).

intrs is the list of introduction rules, now proved as theorems, for the recursive
sets. The rules are also available individually, using the names given them
in the theory file.

elim is the elimination rule.

mk_cases is a function to create simplified instances of elim, using freeness rea-
soning on some underlying datatype.

For an inductive definition, the result structure contains two induction rules,
induct and mutual_induct. (To save storage, the latter rule is just True unless
more than one set is being defined.) For a coinductive definition, it contains the
rule coinduct.

Figure 4.23 summarizes the two result signatures, specifying the types of all
these components.

4.8.2 The syntax of a (co)inductive definition

An inductive definition has the form

inductive inductive sets

intrs introduction rules

monos monotonicity theorems

con_defs constructor definitions

A coinductive definition is identical, except that it starts with the keyword
coinductive.

The monos and con_defs sections are optional. If present, each is specified
as a string, which must be a valid ml expression of type thm list. It is simply
inserted into the generated ml file that is generated from the theory definition;

CHAPTER 4. HIGHER-ORDER LOGIC 98

sig
val thy : theory
val defs : thm list
val mono : thm
val unfold : thm
val intrs : thm list
val elim : thm
val mk_cases : thm list -> string -> thm
(Inductive definitions only)
val induct : thm
val mutual_induct: thm
(Coinductive definitions only)
val coinduct : thm
end

Figure 4.23: The result of a (co)inductive definition

if it is ill-formed, it will trigger ML error messages. You can then inspect the file
on your directory.

• The inductive sets are specified by one or more strings.

• The introduction rules specify one or more introduction rules in the form
ident string, where the identifier gives the name of the rule in the result
structure.

• The monotonicity theorems are required for each operator applied to a
recursive set in the introduction rules. There must be a theorem of the
form A ⊆ B =⇒ M (A) ⊆ M (B), for each premise t ∈ M (Ri) in an
introduction rule!

• The constructor definitions contain definitions of constants appearing in
the introduction rules. In most cases it can be omitted.

The package has a few notable restrictions:

• The theory must separately declare the recursive sets as constants.

• The names of the recursive sets must be alphanumeric identifiers.

• Side-conditions must not be conjunctions. However, an introduction rule
may contain any number of side-conditions.

• Side-conditions of the form x = t , where the variable x does not occur in t ,
will be substituted through the rule mutual_induct.

CHAPTER 4. HIGHER-ORDER LOGIC 99

4.8.3 Example of an inductive definition

Two declarations, included in a theory file, define the finite powerset operator.
First we declare the constant Fin. Then we declare it inductively, with two
introduction rules:

consts Fin :: ’a set => ’a set set
inductive "Fin A"

intrs
emptyI "{} : Fin A"
insertI "[| a: A; b: Fin A |] ==> insert a b : Fin A"

The resulting theory structure contains a substructure, called Fin. It contains
the Fin A introduction rules as the list Fin.intrs, and also individually as
Fin.emptyI and Fin.consI. The induction rule is Fin.induct.

For another example, here is a theory file defining the accessible part of a
relation. The main thing to note is the use of Pow in the sole introduction rule,
and the corresponding mention of the rule Pow_mono in the monos list. The paper
[34] discusses a ZF version of this example in more detail.

Acc = WF +
consts pred :: "[’b, (’a * ’b)set] => ’a set" (*Set of predecessors*)

acc :: "(’a * ’a)set => ’a set" (*Accessible part*)
defs pred_def "pred x r == y. (y,x):r"
inductive "acc r"

intrs
pred "pred a r: Pow(acc r) ==> a: acc r"

monos "[Pow_mono]"
end

The HOL distribution contains many other inductive definitions. Simple exam-
ples are collected on subdirectory Induct. The theory HOL/Induct/LList.thy

contains coinductive definitions. Larger examples may be found on other subdi-
rectories, such as IMP, Lambda and Auth.

4.9 The examples directories

Directory HOL/Auth contains theories for proving the correctness of cryptographic
protocols. The approach is based upon operational semantics [38] rather than
the more usual belief logics. On the same directory are proofs for some standard
examples, such as the Needham-Schroeder public-key authentication protocol [36]
and the Otway-Rees protocol.

Directory HOL/IMP contains a formalization of various denotational, opera-
tional and axiomatic semantics of a simple while-language, the necessary equiva-
lence proofs, soundness and completeness of the Hoare rules with respect to the
denotational semantics, and soundness and completeness of a verification con-
dition generator. Much of development is taken from Winskel [50]. For details

CHAPTER 4. HIGHER-ORDER LOGIC 100

see [27].
Directory HOL/Hoare contains a user friendly surface syntax for Hoare logic,

including a tactic for generating verification-conditions.
Directory HOL/MiniML contains a formalization of the type system of the core

functional language Mini-ML and a correctness proof for its type inference algo-
rithm W [23, 25].

Directory HOL/Lambda contains a formalization of untyped λ-calculus in
de Bruijn notation and Church-Rosser proofs for β and η reduction [26].

Directory HOL/Subst contains Martin Coen’s mechanization of a theory of
substitutions and unifiers. It is based on Paulson’s previous mechanisation in
LCF [31] of Manna and Waldinger’s theory [21]. It demonstrates a complicated
use of recdef, with nested recursion.

Directory HOL/Induct presents simple examples of (co)inductive definitions.

• Theory PropLog proves the soundness and completeness of classical propo-
sitional logic, given a truth table semantics. The only connective is →.
A Hilbert-style axiom system is specified, and its set of theorems defined
inductively. A similar proof in ZF is described elsewhere [35].

• Theory Term develops an experimental recursive type definition; the recur-
sion goes through the type constructor list .

• Theory Simult constructs mutually recursive sets of trees and forests, in-
cluding induction and recursion rules.

• The definition of lazy lists demonstrates methods for handling infinite data
structures and coinduction in higher-order logic [37].7 Theory LList defines
an operator for corecursion on lazy lists, which is used to define a few simple
functions such as map and append. A coinduction principle is defined for
proving equations on lazy lists.

• Theory LFilter defines the filter functional for lazy lists. This functional
is notoriously difficult to define because finding the next element meeting
the predicate requires possibly unlimited search. It is not computable, but
can be expressed using a combination of induction and corecursion.

• Theory Exp illustrates the use of iterated inductive definitions to express a
programming language semantics that appears to require mutual induction.
Iterated induction allows greater modularity.

Directory HOL/ex contains other examples and experimental proofs in HOL.

• Theory Recdef presents many examples of using recdef to define recursive
functions. Another example is Fib, which defines the Fibonacci function.

7To be precise, these lists are potentially infinite rather than lazy. Lazy implies a particular
operational semantics.

CHAPTER 4. HIGHER-ORDER LOGIC 101

• Theory Primes defines the Greatest Common Divisor of two natural num-
bers and proves a key lemma of the Fundamental Theorem of Arithmetic:
if p is prime and p divides m × n then p divides m or p divides n.

• Theory Primrec develops some computation theory. It inductively defines
the set of primitive recursive functions and presents a proof that Acker-
mann’s function is not primitive recursive.

• File cla.ML demonstrates the classical reasoner on over sixty predicate
calculus theorems, ranging from simple tautologies to moderately difficult
problems involving equality and quantifiers.

• File meson.ML contains an experimental implementation of the meson proof
procedure, inspired by Plaisted [42]. It is much more powerful than Isa-
belle’s classical reasoner. But it is less useful in practice because it works
only for pure logic; it does not accept derived rules for the set theory prim-
itives, for example.

• File mesontest.ML contains test data for the meson proof procedure.
These are mostly taken from Pelletier [41].

• File set.ML proves Cantor’s Theorem, which is presented in §4.10 below,
and the Schröder-Bernstein Theorem.

• Theory MT contains Jacob Frost’s formalization [14] of Milner and Tofte’s
coinduction example [24]. This substantial proof concerns the soundness
of a type system for a simple functional language. The semantics of recur-
sion is given by a cyclic environment, which makes a coinductive argument
appropriate.

4.10 Example: Cantor’s Theorem

Cantor’s Theorem states that every set has more subsets than it has elements. It
has become a favourite example in higher-order logic since it is so easily expressed:

∀f :: α ⇒ α ⇒ bool . ∃S :: α ⇒ bool . ∀x :: α . f x ̸= S

Viewing types as sets, α ⇒ bool represents the powerset of α. This version states
that for every function from α to its powerset, some subset is outside its range.

The Isabelle proof uses HOL’s set theory, with the type α set and the operator
range. The set S is given as an unknown instead of a quantified variable so that

CHAPTER 4. HIGHER-ORDER LOGIC 102

we may inspect the subset found by the proof.

goal Set.thy "?S ~: range (f :: ’a=>’a set)";
Level 0

?S ~: range f

1. ?S ~: range f

The first two steps are routine. The rule rangeE replaces ?S ∈ range f by ?S = f x
for some x .

by (resolve_tac [notI] 1);
Level 1

?S ~: range f

1. ?S : range f ==> False

by (eresolve_tac [rangeE] 1);
Level 2

?S ~: range f

1. !!x. ?S = f x ==> False

Next, we apply equalityCE, reasoning that since ?S = f x , we have ?c ∈ ?S if
and only if ?c ∈ f x for any ?c.

by (eresolve_tac [equalityCE] 1);
Level 3

?S ~: range f

1. !!x. [| ?c3 x : ?S; ?c3 x : f x |] ==> False

2. !!x. [| ?c3 x ~: ?S; ?c3 x ~: f x |] ==> False

Now we use a bit of creativity. Suppose that ?S has the form of a comprehen-
sion. Then ?c ∈ {x . ?P x} implies ?P ?c. Destruct-resolution using CollectD

instantiates ?S and creates the new assumption.

by (dresolve_tac [CollectD] 1);
Level 4

{x. ?P7 x} ~: range f

1. !!x. [| ?c3 x : f x; ?P7(?c3 x) |] ==> False

2. !!x. [| ?c3 x ~: {x. ?P7 x}; ?c3 x ~: f x |] ==> False

Forcing a contradiction between the two assumptions of subgoal 1 completes the
instantiation of S . It is now the set {x . x ̸∈ f x}, which is the standard diagonal
construction.

by (contr_tac 1);
Level 5

{x. x ~: f x} ~: range f

1. !!x. [| x ~: {x. x ~: f x}; x ~: f x |] ==> False

The rest should be easy. To apply CollectI to the negated assumption, we

CHAPTER 4. HIGHER-ORDER LOGIC 103

employ swap_res_tac:

by (swap_res_tac [CollectI] 1);
Level 6

{x. x ~: f x} ~: range f

1. !!x. [| x ~: f x; ~ False |] ==> x ~: f x

by (assume_tac 1);
Level 7

{x. x ~: f x} ~: range f

No subgoals!

How much creativity is required? As it happens, Isabelle can prove this theorem
automatically. The default classical set !claset contains rules for most of the
constructs of HOL’s set theory. We must augment it with equalityCE to break up
set equalities, and then apply best-first search. Depth-first search would diverge,
but best-first search successfully navigates through the large search space.

choplev 0;
Level 0

?S ~: range f

1. ?S ~: range f

by (best_tac (!claset addSEs [equalityCE]) 1);
Level 1

{x. x ~: f x} ~: range f

No subgoals!

If you run this example interactively, make sure your current theory contains
theory Set, for example by executing set_current_thy "Set". Otherwise the
default claset may not contain the rules for set theory.

Chapter 5

First-Order Sequent Calculus

The theory LK implements classical first-order logic through Gentzen’s sequent
calculus (see Gallier [15] or Takeuti [46]). Resembling the method of semantic
tableaux, the calculus is well suited for backwards proof. Assertions have the form
Γ ⊢ ∆, where Γ and ∆ are lists of formulae. Associative unification, simulated
by higher-order unification, handles lists.

The logic is many-sorted, using Isabelle’s type classes. The class of first-order
terms is called term. No types of individuals are provided, but extensions can de-
fine types such as nat::term and type constructors such as list::(term)term.
Below, the type variable α ranges over class term; the equality symbol and quan-
tifiers are polymorphic (many-sorted). The type of formulae is o, which belongs
to class logic.

No generic packages are instantiated, since Isabelle does not provide packages
for sequent calculi at present. LK implements a classical logic theorem prover that
is as powerful as the generic classical reasoner, except that it does not perform
equality reasoning.

5.1 Unification for lists

Higher-order unification includes associative unification as a special case, by an
encoding that involves function composition [18, page 37]. To represent lists, let
C be a new constant. The empty list is λx . x , while [t1, t2, . . . , tn] is represented
by

λx . C (t1,C (t2, . . . ,C (tn , x))).

The unifiers of this with λx .?f (?g(x)) give all the ways of expressing [t1, t2, . . . , tn]
as the concatenation of two lists.

Unlike orthodox associative unification, this technique can represent certain
infinite sets of unifiers by flex-flex equations. But note that the term λx .C (t , ?a)
does not represent any list. Flex-flex constraints containing such garbage terms
may accumulate during a proof.

This technique lets Isabelle formalize sequent calculus rules, where the comma
is the associative operator:

Γ,P ,Q , ∆ ⊢ Θ

Γ,P ∧ Q , ∆ ⊢ Θ
(∧-left)

104

CHAPTER 5. FIRST-ORDER SEQUENT CALCULUS 105

name meta-type description
Trueprop [sobj ⇒ sobj , sobj ⇒ sobj] ⇒ prop coercion to prop

Seqof [o, sobj] ⇒ sobj singleton sequence
Not o ⇒ o negation (¬)

True o tautology (⊤)
False o absurdity (⊥)

Constants

symbol name meta-type priority description
ALL All (α ⇒ o) ⇒ o 10 universal quantifier (∀)
EX Ex (α ⇒ o) ⇒ o 10 existential quantifier (∃)
THE The (α ⇒ o) ⇒ α 10 definite description (ι)

Binders

symbol meta-type priority description
= [α, α] ⇒ o Left 50 equality (=)
& [o, o] ⇒ o Right 35 conjunction (∧)
| [o, o] ⇒ o Right 30 disjunction (∨)

--> [o, o] ⇒ o Right 25 implication (→)
<-> [o, o] ⇒ o Right 25 biconditional (↔)

Infixes

external internal description
Γ |- ∆ Trueprop(Γ, ∆) sequent Γ ⊢ ∆

Translations

Figure 5.1: Syntax of LK

CHAPTER 5. FIRST-ORDER SEQUENT CALCULUS 106

prop = sequence |- sequence

sequence = elem (, elem)∗

| empty

elem = $ id
| $ var
| formula

formula = expression of type o
| term = term
| ~ formula
| formula & formula
| formula | formula
| formula --> formula
| formula <-> formula
| ALL id id∗ . formula
| EX id id∗ . formula
| THE id . formula

Figure 5.2: Grammar of LK

Multiple unifiers occur whenever this is resolved against a goal containing more
than one conjunction on the left.

LK exploits this representation of lists. As an alternative, the sequent calculus
can be formalized using an ordinary representation of lists, with a logic program
for removing a formula from a list. Amy Felty has applied this technique using
the language λProlog [13].

Explicit formalization of sequents can be tiresome. But it gives precise control
over contraction and weakening, and is essential to handle relevant and linear
logics.

5.2 Syntax and rules of inference

Figure 5.1 gives the syntax for LK, which is complicated by the representation of
sequents. Type sobj ⇒ sobj represents a list of formulae.

The definite description operator ιx .P [x] stands for some a satisfying P [a],
if one exists and is unique. Since all terms in LK denote something, a description
is always meaningful, but we do not know its value unless P [x] defines it uniquely.
The Isabelle notation is THE x.P [x]. The corresponding rule (Fig. 5.3) does not
entail the Axiom of Choice because it requires uniqueness.

CHAPTER 5. FIRST-ORDER SEQUENT CALCULUS 107

basic $H, P, $G |- $E, P, $F
thinR $H |- $E, $F ==> $H |- $E, P, $F
thinL $H, $G |- $E ==> $H, P, $G |- $E
cut [| $H |- $E, P; $H, P |- $E |] ==> $H |- $E

Structural rules

refl $H |- $E, a=a, $F
sym $H |- $E, a=b, $F ==> $H |- $E, b=a, $F
trans [| $H|- $E, a=b, $F; $H|- $E, b=c, $F |] ==>

$H|- $E, a=c, $F

Equality rules

True_def True == False-->False
iff_def P<->Q == (P-->Q) & (Q-->P)

conjR [| $H|- $E, P, $F; $H|- $E, Q, $F |] ==> $H|- $E, P&Q, $F
conjL $H, P, Q, $G |- $E ==> $H, P & Q, $G |- $E

disjR $H |- $E, P, Q, $F ==> $H |- $E, P|Q, $F
disjL [| $H, P, $G |- $E; $H, Q, $G |- $E |] ==> $H, P|Q, $G |- $E

impR $H, P |- $E, Q, $F ==> $H |- $E, P-->Q, $F
impL [| $H,$G |- $E,P; $H, Q, $G |- $E |] ==> $H, P-->Q, $G |- $E

notR $H, P |- $E, $F ==> $H |- $E, ~P, $F
notL $H, $G |- $E, P ==> $H, ~P, $G |- $E

FalseL $H, False, $G |- $E

allR (!!x.$H|- $E, P(x), $F) ==> $H|- $E, ALL x.P(x), $F
allL $H, P(x), $G, ALL x.P(x) |- $E ==> $H, ALL x.P(x), $G|- $E

exR $H|- $E, P(x), $F, EX x.P(x) ==> $H|- $E, EX x.P(x), $F
exL (!!x.$H, P(x), $G|- $E) ==> $H, EX x.P(x), $G|- $E

The [| $H |- $E, P(a), $F; !!x.$H, P(x) |- $E, x=a, $F |] ==>
$H |- $E, P(THE x.P(x)), $F

Logical rules

Figure 5.3: Rules of LK

CHAPTER 5. FIRST-ORDER SEQUENT CALCULUS 108

conR $H |- $E, P, $F, P ==> $H |- $E, P, $F
conL $H, P, $G, P |- $E ==> $H, P, $G |- $E

symL $H, $G, B = A |- $E ==> $H, A = B, $G |- $E

TrueR $H |- $E, True, $F

iffR [| $H, P |- $E, Q, $F; $H, Q |- $E, P, $F |] ==>
$H |- $E, P<->Q, $F

iffL [| $H, $G |- $E, P, Q; $H, Q, P, $G |- $E |] ==>
$H, P<->Q, $G |- $E

allL_thin $H, P(x), $G |- $E ==> $H, ALL x.P(x), $G |- $E
exR_thin $H |- $E, P(x), $F ==> $H |- $E, EX x.P(x), $F

Figure 5.4: Derived rules for LK

Figure 5.2 presents the grammar of LK. Traditionally, Γ and ∆ are meta-
variables for sequences. In Isabelle’s notation, the prefix $ on a variable makes
it range over sequences. In a sequent, anything not prefixed by $ is taken as a
formula.

Figure 5.3 presents the rules of theory LK. The connective ↔ is defined using
∧ and →. The axiom for basic sequents is expressed in a form that provides
automatic thinning: redundant formulae are simply ignored. The other rules are
expressed in the form most suitable for backward proof — they do not require
exchange or contraction rules. The contraction rules are actually derivable (via
cut) in this formulation.

Figure 5.4 presents derived rules, including rules for ↔. The weakened quan-
tifier rules discard each quantification after a single use; in an automatic proof
procedure, they guarantee termination, but are incomplete. Multiple use of a
quantifier can be obtained by a contraction rule, which in backward proof du-
plicates a formula. The tactic res_inst_tac can instantiate the variable ?P in
these rules, specifying the formula to duplicate.

See theory Sequents/LK in the sources for complete listings of the rules and
derived rules.

5.3 Tactics for the cut rule

According to the cut-elimination theorem, the cut rule can be eliminated from
proofs of sequents. But the rule is still essential. It can be used to structure a
proof into lemmas, avoiding repeated proofs of the same formula. More impor-
tantly, the cut rule can not be eliminated from derivations of rules. For example,
there is a trivial cut-free proof of the sequent P ∧ Q ⊢ Q ∧ P . Noting this, we

CHAPTER 5. FIRST-ORDER SEQUENT CALCULUS 109

might want to derive a rule for swapping the conjuncts in a right-hand formula:

Γ ⊢ ∆,P ∧ Q

Γ ⊢ ∆,Q ∧ P

The cut rule must be used, for P ∧ Q is not a subformula of Q ∧ P . Most cuts
directly involve a premise of the rule being derived (a meta-assumption). In a few
cases, the cut formula is not part of any premise, but serves as a bridge between
the premises and the conclusion. In such proofs, the cut formula is specified by
calling an appropriate tactic.

cutR_tac : string -> int -> tactic
cutL_tac : string -> int -> tactic

These tactics refine a subgoal into two by applying the cut rule. The cut formula
is given as a string, and replaces some other formula in the sequent.

cutR_tac P i reads an LK formula P , and applies the cut rule to subgoal i . It
then deletes some formula from the right side of subgoal i , replacing that
formula by P .

cutL_tac P i reads an LK formula P , and applies the cut rule to subgoal i .
It then deletes some formula from the left side of the new subgoal i + 1,
replacing that formula by P .

All the structural rules — cut, contraction, and thinning — can be applied to
particular formulae using res_inst_tac.

5.4 Tactics for sequents
forms_of_seq : term -> term list
could_res : term * term -> bool
could_resolve_seq : term * term -> bool
filseq_resolve_tac : thm list -> int -> int -> tactic

Associative unification is not as efficient as it might be, in part because the repre-
sentation of lists defeats some of Isabelle’s internal optimisations. The following
operations implement faster rule application, and may have other uses.

forms_of_seq t returns the list of all formulae in the sequent t , removing se-
quence variables.

could_res (t,u) tests whether two formula lists could be resolved. List t is
from a premise or subgoal, while u is from the conclusion of an object-rule.
Assuming that each formula in u is surrounded by sequence variables, it
checks that each conclusion formula is unifiable (using could_unify) with
some subgoal formula.

CHAPTER 5. FIRST-ORDER SEQUENT CALCULUS 110

could_resolve_seq (t,u) tests whether two sequents could be resolved. Se-
quent t is a premise or subgoal, while u is the conclusion of an object-rule.
It simply calls could_res twice to check that both the left and the right
sides of the sequents are compatible.

filseq_resolve_tac thms maxr i uses filter_thms could_resolve to ex-
tract the thms that are applicable to subgoal i . If more than maxr theorems
are applicable then the tactic fails. Otherwise it calls resolve_tac. Thus,
it is the sequent calculus analogue of filt_resolve_tac.

5.5 Packaging sequent rules

Section 1.2 described the distinction between safe and unsafe rules. An unsafe
rule may reduce a provable goal to an unprovable set of subgoals, and should
only be used as a last resort. Typical examples are the weakened quantifier rules
allL_thin and exR_thin.

A pack is a pair whose first component is a list of safe rules and whose
second is a list of unsafe rules. Packs can be extended in an obvious way to allow
reasoning with various collections of rules. For clarity, LK declares pack as an ml
datatype, although is essentially a type synonym:

datatype pack = Pack of thm list * thm list;

Pattern-matching using constructor Pack can inspect a pack’s contents. Packs
support the following operations:

empty_pack : pack
prop_pack : pack
LK_pack : pack
LK_dup_pack : pack
add_safes : pack * thm list -> pack infix 4
add_unsafes : pack * thm list -> pack infix 4

empty_pack is the empty pack.

prop_pack contains the propositional rules, namely those for ∧, ∨, ¬, → and ↔,
along with the rules basic and refl. These are all safe.

LK_pack extends prop_pack with the safe rules allR and exL and the unsafe rules
allL_thin and exR_thin. Search using this is incomplete since quantified
formulae are used at most once.

LK_dup_pack extends prop_pack with the safe rules allR and exL and the unsafe
rules allL and exR. Search using this is complete, since quantified formulae
may be reused, but frequently fails to terminate. It is generally unsuitable
for depth-first search.

CHAPTER 5. FIRST-ORDER SEQUENT CALCULUS 111

pack add_safes rules adds some safe rules to the pack pack .

pack add_unsafes rules adds some unsafe rules to the pack pack .

5.6 Proof procedures

The LK proof procedure is similar to the classical reasoner described in the Ref-
erence Manual . In fact it is simpler, since it works directly with sequents rather
than simulating them. There is no need to distinguish introduction rules from
elimination rules, and of course there is no swap rule. As always, Isabelle’s classi-
cal proof procedures are less powerful than resolution theorem provers. But they
are more natural and flexible, working with an open-ended set of rules.

Backtracking over the choice of a safe rule accomplishes nothing: applying
them in any order leads to essentially the same result. Backtracking may be
necessary over basic sequents when they perform unification. Suppose that 0, 1,
2, 3 are constants in the subgoals

P(0),P(1),P(2) ⊢ P(?a)
P(0),P(2),P(3) ⊢ P(?a)
P(1),P(3),P(2) ⊢ P(?a)

The only assignment that satisfies all three subgoals is ?a 7→ 2, and this can only
be discovered by search. The tactics given below permit backtracking only over
axioms, such as basic and refl; otherwise they are deterministic.

5.6.1 Method A
reresolve_tac : thm list -> int -> tactic
repeat_goal_tac : pack -> int -> tactic
pc_tac : pack -> int -> tactic

These tactics use a method developed by Philippe de Groote. A subgoal is refined
and the resulting subgoals are attempted in reverse order. For some reason, this
is much faster than attempting the subgoals in order. The method is inherently
depth-first.

At present, these tactics only work for rules that have no more than two
premises. They fail — return no next state — if they can do nothing.

reresolve_tac thms i repeatedly applies the thms to subgoal i and the result-
ing subgoals.

repeat_goal_tac pack i applies the safe rules in the pack to a goal and the
resulting subgoals. If no safe rule is applicable then it applies an unsafe
rule and continues.

pc_tac pack i applies repeat_goal_tac using depth-first search to solve sub-
goal i .

CHAPTER 5. FIRST-ORDER SEQUENT CALCULUS 112

5.6.2 Method B
safe_goal_tac : pack -> int -> tactic
step_tac : pack -> int -> tactic
fast_tac : pack -> int -> tactic
best_tac : pack -> int -> tactic

These tactics are precisely analogous to those of the generic classical reasoner.
They use ‘Method A’ only on safe rules. They fail if they can do nothing.

safe_goal_tac pack i applies the safe rules in the pack to a goal and the re-
sulting subgoals. It ignores the unsafe rules.

step_tac pack i either applies safe rules (using safe_goal_tac) or applies one
unsafe rule.

fast_tac pack i applies step_tac using depth-first search to solve subgoal i .
Despite its name, it is frequently slower than pc_tac.

best_tac pack i applies step_tac using best-first search to solve subgoal i . It
is particularly useful for quantifier duplication (using LK_dup_pack).

5.7 A simple example of classical reasoning

The theorem ⊢ ∃y . ∀x . P(y) → P(x) is a standard example of the classical
treatment of the existential quantifier. Classical reasoning is easy using LK, as
you can see by comparing this proof with the one given in §2.7. From a logical
point of view, the proofs are essentially the same; the key step here is to use exR

rather than the weaker exR_thin.

goal LK.thy "|- EX y. ALL x. P(y)-->P(x)";
Level 0

|- EX y. ALL x. P(y) --> P(x)

1. |- EX y. ALL x. P(y) --> P(x)

by (resolve_tac [exR] 1);
Level 1

|- EX y. ALL x. P(y) --> P(x)

1. |- ALL x. P(?x) --> P(x), EX x. ALL xa. P(x) --> P(xa)

CHAPTER 5. FIRST-ORDER SEQUENT CALCULUS 113

There are now two formulae on the right side. Keeping the existential one in
reserve, we break down the universal one.

by (resolve_tac [allR] 1);
Level 2

|- EX y. ALL x. P(y) --> P(x)

1. !!x. |- P(?x) --> P(x), EX x. ALL xa. P(x) --> P(xa)

by (resolve_tac [impR] 1);
Level 3

|- EX y. ALL x. P(y) --> P(x)

1. !!x. P(?x) |- P(x), EX x. ALL xa. P(x) --> P(xa)

Because LK is a sequent calculus, the formula P(?x) does not become an as-
sumption; instead, it moves to the left side. The resulting subgoal cannot be
instantiated to a basic sequent: the bound variable x is not unifiable with the
unknown ?x .

by (resolve_tac [basic] 1);
by: tactic failed

We reuse the existential formula using exR_thin, which discards it; we shall not
need it a third time. We again break down the resulting formula.

by (resolve_tac [exR_thin] 1);
Level 4

|- EX y. ALL x. P(y) --> P(x)

1. !!x. P(?x) |- P(x), ALL xa. P(?x7(x)) --> P(xa)

by (resolve_tac [allR] 1);
Level 5

|- EX y. ALL x. P(y) --> P(x)

1. !!x xa. P(?x) |- P(x), P(?x7(x)) --> P(xa)

by (resolve_tac [impR] 1);
Level 6

|- EX y. ALL x. P(y) --> P(x)

1. !!x xa. P(?x), P(?x7(x)) |- P(x), P(xa)

Subgoal 1 seems to offer lots of possibilities. Actually the only useful step is
instantiating ?x7 to λx . x , transforming ?x7(x) into x .

by (resolve_tac [basic] 1);
Level 7

|- EX y. ALL x. P(y) --> P(x)

No subgoals!

CHAPTER 5. FIRST-ORDER SEQUENT CALCULUS 114

This theorem can be proved automatically. Because it involves quantifier dupli-
cation, we employ best-first search:

goal LK.thy "|- EX y. ALL x. P(y)-->P(x)";
Level 0

|- EX y. ALL x. P(y) --> P(x)

1. |- EX y. ALL x. P(y) --> P(x)

by (best_tac LK_dup_pack 1);
Level 1

|- EX y. ALL x. P(y) --> P(x)

No subgoals!

5.8 A more complex proof

Many of Pelletier’s test problems for theorem provers [41] can be solved auto-
matically. Problem 39 concerns set theory, asserting that there is no Russell set
— a set consisting of those sets that are not members of themselves:

⊢ ¬(∃x . ∀y . y ∈ x ↔ y ̸∈ y)

This does not require special properties of membership; we may generalize x ∈ y
to an arbitrary predicate F (x , y). The theorem has a short manual proof. See
the directory LK/ex for many more examples.

We set the main goal and move the negated formula to the left.

goal LK.thy "|- ~ (EX x. ALL y. F(y,x) <-> ~F(y,y))";
Level 0

|- ~ (EX x. ALL y. F(y,x) <-> ~ F(y,y))

1. |- ~ (EX x. ALL y. F(y,x) <-> ~ F(y,y))

by (resolve_tac [notR] 1);
Level 1

|- ~ (EX x. ALL y. F(y,x) <-> ~ F(y,y))

1. EX x. ALL y. F(y,x) <-> ~ F(y,y) |-

The right side is empty; we strip both quantifiers from the formula on the left.

by (resolve_tac [exL] 1);
Level 2

|- ~ (EX x. ALL y. F(y,x) <-> ~ F(y,y))

1. !!x. ALL y. F(y,x) <-> ~ F(y,y) |-

by (resolve_tac [allL_thin] 1);
Level 3

|- ~ (EX x. ALL y. F(y,x) <-> ~ F(y,y))

1. !!x. F(?x2(x),x) <-> ~ F(?x2(x),?x2(x)) |-

The rule iffL says, if P ↔ Q then P and Q are either both true or both false.

CHAPTER 5. FIRST-ORDER SEQUENT CALCULUS 115

It yields two subgoals.

by (resolve_tac [iffL] 1);
Level 4

|- ~ (EX x. ALL y. F(y,x) <-> ~ F(y,y))

1. !!x. |- F(?x2(x),x), ~ F(?x2(x),?x2(x))

2. !!x. ~ F(?x2(x),?x2(x)), F(?x2(x),x) |-

We must instantiate ?x2, the shared unknown, to satisfy both subgoals. Beginning
with subgoal 2, we move a negated formula to the left and create a basic sequent.

by (resolve_tac [notL] 2);
Level 5

|- ~ (EX x. ALL y. F(y,x) <-> ~ F(y,y))

1. !!x. |- F(?x2(x),x), ~ F(?x2(x),?x2(x))

2. !!x. F(?x2(x),x) |- F(?x2(x),?x2(x))

by (resolve_tac [basic] 2);
Level 6

|- ~ (EX x. ALL y. F(y,x) <-> ~ F(y,y))

1. !!x. |- F(x,x), ~ F(x,x)

Thanks to the instantiation of ?x2, subgoal 1 is obviously true.

by (resolve_tac [notR] 1);
Level 7

|- ~ (EX x. ALL y. F(y,x) <-> ~ F(y,y))

1. !!x. F(x,x) |- F(x,x)

by (resolve_tac [basic] 1);
Level 8

|- ~ (EX x. ALL y. F(y,x) <-> ~ F(y,y))

No subgoals!

Chapter 6

Constructive Type Theory

Martin-Löf’s Constructive Type Theory [22, 29] can be viewed at many different
levels. It is a formal system that embodies the principles of intuitionistic mathe-
matics; it embodies the interpretation of propositions as types; it is a vehicle for
deriving programs from proofs.

Thompson’s book [47] gives a readable and thorough account of Type Theory.
Nuprl is an elaborate implementation [8]. alf is a more recent tool that allows
proof terms to be edited directly [20].

Isabelle’s original formulation of Type Theory was a kind of sequent calculus,
following Martin-Löf [22]. It included rules for building the context, namely
variable bindings with their types. A typical judgement was

a(x1, . . . , xn) ∈ A(x1, . . . , xn) [x1 ∈ A1, x2 ∈ A2(x1), . . . , xn ∈ An(x1, . . . , xn−1)]

This sequent calculus was not satisfactory because assumptions like ‘suppose A
is a type’ or ‘suppose B(x) is a type for all x in A’ could not be formalized.

The theory CTT implements Constructive Type Theory, using natural deduc-
tion. The judgement above is expressed using

∧
and =⇒:∧

x1 . . . xn .[[x1 ∈ A1; x2 ∈ A2(x1); · · · xn ∈ An(x1, . . . , xn−1)]] =⇒
a(x1, . . . , xn) ∈ A(x1, . . . , xn)

Assumptions can use all the judgement forms, for instance to express that B is
a family of types over A: ∧

x . x ∈ A =⇒ B(x) type

To justify the CTT formulation it is probably best to appeal directly to the seman-
tic explanations of the rules [22], rather than to the rules themselves. The order
of assumptions no longer matters, unlike in standard Type Theory. Contexts,
which are typical of many modern type theories, are difficult to represent in Isa-
belle. In particular, it is difficult to enforce that all the variables in a context are
distinct.

The theory does not use polymorphism. Terms in CTT have type i , the type
of individuals. Types in CTT have type t .

CTT supports all of Type Theory apart from list types, well-ordering types,
and universes. Universes could be introduced à la Tarski, adding new constants as

116

CHAPTER 6. CONSTRUCTIVE TYPE THEORY 117

name meta-type description
Type t → prop judgement form

Eqtype [t , t] → prop judgement form
Elem [i , t] → prop judgement form

Eqelem [i , i , t] → prop judgement form
Reduce [i , i] → prop extra judgement form

N t natural numbers type
0 i constructor

succ i → i constructor
rec [i , i , [i , i] → i] → i eliminator

Prod [t , i → t] → t general product type
lambda (i → i) → i constructor

Sum [t , i → t] → t general sum type
pair [i , i] → i constructor

split [i , [i , i] → i] → i eliminator
fst snd i → i projections

inl inr i → i constructors for +
when [i , i → i , i → i] → i eliminator for +

Eq [t , i , i] → t equality type
eq i constructor

F t empty type
contr i → i eliminator

T t singleton type
tt i constructor

Figure 6.1: The constants of CTT

CHAPTER 6. CONSTRUCTIVE TYPE THEORY 118

names for types. The formulation à la Russell, where types denote themselves, is
only possible if we identify the meta-types i and t. Most published formulations
of well-ordering types have difficulties involving extensionality of functions; I
suggest that you use some other method for defining recursive types. List types
are easy to introduce by declaring new rules.

CTT uses the 1982 version of Type Theory, with extensional equality. The
computation a = b ∈ A and the equality c ∈ Eq(A, a, b) are interchangeable. Its
rewriting tactics prove theorems of the form a = b ∈ A. It could be modified
to have intensional equality, but rewriting tactics would have to prove theorems
of the form c ∈ Eq(A, a, b) and the computation rules might require a separate
simplifier.

6.1 Syntax

The constants are shown in Fig. 6.1. The infixes include the function application
operator (sometimes called ‘apply’), and the 2-place type operators. Note that
meta-level abstraction and application, λx . b and f (a), differ from object-level
abstraction and application, lam x.b and b‘a. A CTT function f is simply an
individual as far as Isabelle is concerned: its Isabelle type is i , not say i ⇒ i .

The notation for CTT (Fig. 6.2) is based on that of Nordström et al. [29]. The
empty type is called F and the one-element type is T ; other finite types are built
as T + T + T , etc.

Quantification is expressed using general sums
∑

x∈A B [x] and products∏
x∈A B [x]. Instead of Sum(A,B) and Prod(A,B) we may write SUM x:A.B [x]

and PROD x:A.B [x]. For example, we may write

SUM y:B. PROD x:A. C(x,y) for Sum(B, %y. Prod(A, %x. C(x,y)))

The special cases as A*B and A-->B abbreviate general sums and products over
a constant family.1 Isabelle accepts these abbreviations in parsing and uses them
whenever possible for printing.

6.2 Rules of inference

The rules obey the following naming conventions. Type formation rules have
the suffix F. Introduction rules have the suffix I. Elimination rules have the
suffix E. Computation rules, which describe the reduction of eliminators, have
the suffix C. The equality versions of the rules (which permit reductions on
subterms) are called long rules; their names have the suffix L. Introduction and
computation rules are often further suffixed with constructor names.

1Unlike normal infix operators, * and --> merely define abbreviations; there are no con-
stants op * and op -->.

CHAPTER 6. CONSTRUCTIVE TYPE THEORY 119

symbol name meta-type priority description
lam lambda (i ⇒ o) ⇒ i 10 λ-abstraction

Binders

symbol meta-type priority description
‘ [i , i] → i Left 55 function application
+ [t , t] → t Right 30 sum of two types

Infixes

external internal standard notation
PROD x:A . B [x] Prod(A, λx . B [x]) product

∏
x∈A B [x]

SUM x:A . B [x] Sum(A, λx . B [x]) sum
∑

x∈A B [x]
A --> B Prod(A, λx . B) function space A → B

A * B Sum(A, λx . B) binary product A × B

Translations

prop = type type

| type = type
| term : type
| term = term : type

type = expression of type t
| PROD id : type . type
| SUM id : type . type

term = expression of type i
| lam id id∗ . term
| < term , term >

Grammar

Figure 6.2: Syntax of CTT

CHAPTER 6. CONSTRUCTIVE TYPE THEORY 120

refl_type A type ==> A = A
refl_elem a : A ==> a = a : A

sym_type A = B ==> B = A
sym_elem a = b : A ==> b = a : A

trans_type [| A = B; B = C |] ==> A = C
trans_elem [| a = b : A; b = c : A |] ==> a = c : A

equal_types [| a : A; A = B |] ==> a : B
equal_typesL [| a = b : A; A = B |] ==> a = b : B

subst_type [| a : A; !!z. z:A ==> B(z) type |] ==> B(a) type
subst_typeL [| a = c : A; !!z. z:A ==> B(z) = D(z)

|] ==> B(a) = D(c)

subst_elem [| a : A; !!z. z:A ==> b(z):B(z) |] ==> b(a):B(a)
subst_elemL [| a = c : A; !!z. z:A ==> b(z) = d(z) : B(z)

|] ==> b(a) = d(c) : B(a)

refl_red Reduce(a,a)
red_if_equal a = b : A ==> Reduce(a,b)
trans_red [| a = b : A; Reduce(b,c) |] ==> a = c : A

Figure 6.3: General equality rules

Figure 6.3 presents the equality rules. Most of them are straightforward:
reflexivity, symmetry, transitivity and substitution. The judgement Reduce does
not belong to Type Theory proper; it has been added to implement rewriting.
The judgement Reduce(a, b) holds when a = b : A holds. It also holds when a
and b are syntactically identical, even if they are ill-typed, because rule refl_red
does not verify that a belongs to A.

The Reduce rules do not give rise to new theorems about the standard judge-
ments. The only rule with Reduce in a premise is trans_red, whose other premise
ensures that a and b (and thus c) are well-typed.

Figure 6.4 presents the rules for N , the type of natural numbers. They include
zero_ne_succ, which asserts 0 ̸= n + 1. This is the fourth Peano axiom and
cannot be derived without universes [22, page 91].

The constant rec constructs proof terms when mathematical induction,
rule NE, is applied. It can also express primitive recursion. Since rec can be ap-
plied to higher-order functions, it can even express Ackermann’s function, which
is not primitive recursive [47, page 104].

Figure 6.5 shows the rules for general product types, which include function
types as a special case. The rules correspond to the predicate calculus rules for
universal quantifiers and implication. They also permit reasoning about func-
tions, with the rules of a typed λ-calculus.

CHAPTER 6. CONSTRUCTIVE TYPE THEORY 121

NF N type

NI0 0 : N
NI_succ a : N ==> succ(a) : N
NI_succL a = b : N ==> succ(a) = succ(b) : N

NE [| p: N; a: C(0);
!!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u))

|] ==> rec(p, a, %u v.b(u,v)) : C(p)

NEL [| p = q : N; a = c : C(0);
!!u v. [| u: N; v: C(u) |] ==> b(u,v)=d(u,v): C(succ(u))

|] ==> rec(p, a, %u v.b(u,v)) = rec(q,c,d) : C(p)

NC0 [| a: C(0);
!!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u))

|] ==> rec(0, a, %u v.b(u,v)) = a : C(0)

NC_succ [| p: N; a: C(0);
!!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u))

|] ==> rec(succ(p), a, %u v.b(u,v)) =
b(p, rec(p, a, %u v.b(u,v))) : C(succ(p))

zero_ne_succ [| a: N; 0 = succ(a) : N |] ==> 0: F

Figure 6.4: Rules for type N

ProdF [| A type; !!x. x:A ==> B(x) type |] ==> PROD x:A.B(x) type
ProdFL [| A = C; !!x. x:A ==> B(x) = D(x) |] ==>

PROD x:A.B(x) = PROD x:C.D(x)

ProdI [| A type; !!x. x:A ==> b(x):B(x)
|] ==> lam x.b(x) : PROD x:A.B(x)

ProdIL [| A type; !!x. x:A ==> b(x) = c(x) : B(x)
|] ==> lam x.b(x) = lam x.c(x) : PROD x:A.B(x)

ProdE [| p : PROD x:A.B(x); a : A |] ==> p‘a : B(a)
ProdEL [| p=q: PROD x:A.B(x); a=b : A |] ==> p‘a = q‘b : B(a)

ProdC [| a : A; !!x. x:A ==> b(x) : B(x)
|] ==> (lam x.b(x)) ‘ a = b(a) : B(a)

ProdC2 p : PROD x:A.B(x) ==> (lam x. p‘x) = p : PROD x:A.B(x)

Figure 6.5: Rules for the product type
∏

x∈A B [x]

CHAPTER 6. CONSTRUCTIVE TYPE THEORY 122

SumF [| A type; !!x. x:A ==> B(x) type |] ==> SUM x:A.B(x) type
SumFL [| A = C; !!x. x:A ==> B(x) = D(x)

|] ==> SUM x:A.B(x) = SUM x:C.D(x)

SumI [| a : A; b : B(a) |] ==> <a,b> : SUM x:A.B(x)
SumIL [| a=c:A; b=d:B(a) |] ==> <a,b> = <c,d> : SUM x:A.B(x)

SumE [| p: SUM x:A.B(x);
!!x y. [| x:A; y:B(x) |] ==> c(x,y): C(<x,y>)

|] ==> split(p, %x y.c(x,y)) : C(p)

SumEL [| p=q : SUM x:A.B(x);
!!x y. [| x:A; y:B(x) |] ==> c(x,y)=d(x,y): C(<x,y>)

|] ==> split(p, %x y.c(x,y)) = split(q, %x y.d(x,y)) : C(p)

SumC [| a: A; b: B(a);
!!x y. [| x:A; y:B(x) |] ==> c(x,y): C(<x,y>)

|] ==> split(<a,b>, %x y.c(x,y)) = c(a,b) : C(<a,b>)

fst_def fst(a) == split(a, %x y.x)
snd_def snd(a) == split(a, %x y.y)

Figure 6.6: Rules for the sum type
∑

x∈A B [x]

Figure 6.6 shows the rules for general sum types, which include binary product
types as a special case. The rules correspond to the predicate calculus rules for
existential quantifiers and conjunction. They also permit reasoning about ordered
pairs, with the projections fst and snd.

Figure 6.7 shows the rules for binary sum types. They correspond to the
predicate calculus rules for disjunction. They also permit reasoning about disjoint
sums, with the injections inl and inr and case analysis operator when.

Figure 6.8 shows the rules for the empty and unit types, F and T . They
correspond to the predicate calculus rules for absurdity and truth.

Figure 6.9 shows the rules for equality types. If a = b ∈ A is provable then eq

is a canonical element of the type Eq(A, a, b), and vice versa. These rules define
extensional equality; the most recent versions of Type Theory use intensional
equality [29].

Figure 6.10 presents the derived rules. The rule subst_prodE is derived from
prodE, and is easier to use in backwards proof. The rules SumE_fst and SumE_snd

express the typing of fst and snd; together, they are roughly equivalent to SumE

with the advantage of creating no parameters. Section 6.12 below demonstrates
these rules in a proof of the Axiom of Choice.

All the rules are given in η-expanded form. For instance, every occurrence
of λu v . b(u, v) could be abbreviated to b in the rules for N . The expanded
form permits Isabelle to preserve bound variable names during backward proof.
Names of bound variables in the conclusion (here, u and v) are matched with

CHAPTER 6. CONSTRUCTIVE TYPE THEORY 123

PlusF [| A type; B type |] ==> A+B type
PlusFL [| A = C; B = D |] ==> A+B = C+D

PlusI_inl [| a : A; B type |] ==> inl(a) : A+B
PlusI_inlL [| a = c : A; B type |] ==> inl(a) = inl(c) : A+B

PlusI_inr [| A type; b : B |] ==> inr(b) : A+B
PlusI_inrL [| A type; b = d : B |] ==> inr(b) = inr(d) : A+B

PlusE [| p: A+B;
!!x. x:A ==> c(x): C(inl(x));
!!y. y:B ==> d(y): C(inr(y))

|] ==> when(p, %x.c(x), %y.d(y)) : C(p)

PlusEL [| p = q : A+B;
!!x. x: A ==> c(x) = e(x) : C(inl(x));
!!y. y: B ==> d(y) = f(y) : C(inr(y))

|] ==> when(p, %x.c(x), %y.d(y)) =
when(q, %x.e(x), %y.f(y)) : C(p)

PlusC_inl [| a: A;
!!x. x:A ==> c(x): C(inl(x));
!!y. y:B ==> d(y): C(inr(y))

|] ==> when(inl(a), %x.c(x), %y.d(y)) = c(a) : C(inl(a))

PlusC_inr [| b: B;
!!x. x:A ==> c(x): C(inl(x));
!!y. y:B ==> d(y): C(inr(y))

|] ==> when(inr(b), %x.c(x), %y.d(y)) = d(b) : C(inr(b))

Figure 6.7: Rules for the binary sum type A + B

FF F type
FE [| p: F; C type |] ==> contr(p) : C
FEL [| p = q : F; C type |] ==> contr(p) = contr(q) : C

TF T type
TI tt : T
TE [| p : T; c : C(tt) |] ==> c : C(p)
TEL [| p = q : T; c = d : C(tt) |] ==> c = d : C(p)
TC p : T ==> p = tt : T)

Figure 6.8: Rules for types F and T

EqF [| A type; a : A; b : A |] ==> Eq(A,a,b) type
EqFL [| A=B; a=c: A; b=d : A |] ==> Eq(A,a,b) = Eq(B,c,d)
EqI a = b : A ==> eq : Eq(A,a,b)
EqE p : Eq(A,a,b) ==> a = b : A
EqC p : Eq(A,a,b) ==> p = eq : Eq(A,a,b)

Figure 6.9: Rules for the equality type Eq(A, a, b)

CHAPTER 6. CONSTRUCTIVE TYPE THEORY 124

replace_type [| B = A; a : A |] ==> a : B
subst_eqtyparg [| a=c : A; !!z. z:A ==> B(z) type |] ==> B(a)=B(c)

subst_prodE [| p: Prod(A,B); a: A; !!z. z: B(a) ==> c(z): C(z)
|] ==> c(p‘a): C(p‘a)

SumIL2 [| c=a : A; d=b : B(a) |] ==> <c,d> = <a,b> : Sum(A,B)

SumE_fst p : Sum(A,B) ==> fst(p) : A

SumE_snd [| p: Sum(A,B); A type; !!x. x:A ==> B(x) type
|] ==> snd(p) : B(fst(p))

Figure 6.10: Derived rules for CTT

corresponding bound variables in the premises.

6.3 Rule lists

The Type Theory tactics provide rewriting, type inference, and logical reasoning.
Many proof procedures work by repeatedly resolving certain Type Theory rules
against a proof state. CTT defines lists — each with type thm list — of related
rules.

form_rls contains formation rules for the types N , Π, Σ, +, Eq , F , and T .

formL_rls contains long formation rules for Π, Σ, +, and Eq . (For other types
use refl_type.)

intr_rls contains introduction rules for the types N , Π, Σ, +, and T .

intrL_rls contains long introduction rules for N , Π, Σ, and +. (For T use
refl_elem.)

elim_rls contains elimination rules for the types N , Π, Σ, +, and F . The rules
for Eq and T are omitted because they involve no eliminator.

elimL_rls contains long elimination rules for N , Π, Σ, +, and F .

comp_rls contains computation rules for the types N , Π, Σ, and +. Those for
Eq and T involve no eliminator.

basic_defs contains the definitions of fst and snd.

CHAPTER 6. CONSTRUCTIVE TYPE THEORY 125

6.4 Tactics for subgoal reordering
test_assume_tac : int -> tactic
typechk_tac : thm list -> tactic
equal_tac : thm list -> tactic
intr_tac : thm list -> tactic

Blind application of CTT rules seldom leads to a proof. The elimination rules,
especially, create subgoals containing new unknowns. These subgoals unify with
anything, creating a huge search space. The standard tactic filt_resolve_tac

(see the Reference Manual) fails for goals that are too flexible; so does the CTT

tactic test_assume_tac. Used with the tactical REPEAT_FIRST they achieve a
simple kind of subgoal reordering: the less flexible subgoals are attempted first.
Do some single step proofs, or study the examples below, to see why this is
necessary.

test_assume_tac i uses assume_tac to solve the subgoal by assumption, but
only if subgoal i has the form a ∈ A and the head of a is not an unknown.
Otherwise, it fails.

typechk_tac thms uses thms with formation, introduction, and elimination
rules to check the typing of constructions. It is designed to solve goals
of the form a ∈ ?A, where a is rigid and ?A is flexible; thus it performs type
inference. The tactic can also solve goals of the form A type.

equal_tac thms uses thms with the long introduction and elimination rules to
solve goals of the form a = b ∈ A, where a is rigid. It is intended for deriving
the long rules for defined constants such as the arithmetic operators. The
tactic can also perform type checking.

intr_tac thms uses thms with the introduction rules to break down a type. It
is designed for goals like ?a ∈ A where ?a is flexible and A rigid. These
typically arise when trying to prove a proposition A, expressed as a type.

6.5 Rewriting tactics
rew_tac : thm list -> tactic
hyp_rew_tac : thm list -> tactic

Object-level simplification is accomplished through proof, using the CTT equality
rules and the built-in rewriting functor TSimpFun.2 The rewrites include the
computation rules and other equations. The long versions of the other rules
permit rewriting of subterms and subtypes. Also used are transitivity and the

2This should not be confused with Isabelle’s main simplifier; TSimpFun is only useful for CTT
and similar logics with type inference rules. At present it is undocumented.

CHAPTER 6. CONSTRUCTIVE TYPE THEORY 126

extra judgement form Reduce. Meta-level simplification handles only definitional
equality.

rew_tac thms applies thms and the computation rules as left-to-right rewrites.
It solves the goal a = b ∈ A by rewriting a to b. If b is an unknown then
it is assigned the rewritten form of a. All subgoals are rewritten.

hyp_rew_tac thms is like rew_tac, but includes as rewrites any equations
present in the assumptions.

6.6 Tactics for logical reasoning

Interpreting propositions as types lets CTT express statements of intuitionistic
logic. However, Constructive Type Theory is not just another syntax for first-
order logic. There are fundamental differences.

Can assumptions be deleted after use? Not every occurrence of a type repre-
sents a proposition, and Type Theory assumptions declare variables. In first-order
logic, ∨-elimination with the assumption P ∨Q creates one subgoal assuming P
and another assuming Q , and P ∨ Q can be deleted safely. In Type Theory,
+-elimination with the assumption z ∈ A + B creates one subgoal assuming
x ∈ A and another assuming y ∈ B (for arbitrary x and y). Deleting z ∈ A + B
when other assumptions refer to z may render the subgoal unprovable: arguably,
meaningless.

Isabelle provides several tactics for predicate calculus reasoning in CTT:

mp_tac : int -> tactic
add_mp_tac : int -> tactic
safestep_tac : thm list -> int -> tactic
safe_tac : thm list -> int -> tactic
step_tac : thm list -> int -> tactic
pc_tac : thm list -> int -> tactic

These are loosely based on the intuitionistic proof procedures of FOL. For the
reasons discussed above, a rule that is safe for propositional reasoning may be
unsafe for type checking; thus, some of the ‘safe’ tactics are misnamed.

mp_tac i searches in subgoal i for assumptions of the form f ∈ Π(A,B) and
a ∈ A, where A may be found by unification. It replaces f ∈ Π(A,B) by
z ∈ B(a), where z is a new parameter. The tactic can produce multiple
outcomes for each suitable pair of assumptions. In short, mp_tac performs
Modus Ponens among the assumptions.

add_mp_tac i is like mp_tac i but retains the assumption f ∈ Π(A,B). It avoids
information loss but obviously loops if repeated.

CHAPTER 6. CONSTRUCTIVE TYPE THEORY 127

safestep_tac thms i attacks subgoal i using formation rules and certain other
‘safe’ rules (FE, ProdI, SumE, PlusE), calling mp_tac when appropriate. It
also uses thms , which are typically premises of the rule being derived.

safe_tac thms i attempts to solve subgoal i by means of backtracking, using
safestep_tac.

step_tac thms i tries to reduce subgoal i using safestep_tac, then tries un-
safe rules. It may produce multiple outcomes.

pc_tac thms i tries to solve subgoal i by backtracking, using step_tac.

6.7 A theory of arithmetic

Arith is a theory of elementary arithmetic. It proves the properties of addition,
multiplication, subtraction, division, and remainder, culminating in the theorem

a mod b + (a/b) × b = a.

Figure 6.11 presents the definitions and some of the key theorems, including
commutative, distributive, and associative laws.

The operators #+, -, |-|, #*, mod and div stand for sum, difference, absolute
difference, product, remainder and quotient, respectively. Since Type Theory has
only primitive recursion, some of their definitions may be obscure.

The difference a − b is computed by taking b predecessors of a, where the
predecessor function is λv . rec(v , 0, λx y . x).

The remainder a mod b counts up to a in a cyclic fashion, using 0 as the
successor of b − 1. Absolute difference is used to test the equality succ(v) = b.

The quotient a/b is computed by adding one for every number x such that
0 ≤ x ≤ a and x mod b = 0.

6.8 The examples directory

This directory contains examples and experimental proofs in CTT.

CTT/ex/typechk.ML contains simple examples of type checking and type deduc-
tion.

CTT/ex/elim.ML contains some examples from Martin-Löf [22], proved using
pc_tac.

CTT/ex/equal.ML contains simple examples of rewriting.

CTT/ex/synth.ML demonstrates the use of unknowns with some trivial examples
of program synthesis.

CHAPTER 6. CONSTRUCTIVE TYPE THEORY 128

symbol meta-type priority description
#* [i , i] ⇒ i Left 70 multiplication

div [i , i] ⇒ i Left 70 division
mod [i , i] ⇒ i Left 70 modulus
#+ [i , i] ⇒ i Left 65 addition
- [i , i] ⇒ i Left 65 subtraction

|-| [i , i] ⇒ i Left 65 absolute difference

add_def a#+b == rec(a, b, %u v.succ(v))
diff_def a-b == rec(b, a, %u v.rec(v, 0, %x y.x))
absdiff_def a|-|b == (a-b) #+ (b-a)
mult_def a#*b == rec(a, 0, %u v. b #+ v)

mod_def a mod b ==
rec(a, 0, %u v. rec(succ(v) |-| b, 0, %x y.succ(v)))

div_def a div b ==
rec(a, 0, %u v. rec(succ(u) mod b, succ(v), %x y.v))

add_typing [| a:N; b:N |] ==> a #+ b : N
addC0 b:N ==> 0 #+ b = b : N
addC_succ [| a:N; b:N |] ==> succ(a) #+ b = succ(a #+ b) : N

add_assoc [| a:N; b:N; c:N |] ==>
(a #+ b) #+ c = a #+ (b #+ c) : N

add_commute [| a:N; b:N |] ==> a #+ b = b #+ a : N

mult_typing [| a:N; b:N |] ==> a #* b : N
multC0 b:N ==> 0 #* b = 0 : N
multC_succ [| a:N; b:N |] ==> succ(a) #* b = b #+ (a#*b) : N
mult_commute [| a:N; b:N |] ==> a #* b = b #* a : N

add_mult_dist [| a:N; b:N; c:N |] ==>
(a #+ b) #* c = (a #* c) #+ (b #* c) : N

mult_assoc [| a:N; b:N; c:N |] ==>
(a #* b) #* c = a #* (b #* c) : N

diff_typing [| a:N; b:N |] ==> a - b : N
diffC0 a:N ==> a - 0 = a : N
diff_0_eq_0 b:N ==> 0 - b = 0 : N
diff_succ_succ [| a:N; b:N |] ==> succ(a) - succ(b) = a - b : N
diff_self_eq_0 a:N ==> a - a = 0 : N
add_inverse_diff [| a:N; b:N; b-a=0 : N |] ==> b #+ (a-b) = a : N

Figure 6.11: The theory of arithmetic

CHAPTER 6. CONSTRUCTIVE TYPE THEORY 129

6.9 Example: type inference

Type inference involves proving a goal of the form a ∈ ?A, where a is a term
and ?A is an unknown standing for its type. The type, initially unknown, takes
shape in the course of the proof. Our example is the predecessor function on the
natural numbers.

goal CTT.thy "lam n. rec(n, 0, %x y.x) : ?A";
Level 0

lam n. rec(n,0,%x y. x) : ?A

1. lam n. rec(n,0,%x y. x) : ?A

Since the term is a Constructive Type Theory λ-abstraction (not to be confused
with a meta-level abstraction), we apply the rule ProdI, for Π-introduction. This
instantiates ?A to a product type of unknown domain and range.

by (resolve_tac [ProdI] 1);
Level 1

lam n. rec(n,0,%x y. x) : PROD x:?A1. ?B1(x)

1. ?A1 type

2. !!n. n : ?A1 ==> rec(n,0,%x y. x) : ?B1(n)

Subgoal 1 is too flexible. It can be solved by instantiating ?A1 to any type,
but most instantiations will invalidate subgoal 2. We therefore tackle the latter
subgoal. It asks the type of a term beginning with rec, which can be found by
N -elimination.

by (eresolve_tac [NE] 2);
Level 2

lam n. rec(n,0,%x y. x) : PROD x:N. ?C2(x,x)

1. N type

2. !!n. 0 : ?C2(n,0)

3. !!n x y. [| x : N; y : ?C2(n,x) |] ==> x : ?C2(n,succ(x))

Subgoal 1 is no longer flexible: we now know ?A1 is the type of natural numbers.
However, let us continue proving nontrivial subgoals. Subgoal 2 asks, what is the
type of 0?

by (resolve_tac [NI0] 2);
Level 3

lam n. rec(n,0,%x y. x) : N --> N

1. N type

2. !!n x y. [| x : N; y : N |] ==> x : N

The type ?A is now fully determined. It is the product type
∏

x∈N N , which
is shown as the function type N → N because there is no dependence on x .
But we must prove all the subgoals to show that the original term is validly
typed. Subgoal 2 is provable by assumption and the remaining subgoal falls by

CHAPTER 6. CONSTRUCTIVE TYPE THEORY 130

N -formation.

by (assume_tac 2);
Level 4

lam n. rec(n,0,%x y. x) : N --> N

1. N type

by (resolve_tac [NF] 1);
Level 5

lam n. rec(n,0,%x y. x) : N --> N

No subgoals!

Calling typechk_tac can prove this theorem in one step.
Even if the original term is ill-typed, one can infer a type for it, but unprovable

subgoals will be left. As an exercise, try to prove the following invalid goal:

goal CTT.thy "lam n. rec(n, 0, %x y.tt) : ?A";

6.10 An example of logical reasoning

Logical reasoning in Type Theory involves proving a goal of the form ?a ∈ A,
where type A expresses a proposition and ?a stands for its proof term, a value of
type A. The proof term is initially unknown and takes shape during the proof.

Our example expresses a theorem about quantifiers in a sorted logic:

∃x ∈ A . P(x) ∨ Q(x)

(∃x ∈ A . P(x)) ∨ (∃x ∈ A . Q(x))

By the propositions-as-types principle, this is encoded using Σ and + types. A
special case of it expresses a distributive law of Type Theory:

A × (B + C)

(A × B) + (A × C)

Generalizing this from × to Σ, and making the typing conditions explicit, yields
the rule we must derive:

A type

[x ∈ A]
....

B(x) type

[x ∈ A]
....

C (x) type p ∈ ∑
x∈A B(x) + C (x)

?a ∈ (
∑

x∈A B(x)) + (
∑

x∈A C (x))

To begin, we bind the rule’s premises — returned by the goal command — to

CHAPTER 6. CONSTRUCTIVE TYPE THEORY 131

the ml variable prems.

val prems = goal CTT.thy
"[| A type; \

\ !!x. x:A ==> B(x) type; \
\ !!x. x:A ==> C(x) type; \
\ p: SUM x:A. B(x) + C(x) \
\ |] ==> ?a : (SUM x:A. B(x)) + (SUM x:A. C(x))";

Level 0

?a : (SUM x:A. B(x)) + (SUM x:A. C(x))

1. ?a : (SUM x:A. B(x)) + (SUM x:A. C(x))

val prems = ["A type [A type]",

"?x : A ==> B(?x) type [!!x. x : A ==> B(x) type]",

"?x : A ==> C(?x) type [!!x. x : A ==> C(x) type]",

"p : SUM x:A. B(x) + C(x) [p : SUM x:A. B(x) + C(x)]"]

: thm list

The last premise involves the sum type Σ. Since it is a premise rather than the
assumption of a goal, it cannot be found by eresolve_tac. We could insert it
(and the other atomic premise) by calling

cut_facts_tac prems 1;

A forward proof step is more straightforward here. Let us resolve the Σ-
elimination rule with the premises using RL. This inference yields one result,
which we supply to resolve_tac.

by (resolve_tac (prems RL [SumE]) 1);
Level 1

split(p,?c1) : (SUM x:A. B(x)) + (SUM x:A. C(x))

1. !!x y.

[| x : A; y : B(x) + C(x) |] ==>

?c1(x,y) : (SUM x:A. B(x)) + (SUM x:A. C(x))

The subgoal has two new parameters, x and y . In the main goal, ?a has been
instantiated with a split term. The assumption y ∈ B(x) + C (x) is eliminated
next, causing a case split and creating the parameter xa. This inference also
inserts when into the main goal.

by (eresolve_tac [PlusE] 1);
Level 2

split(p,%x y. when(y,?c2(x,y),?d2(x,y)))

: (SUM x:A. B(x)) + (SUM x:A. C(x))

1. !!x y xa.

[| x : A; xa : B(x) |] ==>

?c2(x,y,xa) : (SUM x:A. B(x)) + (SUM x:A. C(x))

2. !!x y ya.

[| x : A; ya : C(x) |] ==>

?d2(x,y,ya) : (SUM x:A. B(x)) + (SUM x:A. C(x))

To complete the proof object for the main goal, we need to instantiate the terms

CHAPTER 6. CONSTRUCTIVE TYPE THEORY 132

?c2(x , y , xa) and ?d2(x , y , xa). We attack subgoal 1 by a +-introduction rule; since
the goal assumes xa ∈ B(x), we take the left injection (inl).

by (resolve_tac [PlusI_inl] 1);
Level 3

split(p,%x y. when(y,%xa. inl(?a3(x,y,xa)),?d2(x,y)))

: (SUM x:A. B(x)) + (SUM x:A. C(x))

1. !!x y xa. [| x : A; xa : B(x) |] ==> ?a3(x,y,xa) : SUM x:A. B(x)

2. !!x y xa. [| x : A; xa : B(x) |] ==> SUM x:A. C(x) type

3. !!x y ya.

[| x : A; ya : C(x) |] ==>

?d2(x,y,ya) : (SUM x:A. B(x)) + (SUM x:A. C(x))

A new subgoal 2 has appeared, to verify that
∑

x∈A C (x) is a type. Continuing to
work on subgoal 1, we apply the Σ-introduction rule. This instantiates the term
?a3(x , y , xa); the main goal now contains an ordered pair, whose components are
two new unknowns.

by (resolve_tac [SumI] 1);
Level 4

split(p,%x y. when(y,%xa. inl(<?a4(x,y,xa),?b4(x,y,xa)>),?d2(x,y)))

: (SUM x:A. B(x)) + (SUM x:A. C(x))

1. !!x y xa. [| x : A; xa : B(x) |] ==> ?a4(x,y,xa) : A

2. !!x y xa. [| x : A; xa : B(x) |] ==> ?b4(x,y,xa) : B(?a4(x,y,xa))

3. !!x y xa. [| x : A; xa : B(x) |] ==> SUM x:A. C(x) type

4. !!x y ya.

[| x : A; ya : C(x) |] ==>

?d2(x,y,ya) : (SUM x:A. B(x)) + (SUM x:A. C(x))

The two new subgoals both hold by assumption. Observe how the unknowns ?a4

and ?b4 are instantiated throughout the proof state.

by (assume_tac 1);
Level 5

split(p,%x y. when(y,%xa. inl(<x,?b4(x,y,xa)>),?d2(x,y)))

: (SUM x:A. B(x)) + (SUM x:A. C(x))

1. !!x y xa. [| x : A; xa : B(x) |] ==> ?b4(x,y,xa) : B(x)

2. !!x y xa. [| x : A; xa : B(x) |] ==> SUM x:A. C(x) type

3. !!x y ya.

[| x : A; ya : C(x) |] ==>

?d2(x,y,ya) : (SUM x:A. B(x)) + (SUM x:A. C(x))

by (assume_tac 1);
Level 6

split(p,%x y. when(y,%xa. inl(<x,xa>),?d2(x,y)))

: (SUM x:A. B(x)) + (SUM x:A. C(x))

1. !!x y xa. [| x : A; xa : B(x) |] ==> SUM x:A. C(x) type

2. !!x y ya.

[| x : A; ya : C(x) |] ==>

?d2(x,y,ya) : (SUM x:A. B(x)) + (SUM x:A. C(x))

CHAPTER 6. CONSTRUCTIVE TYPE THEORY 133

Subgoal 1 is an example of a well-formedness subgoal [8]. Such subgoals are
usually trivial; this one yields to typechk_tac, given the current list of premises.

by (typechk_tac prems);
Level 7

split(p,%x y. when(y,%xa. inl(<x,xa>),?d2(x,y)))

: (SUM x:A. B(x)) + (SUM x:A. C(x))

1. !!x y ya.

[| x : A; ya : C(x) |] ==>

?d2(x,y,ya) : (SUM x:A. B(x)) + (SUM x:A. C(x))

This subgoal is the other case from the +-elimination above, and can be proved
similarly. Quicker is to apply pc_tac. The main goal finally gets a fully instan-
tiated proof object.

by (pc_tac prems 1);
Level 8

split(p,%x y. when(y,%xa. inl(<x,xa>),%y. inr(<x,y>)))

: (SUM x:A. B(x)) + (SUM x:A. C(x))

No subgoals!

Calling pc_tac after the first Σ-elimination above also proves this theorem.

6.11 Example: deriving a currying functional

In simply-typed languages such as ml, a currying functional has the type

(A × B → C) → (A → (B → C)).

Let us generalize this to the dependent types Σ and Π. The functional takes a
function f that maps z : Σ(A,B) to C (z); the resulting function maps x ∈ A
and y ∈ B(x) to C (⟨x , y⟩).

Formally, there are three typing premises. A is a type; B is an A-indexed
family of types; C is a family of types indexed by Σ(A,B). The goal is expressed
using PROD f to ensure that the parameter corresponding to the functional’s
argument is really called f ; Isabelle echoes the type using --> because there is
no explicit dependence upon f .

val prems = goal CTT.thy
"[| A type; !!x. x:A ==> B(x) type; \

\ !!z. z: (SUM x:A. B(x)) ==> C(z) type \
\ |] ==> ?a : PROD f: (PROD z : (SUM x:A . B(x)) . C(z)). \
\ (PROD x:A . PROD y:B(x) . C(<x,y>))";

Level 0

?a : (PROD z:SUM x:A. B(x). C(z)) -->

(PROD x:A. PROD y:B(x). C(<x,y>))

1. ?a : (PROD z:SUM x:A. B(x). C(z)) -->

(PROD x:A. PROD y:B(x). C(<x,y>))

CHAPTER 6. CONSTRUCTIVE TYPE THEORY 134

val prems = ["A type [A type]",

"?x : A ==> B(?x) type [!!x. x : A ==> B(x) type]",

"?z : SUM x:A. B(x) ==> C(?z) type

[!!z. z : SUM x:A. B(x) ==> C(z) type]"] : thm list

This is a chance to demonstrate intr_tac. Here, the tactic repeatedly applies
Π-introduction and proves the rather tiresome typing conditions.

Note that ?a becomes instantiated to three nested λ-abstractions. It would
be easier to read if the bound variable names agreed with the parameters in the
subgoal. Isabelle attempts to give parameters the same names as corresponding
bound variables in the goal, but this does not always work. In any event, the
goal is logically correct.

by (intr_tac prems);
Level 1

lam x xa xb. ?b7(x,xa,xb)

: (PROD z:SUM x:A. B(x). C(z)) --> (PROD x:A. PROD y:B(x). C(<x,y>))

1. !!f x y.

[| f : PROD z:SUM x:A. B(x). C(z); x : A; y : B(x) |] ==>

?b7(f,x,y) : C(<x,y>)

Using Π-elimination, we solve subgoal 1 by applying the function f .

by (eresolve_tac [ProdE] 1);
Level 2

lam x xa xb. x ‘ <xa,xb>

: (PROD z:SUM x:A. B(x). C(z)) --> (PROD x:A. PROD y:B(x). C(<x,y>))

1. !!f x y. [| x : A; y : B(x) |] ==> <x,y> : SUM x:A. B(x)

Finally, we verify that the argument’s type is suitable for the function application.
This is straightforward using introduction rules.

by (intr_tac prems);
Level 3

lam x xa xb. x ‘ <xa,xb>

: (PROD z:SUM x:A. B(x). C(z)) --> (PROD x:A. PROD y:B(x). C(<x,y>))

No subgoals!

Calling pc_tac would have proved this theorem in one step; it can also prove an
example by Martin-Löf, related to ∨-elimination [22, page 58].

6.12 Example: proving the Axiom of Choice

Suppose we have a function h ∈ ∏
x∈A

∑
y∈B(x) C (x , y), which takes x ∈ A to

some y ∈ B(x) paired with some z ∈ C (x , y). Interpreting propositions as types,
this asserts that for all x ∈ A there exists y ∈ B(x) such that C (x , y). The
Axiom of Choice asserts that we can construct a function f ∈ ∏

x∈A B(x) such
that C (x , f ‘x) for all x ∈ A, where the latter property is witnessed by a function

CHAPTER 6. CONSTRUCTIVE TYPE THEORY 135

g ∈ ∏
x∈A C (x , f ‘x).

In principle, the Axiom of Choice is simple to derive in Constructive Type
Theory. The following definitions work:

f ≡ fst ◦ h

g ≡ snd ◦ h

But a completely formal proof is hard to find. The rules can be applied in
countless ways, yielding many higher-order unifiers. The proof can get bogged
down in the details. But with a careful selection of derived rules (recall Fig. 6.10)
and the type checking tactics, we can prove the theorem in nine steps.

val prems = goal CTT.thy
"[| A type; !!x. x:A ==> B(x) type; \

\ !!x y.[| x:A; y:B(x) |] ==> C(x,y) type \
\ |] ==> ?a : PROD h: (PROD x:A. SUM y:B(x). C(x,y)). \
\ (SUM f: (PROD x:A. B(x)). PROD x:A. C(x, f‘x))";

Level 0

?a : (PROD x:A. SUM y:B(x). C(x,y)) -->

(SUM f:PROD x:A. B(x). PROD x:A. C(x,f ‘ x))

1. ?a : (PROD x:A. SUM y:B(x). C(x,y)) -->

(SUM f:PROD x:A. B(x). PROD x:A. C(x,f ‘ x))

val prems = ["A type [A type]",

"?x : A ==> B(?x) type [!!x. x : A ==> B(x) type]",

"[| ?x : A; ?y : B(?x) |] ==> C(?x, ?y) type

[!!x y. [| x : A; y : B(x) |] ==> C(x, y) type]"]

: thm list

First, intr_tac applies introduction rules and performs routine type checking.
This instantiates ?a to a construction involving a λ-abstraction and an ordered
pair. The pair’s components are themselves λ-abstractions and there is a subgoal
for each.

by (intr_tac prems);
Level 1

lam x. <lam xa. ?b7(x,xa),lam xa. ?b8(x,xa)>

: (PROD x:A. SUM y:B(x). C(x,y)) -->

(SUM f:PROD x:A. B(x). PROD x:A. C(x,f ‘ x))

1. !!h x.

[| h : PROD x:A. SUM y:B(x). C(x,y); x : A |] ==>

?b7(h,x) : B(x)

2. !!h x.

[| h : PROD x:A. SUM y:B(x). C(x,y); x : A |] ==>

?b8(h,x) : C(x,(lam x. ?b7(h,x)) ‘ x)

Subgoal 1 asks to find the choice function itself, taking x ∈ A to some ?b7(h, x) ∈
B(x). Subgoal 2 asks, given x ∈ A, for a proof object ?b8(h, x) to witness that
the choice function’s argument and result lie in the relation C . This latter task

CHAPTER 6. CONSTRUCTIVE TYPE THEORY 136

will take up most of the proof.

by (eresolve_tac [ProdE RS SumE_fst] 1);
Level 2

lam x. <lam xa. fst(x ‘ xa),lam xa. ?b8(x,xa)>

: (PROD x:A. SUM y:B(x). C(x,y)) -->

(SUM f:PROD x:A. B(x). PROD x:A. C(x,f ‘ x))

1. !!h x. x : A ==> x : A

2. !!h x.

[| h : PROD x:A. SUM y:B(x). C(x,y); x : A |] ==>

?b8(h,x) : C(x,(lam x. fst(h ‘ x)) ‘ x)

Above, we have composed fst with the function h. Unification has deduced that
the function must be applied to x ∈ A. We have our choice function.

by (assume_tac 1);
Level 3

lam x. <lam xa. fst(x ‘ xa),lam xa. ?b8(x,xa)>

: (PROD x:A. SUM y:B(x). C(x,y)) -->

(SUM f:PROD x:A. B(x). PROD x:A. C(x,f ‘ x))

1. !!h x.

[| h : PROD x:A. SUM y:B(x). C(x,y); x : A |] ==>

?b8(h,x) : C(x,(lam x. fst(h ‘ x)) ‘ x)

Before we can compose snd with h, the arguments of C must be simplified. The
derived rule replace_type lets us replace a type by any equivalent type, shown
below as the schematic term ?A13(h, x):

by (resolve_tac [replace_type] 1);
Level 4

lam x. <lam xa. fst(x ‘ xa),lam xa. ?b8(x,xa)>

: (PROD x:A. SUM y:B(x). C(x,y)) -->

(SUM f:PROD x:A. B(x). PROD x:A. C(x,f ‘ x))

1. !!h x.

[| h : PROD x:A. SUM y:B(x). C(x,y); x : A |] ==>

C(x,(lam x. fst(h ‘ x)) ‘ x) = ?A13(h,x)

2. !!h x.

[| h : PROD x:A. SUM y:B(x). C(x,y); x : A |] ==>

?b8(h,x) : ?A13(h,x)

The derived rule subst_eqtyparg lets us simplify a type’s argument (by currying,
C (x) is a unary type operator):

by (resolve_tac [subst_eqtyparg] 1);
Level 5

lam x. <lam xa. fst(x ‘ xa),lam xa. ?b8(x,xa)>

: (PROD x:A. SUM y:B(x). C(x,y)) -->

(SUM f:PROD x:A. B(x). PROD x:A. C(x,f ‘ x))

CHAPTER 6. CONSTRUCTIVE TYPE THEORY 137

1. !!h x.

[| h : PROD x:A. SUM y:B(x). C(x,y); x : A |] ==>

(lam x. fst(h ‘ x)) ‘ x = ?c14(h,x) : ?A14(h,x)

2. !!h x z.

[| h : PROD x:A. SUM y:B(x). C(x,y); x : A;

z : ?A14(h,x) |] ==>

C(x,z) type

3. !!h x.

[| h : PROD x:A. SUM y:B(x). C(x,y); x : A |] ==>

?b8(h,x) : C(x,?c14(h,x))

Subgoal 1 requires simply β-contraction, which is the rule ProdC. The term
?c14(h, x) in the last subgoal receives the contracted result.

by (resolve_tac [ProdC] 1);
Level 6

lam x. <lam xa. fst(x ‘ xa),lam xa. ?b8(x,xa)>

: (PROD x:A. SUM y:B(x). C(x,y)) -->

(SUM f:PROD x:A. B(x). PROD x:A. C(x,f ‘ x))

1. !!h x.

[| h : PROD x:A. SUM y:B(x). C(x,y); x : A |] ==>

x : ?A15(h,x)

2. !!h x xa.

[| h : PROD x:A. SUM y:B(x). C(x,y); x : A;

xa : ?A15(h,x) |] ==>

fst(h ‘ xa) : ?B15(h,x,xa)

3. !!h x z.

[| h : PROD x:A. SUM y:B(x). C(x,y); x : A;

z : ?B15(h,x,x) |] ==>

C(x,z) type

4. !!h x.

[| h : PROD x:A. SUM y:B(x). C(x,y); x : A |] ==>

?b8(h,x) : C(x,fst(h ‘ x))

Routine type checking goals proliferate in Constructive Type Theory, but
typechk_tac quickly solves them. Note the inclusion of SumE_fst along with
the premises.

by (typechk_tac (SumE_fst::prems));
Level 7

lam x. <lam xa. fst(x ‘ xa),lam xa. ?b8(x,xa)>

: (PROD x:A. SUM y:B(x). C(x,y)) -->

(SUM f:PROD x:A. B(x). PROD x:A. C(x,f ‘ x))

1. !!h x.

[| h : PROD x:A. SUM y:B(x). C(x,y); x : A |] ==>

?b8(h,x) : C(x,fst(h ‘ x))

CHAPTER 6. CONSTRUCTIVE TYPE THEORY 138

We are finally ready to compose snd with h.

by (eresolve_tac [ProdE RS SumE_snd] 1);
Level 8

lam x. <lam xa. fst(x ‘ xa),lam xa. snd(x ‘ xa)>

: (PROD x:A. SUM y:B(x). C(x,y)) -->

(SUM f:PROD x:A. B(x). PROD x:A. C(x,f ‘ x))

1. !!h x. x : A ==> x : A

2. !!h x. x : A ==> B(x) type

3. !!h x xa. [| x : A; xa : B(x) |] ==> C(x,xa) type

The proof object has reached its final form. We call typechk_tac to finish the
type checking.

by (typechk_tac prems);
Level 9

lam x. <lam xa. fst(x ‘ xa),lam xa. snd(x ‘ xa)>

: (PROD x:A. SUM y:B(x). C(x,y)) -->

(SUM f:PROD x:A. B(x). PROD x:A. C(x,f ‘ x))

No subgoals!

It might be instructive to compare this proof with Martin-Löf’s forward proof of
the Axiom of Choice [22, page 50].

Bibliography

[1] J. R. Abrial and G. Laffitte. Towards the mechanization of the proofs of
some classical theorems of set theory. preprint, February 1993.

[2] Peter B. Andrews. An Introduction to Mathematical Logic and Type Theory:
To Truth Through Proof. Academic Press, 1986.

[3] David Basin and Matt Kaufmann. The Boyer-Moore prover and Nuprl:
An experimental comparison. In Gérard Huet and Gordon Plotkin, editors,
Logical Frameworks, pages 89–119. Cambridge University Press, 1991.

[4] Robert Boyer, Ewing Lusk, William McCune, Ross Overbeek, Mark Stickel,
and Lawrence Wos. Set theory in first-order logic: Clauses for Gödel’s ax-
ioms. Journal of Automated Reasoning, 2(3):287–327, 1986.

[5] J. Camilleri and T. F. Melham. Reasoning with inductively defined relations
in the HOL theorem prover. Technical Report 265, Computer Laboratory,
University of Cambridge, August 1992.

[6] Alonzo Church. A formulation of the simple theory of types. Journal of
Symbolic Logic, 5:56–68, 1940.

[7] Martin D. Coen. Interactive Program Derivation. PhD thesis, University of
Cambridge, November 1992. Computer Laboratory Technical Report 272.

[8] R. L. Constable et al. Implementing Mathematics with the Nuprl Proof
Development System. Prentice-Hall, 1986.

[9] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cam-
bridge University Press, 1990.

[10] Keith J. Devlin. Fundamentals of Contemporary Set Theory. Springer, 1979.

[11] Michael Dummett. Elements of Intuitionism. Oxford University Press, 1977.

[12] Roy Dyckhoff. Contraction-free sequent calculi for intuitionistic logic. Jour-
nal of Symbolic Logic, 57(3):795–807, 1992.

[13] Amy Felty. A logic program for transforming sequent proofs to natural
deduction proofs. In Peter Schroeder-Heister, editor, Extensions of Logic
Programming, LNAI 475, pages 157–178. Springer, 1991.

139

BIBLIOGRAPHY 140

[14] Jacob Frost. A case study of co-induction in Isabelle HOL. Technical Report
308, Computer Laboratory, University of Cambridge, August 1993.

[15] J. H. Gallier. Logic for Computer Science: Foundations of Automatic The-
orem Proving. Harper & Row, 1986.

[16] M. J. C. Gordon and T. F. Melham. Introduction to HOL: A Theorem
Proving Environment for Higher Order Logic. Cambridge University Press,
1993.

[17] Paul R. Halmos. Naive Set Theory. Van Nostrand, 1960.

[18] G. P. Huet and B. Lang. Proving and applying program transformations
expressed with second-order patterns. Acta Informatica, 11:31–55, 1978.

[19] Kenneth Kunen. Set Theory: An Introduction to Independence Proofs.
North-Holland, 1980.

[20] Lena Magnusson and Bengt Nordström. The ALF proof editor and its proof
engine. In Henk Barendregt and Tobias Nipkow, editors, Types for Proofs
and Programs: International Workshop TYPES ’93, LNCS 806, pages 213–
237. Springer, published 1994.

[21] Zohar Manna and Richard Waldinger. Deductive synthesis of the unification
algorithm. Science of Computer Programming, 1(1):5–48, 1981.

[22] Per Martin-Löf. Intuitionistic type theory. Bibliopolis, 1984.

[23] Robin Milner. A theory of type polymorphism in programming. Journal of
Computer and System Sciences, 17:348–375, 1978.

[24] Robin Milner and Mads Tofte. Co-induction in relational semantics. Theo-
retical Computer Science, 87:209–220, 1991.

[25] Dieter Nazareth and Tobias Nipkow. Formal verification of algorithm W:
The monomorphic case. In von Wright et al. [48], pages 331–345.

[26] Tobias Nipkow. More Church-Rosser proofs (in Isabelle/HOL). In Michael
McRobbie and John K. Slaney, editors, Automated Deduction — CADE-13
International Conference, LNAI 1104, pages 733–747. Springer, 1996.

[27] Tobias Nipkow. Winskel is (almost) right: Towards a mechanized semantics
textbook. In V. Chandru and V. Vinay, editors, Foundations of Software
Technology and Theoretical Computer Science, volume 1180 of LNCS, pages
180–192. Springer, 1996.

[28] Philippe Noël. Experimenting with Isabelle in ZF set theory. Journal of
Automated Reasoning, 10(1):15–58, 1993.

BIBLIOGRAPHY 141

[29] Bengt Nordström, Kent Petersson, and Jan Smith. Programming in Martin-
Löf’s Type Theory. An Introduction. Oxford University Press, 1990.

[30] Christine Paulin-Mohring. Inductive definitions in the system Coq: Rules
and properties. Research Report 92-49, LIP, Ecole Normale Supérieure de
Lyon, December 1992.

[31] Lawrence C. Paulson. Verifying the unification algorithm in LCF. Science
of Computer Programming, 5:143–170, 1985.

[32] Lawrence C. Paulson. Logic and Computation: Interactive proof with Cam-
bridge LCF. Cambridge University Press, 1987.

[33] Lawrence C. Paulson. Set theory for verification: I. From foundations to
functions. Journal of Automated Reasoning, 11(3):353–389, 1993.

[34] Lawrence C. Paulson. A fixedpoint approach to implementing (co)inductive
definitions. In Alan Bundy, editor, Automated Deduction — CADE-12 In-
ternational Conference, LNAI 814, pages 148–161. Springer, 1994.

[35] Lawrence C. Paulson. Set theory for verification: II. Induction and recursion.
Journal of Automated Reasoning, 15(2):167–215, 1995.

[36] Lawrence C. Paulson. Mechanized proofs of security protocols: Needham-
Schroeder with public keys. Technical Report 413, Computer Laboratory,
University of Cambridge, January 1997.

[37] Lawrence C. Paulson. Mechanizing coinduction and corecursion in higher-
order logic. Journal of Logic and Computation, 7(2):175–204, March 1997.

[38] Lawrence C. Paulson. Proving properties of security protocols by induc-
tion. In 10th Computer Security Foundations Workshop, pages 70–83. IEEE
Computer Society Press, 1997.

[39] Lawrence C. Paulson. A formulation of the simple theory of types (for Isa-
belle). In P. Martin-Löf and G. Mints, editors, COLOG-88: International
Conference on Computer Logic, LNCS 417, pages 246–274, Tallinn, Pub-
lished 1990. Estonian Academy of Sciences, Springer.

[40] Lawrence C. Paulson. A concrete final coalgebra theorem for ZF set theory.
In Peter Dybjer, Bengt Nordström, and Jan Smith, editors, Types for Proofs
and Programs: International Workshop TYPES ’94, LNCS 996, pages 120–
139. Springer, published 1995.

[41] F. J. Pelletier. Seventy-five problems for testing automatic theorem provers.
Journal of Automated Reasoning, 2:191–216, 1986. Errata, JAR 4 (1988),
235–236 and JAR 18 (1997), 135.

BIBLIOGRAPHY 142

[42] David A. Plaisted. A sequent-style model elimination strategy and a positive
refinement. Journal of Automated Reasoning, 6(4):389–402, 1990.

[43] Art Quaife. Automated deduction in von Neumann-Bernays-Gödel set the-
ory. Journal of Automated Reasoning, 8(1):91–147, 1992.

[44] Konrad Slind. Function definition in higher-order logic. In von Wright et al.
[48].

[45] Patrick Suppes. Axiomatic Set Theory. Dover, 1972.

[46] G. Takeuti. Proof Theory. North-Holland, 2nd edition, 1987.

[47] Simon Thompson. Type Theory and Functional Programming. Addison-
Wesley, 1991.

[48] J. von Wright, J. Grundy, and J. Harrison, editors. Theorem Proving in
Higher Order Logics: TPHOLs ’96, LNCS 1125, 1996.

[49] A. N. Whitehead and B. Russell. Principia Mathematica. Cambridge Uni-
versity Press, 1962. Paperback edition to *56, abridged from the 2nd edition
(1927).

[50] Glynn Winskel. The Formal Semantics of Programming Languages. MIT
Press, 1993.

Index

! symbol, 60, 62, 69, 70
[] symbol, 82
symbol, 82
#* symbol, 47, 128
#+ symbol, 47, 128
#- symbol, 47
& symbol, 7, 60, 105
* symbol, 26, 61, 79, 119
* type, 76
+ symbol, 43, 61, 79, 119
+ type, 76
- symbol, 25, 61, 79, 128
--> symbol, 7, 60, 105, 119
-> symbol, 26
-‘‘ symbol, 25
: symbol, 25, 68
< constant, 80
< symbol, 79
<-> symbol, 7, 105
<= constant, 80
<= symbol, 25, 68
= symbol, 7, 60, 105, 119
? symbol, 60, 62, 69, 70
?! symbol, 60
@ symbol, 60, 82
‘ symbol, 25, 119
‘‘ symbol, 25, 68
{} symbol, 68
| symbol, 7, 60, 105
|-| symbol, 128

0 constant, 25, 79, 117

absdiff_def theorem, 128
add_assoc theorem, 128
add_commute theorem, 128
add_def theorem, 47, 128

add_inverse_diff theorem, 128
add_mp_tac, 126
add_mult_dist theorem, 47, 128
add_safes, 111
add_typing theorem, 128
add_unsafes, 111
addC0 theorem, 128
addC_succ theorem, 128
addsplits, 76, 81, 87
ALL symbol, 7, 26, 60, 62, 69, 70, 105
All constant, 7, 60, 105
All_def theorem, 64
all_dupE theorem, 5, 9, 66
all_impE theorem, 9
allE theorem, 5, 9, 66
allI theorem, 8, 66
allL theorem, 107, 110
allL_thin theorem, 108
allR theorem, 107
and_def theorem, 42, 64
app_def theorem, 49
apply_def theorem, 31
apply_equality theorem, 39, 40, 57
apply_equality2 theorem, 39
apply_iff theorem, 39
apply_Pair theorem, 39, 57
apply_type theorem, 39
arg_cong theorem, 65
Arith theory, 46, 80, 127
assumptions

contradictory, 16
in CTT, 116, 126

Ball constant, 25, 29, 68, 70
ball_cong theorem, 32, 33
Ball_def theorem, 30, 71
ballE theorem, 32, 33, 72

143

INDEX 144

ballI theorem, 33, 72
basic theorem, 107
basic_defs, 124
best_tac, 112
beta theorem, 39, 40
Bex constant, 25, 29, 68, 70
bex_cong theorem, 32, 33
Bex_def theorem, 30, 71
bexCI theorem, 33, 70, 72
bexE theorem, 33, 72
bexI theorem, 33, 70, 72
bij constant, 45
bij_converse_bij theorem, 45
bij_def theorem, 45
bij_disjoint_Un theorem, 45
Blast_tac, 54–56
blast_tac, 18, 20, 21
bnd_mono_def theorem, 44
Bool theory, 40
bool type, 61
bool_0I theorem, 42
bool_1I theorem, 42
bool_def theorem, 42
boolE theorem, 42
box_equals theorem, 65, 67
bspec theorem, 33, 72
butlast constant, 82

case constant, 43
case symbol, 63, 80, 81, 87
case_def theorem, 43
case_Inl theorem, 43
case_Inr theorem, 43
case_tac, 67
CCL theory, 1
ccontr theorem, 66
classical theorem, 66
coinduct theorem, 44
coinductive, 96–99
Collect constant, 25, 26, 29, 68, 70
Collect_def theorem, 30
Collect_mem_eq theorem, 70, 71
Collect_subset theorem, 36

CollectD theorem, 72, 102
CollectD1 theorem, 32, 34
CollectD2 theorem, 32, 34
CollectE theorem, 32, 34, 72
CollectI theorem, 34, 72, 102
comp_assoc theorem, 45
comp_bij theorem, 45
comp_def theorem, 45
comp_func theorem, 45
comp_func_apply theorem, 45
comp_inj theorem, 45
comp_rls, 124
comp_surj theorem, 45
comp_type theorem, 45
Compl constant, 68
Compl_def theorem, 71
Compl_disjoint theorem, 74
Compl_Int theorem, 74
Compl_partition theorem, 74
Compl_Un theorem, 74
ComplD theorem, 73
ComplI theorem, 73
concat constant, 82
cond_0 theorem, 42
cond_1 theorem, 42
cond_def theorem, 42
cong theorem, 65
congruence rules, 32
conj_cong, 6, 75
conj_impE theorem, 9, 10
conjE theorem, 9, 65
conjI theorem, 8, 65
conjL theorem, 107
conjR theorem, 107
conjunct1 theorem, 8, 65
conjunct2 theorem, 8, 65
conL theorem, 108
conR theorem, 108
cons constant, 25, 26
cons_def theorem, 31
Cons_iff theorem, 49
consCI theorem, 35
consE theorem, 35

INDEX 145

ConsI theorem, 49
consI1 theorem, 35
consI2 theorem, 35
Constructive Type Theory, 116–138
contr constant, 117
converse constant, 25, 39
converse_def theorem, 31
could_res, 109
could_resolve_seq, 110
CTT theory, 1, 116
Cube theory, 1
cut theorem, 107
cut_facts_tac, 18, 19, 56
cutL_tac, 109
cutR_tac, 109

datatype, 86–91
deepen_tac, 16
diff_0_eq_0 theorem, 128
Diff_cancel theorem, 41
Diff_contains theorem, 36
Diff_def theorem, 30
diff_def theorem, 47, 128
Diff_disjoint theorem, 41
Diff_Int theorem, 41
Diff_partition theorem, 41
diff_self_eq_0 theorem, 128
Diff_subset theorem, 36
diff_succ_succ theorem, 128
diff_typing theorem, 128
Diff_Un theorem, 41
diffC0 theorem, 128
DiffD1 theorem, 35
DiffD2 theorem, 35
DiffE theorem, 35
DiffI theorem, 35
disj_impE theorem, 9, 10, 14
disjCI theorem, 11, 66
disjE theorem, 8, 65
disjI1 theorem, 8, 65
disjI2 theorem, 8, 65
disjL theorem, 107
disjR theorem, 107

div symbol, 47, 79, 128
div_def theorem, 47, 128
div_geq theorem, 80
div_less theorem, 80
Divides theory, 80
domain constant, 25, 39
domain_def theorem, 31
domain_of_fun theorem, 39
domain_subset theorem, 38
domain_type theorem, 39
domainE theorem, 38, 39
domainI theorem, 38, 39
double_complement theorem, 41, 74
dresolve_tac, 53
drop constant, 82
dropWhile constant, 82

Elem constant, 117
elim_rls, 124
elimL_rls, 124
empty_def theorem, 71
empty_pack, 110
empty_subsetI theorem, 33
emptyE theorem, 33, 73
Eps constant, 60, 62
Eq constant, 117
eq constant, 117, 122
eq_mp_tac, 10
EqC theorem, 123
EqE theorem, 123
Eqelem constant, 117
EqF theorem, 123
EqFL theorem, 123
EqI theorem, 123
Eqtype constant, 117
equal_tac, 125
equal_types theorem, 120
equal_typesL theorem, 120
equalityCE theorem, 70, 72, 102,

103
equalityD1 theorem, 33, 72
equalityD2 theorem, 33, 72
equalityE theorem, 33, 72

INDEX 146

equalityI theorem, 33, 52, 72
equals0D theorem, 33
equals0I theorem, 33
eresolve_tac, 16
eta theorem, 39, 40
EX symbol, 7, 26, 60, 62, 69, 70, 105
Ex constant, 7, 60, 105
EX! symbol, 7, 60
Ex1 constant, 7, 60
Ex1_def theorem, 64
ex1_def theorem, 8
ex1E theorem, 9, 66
ex1I theorem, 9, 66
Ex_def theorem, 64
ex_impE theorem, 9
exCI theorem, 11, 15, 66
excluded_middle theorem, 11, 66
exE theorem, 8, 66
exhaust_tac, 89
exI theorem, 8, 66
exL theorem, 107
Exp theory, 100
expand_if theorem, 66, 76
expand_split theorem, 77
expand_sum_case theorem, 79
exR theorem, 107, 110, 112
exR_thin theorem, 108, 112, 113
ext theorem, 63, 64
extension theorem, 30

F constant, 117
False constant, 7, 60, 105
False_def theorem, 64
FalseE theorem, 8, 65
FalseL theorem, 107
fast_tac, 112
FE theorem, 123, 127
FEL theorem, 123
FF theorem, 123
field constant, 25
field_def theorem, 31
field_subset theorem, 38
fieldCI theorem, 38

fieldE theorem, 38
fieldI1 theorem, 38
fieldI2 theorem, 38
filseq_resolve_tac, 110
filt_resolve_tac, 110, 125
filter constant, 82
Fin.consI theorem, 48
Fin.emptyI theorem, 48
Fin_induct theorem, 48
Fin_mono theorem, 48
Fin_subset theorem, 48
Fin_UnI theorem, 48
Fin_UnionI theorem, 48
first-order logic, 5–22
Fixedpt theory, 42
flat constant, 49
flat_def theorem, 49
flex-flex constraints, 104
FOL theory, 1, 5, 11, 126
FOL_cs, 11
FOL_ss, 6
foldl constant, 82
form_rls, 124
formL_rls, 124
forms_of_seq, 109
foundation theorem, 30
fst constant, 25, 32, 77, 117, 122
fst_conv theorem, 37, 77
fst_def theorem, 31, 122
Fun theory, 75
fun type, 61
fun_cong theorem, 65
fun_disjoint_apply1 theorem, 40,

56
fun_disjoint_apply2 theorem, 40
fun_disjoint_Un theorem, 40, 58
fun_empty theorem, 40
fun_extension theorem, 39, 40
fun_is_rel theorem, 39
fun_single theorem, 40
function applications

in CTT, 119
in ZF, 25

INDEX 147

gfp_def theorem, 44
gfp_least theorem, 44
gfp_mono theorem, 44
gfp_subset theorem, 44
gfp_Tarski theorem, 44
gfp_upperbound theorem, 44
goalw, 18

hd constant, 82
higher-order logic, 59–103
HOL theory, 1, 59
hol system, 59, 62
HOL_basic_ss, 75
HOL_cs, 76
HOL_quantifiers, 62, 70
HOL_ss, 75
HOLCF theory, 1
hyp_rew_tac, 126
hyp_subst_tac, 6, 75

i type, 24, 116
id constant, 45
id_def theorem, 45
If constant, 60
if constant, 25
if_def theorem, 17, 30, 64
if_not_P theorem, 35, 66
if_P theorem, 35, 66
ifE theorem, 19
iff theorem, 63, 64
iff_def theorem, 8, 107
iff_impE theorem, 9
iffCE theorem, 11, 66, 70
iffD1 theorem, 9, 65
iffD2 theorem, 9, 65
iffE theorem, 9, 65
iffI theorem, 9, 19, 65
iffL theorem, 108, 114
iffR theorem, 108
ifI theorem, 19
IFOL theory, 5
IFOL_ss, 6
image_def theorem, 31, 71

imageE theorem, 38, 73
imageI theorem, 38, 73
imp_impE theorem, 9, 14
impCE theorem, 11, 66
impE theorem, 9, 10, 65
impI theorem, 8, 63
impL theorem, 107
impR theorem, 107
in symbol, 27, 61
ind type, 80
induct theorem, 44
induct_tac, 81, 89
inductive, 96–99
Inf constant, 25, 29
infinity theorem, 31
inj constant, 45, 75
inj_converse_inj theorem, 45
inj_def theorem, 45, 75
inj_Inl theorem, 79
inj_Inr theorem, 79
inj_onto constant, 75
inj_onto_def theorem, 75
inj_Suc theorem, 79
Inl constant, 43, 79
inl constant, 117, 122, 132
Inl_def theorem, 43
Inl_inject theorem, 43
Inl_neq_Inr theorem, 43
Inl_not_Inr theorem, 79
Inr constant, 43, 79
inr constant, 117, 122
Inr_def theorem, 43
Inr_inject theorem, 43
insert constant, 68
insert_def theorem, 71
insertE theorem, 73
insertI1 theorem, 73
insertI2 theorem, 73
INT symbol, 26, 28, 68–70
Int symbol, 25, 68
Int_absorb theorem, 41, 74
Int_assoc theorem, 41, 74
Int_commute theorem, 41, 74

INDEX 148

INT_D theorem, 73
Int_def theorem, 30, 71
INT_E theorem, 34, 73
Int_greatest theorem, 36, 52, 54,

74
INT_I theorem, 34, 73
Int_Inter_image theorem, 74
Int_lower1 theorem, 36, 53, 74
Int_lower2 theorem, 36, 53, 74
Int_Un_distrib theorem, 41, 74
Int_Union theorem, 74
Int_Union_RepFun theorem, 41
IntD1 theorem, 35, 73
IntD2 theorem, 35, 73
IntE theorem, 35, 53, 73
INTER constant, 68
Inter constant, 25, 68
INTER1 constant, 68
INTER1_def theorem, 71
INTER_def theorem, 71
Inter_def theorem, 30, 71
Inter_greatest theorem, 36, 74
Inter_lower theorem, 36, 74
Inter_Un_distrib theorem, 41, 74
InterD theorem, 34, 73
InterE theorem, 34, 73
InterI theorem, 32, 34, 73
IntI theorem, 35, 73
IntPr.best_tac, 11
IntPr.fast_tac, 10, 13
IntPr.inst_step_tac, 10
IntPr.safe_step_tac, 10
IntPr.safe_tac, 10
IntPr.step_tac, 10
intr_rls, 124
intr_tac, 125, 134, 135
intrL_rls, 124
inv constant, 75
inv_def theorem, 75

lam symbol, 26, 28, 119
lam_def theorem, 31
lam_type theorem, 39

Lambda constant, 25, 29
lambda constant, 117, 119
λ-abstractions

in CTT, 119
in ZF, 26

lamE theorem, 39, 40
lamI theorem, 39, 40
last constant, 82
LCF theory, 1
le_cs, 23
LEAST constant, 61, 62, 80
Least constant, 60
Least_def theorem, 64
left_comp_id theorem, 45
left_comp_inverse theorem, 45
left_inverse theorem, 45
length constant, 49, 82
length_def theorem, 49
less_induct theorem, 81
Let constant, 24, 25, 60, 63
let symbol, 27, 61, 63
Let_def theorem, 24, 30, 63, 64
LFilter theory, 100
lfp_def theorem, 44
lfp_greatest theorem, 44
lfp_lowerbound theorem, 44
lfp_mono theorem, 44
lfp_subset theorem, 44
lfp_Tarski theorem, 44
List theory, 81, 82
list type, 100
list type, 81
list constant, 49
List.induct theorem, 49
list_case constant, 49
list_mono theorem, 49
list_rec constant, 49
list_rec_Cons theorem, 49
list_rec_def theorem, 49
list_rec_Nil theorem, 49
LK theory, 1, 104, 108
LK_dup_pack, 110, 112
LK_pack, 110

INDEX 149

LList theory, 100
logic class, 5

map constant, 49, 82
map_app_distrib theorem, 49
map_compose theorem, 49
map_def theorem, 49
map_flat theorem, 49
map_ident theorem, 49
map_type theorem, 49
max constant, 61, 80
mem symbol, 82
mem_asym theorem, 35, 36
mem_Collect_eq theorem, 70, 71
mem_irrefl theorem, 35
min constant, 61, 80
minus class, 61
mod symbol, 47, 79, 128
mod_def theorem, 47, 128
mod_geq theorem, 80
mod_less theorem, 80
mod_quo_equality theorem, 47
Modal theory, 1
mono constant, 61
mp theorem, 8, 63
mp_tac, 10, 126
mult_0 theorem, 47
mult_assoc theorem, 47, 128
mult_commute theorem, 47, 128
mult_def theorem, 47, 128
mult_succ theorem, 47
mult_type theorem, 47
mult_typing theorem, 128
multC0 theorem, 128
multC_succ theorem, 128

N constant, 117
n_not_Suc_n theorem, 79
Nat theory, 46, 80
nat type, 79, 80, 89
nat type, 80–81
nat constant, 47
nat_0I theorem, 47

nat_case constant, 47
nat_case_0 theorem, 47
nat_case_def theorem, 47
nat_case_succ theorem, 47
nat_def theorem, 47
nat_induct theorem, 47, 79
nat_rec constant, 81
nat_succI theorem, 47
NatDef theory, 80
NC0 theorem, 121
NC_succ theorem, 121
NE theorem, 120, 121, 129
NEL theorem, 121
NF theorem, 121, 130
NI0 theorem, 121
NI_succ theorem, 121
NI_succL theorem, 121
Nil_Cons_iff theorem, 49
NilI theorem, 49
NIO theorem, 129
Not constant, 7, 60, 105
not_def theorem, 8, 42, 64
not_impE theorem, 9
not_sym theorem, 65
notE theorem, 9, 10, 65
notI theorem, 9, 65
notL theorem, 107
notnotD theorem, 11, 66
notR theorem, 107
nth constant, 82
null constant, 82

O symbol, 45
o type, 5, 104
o symbol, 60, 71
o_def theorem, 64
of symbol, 63
or_def theorem, 42, 64
Ord theory, 61
ord class, 61, 62, 80
order class, 61, 80

pack ML type, 110

INDEX 150

Pair constant, 25, 26, 77
pair constant, 117
Pair_def theorem, 31
Pair_eq theorem, 77
Pair_inject theorem, 37, 77
Pair_inject1 theorem, 37
Pair_inject2 theorem, 37
Pair_neq_0 theorem, 37
PairE theorem, 77
pairing theorem, 34
pc_tac, 111, 127, 133, 134
Perm theory, 42
Pi constant, 25, 28, 40
Pi_def theorem, 31
Pi_type theorem, 39, 40
plus class, 61
PlusC_inl theorem, 123
PlusC_inr theorem, 123
PlusE theorem, 123, 127, 131
PlusEL theorem, 123
PlusF theorem, 123
PlusFL theorem, 123
PlusI_inl theorem, 123, 132
PlusI_inlL theorem, 123
PlusI_inr theorem, 123
PlusI_inrL theorem, 123
Pow constant, 25, 68
Pow_def theorem, 71
Pow_iff theorem, 30
Pow_mono theorem, 52
PowD theorem, 33, 53, 73
PowI theorem, 33, 53, 73
primrec, 92–93
primrec symbol, 80
PrimReplace constant, 25, 29
priorities, 2
PROD symbol, 26, 28, 118, 119
Prod constant, 117
Prod theory, 76
ProdC theorem, 121, 137
ProdC2 theorem, 121
ProdE theorem, 121, 134, 136, 138
ProdEL theorem, 121

ProdF theorem, 121
ProdFL theorem, 121
ProdI theorem, 121, 127, 129
ProdIL theorem, 121
prop_cs, 11, 76
prop_pack, 110

qcase_def theorem, 43
qconverse constant, 42
qconverse_def theorem, 43
qed_spec_mp, 90
qfsplit_def theorem, 43
QInl_def theorem, 43
QInr_def theorem, 43
QPair theory, 42
QPair_def theorem, 43
QSigma constant, 42
QSigma_def theorem, 43
qsplit constant, 42
qsplit_def theorem, 43
qsum_def theorem, 43
QUniv theory, 46

range constant, 25, 68, 101
range_def theorem, 31, 71
range_of_fun theorem, 39, 40
range_subset theorem, 38
range_type theorem, 39
rangeE theorem, 38, 73, 102
rangeI theorem, 38, 73
rank constant, 48
rank_ss, 23
rec constant, 47, 117, 120
rec_0 theorem, 47
rec_def theorem, 47
rec_succ theorem, 47
recdef, 93–96
recursion

general, 93–96
primitive, 92–93

recursive functions, see recursion
red_if_equal theorem, 120
Reduce constant, 117, 120, 126

INDEX 151

refl theorem, 8, 63, 107
refl_elem theorem, 120, 124
refl_red theorem, 120
refl_type theorem, 120, 124
REPEAT_FIRST, 125
repeat_goal_tac, 111
RepFun constant, 25, 28, 29, 32
RepFun_def theorem, 30
RepFunE theorem, 34
RepFunI theorem, 34
Replace constant, 25, 28, 29, 32
Replace_def theorem, 30
replace_type theorem, 124, 136
ReplaceE theorem, 34
ReplaceI theorem, 34
replacement theorem, 30
reresolve_tac, 111
res_inst_tac, 62
restrict constant, 25, 32
restrict theorem, 39
restrict_bij theorem, 45
restrict_def theorem, 31
restrict_type theorem, 39
rev constant, 49, 82
rev_def theorem, 49
rew_tac, 18, 126
rewrite_rule, 19
right_comp_id theorem, 45
right_comp_inverse theorem, 45
right_inverse theorem, 45
RL, 131
RS, 136, 138

safe_goal_tac, 112
safe_tac, 127
safestep_tac, 127
search

best-first, 103
select_equality theorem, 64, 66
selectI theorem, 63, 64
separation theorem, 34
Seqof constant, 105
sequent calculus, 104–115

Set theory, 67, 70
set constant, 82
set type, 67
set theory, 23–58
set_current_thy, 103
set_diff_def theorem, 71
show_sorts, 62
show_types, 62
Sigma constant, 25, 28, 29, 37, 77
Sigma_def theorem, 31, 77
SigmaE theorem, 37, 77
SigmaE2 theorem, 37
SigmaI theorem, 37, 77
simplification

of conjunctions, 6, 75
singletonE theorem, 35
singletonI theorem, 35
size constant, 88
snd constant, 25, 32, 77, 117, 122
snd_conv theorem, 37, 77
snd_def theorem, 31, 122
sobj type, 106
spec theorem, 8, 66
split constant, 25, 32, 77, 117, 131
split theorem, 37, 77
split_t_case theorem, 87
split_all_tac, 78
split_def theorem, 31
split_list_case theorem, 81
ssubst theorem, 9, 65, 67
stac, 75
Step_tac, 22
step_tac, 22, 112, 127
strip_tac, 67
subset_def theorem, 30, 71
subset_refl theorem, 33, 72
subset_trans theorem, 33, 72
subsetCE theorem, 33, 70, 72
subsetD theorem, 33, 55, 70, 72
subsetI theorem, 33, 53, 54, 72
subst theorem, 8, 63
subst_elem theorem, 120
subst_elemL theorem, 120

INDEX 152

subst_eqtyparg theorem, 124, 136
subst_prodE theorem, 122, 124
subst_type theorem, 120
subst_typeL theorem, 120
Suc constant, 79
Suc_not_Zero theorem, 79
succ constant, 25, 29, 117
succ_def theorem, 31
succ_inject theorem, 35
succ_neq_0 theorem, 35
succCI theorem, 35
succE theorem, 35
succI1 theorem, 35
succI2 theorem, 35
SUM symbol, 26, 28, 118, 119
Sum constant, 117
Sum theory, 42, 78
sum_case constant, 79
sum_case_Inl theorem, 79
sum_case_Inr theorem, 79
sum_def theorem, 43
sum_InlI theorem, 43
sum_InrI theorem, 43
SUM_Int_distrib1 theorem, 41
SUM_Int_distrib2 theorem, 41
SUM_Un_distrib1 theorem, 41
SUM_Un_distrib2 theorem, 41
SumC theorem, 122
SumE theorem, 122, 127, 131
sumE theorem, 79
sumE2 theorem, 43
SumE_fst theorem, 122, 124, 136,

137
SumE_snd theorem, 122, 124, 138
SumEL theorem, 122
SumF theorem, 122
SumFL theorem, 122
SumI theorem, 122, 132
SumIL theorem, 122
SumIL2 theorem, 124
surj constant, 45, 71, 75
surj_def theorem, 45, 75
surjective_pairing theorem, 77

surjective_sum theorem, 79
swap theorem, 11, 66
swap_res_tac, 16, 103
sym theorem, 9, 65, 107
sym_elem theorem, 120
sym_type theorem, 120
symL theorem, 108

T constant, 117
t type, 116
take constant, 82
takeWhile constant, 82
TC theorem, 123
TE theorem, 123
TEL theorem, 123
term class, 5, 61, 104
test_assume_tac, 125
TF theorem, 123
THE symbol, 26, 28, 36, 105
The constant, 25, 28, 29, 105
The theorem, 107
the_def theorem, 30
the_equality theorem, 35, 36
theI theorem, 35, 36
thinL theorem, 107
thinR theorem, 107
TI theorem, 123
times class, 61
tl constant, 82
tracing

of unification, 62
trans theorem, 9, 65, 107
trans_elem theorem, 120
trans_red theorem, 120
trans_tac, 81
trans_type theorem, 120
True constant, 7, 60, 105
True_def theorem, 8, 64, 107
True_or_False theorem, 63, 64
TrueI theorem, 9, 65
Trueprop constant, 7, 60, 105
TrueR theorem, 108
tt constant, 117

INDEX 153

Type constant, 117
type definition, 84
typechk_tac, 125, 130, 133, 137,

138
typedef, 81

UN symbol, 26, 28, 68–70
Un symbol, 25, 68
Un1 theorem, 70
Un2 theorem, 70
Un_absorb theorem, 41, 74
Un_assoc theorem, 41, 74
Un_commute theorem, 41, 74
Un_def theorem, 30, 71
UN_E theorem, 34, 73
UN_I theorem, 34, 73
Un_Int_distrib theorem, 41, 74
Un_Inter theorem, 74
Un_Inter_RepFun theorem, 41
Un_least theorem, 36, 74
Un_Union_image theorem, 74
Un_upper1 theorem, 36, 74
Un_upper2 theorem, 36, 74
UnCI theorem, 35, 36, 70, 73
UnE theorem, 35, 73
UnI1 theorem, 35, 36, 57, 73
UnI2 theorem, 35, 36, 73
unification

incompleteness of, 62
Unify.trace_types, 62
UNION constant, 68
Union constant, 25, 68
UNION1 constant, 68
UNION1_def theorem, 71
UNION_def theorem, 71
Union_def theorem, 71
Union_iff theorem, 30
Union_least theorem, 36, 74
Union_Un_distrib theorem, 41, 74
Union_upper theorem, 36, 74
UnionE theorem, 34, 55, 73
UnionI theorem, 34, 55, 73
unit_eq theorem, 78

Univ theory, 46
Upair constant, 24, 25, 29
Upair_def theorem, 30
UpairE theorem, 34
UpairI1 theorem, 34
UpairI2 theorem, 34

vimage_def theorem, 31
vimageE theorem, 38
vimageI theorem, 38

when constant, 117, 122, 131

xor_def theorem, 42

zero_ne_succ theorem, 120, 121
ZF theory, 1, 23, 59
ZF_cs, 23
ZF_ss, 23

