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Abstract

An existing approach based on induction and theorem proving is tai-
lored to the verification of security protocols that make use of smart cards.
Smart cards are modelled operationally, hence only their functionalities,
rather than their implementative technicalities, are of interest. The spy
can steal certain smart cards, and clone others while learning their stored
secrets. In terms of generality, the approach scales up to protocols that
assume secure or insecure means between agents and smart cards, as well
as to smart cards being PIN-operated or PIN-less. In terms of extensibil-
ity, new, application-dependent smart card functionalities can be easily
included.

The approach is demonstrated on the key distribution protocol de-
signed by Shoup and Rubin [30], and the assumptions are studied that
are necessary on the smart cards for the protocol goals to be met. It is
found that, if the data buses of the smart cards are unreliable as to pro-
duce outputs in an unspecified order, then the protocol does not confirm to
the peers its goals of confidentiality, authentication, and key distribution
because of lack of explicitness. A simple fix is introduced and proved.

1 Introduction

Safeguarding the long-term secrets to use in security protocol sessions was
among the primary motives for the development of smart cards. Although some
researchers believe that no hard device can ever be totally tamper-resistant,
modern smart cards do offer a level of physical security that is considered suf-
ficient for many applications. Today, a cheap integrated-circuit memory card
hosts a few kilobytes of sensitive information. Additionally, an integrated-circuit
microprocessor card embeds an 8-bit microprocessor that can perform rela-
tively simple operations such as DES encryption/decryption. In consequence,
smart card functionalities have been added either to existing security protocols



(e.g. [15, 17]), or to newly designed ones (e.g. [30]). Below, we refer to those pro-
tocols that employ smart cards as smart card protocols, as opposed to traditional
protocols, which do not.

Smart card protocols are intended to achieve stronger goals than traditional
ones, but this should be confirmed formally. Somewhat to our surprise, the liter-
ature only features two significant attempts, which we detail in the next section,
in that direction, whereas traditional protocols have been studied extensively
by a large number of formal approaches (e.g. [13, 25, 26, 29]). The goal of our
research was to develop an approach to analysing smart card protocols so that
their strengths and weaknesses can be reasonably easily explained in detail with
formal support. Achieving our goal would contribute to boosting E-commerce.
We have pursued the goal [6, 8] by extending Paulson’s Inductive Approach to
analysing traditional protocols [26], and believe to have now reached it.

Proving deep properties is more complicated of smart card protocols than
of traditional ones. A profound understanding of the roles played by the cards
in the protocol sessions is necessary even to state putative properties. Then,
proving those properties imposes a careful study of how the spy might exploit
the cards. In our model, the smart cards are associated with a new type of the
formal language. They can, as in reality, interact with their respective owners
by receiving and sending messages. Each card stores a basic set of long-term
secrets but additional ones, which may depend on the specific protocol, can be
easily included. The cards are not forced to perform any computations, and
may skip some or repeat others. The spy has stolen an unspecified set of cards
but must discover their PINs, if they are PIN-operated, to be able to use them.
She has cloned another set of cards, discovering their internal secrets. So, the
spy can use the cloned cards freely even if they do not legally belong to her,
while every other agent can only use his own card. Our treatment of the smart
cards is entirely reusable for analysing future protocols.

Several smart card protocols make the assumption of secure means, signify-
ing that the spy cannot interpose between the agents and their cards. So, on
those channels, the messages can be exchanged in the clear, while each agent’s
knowledge of long-term secrets reduces to nothing if the cards are PIN-less, or to
just the PIN to operate his card if the cards are PIN-operated. We account for
all these alternatives by simple variations to the definition of spy’s knowledge.
For the sake of brevity, often in the following text over secure means replaces
when the assumption of secure means holds, and over insecure means replaces
when the assumption of secure means does not hold.

We demonstrate our approach on the key-distribution smart card protocol
due to Shoup and Rubin [30], which makes the assumption of secure means
and employs PIN-less cards. This protocol is an important benchmark for its
negotiation of session keys, and because it can be implemented on commercially
available smart cards (as done at the University of Michigan Center for Infor-
mation Technology Integration [18]). The smart cards play the crucial role of
computing the session keys and of making them available to their owners. While
the session keys never traverse the network, some of the data used to compute
them are exchanged in the clear. The protocol authors claim it provably secure.
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Our contribution is an inductive study of the protocol goals of authenticity, unic-
ity, confidentiality, authentication and key distribution. These are formulated
as properties that are preserved by every protocol message. We also allow for
the data buses of the cards to be unreliable in the sense that they may produce
outputs in an unspecified order. We are not aware whether this was assumed to
be impossible by the protocol designers. However, “often protocols are used in
environments other than the ones for which they were originally intended, so it
makes sense to analyze them under different security conditions than the ones
they were originally designed for” [23]. We discover that, in these conditions,
confirming to the peers that those goals are met necessitates of extra explicit-
ness to two of the protocol messages. In the light of our findings, it seems fair
to claim that computer-aided analysis of complete smart card protocols is now
feasible.

This paper sets out with some background about existing approaches to
analysing smart card protocols (§2). Our approach is then presented (§3) and
the Shoup-Rubin protocol introduced (§4). Then, the protocol is modelled (§5)
and verified (§6). Finally, an upgraded protocol that confirms its goals to the
peers even with unreliable card buses is introduced and verified (§7). The paper
ends with some concluding remarks (§8)

2 Background

Modern smart cards can run mobile Java code, thus contributing to cut the
costs of applications such as pay-TV, mobile or public phones and credit cards.
Forrester Research estimates that e-commerce will attract 40 million clients in
the USA within the first three years of the new millennium [14]. Hence, smart
card readers are bound to become inexpensive devices for home computers run-
ning smart card middleware. Nevertheless, large investments may be required,
for example, for a bank to replace the totality of its magnetic cards by smart
cards, as well as its traditional protocols by smart card ones. That bank will
seek expert advice asking, for example, if an intruder will be able to acquire
sensitive information after the discovery of some PINs or the cloning of some
cards. Our approach tackles these delicate issues by advancing guarantees for
the protocol goals and, most importantly, by asserting the minimal conditions
necessary for those guarantees to hold.

Abadi et al. [1] develop a simple extension of the BAN logic [12] to model
smart card protocols for mutual authentication between agents and worksta-
tions. The calculus of the logic is used to prove the mutual authentication and
delegation goals of three protocols that require different computational resources
of the cards. Confidentiality issues are not considered, as the early belief logics
are notoriously inadequate for the purpose. Although their treatment is limited
to the specific goals of the protocols considered, we believe that it could be
broadened thanks to the large experience accumulated during the last decade
in the area of belief logics.

Bellare and Rogaway’s fine notion of provable security [10] characterises in
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terms of probability and complexity theory that a traditional protocol achieves
confidentiality of session keys. They design a protocol and show it provably
secure under the assumption that pseudo-random functions exist [16]. Later,
Shoup and Rubin employ the same approach on a traditional session-key dis-
tribution protocol due to Leighton and Micali [20] but state: “We found that
several modifications to the protocol were necessary to obtain our proof of secu-
rity, even though it is not clear that without these modifications the protocol is
insecure.” [30, §2.2]. Modifying a protocol for the sake of its formal verification
raises the risk of verifying a different protocol.

Shoup and Rubin also design a new protocol, based on that by Leighton and
Micali, for session key distribution in a three-agent setting where each agent
is endowed with an ideal smart card whose encryption function is a pseudo-
random function. (The authors also mention that pseudo-random functions
can be implemented with reasonable approximation in terms of efficient hash
functions). Finally, they extend Bellare and Rogaway’s approach to account for
smart cards, and argue that the new protocol is secure in terms of two properties.
First, the peers share a session key at the end of a protocol session in which the
spy does not prevent the delivery of messages. This property, which may not be
obvious to readers unfamiliar with the formalism, is not proved. Second, the spy
has a “negligible advantage”. This property, concluded by mathematical proof,
signifies that the spy only has a negligible probability of learning the session
key.

Our approach appears to be little related to those mentioned above. Al-
though it models the network operationally, it implicitly asserts the beliefs that
agents derive from the observation of certain network events. There is no com-
plexity theory involved, for encryption as well as pseudo-random functions are
merely assumed to be injective functions. Moreover, the only proof strategy
adopted is induction, and a large variety of formal guarantees, including confi-
dentiality, can be established. In particular, while no modifications are required
of the protocol design, we can also establish whether the protocol goals are
available to the peers [7], [29, §9.9], namely whether the goals rely on conditions
that the peers are able to verify.

There is a constant tension between formal approaches attempting to be as
general as possible, and the extensions that become necessary on them due to
their upcoming applications. For example, when treating traditional symmetric-
key protocols, Paulson formalises the three-party case, hence his approach re-
quires a few extensions to deal with additional features such as the double
trusted server of Kerberos IV [9]. Our approach for smart card protocols shall
have similar fate because of the large variety of real-world contexts in which
smart cards may be used. For example, a card for key distribution protocols
typically stores the card owner’s long-term key, while a card for pay-TV proto-
cols stores the remaining credit of the card owner. Nevertheless, the basic set
of card secrets that we define below is easily extendible.
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3 An Inductive Approach to Analysing Smart
Card Protocols

Security protocols must face a number of real-world threats, some of which may
be difficult to account for, or just unknown. Therefore, even when a protocol
has been “proved” to enforce certain goals, a skeptical protocol purchaser might
still suspect that not all realistic scenarios have been considered under the given
threats, or that certain, possibly crucial, threats have been omitted.

Paulson proposes the use of mathematical induction to dissipate the first
suspect, and develops an approach that appears to be sufficiently flexible to
tackle the second suspect [28]. The gist of the approach is essentially as follows.
Once the possible threats, such as the spoof cipher-texts built by the spy, have
been identified, they are modelled as an inductively defined set. The protocol
goals are then proved by induction over the whole set. Should a purchaser point
out novel threats, these could be modelled as additional inductive rules, and the
proofs reconsidered.

More precisely, given a traditional protocol P, Paulson takes the following
view. An unlimited population of agents can run P. Among the agents is the
spy, who monitors the entire network and knows the long-term secrets of an
unspecified set of compromised agents. The network traffic develops according
to the decisions taken by the agents while they are executing P, each interleaving
an unlimited number of protocol sessions. A history of the network traffic may
be represented by the list of the events occurred during that history, that is
a trace. As in Ryan and Schneider’s CSP work [29], each trace has unlimited
length. The set P of all possible traces is an operational model for the network
where P is executed. Generally, P is referred to as the formal protocol model
for P. We adopt the same view, and extend it for smart card protocols.

3.1 Smart cards

We aim at representing the operational aspects of smart cards, so we introduce
a new free type card with several associated functions, and abstract from the
hardware/software of the cards. Clearly, other models are feasible of smart
cards. The following shows that our model is simple though realistic enough for
an abstract verification.

To endow each agent with a smart card, we declare an injective function
between agents and smart cards

Card : agent −→ card

Cards interact with their owners by sending them outputs and receiving in-
puts from them, as we formalise later (§3.2) in terms of specific events. We
assume that (the CPUs of) the cards only provide correct but limited outputs.
Precisely, a card produces a correct output only if fed the corresponding input.
If a card can compute, for example, a session key K from an input X, the card
must necessarily be fed X in order to obtain K. The formal protocol model
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can easily account for this (§5). It shall only allow for the outputs encompassed
by the protocol, under the condition that the cards are fed the corresponding,
specific inputs. It shall not construct other outputs, even from cloned cards. In
consequence, there exists no card whose use can give the spy unlimited power.
So, card outputs are assumed correct in the sense that their forms and compo-
nents are as they should be. But the data buses of the cards cannot be trusted,
as explained below.

3.1.1 Card Vulnerabilities

We formalise a number of realistic card vulnerabilities, which are due to theft,
cloning and internal failures.

Theft. The small dimensions of the smart cards confer their portability but
also raise the risks of loss or theft. In the worst case, all cards that have been
lost by their owners or stolen from them will end up in the spy’s hands. These
cards, which can no longer be used by their owners, are modelled by the set
stolen, such that stolen ⊆ card.

Cloning. If the cards are PIN-operated, the spy cannot use a stolen card ac-
tively unless she knows its PIN. Nevertheless, she could use modern techniques,
such as microprobing [3], to break the physical security of the card, and access
its EEPROM (Electrically-Erasable Programmable Read-Only Memory) where
the long-term secrets are stored. Now, she could, in the worst case, reverse
engineer the whole circuitry, acquiring the ability to to build a clone of the card
for her own use. If so, the card belongs to the set cloned in the model, and
cloned ⊆ card.

Cloning without apparent theft. All cloning techniques that are currently
known are invasive, in the sense that they spoil the original card. The card
chip must be disembedded from its frame by suitable chemicals, and its layout
often modified using laser cutter microscopes. These alterations are irreversible.
However, the spy might steal a card, build two clones of it and return one to
the card owner, who would perhaps notice no irregularities. In the near future,
the spy might even be able to tailor non-invasive techniques (such as fault
generation [19, 22] by exploiting the power and clock supply lines) for cloning,
and return the original card to its owner after building a clone for herself.
Modelling these possibilities simply requires stating no relations between the
sets stolen and cloned, so that a card could be cloned and yet not be stolen. In
this scenario, the real world features two cards — the original and its clone —
but the model for simplicity allows the same card to be used both by its legal
owner and by the spy, granting them identical computational resources.

Data bus failure. The data buses of the cards are corrupted so that the
messages in transit can be either forgotten (due to electronic decay), permuted
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or fed to the CPU repeatedly (due to simple layout modifications). Therefore, a
smart card can omit some computations or repeat others. We deliberately forbid
message leakage or alteration at this level because they would clearly make it
impossible to formalise the assumption of secure means — this is consistent with
the previous assumption that card outputs are correct.

In the worst case, the spy has manipulated all cards in this fashion even
before they are delivered to their respective owners, leaving no visible trace of
tampering. To model this, the formal protocol model shall only allow events to
occur by firing of inductive rules, but rules shall not be forced to fire even when
their preconditions were met. Also, rules shall be enabled to fire in any order
and to fire more than once, and each of these possibilities shall be recorded by
a corresponding trace.

Because cards are deteriorated, an agent cannot feed an input m to his
card, and deduce that the first output m′ obtained immediately afterwards was
computed out of m, unless m′ includes all the necessary message components
to pinpoint m. Hence, our model cards are particularly appropriate to discover
possible lack of explicitness in the protocol messages.

Global failure. Smart cards may suffer unexpected failure at some point,
and stop working permanently. The formal protocol model accounts for this by
including traces that, after some event, no more involve those cards.

There are also traces that, along some finite fragments do not feature certain
cards. Such traces may be interpreted as modelling temporary global failures
of those cards.

3.1.2 Card Usability

Agents other than the spy only conduct legal operations, while the spy can act
both legally and illegally. A card that has not been stolen can be used only
by its owner, namely it can be used legally. The spy cannot use a non-stolen
card unless it is her own. Definition 1 captures the notion of legally usable card.
This clearly is independent from the assumption of secure means, and from
the existence of card PINs. (If cards are PIN-operated, then we shall simply
guarantee (§3.3) that each agent knows the PIN to activate her card).

Definition 1. legallyU(Card A) , (Card A) 6∈ stolen.

Over insecure means, the spy can listen in between agents and smart cards.
So, she has electronic access only to those cards of which she knows the PINs,
even without physically getting hold of them. This is due to the fact that a
PIN-operated card accepts no communication unless it is activated by means of
its PIN. PINs are transmitted on the means between agents and cards (never
on the network), so the spy might learn some of them on certain traces. On
the other hand, should the cards be PIN-less, the spy could use all of them on
any trace. Definition 2 expresses the notion of illegally usable card over insecure
means. The predicate the spy knows A’s PIN on trace evs will be refined below
using the formal definition of agents’ knowledge (§3.3).
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Definition 2. Over insecure means

illegallyU(Card A) on evs ,


the spy knows A’s PIN on trace evs

if cards are PIN-operated

true

if cards are PIN-less

Over secure means, the spy needs to gain physical access to the cards in
addition to the knowledge of their PINs. She cannot monitor the means between
agents and cards, and cannot discover PINs from the network events because
PINs never traverse the network. The spy only has the chance of knowing
them initially (§3.3), hence the definition of illegal usability needs not depend
on traces. If the cards are PIN-less, we only need to characterise the physical
access to the card. Definition 3 conveys the notion of illegally usable card over
secure means. The predicate the spy knows A’s PIN will be refined below.

Definition 3. Over secure means

illegallyU(Card A) ,



(Card A) ∈ cloned ∨ ((Card A) ∈ stolen ∧
the spy knows A’s PIN )

if cards are PIN-operated

(Card A) ∈ cloned ∨ (Card A) ∈ stolen

if cards are PIN-less

The spy must be given the opportunity to act legally, so we must allow
her too to use her own card legally. But she does not need to use her card
illegally because she cannot acquire additional knowledge from it. So, we state
Card Spy 6∈ stolen∪cloned. The same can be stated in the three-party case about
the card that belongs to the trusted server.

We emphasise that, since certain cards may be cloned and at the same time
not be stolen, there may exist cards that are both legally and illegally usable.

3.1.3 Card Secrets

A smart card typically contains two long-term symmetric keys: the PIN to
activate its functionalities, and the card key. So, we declare

pinK : agent −→ key crdK : card −→ key

Since PINs are both known to agents and stored in the cards, the first function
could be equivalently declared on cards. Recall that a card key is used to save
on the RAM of the card, for example, as follows. Each card issues a nonce
along with a copy that is encrypted under the card key. This pair can later
authenticate the nonce to the card, even if the card did not store the nonce.

In the case of key distribution protocols, each card also stores its owner’s
long-term key, which, in contrast with traditional protocols, is not known to the
agent. Nevertheless, we keep the original declaration for these keys [26, §3.5]

shrK : agent −→ key
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Since the model is operational, the fact that the smart cards store some secrets
does not need to be formalised explicitly. We will simply define below (§3.3)
who, and in which circumstances, learns the secrets of a card. This increases
the flexibility of the approach. Should the smart cards store additional secrets
in certain applications, once such secrets are formalised by suitable functions,
only the definition of agents’ knowledge shall be updated.

We assume that collision of keys is impossible, so all functions declared above
are injective and their ranges are disjoint.

3.2 Events

We upgrade the Isabelle datatype for events with four new constructors.

datatype event , Says agent agent msg

Notes agent msg

Gets agent msg

Inputs agent card msg

CGets card msg

Outputs card agent msg

AGets agent msg

The known network events (sending, noting [26] and receiving a message [5]
— the first three above) are now extended with the novel card events. Agents
may send inputs to the cards (Inputs) and the cards may receive them (CGets);
similarly, the cards may send outputs to the agents (Outputs) and the agents
may receive them (AGets). An agent can distinguish the messages received from
the network from those received from his smart card reader because they arrive
on separate channels, so we provide two different events. However, in both cases
the received messages may be forged by the spy.

The events CGets and AGets can be omitted over secure means, where
a card certainly receives its owner’s inputs, and an agent certainly receives
the outputs of his card. Consequently, a smart card C can verify whether
an event Inputs A C X occurred, and an agent A can check whether an event
Outputs C AX occurred, while both checks are impossible over insecure means.

Paulson formalises the notion of freshness via the function

used : event list −→ msg set

which yields the components of the initial states of all agents, and the compo-
nents of all messages that appear on the given trace. We quote here the original
definition (cases 0 to 2 [26, §3.5] and case 3 [4, §3]) and extend it to cope with
the new events.

0. used [ ] ,
⋃

B. parts(initState B )
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1. used((Says A B X) # evs) , parts{X} ∪ used evs

2. used((Notes A X) # evs) , parts{X} ∪ used evs

3. used((Gets A X) # evs) , used evs

4. used((Inputs A C X) # evs) , parts{X} ∪ used evs

5. used((CGets C X) # evs) , used evs

6. used((Outputs C A X) # evs) , parts{X} ∪ used evs

7. used((AGets A X) # evs) , used evs

Function parts extracts all components but encryption keys from a set of
messages assuming readable cipher-texts [26, §3.2], while an updated definition
of function initState is given in the next section. Notice that, since any received
message must have been sent (§3.5), the reception events do not extend the
inductive set. Cases 5 and 7 are omitted over secure means.

3.3 Agents’ Knowledge

Recall that three different kinds of agents are modelled [26, §3.1]: the trusted
third party, Server (often abbreviated in S); a malicious eavesdropper, Spy;
unlimited “friendly” agents, Friend i (i being a natural number). Agents could
be interpreted as humans, machines, or processes, as Abadi and Needham point
out [2, §2]. We prefer the last interpretation. For example, if a confidentiality
guarantee is available to a process, then it is not necessarily available to the
human that owns the process because the spy could break in at any level.

The function initState formalising the agents’ initial knowledge [26, §3.5]
must be redefined to account for the secrets stored in the smart cards.

The initial knowledge of the server consists of all long-term secrets.

initState S , {Key (pinK A)} ∪ {Key (crdK C)} ∪ {Key (shrK A)}

Friendly agents’ initial knowledge consists of their respective PINs.

initState (Friend i) , {Key (pinK (Friend i))}

The spy’s initial knowledge consists of the compromised agents’ initial knowledge
and the secrets contained in the cloned cards (even if some cards store the secrets
in a blinded or an encrypted form, the spy may discover them in the worst case).

initState Spy , {Key (pinK A) | A ∈ bad ∨ (Card A) ∈ cloned} ∪
{Key (crdK C) | C ∈ cloned} ∪
{Key (shrK A) | (Card A) ∈ cloned}

This definition considers cards that are PIN-operated, otherwise it simplifies
straightforwardly. However, the definition is not influenced by the assumption
of secure means because it formalises the situation before any protocol session
has initiated.
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The knowledge that agents can extract from the observation of the traffic
on a given trace can now be formalised. We declare

knows : [ agent, event list ] −→ msg set

and define it inductively on the length of the trace. The definition, as one
would expect, depends on the assumption of secure means. First, we reason
over insecure means.

The base case and those concerning the network events (0 to 3 below) have
been previously published [4, §3.1], while the remaining are new.

0. An agent knows his initial state.

knows A [ ] , initState A

1. An agent knows what he alone sends to anyone on a trace; in particular,
the spy also knows all messages ever sent on the trace.

knows A ((Says A′ B X) # evs) ,{
{X} ∪ knows A evs if A = A′ ∨ A = Spy

knows A evs otherwise

2. An agent knows what he alone notes on a trace; in particular, the spy also
knows compromised agents’ notes.

knows A ((Notes A′ X) # evs) ,
{X} ∪ knows A evs if A = A′ ∨

(A = Spy ∧ A′ ∈ bad)

knows A evs otherwise

3. An agent, except the spy, knows what he alone receives on a trace. The
spy’s knowledge must not be extended with any of the received messages,
as the formal protocol model (§3.5) only allows reception of those messages
that were sent, so the spy already knows them (by case 1).

knows A ((Gets A′ X) # evs) ,{
{X} ∪ knows A evs if A = A′ ∧ A 6= Spy

knows A evs otherwise

4. An agent knows what he alone inputs to any card on a trace; in particular,
the spy also knows all messages ever input on the trace.

knows A ((Inputs A′ C X) # evs) ,{
{X} ∪ knows A evs if A = A′ ∨ A = Spy

knows A evs otherwise

5. No agent, including the spy, can extend his knowledge with any of the mes-
sages received by any smart card on a trace. The formal protocol model
insists that a card may only receive those messages that were previously
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input, so the spy and the message originator already know them (by case
4).

knows A ((CGets C X) # evs) , knows A evs

6. An agent knows no card outputs on any trace, as the means is insecure;
the spy knows all of them, as she controls the means.

knows A ((Outputs C A′ X) # evs) ,{
{X} ∪ knows A evs if A = Spy

knows A evs otherwise

7. An agent, except the spy, knows what he alone receives from his card
on a trace. The spy’s knowledge must not be extended with any of the
messages received from the smart cards, as the formal protocol model only
allows reception of those messages that were output, so the spy already
knows them (by case 6).

knows A ((AGets A′ X) # evs) ,{
{X} ∪ knows A evs if A = A′ ∧ A 6= Spy

knows A evs otherwise

Definition 2 can be now refined as definition 2′. Recall that the function analz
extracts all message components from a set of messages using keys that are
recursively available [26, §3.2].

Definition 2′. Over insecure means

illegallyU(Card A) on evs ,


Key (pinK A) ∈ analz(knows Spy evs)

if cards are PIN-operated

true

if cards are PIN-less

Our definition remarks that the illegal usability of a card over insecure means
does not necessarily imply the spy’s physical access to the card.

Over secure means, the definition of knows simplifies as follows. The base
case and those corresponding to the network events remain unchanged. Cases
(5) and (7) must be pruned, for the corresponding events are no longer defined.
If an agent sends an input to his card, or the card sends him back an output,
both messages are certainly received because the spy cannot intercept them.
Hence, cases (4) and (6) must be amended accordingly.

4′. An agent, including the spy, knows what he alone inputs to any card on
a trace.

knows A ((Inputs A′ C X) # evs) ,

{
{X} ∪ knows A evs if A = A′

knows A evs otherwise

6′. An agent, including the spy, knows what he alone is output from any card
on a trace.
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knows A ((Outputs C A′ X) # evs) ,

{
{X} ∪ knows A evs if A = A′

knows A evs otherwise

As it is required, these cases forbid the spy from learning anything from the
card events. Therefore, she knows a PIN if and only if she knows it initially,
which is equivalent, by definition of initState and base case of knows, to the fact
that the owner of the PIN is compromised. Hence, definition 3 can be refined
as definition 3′.

Definition 3′. Over secure means

illegallyU(Card A) ,


(Card A) ∈ cloned ∨ ((Card A) ∈ stolen ∧ A ∈ bad)

if cards are PIN-operated

(Card A) ∈ cloned ∨ (Card A) ∈ stolen

if cards are PIN-less

The definition emphasises the spy’s physical access to the illegally usable cards
over secure means. Moreover, only when the cards are PIN-less over secure
means, does it hold that if a card is not illegally usable, then it is legally usable.
This does not hold in general, nor does the converse.

The function knows extends and replaces Paulson’s function spies , which
only specified the spy’s knowledge. Our function could be extended on smart
cards, but reasoning about the knowledge of the cards seems rather uninteresting
due to their limited RAM.

3.4 Spy’s Illegal Behaviour

The spy’s illegal behaviour with traditional protocols is typically specified by a
single inductive rule, named Fake, that is added to the protocol model. (Only
the model of the TLS protocol [27] contains a second rule that allows the spy
to construct a session key by a public algorithm). Figure 1 provides the rule
template for a hypothetical protocol model trad p [4, §3.2]. The rule allows

Fake
[| evsF ∈ trad p; X ∈ synth(analz(knows Spy evsF)) |]

=⇒ Says Spy B X # evsF ∈ trad p

Figure 1: Fake rule for traditional protocols

the spy to send any-one a message that she can synthesise (by encryption and
concatenation, via the function synth [26, §3.2]) out of the components extracted
(via the function analz) from her knowledge over the trace evs. This may induce
the other agents to send new messages, which the spy will learn by the inductive
case (1) of the definition of knows.

In modelling smart card protocols, the spy must be allowed to exploit the
illegally usable smart cards. Over insecure means, not only can the spy send

13



fake messages as inputs to the illegally usable cards, but she can also send
fake outputs to any agents, pretending that her own card could produce them.
This is done in addition to sending the fake messages on the network because
receiving the same message from the card reader or from the network may induce
an agent to react differently. The Fake rule must be amended as outlined in
figure 2. Notice the condition of illegal usability over insecure means stated on
A’s card, and the three events that at the same time extend the given trace.

Fake
[| evsF ∈ smart p insecure m; illegallyU(Card A) on evsF;

X ∈ synth (analz (knows Spy evsF)) |]

=⇒ Says Spy B X # Inputs Spy (Card A) X # Outputs (Card Spy) C X

# evsF ∈ smart p insecure m

Figure 2: Fake rule for smart card protocols over insecure means

Over secure means, the spy cannot send fake card outputs to the agents.
Figure 3 presents the Fake rule to use in this case rather than those above.
Notice the condition of illegal usability over secure means stated on A’s card,
and the two events that at the same time extend the given trace.

Fake
[| evsF ∈ smart p secure m; illegallyU(Card A);

X ∈ synth (analz (knows Spy evsF)) |]

=⇒ Says Spy B X # Inputs Spy (Card A) X

# evsF ∈ smart p secure m

Figure 3: Fake rule for smart card protocols over secure means

In this scenario, by definition of knows, the spy gains no knowledge from the
card events that do not concern her. Therefore, we must ensure that an illegally
usable card outputs towards the spy rather than towards its owner. This is
realistic because, over secure means, the spy has physical access to the illegally
usable cards. Suppose that A’s card outputs X ′ when it is fed X. The formal
protocol model shall contain two rules according to the template in figure 4.
Rule Name formalises part of the legal behaviour of an agent, so it involves a
card that is legally usable. Should the card happen to be illegally usable, its
functionality could be exploited by the spy, as formalised by rule Name Fake.
In this case, the spy would also need to fake the specific input X. Any extra
assumptions required in Name must be kept in Name Fake. Notice that agent A
in rule Name may be the spy. This would signify that the spy is using her own
card legally. But agent A in rule Name Fake cannot be the spy (because her
card is not illegally usable). This remarks that the spy is illegally using someone
else’s card. Rule Name Fake is unnecessary over insecure means, where the spy
monitors all card events.
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Name
[| evsN ∈ smart p secure m; legallyU(Card A);

Inputs A (Card A) X ∈ set evsN |]

=⇒ Outputs (Card A) A X’ # evsN ∈ smart p secure m

Name Fake
[| evsNF ∈ smart p secure m; illegallyU(Card A);

Inputs Spy (Card A) X ∈ set evsNF |]

=⇒ Outputs (Card A) Spy X’ # evsNF ∈ smart p secure m

Figure 4: The two rules for each card output over secure means

It may be surprising that whether the cards are PIN-operated or PIN-less
has played no role in this subsection. This is in fact only apparent, as that
feature influences the definitions of illegal usability of cards.

3.5 Formal Protocol Model

The inductive definition of the formal model for smart card protocols requires
additional rules only over insecure means. Smart cards must be allowed to
receive the inputs that they were sent from agents and, likewise, agents must
be allowed to receive the outputs sent from cards. For these purposes, figure 5
introduces rules CReception and AReception, inspired to our rule Reception
(omitted here but demonstrated below, §5.1) for reception of messages sent
over the network ([4, Appendix]). Since the rules are not forced to fire, no

CReception
[| evsRc ∈ smart p insecure m; Inputs A (Card B) X ∈ set evsRc |]

=⇒ CGets (Card B) X # evsRc ∈ smart p insecure m

AReception
[| evsRa ∈ smart p insecure m; Outputs (Card A) B X ∈ set evsRa |]

=⇒ AGets B X # evsRa ∈ smart p insecure m

Figure 5: The additional reception rules over insecure means

kind of reception (either on the network or on the agent-smart-card means)
is guaranteed because the spy controls all means and may prevent deliveries.
By contrast, these rules are not needed over secure means where reception is
guaranteed from agents to smart cards and vice versa.

4 The Shoup-Rubin Protocol

As mentioned above, among Shoup and Rubin’s contributions is the design of
a smart card protocol for session-key distribution, which is discussed within an
extension of the Bellare-Rogaway’s framework [30].
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The gist of the protocol may not be easy to grasp, as noted by the protocol
implementors: “the details of Shoup-Rubin are fairly intricate, in part to satisfy
the requirements of an underlying complexity-theoretic framework” [18, §1].
Figure 6 presents the protocol we derived from both the designers and the
implementors’ presentations. We denote an agent P ’s long-term key (shared
with the server) by Kp, P ’s smart card by Cp , and the key of P ’s card by KCp .
The protocol makes the assumption of secure means — hence the cards output
the session keys in the clear — and employs smart cards that are PIN-less.
(Although these features are not explicitly stated either in the designers or the
implementors’ papers, Peter Honeyman — one of the implementors — kindly
clarified them during a private conversation).

The concept of pairkey (due to Leighton and Micali [20]) is used to establish
a long-term secret between the smart cards of a pair of agents. However, the
pairkey is historically referred to the pair of agents: the one for agents A and
B is Πab = {|A|}Kb ⊕ {|B|}Ka , where ⊕ is the bit-wise exclusive-or operator.
While A’s card can compute {|B|}Ka and then πab = {|A|}Kb from Πab , B’s card
can compute πab directly. Hence, the two cards share the long-term secret πab ,
which we call pair-k for A and B.

I : 1. A → S : A,B
2. S → A : Πab , {|Πab , B|}Ka

II : 3. A → Ca : A
4. Ca → A : Na, {|Na|}KCa

III : 5. A → B : A,Na

IV : 6. B → Cb : A,Na
7. Cb → B : Nb,Kab, {|Na,Nb|}πab

, {|Nb|}πab

V : 8. B → A : Nb, {|Na,Nb|}πab

VI : 9. A → Ca : B,Na,Nb,Πab ,
{|Πab , B|}Ka , {|Na,Nb|}πab

, {|Na|}KCa

10. Ca → A : Kab, {|Nb|}πab

VII : 11. A → B : {|Nb|}πab

Figure 6: The Shoup-Rubin protocol

The protocol develops through seven phases. The odd-numbered ones take
place over the network, while the even-numbered ones cover the communication
between agents and smart cards.

Phase I. An initiator A tells the trusted server that she wants to initiate a
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session with a responder B, and receives in return the pairkey Πab and
the certificate, encrypted under her long-term key, for the pairkey.

Phase II. A queries her card and receives a fresh nonce and the certificate,
encrypted under the card key, for the nonce. The form of A’s query is
specified neither by the designers nor by the implementors, so our choice
of message 3 is arbitrary.

Phase III. A contacts B sending her identity and her nonce Na.

Phase IV. B queries his card with the data received from A, and obtains a
new nonce Nb, the session key Kab, a certificate for Na and Nb, and a
certificate for Nb; Kab is constructed as a function of Nb and πab .

Phase V. B forwards his nonce Nb and the certificate for Na and Nb to A.

Phase VI. A feeds her card B’s name, the two nonces (she has just received
Nb), the pairkey and the certificate for it, the two certificates for the
nonces; A’s card computes πab from Πab and uses it with the nonce Nb
to compute the session key Kab; the card outputs Kab and the certificate
for Nb, which is encrypted under πab .

Phase VII. A forwards the certificate for Nb to B.

The protocol reveals the pairkey to the spy in step 2, as well as A’s nonce in step
5, and B’s nonce in step 8. An informal account for the consequences is difficult.
One of our formal guarantees (§6.5) will state that, although the session key is
computed out of B’s nonce, the knowledge of that nonce does not help the spy
to discover the key as long as she cannot use A and B’s cards.

5 Modelling Shoup-Rubin

The protocol never uses pairkeys as cryptographic keys but merely as a means
to establish the corresponding pair-k’s. Therefore, we treat pairkeys as nonces,
declaring

Pairkey : agent ∗ agent −→ nat

On the contrary, pair-k’s are used as proper cryptographic keys, as well as
session keys, which are constructed from nonces and pair-k’s. So, we declare

pairK : agent ∗ agent −→ key sesK : nat ∗ key −→ key

At the operational level, we do not need to explore the implementative de-
tails behind these components: by contrast, we are interested in their abstract
properties. The function Pairkey cannot be declared collision-free because it
represents an application of the exclusive-or operator. As expected, this will
influence the corresponding confidentiality argument. Assuming that collision
of keys is impossible, the other two functions are declared as collision-free, and
their ranges as disjoint. Also, these are respectively disjoint from the ranges
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of the functions formalising other long-term keys (§3.1.3), so that any pair-k
differs, for example, from any card key.

The definition of initState must be updated. The protocol relies on cards
that are PIN-less, so all occurrences of the function pinK may be omitted. The
initial knowledge of the server must also comprise all pairkeys and all pair-k’s.

initState S , {Key (crdK C)} ∪ {Key (shrK A)} ∪
{Key (pairK(A,B))} ∪ {Nonce (Pairkey(A,B))}

The friendly agents’ initial knowledge is empty, so they are not able to reveal
any secrets to the spy.

initState (Friend i) , {}

Recall the definition of pairkey and pair-k from the previous section. The spy’s
initial knowledge must be extended by the pair-k for a pair of agents in case the
card of the second agent is cloned, because the spy knows the agent’s shared
key. A pairkey must be included if both the corresponding cards are cloned.

initState Spy , {Key (crdK C) | C ∈ cloned} ∪
{Key (shrK A) | (Card A) ∈ cloned} ∪
{Key (pairK(A,B)) | (Card B) ∈ cloned} ∪
{Nonce (Pairkey(A,B)) | (Card A) ∈ cloned ∧

(Card B) ∈ cloned}

The formalisations of smart cards, events and spy are inherited from the
general treatment presented in section 3. The model also features a smart card
for the server, although it is never used in this protocol.

We declare the constant shouprubin as a set of lists of events. It designates
the formal protocol model for the Shoup-Rubin protocol and is defined in the
rest of the section by means of inductive rules. The notation should be self-
explanatory, but general guidelines may be found elsewhere [26]. Since the
protocol makes the assumption of secure means, definition 3′ of illegal usability
for cards that are PIN-less (§3.3) applies.

5.1 Basics

The basic rules for any formal protocol model are presented in figure 7. The
empty trace formalises the initial scenario, in which no protocol session has
taken place. Rule Base settles the base of the induction stating that the empty
trace is admissible in the protocol model. All other rules represent inductive
steps, so they detail how to extend a given trace of the model. In particular, rule
Reception allows messages sent on the network to be received by their intended
recipients.
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Base
[ ] ∈ shouprubin

Reception
[| evsR ∈ shouprubin; Says A B X ∈ set evsR |]

=⇒ Gets B X # evsR ∈ shouprubin

Figure 7: Modelling Shoup-Rubin: basics

5.2 Phase I

The rules modelling phase I of the protocol are presented in figure 8. Any agent
may initiate a protocol session at any time, hence the corresponding event may
extend any trace of the model (SR1). Upon reception of a message quoting two

SR1
evs1 ∈ shouprubin

=⇒ Says A Server {|Agent A, Agent B|} # evs1 ∈ shouprubin

SR2
[| evs2 ∈ shouprubin; Gets Server {|Agent A, Agent B|} ∈ set evs2 |]

=⇒ Says Server A {|Nonce (Pairkey(A,B)),

Crypt (shrK A) {|Nonce (Pairkey(A,B)), Agent B|}

|} # evs2 ∈ shouprubin

Figure 8: Modelling Shoup-Rubin: phase I

agent names — initiator and responder of the session — the server computes
the pairkey for them and sends it with a certificate to the initiator (SR2).
Although the pairkey is sent in the clear, it does not reveal its peers in force
of the exclusive-or application that yields it. This information is carried by the
certificate, which explicitly associates pairkeys with peers.

5.3 Phase II

The rules modelling phase II of the protocol are presented in figure 9. The
initiator of a session may query her own smart card provided that she received
a message containing a nonce and a certificate (SR3). The initiator gets no
assurance that the nonce is in fact the pairkey for her and the intended re-
sponder, or that the certificate is specific for the pairkey. Since the message
traversed the network in the clear, the spy might have tampered with it. It
would seem sensible that the agent forwarded the entire message to the smart
card, which would be able to decrypt the certificate and verify the authentic-
ity of the pairkey. However, the protocol design does not encompass this, so
our model chooses a simpler input message containing only the initiator’s name.
Given the input, the card issues a fresh nonce and a certificate for it (SR4). The
card keeps no record of the nonce in order to conserve memory. The certificate
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SR3
[| evs3 ∈ shouprubin; legallyU(Card A);

Says A Server {|Agent A, Agent B|} ∈ set evs3;

Gets A {|Nonce Pk, Cert|} ∈ set evs3 |]

=⇒ Inputs A (Card A) (Agent A) # evs3 ∈ shouprubin

SR4
[| evs4 ∈ shouprubin; legallyU(Card A); Nonce Na 6∈ used evs4;

Inputs A (Card A) (Agent A) ∈ set evs4 |]

=⇒ Outputs (Card A) A {|Nonce Na, Crypt (crdK (Card A)) (Nonce Na)|}

# evs4 ∈ shouprubin

Figure 9: Modelling Shoup-Rubin: phase II

will subsequently show the card the authenticity of the nonce. Both steps rest
on a legally usable smart card because they express some of the legal operations
performed by the card owner.

5.4 Phase III

The rules modelling phase III of the protocol are presented in figure 10. When
the initiator obtains a nonce and a certificate from her smart card, she may
forward the nonce along with her identity to the intended responder (SR5).
Later (phase V, §5.6), the responder obtains a message of the same form with

SR5
[| evs5 ∈ shouprubin;

Says A Server {|Agent A, Agent B|} ∈ set evs5;

Outputs (Card A) A {|Nonce Na, Cert|} ∈ set evs5;

∀ p q. Cert 6= {|p, q|} |]

=⇒ Says A B {|Agent A, Nonce Na|} # evs5 ∈ shouprubin

Figure 10: Modelling Shoup-Rubin: phase III

a different certificate, and must perform different events. At that stage, should
the responder initiate another protocol session with a third agent, he could not
decide whether to behave according to phase III or to phase V unless he checks
the certificate. If it is a one-component cipher-text, then phase III follows; if it is
a compound message, then phase V follows. These alternatives may be discerned
in practice by the length of the certificate. However, since they are mutually
exclusive, our treatment of phase III simply requires the certificate not to be a
compound message. Both the designers and the implementors of the protocol
omit stating this check, introducing ambiguity . Incidentally, recall that, when
the certificate is a cipher-text, no agent can check its internal structure because
its encryption key is only known to some smart card.
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5.5 Phase IV

The rules modelling phase IV of the protocol are presented in figure 11. This
phase sees the responder forward a clear-text message received from the network
to his smart card, provided that the card is legally usable (SR6). The smart

SR6
[| evs6 ∈ shouprubin; legallyU(Card B);

Gets B {|Agent A, Nonce Na|} ∈ set evs6 |]

=⇒ Inputs B (Card B) {|Agent A, Nonce Na|} # evs6 ∈ shouprubin

SR7
[| evs7 ∈ shouprubin; legallyU(Card B);

Nonce Nb 6∈ used evs7; Key (sesK(Nb,pairK(A,B))) 6∈ used evs7;

Inputs B (Card B) {|Agent A, Nonce Na|} ∈ set evs7|]

=⇒ Outputs (Card B) B {|Nonce Nb, Key (sesK(Nb,pairK(A,B))),

Crypt (pairK(A,B)) {|Nonce Na, Nonce Nb|},

Crypt (pairK(A,B)) (Nonce Nb)|}

# evs7 ∈ shouprubin

Figure 11: Modelling Shoup-Rubin: phase IV

card issues a fresh nonce, computes the pair-k for initiator and responder, and
uses these components to produce a session key. The nonce being fresh, the
session key is also fresh. Finally, the card outputs the nonce, the session key
and two certificates (SR7). One certificate establishes the association between
the initiator’s nonce and the responder’s, and will be inspected by the initiator’s
card in phase VI. The other certificate will be retained by the responder, who
shall be expecting it again from the network in the final phase.

5.6 Phase V

The rules modelling phase V of the protocol are presented in figure 12. When the

SR8
[| evs8 ∈ shouprubin;

Inputs B (Card B) {|Agent A, Nonce Na|} ∈ set evs8;

Outputs (Card B) B {|Nonce Nb, Key K, Cert1, Cert2|} ∈ set evs8 |]

=⇒ Says B A {|Nonce Nb, Cert1|} # evs8 ∈ shouprubin

Figure 12: Modelling Shoup-Rubin: phase V

responder obtains from his card a nonce followed by a key and two certificates, he
prepares to sending the nonce and one of the certificates to the initiator (SR8).
However, he must recall having previously quoted the initiator’s identity to the
card, trusting the card output to refer to his specific input. Notice that the
three components following the nonce in the card output might be seen as a
unique certificate, thus inviting the ambiguity discussed above (§5.4).
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5.7 Phase VI

The rules modelling phase VI of the protocol are presented in figure 13. The
scenario returns on the initiator. Before she queries her legally usable card, she
verifies that she has taken hold of three messages, each containing a nonce and
a certificate. She takes on trust the nonce Pk as the pairkey and Cert1 as its

SR9
[| evs9 ∈ shouprubin; legallyU(Card A);

Says A Server {|Agent A, Agent B|} ∈ set evs9;

Gets A {|Nonce Pk, Cert1|} ∈ set evs9;

Outputs (Card A) A {|Nonce Na, Cert2|} ∈ set evs9;

Gets A {|Nonce Nb, Cert3|} ∈ set evs9;

∀ p q. Cert2 6= {|p, q|} |]

=⇒ Inputs A (Card A) {|Agent B, Nonce Na, Nonce Nb, Nonce Pk,

Cert1, Cert3, Cert2|}

# evs9 ∈ shouprubin

SR10
[| evs10 ∈ shouprubin; legallyU(Card A);

Inputs A (Card A) {|Agent B, Nonce Na, Nonce Nb, Nonce (Pairkey(A,B)),

Crypt (shrK A) {|Nonce (Pairkey(A,B)), Agent B|},

Crypt (PairK(A,B)) {|Nonce Na, Nonce Nb|},

Crypt (crdK (Card A)) (Nonce Na)|} ∈ set evs10 |]

=⇒ Outputs (Card A) A {|Key (sesK(Nb,pairK(A,B))),

Crypt (pairK(A,B)) (Nonce Nb)|}

# evs10 ∈ shouprubin

Figure 13: Modelling Shoup-Rubin: phase VI

certificate. She recalls having obtained from her smart card a nonce Na with
a certificate that is not a compound message, which signifies that the nonce
was issued for her when she was acting as initiator. Then, she treats Nb as
the responder’s nonce and Cert3 as a certificate for Na and Nb. Finally, she
feeds these components to her smart card (SR9). The card checks that all
the received components have the correct form and, if so, computes the pair-k
from the pairkey and then produces the session key and a certificate for the
responder’s nonce (SR10).

5.8 Phase VII

The rules modelling phase VII of the protocol are presented in figure 14. It can

SR11
[| evs11 ∈ shouprubin;

Says A Server {|Agent A, Agent B|} ∈ set evs11;

Outputs (Card A) A {|Key K, Cert|} ∈ set evs11 |]

=⇒ Says A B (Cert) # evs11 ∈ shouprubin

Figure 14: Modelling Shoup-Rubin: phase VII
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be seen that upon reception of a cryptographic key and a certificate from her
smart card, the initiator forwards the certificate to the responder.

5.9 Threats

In addition to the legal behaviour described above for a generic pair of agents,
the spy can also act illegally. She observes the traffic on each trace, extracts
all message components, and builds all possible fake messages to send on the
network or to input to the illegally usable cards. This is modelled by rule Fake
in figure 15 (derived from figure 3, §3.4).

Fake
[| evsF ∈ shouprubin; illegallyU(Card A);

X ∈ synth (analz (knows Spy evsF)) |]

=⇒ Says Spy B X # Inputs Spy (Card A) X # evsF ∈ shouprubin

Figure 15: Modelling Shoup-Rubin: threats on messages

We assume that the algorithm used by the cards to compute the session keys
is publicly known. Therefore, should the spy know the relevant components of
a session key, she would be able to compute the key. We allow this by Paulson’s
strategy for the TLS protocol [27] rather than by extending the definition of
synth, which would complicate the mechanisation process. If the spy obtains a
nonce and a pair-k, she can note the corresponding session key by the rule Forge
in figure 16, thus acquiring knowledge of it. Since the pair-k’s are never sent

Forge
[| evsFo ∈ shouprubin; Nonce Nb ∈ analz (knows Spy evsFo);

Key (pairK(A,B)) ∈ knows Spy evsFo |]

=⇒ Notes Spy (Key (sesK(Nb,pairK(A,B)))) # evsFo ∈ shouprubin

Figure 16: Modelling Shoup-Rubin: threats on session keys

on the network but merely used as encryption keys, they can only be known
initially by definition of initState.

Since Shoup-Rubin makes the assumption of secure means, the model must
be extended to allow the spy to obtain the outputs of the illegally usable cards.
Following the template in figure 4 (§3.4), we introduce a further rule for each
card output. Rule SR4 Fake in figure 17 is built from SR4, while analogous rules

SR4 Fake
[| evs4F ∈ shouprubin; illegallyU(Card A); Nonce Na 6∈ used evs4F;

Inputs Spy (Card A) (Agent A) ∈ set evs4F |]

=⇒ Outputs (Card A) Spy {|Nonce Na, Crypt (crdK (Card A)) (Nonce Na)|}

# evs4F ∈ shouprubin

Figure 17: Modelling Shoup-Rubin: threats on card outputs
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SR7 Fake (built from SR7) and SR10 Fake (built from SR10) are also needed
but here omitted for brevity.

5.10 Accidents

We complete the model by allowing accidents (or breaches of security) on session
keys by the rules in figure 18. This is typically done by a single rule [26], or by
two rules leaking two different kinds of session keys [9]. Shoup-Rubin requires

OopsB
[| evsOb ∈ shouprubin;

Outputs (Card B) B {|Nonce Nb, Key K, Cert,

Crypt (pairK(A,B)) (Nonce Nb)|}

∈ set evsOb |]

=⇒ Notes Spy {|Key K, Nonce Nb, Agent A, Agent B|} # evsOb ∈ shouprubin

OopsA
[| evsOa ∈ shouprubin;

Outputs (Card A) A {|Key K, Crypt (pairK(A,B)) (Nonce Nb)|}

∈ set evsOa |]

=⇒ Notes Spy {|Key K, Nonce Nb, Agent A, Agent B|} # evsOa ∈ shouprubin

Figure 18: Modelling Shoup-Rubin: accidents

both peers to handle the same session key, respectively in phases IV and VI.
Therefore, the spy has a chance to discover the session key from both of them.
In the worst case, she will also discover the nonce used to compute the key and
the identity of its peers (OopsA, OopsB).

The spy cannot learn any pair-k’s by accident because no agent ever sees
any. By definition of initState, she can only know some initially by exploiting
the relevant cloned cards.

6 Verifying Shoup-Rubin

For the sake of readability, the symbols for set membership, logical connectives
and equality are often replaced by the equivalent wording within the theorem
statements in this and the following sections. Each theorem is stated on a
generic trace evs of the protocol model. The terminology “friendly agent” is
abused to include also the server.

Our reliability theorems hold on the basis of the general assumptions (§3)
we made on the server, the smart cards, and the friendly agents (§6.1). They
also confirm that our model correctly implements those assumptions and, at the
same time, show that messages 7 and 10 lack explicitness. Suitable regularity
lemmas [26] can be expressed about all three kinds of long-term keys employed
by the protocol (§6.2). While the authenticity argument (§6.3) only yields a
single guarantee for the card that belongs to the protocol initiator, the unicity
argument (§6.4) provides guarantees for both initiator and responder. We have
discovered that the goals of confidentiality (§6.5), authentication (§6.6), and
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key distribution (§6.7) are weakened by the mentioned lack of explicitness in
the sense that they hold on assumptions that the protocol peers cannot verify.
Indeed, in general, if a guarantee is applicable by either protocol peer, then the
corresponding goal is confirmed to that peer, namely it is available to him [7].
However, for example, the initiator cannot deduce the confidentiality of the
session key without trusting that the responder is not the spy or the responder’s
card is not illegally usable. The initiator will never be able to verify whether
her trust is justified. These and similar assumptions, typically about agents or
cards, form the minimal trust [7] necessary for certain guarantees to hold.

The guarantees proved for a smart card protocol may also be expressed
from the viewpoints of smart cards, helping optimise their hardware or software
design. With Shoup-Rubin, a guarantee that requires inspecting the form of
a certificate may be useful to cards but is never useful to agents, who cannot
decipher any certificates since they know no long-term keys.

6.1 Reliability of the Shoup-Rubin Model

Proving the reliability theorems is inherently simple: first apply induction and
then conclude by quick simplifications. But these theorems significantly increase
our trust that the model is consistent with our assumptions.

6.1.1 On the Model Server

We can prove that the model server sends correct messages (theorem Reli1). But
this result cannot be made useful to A, namely it cannot be proved on assump-
tions that A can verify. Indeed, should A receive message {|NoncePk ,Cert |},
she could not be guaranteed that the server sent it, because the message is
compound; nor can she inspect the form of the certificate.

Theorem (Reli1). If evs contains

Says Server A {|NoncePk ,Cert |}

then there exists B such that

Pk = Pairkey(A,B) and
Cert = Crypt(shrK A){|Nonce (Pairkey(A,B)),AgentB|} �

Further guarantees concern the use that the protocol makes of the smart
cards, the outputs produced by the cards, and the inputs sent by the friendly
agents to the cards.

6.1.2 On the Use of the Smart Cards

If a friendly agent queries a smart card or receives a message from it, then the
card must belong to that agent and must be legally usable (theorem Reli2).
This confirms that a friendly agent can only use his own card and can only use
it legally, as we assumed.
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Theorem (Reli2). If A is not the spy, and evs contains either

Inputs A C X or Outputs C A Y

then

C = (Card A) and legallyU(Card A) �

Our spy can act both legally and illegally. In fact, if the spy uses a smart
card, then the card must be either the spy’s own card, which is legally usable, or
some other agent’s card that is illegally usable (theorem Reli3). Since the spy’s
card is not illegally usable, the agent A mentioned by the theorem certainly
differs from the spy.

Theorem (Reli3). If evs contains either

Inputs Spy C X or Outputs Spy A Y

then

(C = (Card Spy) and legallyU(Card Spy)) or
(∃A. C = (Card A) and illegallyU(Card A)) �

6.1.3 On the Outputs of the Smart Cards

To confirm that the model smart cards work reliably, two categories of guaran-
tees can be proved on the Outputs events.

One category states that the cards only give the correct outputs when fed
the corresponding inputs, so the cards cannot grant the spy unlimited resources.
The case for step 10 of the protocol is presented below (theorem Reli4), while
those for steps 4 and 7 are similar and omitted here.

Theorem (Reli4). If evs contains

Outputs (Card A)A {|Key (sesK(Nb, pairK(A,B))),
Crypt(pairK(A,B))(NonceNb)|}

then there exists Na such that evs also contains

Inputs A (Card A) {|AgentB,NonceNa,NonceNb,Nonce (Pairkey(A,B)),
Crypt(shrK A){|Nonce (Pairkey(A,B)),Agent B|},
Crypt(pairK(A,B)){|NonceNa,NonceNb|},
Crypt(crdK(Card A))(NonceNa) |} �

Another category confirms that the cards produce correct outputs. Precisely,
given a specific card output, the form of its components can be tracked down.
One such guarantee can be established on an instance of message 4 (theorem
Reli5). The length of the certificate must be checked because of the protocol
ambiguity already encountered (§5.4). Recall that an event Outputs C AX also
models A’s reception of X, so the theorem is applicable also by A.
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Theorem (Reli5). If evs contains

Outputs (Card A)A {|NonceNa,Cert |}
and Cert is not compound, then

Cert = Crypt(crdK(Card A))(NonceNa) �

Analogous considerations apply to message 7. Upon B’s reception of an out-
put, we can guarantee its form for some peer A and some nonce Na (theorem
Reli6). The existential form of the assertion tells us that B receives the session
key in a message that does not inform him of the peer with whom the key is
to be used. This violates a well-known explicitness principle (perhaps unknown
at the time of the design): “Every message should say what it means. The
interpretation of the message should depend only on its content.” [2, §2.1]. The
underlying transport protocol cannot reveal the peer’s identity either, and this
somewhat weakens the goals of confidentiality, authentication and key distribu-
tion accomplished by the protocol, as discussed in the following.

Theorem (Reli6). If evs contains

Outputs (Card B) B {|NonceNb,Key Kab,Cert1 ,Cert2 |}
then there exist A and Na such that

Kab = sesK(Nb, pairK(A,B)) and
Cert1 = Crypt(pairK(A,B)){|NonceNa,NonceNb|} and
Cert2 = Crypt(pairK(A,B))(NonceNb) �

The card outputs are correct particularly in the case of message 10 (theorem
Reli7). The existential form of the assertion reveals another lack of explicitness
of the protocol design. When A receives the session key, she has to infer from
the context the identity of the peer with whom to use the key. This task is
entirely heuristic: the card might give outputs in the wrong order. Likewise,
the nonce associated with the key is not explicit in the message.

Theorem (Reli7). If evs contains

Outputs (Card A) A {|Key Kab,Cert |}
then there exist B and Nb such that

Kab = sesK(Nb, pairK(A,B)) and
Cert = Crypt(pairK(A,B))(NonceNb) �

The theorem also shows that step 10 binds the session key to the card that
creates it, and to the certificate. Therefore, should the structure of the session
key be inspectable, the structure of the certificate could be derived (corollary
Reli8), and vice versa.

Corollary (Reli8). If evs contains

Outputs (Card A) A {|Key (sesK(Nb, pairK(A′, B))),Cert |}
then,

A = A′ and Cert = Crypt(pairK(A,B))(NonceNb) �
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6.1.4 On the Friendly Agents’ Use of the Smart Cards

Other guarantees show that the friendly agents indeed use the legally usable
cards in a legal manner. We must verify that these agents produce inputs
whose origin can be documented. For example, let us assume that an agent A
queries a card as in step 9 of the protocol (by theorem Reli4, the card belongs
to A) quoting an agent B. We can prove that A initiated a session with B via
the server, and received the components of the query either from the network
or from the card by means of suitable events (theorem Reli9).

Theorem (Reli9). If A is not the spy, and evs contains

Inputs A C {|Agent B,NonceNa,NonceNb,NoncePk ,

Cert1 ,Cert2 ,Cert3 |}

then evs also contains

Says A Server {|AgentA,AgentB|} and
Gets A {|NoncePk ,Cert1 |} and
Gets A {|NonceNb,Cert2 |} and
Outputs C A {|NonceNa,Cert3 |} �

Although the first event of the conclusion highlights A’s intention to communi-
cate with B, none of the remaining events mentions B. So, A cannot be assured
to be feeding her card the components meant for the session with B. Even if
the Gets events mentioned B, his identity would not be reliable as the spy can
tamper with compound messages coming from the network. The Outputs event
could mention B reliably as it takes place over a secure means, but fails to do
so. However, by theorem Reli4, A will get an output from her card only if she
uses the correct components as input.

Similar theorems deal with the other queries to the smart cards, respectively
steps 3 and 6 of the protocol, but are omitted here for brevity.

The form of the inputs created in steps 3 and 6 of the protocol are self-
explanatory. Step 9 is more complicated. While most of such input has been
exposed to the network risks (theorem Reli9), the third certificate has not,
namely it is created off the network. So, its form can be derived (theorem
Reli10), signifying that every agent uses her own card according to its functional
interface, sending it correct inputs. Notice that the guarantee also holds for the
spy’s use of her own card.

Theorem (Reli10). If evs contains

Inputs A (Card A) {|AgentB,NonceNa,NonceNb,NoncePk ,

Cert1 ,Cert2 ,Cert3 |}

then

Cert3 = Crypt(crdK(Card A))(NonceNa) �
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Upon reception of a message, A’s card can determine whether the message is an
instance of message 9 by looking at its clear-text part. The card should inspect
carefully the second and third certificates because they could be fake. Their
form is in fact not provable in the model. Having proved the integrity of the
third certificate may suggest that it is superfluous to the design, and that the
card could avoid checking it. Nevertheless, should an agent insert a fake nonce
as second component of message 9, the card would detect the misbehaviour by
inspecting the third certificate.

6.2 Regularity

Friendly agents are never required to send long-term keys on the network, hence
the spy can send such a key if and only if she knows it before the protocol
begins. In consequence, the spy can learn a card key and a card owner’s key
only from cloning the card (by definition of initState, §5). Using the latter key,
she can compute all the pair-k’s meant for the card owner. These assertions are
formalised and confirmed by the following regularity lemmas (Regu1, Regu2,
and Regu3).

Lemma (Regu1).

(Key (shrK A) ∈ analz(knows Spy evs)) ⇐⇒ (Card A ∈ cloned) �

Lemma (Regu2).

(Key (crdK C) ∈ analz(knows Spy evs)) ⇐⇒ (C ∈ cloned) �

Lemma (Regu3).

(Key (pairK(P,B)) ∈ analz(knows Spy evs)) ⇐⇒ (Card B ∈ cloned) �

They resemble Paulson’s regularity lemmas for traditional protocols, but
concern the smart cards. They are expressed here in terms of the analz operator,
rather than parts, which makes them directly applicable in the following. The
traditional proof strategies [26] scale up.

6.3 Authenticity

“Agents need guarantees (subject to conditions they can check) confirming that
their certificates are authentic”[26, §4.7]. If a certificate appears to come from
an agent A, and this can be proved, then the certificate is authentic.

In designing a theorem, the obvious first move is to identify those assump-
tions that seem to enforce the conclusion. In the case of an authenticity theorem,
we must look for the assumptions that apparently prevent the spy from forging
the certificate. Then, once the protocol step that created the certificate is found,
our purpose becomes enforcing the corresponding event. If the proof succeeds
for a certificate that is sealed under a long-term key (except a PIN), then it
is not useful to the agents running a smart card protocol, for they know no
long-term keys and therefore cannot recognise any certificates.
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All Shoup-Rubin’s certificates are sealed under long-term keys, so the agents
get no authenticity guarantees about them. Those keys are stored in the smart
cards, so the authenticity argument can be directed to the cards. Only in step
9 does a card get encrypted certificates. To reason about their authenticity,
we develop some subsidiary lemmas, which are not directly applicable either by
agents or by cards. Incidentally, if a card receives a certificate as part of an input
on a trace evs over secure means, the definition of knows alone does not imply
that the certificate is on the network traffic, namely in parts(knows Spy evs)

Along with a pairkey, the server issues a certificate that verifies it. When
the certificate is on the traffic, we can prove that it originated with the server
if the regularity lemma Regu1 is applicable. Therefore, given that the peer’s
card is not cloned, the certificate is authentic (lemma Auth1). At this stage,
the form of the pairkey may be specified via theorem Reli1.

Lemma (Auth1). If A’s card is not cloned, and evs is such that

Crypt(shrK A){|NoncePk ,Agent B|} ∈ parts(knows Spy evs)

then evs contains

Says Server A {|NoncePk ,Crypt(shrK A){|NoncePk ,AgentB|}|} �

We can verify formally that the certificate that associates A and B’s nonces
is built in step 7 (lemma Auth2). Since the certificate is sealed under the
corresponding pair-k, investigating its origin requires an appeal to the regularity
lemma Regu3, which prescribes B’s card not to be cloned. However, a stronger
assumption is needed on B’s card to solve case SR7 Fake: the card must not be
illegally usable, otherwise it could output towards the spy, rather than towards
B.

Lemma (Auth2). If B’s card is not illegally usable, and evs is such that

Crypt(pairK(A,B)){|NonceNa,Nonce Nb|} ∈ parts(knows Spy evs)

then evs contains

Outputs (Card B) B {|NonceNb,Key (sesK(Nb, pairK(A,B))),
Crypt(pairK(A,B)){|NonceNa,NonceNb|},
Crypt(pairK(A,B))(NonceNb) |} �

Message 7 ends with another certificate that verifies B’s nonce, {|Nb|}πab
.

So, we can prove a theorem, omitted here, that is identical to theorem Auth2
except for the certificate considered and for the assertion existentially quantified
over the nonce Na. The same certificate is also output by A’s card in message
10. Proving this result (lemma Auth3) also requires B not to be the spy in
order to solve case SR7 (so that the corresponding event does not introduce the
certificate on the traffic), and A’s card not to be illegally usable to solve case
SR10 Fake.
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Lemma (Auth3). If B is not the spy, A and B’s cards are not illegally usable,
and evs is such that

Crypt(pairK(A,B))(NonceNb) ∈ parts(knows Spy evs)

then evs contains

Outputs (Card A)A {|Key (sesK(Nb, pairK(A,B))),
Crypt(pairK(A,B))(NonceNb) |} �

The authenticity lemmas serve to prove an authenticity theorem that is appli-
cable by A’s card (theorem Auth4). The theorem must include the assumptions
on agents and cards required by the lemmas. Upon reception of message 9, the
card must inspect the first two certificates, as indicated by theorem Reli10. If
the first certificate has the expected form, then theorem Reli9 and lemma Auth1
prove the first event of the assertion (once a message is received, its components
appeared on the traffic). Similarly, if the second certificate is as expected, then
theorem Reli9 and lemma Auth2 prove the second event. The third certificate
does not need to be inspected thanks to its provable authenticity stated by
theorem Reli9, which alone justifies the third event of the assertion. We have
mechanised this reasoning by one Isabelle command that applies theorem Reli9
only once, and then the appropriate authenticity lemma.

Theorem (Auth4). If A is not the spy, A’s card is not cloned, B’s card is not
illegally usable, and evs contains

Inputs A (Card A) {|AgentB,NonceNa,NonceNb,NoncePk ,
Crypt(shrK A){|NoncePk ,AgentB|},
Crypt(pairK(A,B)){|NonceNa,NonceNb|},Cert3 |}

then evs also contains

Says Server A {|NoncePk ,Crypt(shrK A){|NoncePk ,AgentB|}|} and
Outputs (Card B) B {|NonceNb,Key (sesK(Nb, pairK(A,B))),

Crypt(pairK(A,B)){|NonceNa,NonceNb|},
Crypt(pairK(A,B))(NonceNb) |} and

Outputs (Card A) A {|NonceNa,Cert3 |} �

The authenticity of the crucial message components can be investigated in
the same fashion as that of the certificates. Let us consider the authenticity
of pairkeys. Only the server is entitled to issue Pairkey(A,B), which does not
belong to the initial knowledge of the spy if either A or B’s card is not cloned.
For example, let us suppose that A’s card is not cloned. Apparently, this should
enforce that, if a pairkey is on the traffic, then it was issued by the server.
However, attempting to prove that, if evs is such that

Pairkey(A,B) ∈ parts(knows Spy evs)

then, for some Cert , evs contains

Says Server A {|Nonce (Pairkey(A,B)),Cert |}
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leaves the following subgoal arising from case Base

[ | Card A /∈ cloned;
Pairkey(A,B) = Pairkey(A′, B′);
Card A′ ∈ cloned; Card B′ ∈ cloned | ] =⇒ False

We cannot derive that A = A′ because the pairkey is implemented in terms of
the exclusive-or operator, which is not collision-free. The subgoal can be in fact
falsified because there may exist two pairs of distinct agents A, A′ and B, B′

who satisfy the premises. This proof attempt signifies that the spy might exploit
the collisions suffered by the exclusive-or operator and forge a pairkey even if
she does not know its original components. The probability of this happening
is influenced by the redundancy introduced by the encryption function and by
the length of the cipher-texts.

We now examine the authenticity of the session key. This crucial message
component is only sent between cards and agents, never through the network.
Despite this, the spy could either forge it (by Forge), or obtain it from her own
card if she is one of the peers (by SR7 or SR10), or learn it from the illegally
usable cards (by SR7 Fake or SR10 Fake). Let us make the assumptions that
prevent all these circumstances. For example, if the responder’s card is not
illegally usable and therefore not cloned, then the session key cannot be forged by
lemma Regu3. Then, if a session key ever appears on the traffic, one of its peers
necessarily leaked it by accident, while the trace recorded the corresponding
oops event (lemma Auth5). This is in fact a counterguarantee of authenticity
because it emphasises the conditions under which a session key that is on the
traffic is not authentic: the spy in fact introduced it. Also, it will be fundamental
below (§6.5) to assess a form of session key confidentiality.

Lemma (Auth5). If A and B are not the spy, their cards are not illegally
usable, and evs is such that

Key (sesK(Nb, pairK(A,B))) ∈ parts(knows Spy evs)

then evs contains

Notes Spy {|Key (sesK(Nb, pairK(A,B))),NonceNb,AgentA,AgentB|} �

Proving the authenticity lemmas for Shoup-Rubin requires a standard strat-
egy (simpler than Paulson’s for the authenticity theorems on traditional proto-
cols [26, §4.7]), which appears to be generalisable to smart card protocols.

1. Apply induction.

2. If the lemma concerns
• a certificate sealed under a shared key, then simplify case Fake by

lemma Regu1;

• a certificate sealed under a card key, then simplify case Fake by lemma
Regu2;
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• a certificate sealed under a pair-k, then simplify case Fake by lemma
Regu3;

• a session key, then apply “H ⊆ parts H” to case Forge and simplify
it by lemma Regu3.

3. Solve case Fake by a standard tactic [26, §4.5].

4. Apply the reliability theorems as follows: theorem Reli5 to case SR9,
theorem Reli6 to cases SR8 and OopsB, theorem Reli7 to case SR11, and
a variant of theorem Reli7 — which binds the form of the certificate, given
the form of the session key — to case OopsA.

5. Simplify remaining cases.

6.4 Unicity

Key distribution protocols issue a fresh key per each session. The freshness
assumption enforces that the same session key cannot be issued more than
once. Using this argument, the unicity theorems could be designed [26, §4.4]
and then made useful to agents [4, §4.1]. The same argument can be applied to
smart card protocols but, in addition, a reliability theorem allows us to prove a
further unicity guarantee about session keys.

Shoup-Rubin requires B’s card to build a fresh session key in message 7. The
key is bound uniquely to the remaining components of the message (theorem
Unic1). In proving this result, after induction and simplification two subgoals
remain, which are about SR7 and SR7 Fake. The latter is easily solvable because
it forces the spy to use her own card illegally, which is impossible. The other
case is solved by freshness: the session key could not appear before. Message 7
also contains B’s fresh nonce, so a variant of the theorem may be proved using
the nonce as pivot.

Theorem (Unic1). If evs contains

Outputs (Card B) B {|NonceNb,Key Kab,Cert1 ,Cert2 |} and
Outputs (Card B′) B′ {|NonceNb′,Key Kab,Cert1 ′,Cert2 ′|}

then

B = B′ and Nb = Nb′ and Cert1 = Cert1 ′ and Cert2 = Cert2 ′ �

A similar theorem, which is omitted here, holds about the card output in
step 4, by exploiting the freshness of A’s nonce. More surprisingly, it also
holds about the card output in step 10 (theorem Unic2), although the card
uses no fresh components on that occasion. Corollary Reli8 supplies. Whenever
a specific session key appears, the form of the corresponding certificate can
be assessed, so the same key cannot stand by two different certificates. This
strategy solves the subgoal about SR10, while the subgoal about SR10 Fake is
terminated routinely.
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Theorem (Unic2). If evs contains

Outputs (Card A)A {|Key Kab,Cert |} and
Outputs (Card A′)A′ {|Key Kab,Cert ′|}

then

A = A′ and Cert = Cert ′ �

The unicity theorems teach agents a lot. For example, if in the real world
B receives the same session key within two different instances of message 7, he
may suspect that something wrong happened. Having violated theorem Unic1,
the scenario is due to problems that lie outside our model, ranging from a
malfunction of B’s card to a spy’s break-in between the agent and his card.
Theorem Unic2 provides the equivalent information to A.

However, if B happens to receive the same session key within the same
message more than once, theorem Unic1 would not be violated. Still, should
that scenario alarm B? The answer is affirmative because in our model, where
B’s card always outputs a fresh key, we can prove that the mentioned scenario
never occurs. We define the predicate

Unique ev on evs ≡ ev 6∈ set(tl(dropWhile(λz.z 6= ev) evs))

which scans the trace evs till the event ev is found and then skipped; if ev does
not belong to the set of events of the remaining list, then ev only occurs once
on evs.

Upon reception of any output commencing with a nonce, B can be assured
that the corresponding event is unique (theorem Unic3). After expanding the
definition of the predicate, the cases about SR4 and SR7 are solved by freshness
of the nonce. The result also applies to the output of A’s card in step 4. No
similar theorem can be established about step 10, which does not involve any
fresh components.

Theorem (Unic3). If evs contains

Outputs (Card B) B {|NonceNb, rest |}

then

Unique (Outputs (Card B) B {|NonceNb, rest |}) on evs �

6.5 Confidentiality

Because of the weakness discovered by the authenticity argument (§6.3), a
pairkey cannot be proved confidential even assuming that it has not been sent
in the network and that its components cannot be forged.

The regularity lemmas may be interpreted as non-trivial confidentiality guar-
antees. Moreover, applying analzH ⊆ parts H to the authenticity theorem
Auth5, we obtain a guarantee of session key confidentiality: a session key that
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cannot be forged and that has not been leaked by accident remains confidential
(theorem Conf 1). Unfortunately, this theorem is not useful to agents because
it requires inspection of the structure of the session key.

Theorem (Conf 1). If A and B are not the spy, their cards are not illegally
usable, and evs does not contain

Notes Spy {|Key (sesK(Nb, pairK(A,B))),NonceNb,AgentA,AgentB|}

then

Key (sesK(Nb, pairK(A,B))) 6∈ analz(knows Spy evs) �

Now, we initiate Paulson’s proof strategy for confidentiality, and find that
Shoup-Rubin does not confirm its goals of confidentiality to the peers if the
data buses of the cards are unreliable. However, the following guarantees can
be applied by the smart cards.

The confidentiality argument for a protocol responder B must develop on an
event that B can verify: his card sending a message that contains the session
key in step 7 of the protocol. The event formalising such step,

Outputs (Card B) B {|NonceNb,Key Kab,Cert1 ,Cert2 |}

includes two certificates, Cert1 and Cert2 , that B cannot inspect because they
are sealed by long-term keys. We have attempted to prove Kab confidential on
a trace evs that contains the mentioned event but no oops event leaking Kab.
Also, B’s card must be assumed not to be cloned otherwise the spy would know
pairK(P,B) for any agent P and could so be able to forge the session key by rule
Forge. The proof leaves two subgoals unsolved, respectively arising from cases
SR10 and SR10 Fake. The inspection of the former teaches that B’s peer might
be the spy, who could so obtain a copy of Kab from her own smart card. The
latter subgoal shows that B’s peer’s card could be illegally usable regardless the
identity of the peer; the spy would be able to use this card to compute Kab.
While the protocol requires B’s card to issue a new session key in step 7, his
peer in fact computes a copy of the key from available components in step 10.

Therefore, further assumptions are necessary on B’s peer and her card, but
the message obtained by B does not state the identity of such peer. This reveals
that B does not get the identity of the peer with whom the session key is to
be shared, which violates a well-known explicitness principle due to Abadi and
Needham: “If the identity of a principal is essential to the meaning of a message,
it is prudent to mention the principal’s name explicitly in the message” [2, §4].
If we inspect either one of the certificates, then B’s peer becomes explicit, so
the relevant assumptions can be stated and theorem Conf 2 proved.

Theorem (Conf 2). If A and B are not the spy, A’s card is not illegally usable,
B’s card is not cloned, and evs contains

Outputs (Card B) B {|NonceNb,Key Kab,Cert ,
Crypt(pairK(A,B))(NonceNb)|}
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but does not contain

Notes Spy {|Key Kab,NonceNb,Agent A,AgentB|}

then

Key Kab 6∈ analz(knows Spy evs) �

From B’s viewpoint, trusting that the peer is not malicious and that her
card cannot be used by the spy is indispensable — it is part of what we called
minimal trust. So is trusting that the key has not been leaked by accident.

However, B cannot verify that the main event of the theorem ever occurs
because he cannot inspect the certificate. Therefore, he cannot apply the theo-
rem. Shoup and Rubin’s analysis asserts an analogous property requiring that
the peers’ cards be “unopened” [30, §3.1], which may be interpreted as “not
cloned” here. However, their treatment does not investigate whether the prop-
erty is in fact applicable by the peers.

When reasoning from A’s viewpoint, the outcome is similar. Attempting to
prove confidentiality on the assumption that the event formalising step 10,

Outputs (Card A) A {|Key Kab,Cert |}

occurs, leaves the subgoals arising from SR7 and SR7 Fake unsolved. They
highlight that A could be communicating either with the spy or with an agent
whose card is illegally usable. Indeed, step 10 fails to express A’s peer. Like
the previous theorem, also this one can be proved if the form of Cert is explicit,
resulting in a guarantee that can be applied by A’s card but not by A (theorem
Conf 3).

Theorem (Conf 3). If A and B are not the spy, A and B’s cards are not
illegally usable, and evs contains

Outputs (Card A)A {|Key Kab,Crypt(pairK(A,B))(NonceNb)|}

but does not contain

Notes Spy {|Key Kab,NonceNb,Agent A,Agent B|}

then

Key Kab 6∈ analz(knows Spy evs) �

6.6 Authentication

Phase V terminates B’s role in the protocol. Then, B’s peer, say A, obtains the
session key from message 10, but the identity of B remains unspecified unless
the certificate is inspected. If the certificate is not fake, induction proves it to
have appeared with the instance of message 7 that concerns B (theorem Auth6).
Although A cannot appeal to the theorem, it becomes significant to A’s card,
which can inspect the certificate. When the card issues A with the session key, it
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is guaranteed that both B and his card were present on the network and that B’s
card, which is using the pair-k for A and B, is participating in a session with A.
The proof observes that the event of the assumption implies that the certificate
{|Na,Nb|}πab

appears on the traffic for some Na; then, it applies lemma Auth2.

Theorem (Auth6). If B’s card is not illegally usable, and evs contains

Outputs (Card A)A {|Key Kab,Crypt(pairK(A,B))(NonceNb)|}

then, for some Na, evs also contains

Outputs (Card B) B {|NonceNb,Key Kab,

Crypt(pairK(A,B)){|NonceNa,NonceNb|},
Crypt(pairK(A,B))(NonceNb) |} �

A relevant authentication guarantee for B should establish that A is active
after B creates the session key. At the end of the protocol, B may receive
from the network the certificate for his nonce. Provided that lemma Auth3 is
applicable, A’s card can be proved to have sent a suitable instance of message
10, which establishes the presence of A with her card, and the intention of A’s
card to communicate with B (theorem Auth7).

Theorem (Auth7). If B is not the spy, A and B’s cards are not illegally
usable, and evs contains

Gets B (Crypt(pairK(A,B))(NonceNb))

then evs also contains

Outputs (Card A)A {|Key (sesK(Nb, pairK(A,B))),
Crypt(pairK(A,B))(NonceNb) |} �

Is this theorem useful to B? The answer is negative because the agent cannot
inspect the encrypted certificate. In practice B obtains no information about
the sender of the certificate, and his peer remains unknown. Observing that the
certificate was originally created in message 7 does not help because neither that
message states the peer (theorem Reli6). A possible solution, which we have
verified, is concluding the protocol with two additional steps: B forwarding
the certificate to his card, and the card responding with A’s identity. The
card should use the right pair-k to decrypt the certificate, thus identifying A.
While adding explicitness to message 7 is a simpler fix (as demonstrated below,
§7), making the guarantee available also to B’s card necessarily requires those
additional steps.

6.7 Key Distribution

Applying the definition of knows to the conclusion of theorem Auth6 yields
that, when A’s card computes the session key for A, the key is already known
to B (theorem Keyd1). However, A gains nothing from this result because the
certificate must be inspected. Notice that the guarantee itself does not prevent
B from being the spy.
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Theorem (Keyd1). If B’s card is not illegally usable, and evs contains

Outputs (Card A)A {|Key Kab,Crypt(pairK(A,B))(NonceNb)|}

then

Key Kab ∈ analz(knows B evs) �

Let us attempt to design the corresponding guarantee for B. His session key
is obtained via message 7. By theorem Auth7, if B receives the last message of
the protocol, he infers that A obtained some session key. The two events must
be correlated in order to assure that both peers hold the same session key. This
can only be done by inspecting one of the certificates of message 7, so to make
A explicit. Then, theorem Reli6 specifies the form of the session key that is
output by B’s card (theorem Keyd2).

Theorem (Keyd2). If B is not the spy, A and B’s cards are not illegally
usable, and evs contains

Outputs (Card B) B {|NonceNb,Key Kab,Cert ,
Crypt(pairK(A,B))(NonceNb)|} and

Gets B (Crypt(pairK(A,B))(NonceNb))

then

Key Kab ∈ analz(knows A evs) �

No stronger result than this can be envisaged because there exists no protocol
message that binds the session key with both of its peers. Can B inspect any of
the certificates of message 7 ? Or, can B’s card inspect that of the last message?
Both answers being negative, theorem Keyd2 turns out to be applicable neither
by B nor by his card, which seems a poor achievement for the protocol.

7 Verifying an Upgraded Shoup-Rubin

Omitting B’s name from message 2 of the public-key Needham-Schroeder proto-
col led to Lowe’s well-known attack [21] — the spy could interleave two sessions,
learn an important nonce and violate the authentication of the initiator to the
responder. With Shoup-Rubin, the assumption of secure means prevents this.
However, since the data buses of the cards are unreliable (§3.1.1), the agents
cannot distinguish which protocol session a single output belongs to, because
the card outputs lack explicitness.

Abadi and Needham demonstrate that lack of explicitness may crucially
affect the interpretation of a message — “The names relevant for a message can
sometimes be deduced from other data and from what encryption keys have
been applied. However, when this information cannot be deduced, its omission
is a blunder with serious consequences.” [2, §4].

As mentioned above, message 7 of Shoup-Rubin cannot inform B of A’s
identity both because the session key does not state its peers and because the
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two cipher-texts cannot be decrypted by agents. Nor can message 10 inform A
of B’s identity. Moreover, while message 7 quotes the nonce Nb that is used to
build the session key, message 10 fails to do so. These components cannot be
learnt from the underlying transport protocol. Therefore, upon reception of an
instance of message 10, agent A cannot derive the complete form of the instance
of message 7 sent during that session.

However, messages 6 and 9 do quote the identity of the respective, intended
peer. So, should the data buses be reliable, the calling agent could store the
identity of the peer until the card returned, and associate the session key just
received to that peer. Nevertheless, messages 7 and 10 do violate the explicitness
principles mentioned above.

These considerations suggest upgrading messages 7 and 10, which are trans-
mitted over a secure means, with the relevant agent names and, for simmetry,
with a nonce. The upgrades are underlined in figure 19, which omits the unal-
tered rest of the protocol. It is straightforward to upgrade the formal protocol
model accordingly. In the new model, many of the theorems discussed above ob-

7. Cb → B : Nb, A,Kab, {|Na,Nb|}πab
, {|Nb|}πab

10. Ca → A : B,Nb,Kab, {|Nb|}πab

Figure 19: Upgrading the Shoup-Rubin protocol

tain slightly modified assertions and, crucially, assumptions that never inspect
cipher-texts. Therefore, the assumptions become verifiable by agents, signify-
ing that the upgraded protocol makes its guarantees available to them. For
example, theorem Reli4 can now be enforced on the event

Outputs (Card A)A {|AgentB,NonceNb,Key Kab,Cert |}

The assertion of theorem Reli6 can be stripped of one existential, so B learns
the peer for the session key (theorem Reli6′). One existential still constrains the
form of one of the certificates, but B’s knowledge is not significantly affected.

Theorem (Reli6′). If evs contains

Outputs (Card B) B {|NonceNb,Agent A,Key Kab,Cert1 ,Cert2 |}

then

Kab = sesK(Nb, pairK(A,B)) and
Cert2 = Crypt(pairK(A,B))(NonceNb)

and there exists Na such that

Cert1 = Crypt(pairK(A,B)){|NonceNa,NonceNb|} �
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Similarly, proving theorem Reli7 on the event

Outputs (Card A) A {|AgentB,NonceNb,Key Kab,Cert |}

avoids the existential quantifiers in the assertion because both B and Nb are
already bound. The second event enforced by theorem Reli7 obtains an extra
component, while the rest of the authenticity argument remains unaltered.

The unicity results continue to hold. For example, theorem Unic2 must now
cope with the additional components (theorem Unic2′).

Theorem (Unic2′). If evs contains

Outputs (Card A) A {|Agent B,NonceNb,Key Kab,Cert |} and
Outputs (Card A′)A′ {|AgentB′,NonceNb′,Key Kab,Cert ′|}

then

A = A′ and B = B′ and Nb = Nb′ and Cert = Cert ′ �

Theorem Conf 2 gets a simpler main assumption

Outputs (Card B) B {|NonceNb,AgentA,Key Kab,Cert1 ,Cert2 |}

which is verifiable by B, and so does theorem Conf 3, which now rests on

Outputs (Card A) A {|AgentB,NonceNb,Key Kab,Cert |}

In consequence, the peers will be able to decide, within the minimal trust,
whether the session key they obtain is confidential.

Both authentication theorems are strengthened. Agent A can now be in-
formed that B and his card were present on the network and that B’s card
intended to communicate with A (theorem Auth6′). Agent A must only verify
to receive from her card a message with four components: an agent name, a
nonce, a key, and a cipher-text. The theorem could be more specific on the
form of Cert1, but this would not enrich A’s knowledge substantially.

Theorem (Auth6′). If B’s card is not illegally usable, and evs contains

Outputs (Card A) A {|Agent B,NonceNb,Key Kab,Cert2 |}

then, for some Cert1 , evs also contains

Outputs (Card B) B {|NonceNb,Agent A,Key Kab,Cert1 ,Cert2 |} �

Also theorem Auth7 can be reformulated (theorem Auth7′) as to become
applicable by B, who can check the reception from the network of a cipher-text
previously obtained from his card. This result is still not applicable by B’s card.

Theorem (Auth7′). If B is not the spy, A and B’s cards are not illegally
usable, and evs contains
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Outputs (Card B) B {|NonceNb,Agent A,Key Kab,Cert1 ,Cert2 |} and
Gets B (Cert2 )

then evs also contains

Outputs (Card A)A {|AgentB,NonceNb,Key Kab,Cert2 |} �

Theorem Keyd1 can be enforced on the same assumptions as those of theo-
rem Auth6′, so becoming applicable by A (theorem Keyd1′).

Theorem (Keyd1′). If B’s card is not illegally usable, and evs contains

Outputs (Card A)A {|AgentB,NonceNb,Key Kab,Cert2 |}

then,

Key Kab ∈ analz(knows B evs) �

Similarly, the assertion of theorem Keyd2 can be proved on the assumptions of
theorem Auth7′ and become useful to B. The resulting theorem and theorem
Keyd1′ signify that the upgraded protocol confirms the goal of key distribution
to its peers.

8 Conclusions

Modern networking strongly demands clear guarantees to dissipate a number
of concerns [24]. One concern is to verify whether or not smart card protocols
take real advantage from the use of the cards to achieve stronger goals. In the
light of our work, it seems fair to conclude that this hierarchy of protocols can
be verified inductively regardless of whether they assume secure means between
agents and smart cards, or whether they employ PIN-operated cards.

Paulson’s original machinery for traditional protocols clearly had to be ex-
tended with the modelling of the smart cards, but we are pleased to observe that
the extensions were quite straightforward. For example, the risks of physical
tampering with the cards can be intuitively included, while a basic set of stored
secrets can be easily extended according to the protocol to analyse. We remark
that our modelling of the cards is entirely reusable for future protocol analyses.

Designing guarantees for smart card protocols requires a meticulous under-
standing of how the cards influence the protocol goals. Therefore, it was positive
to find out that the proof strategies for traditional protocols could be adapted
with limited efforts. As we have remarked, all guarantees must be interpreted
from the viewpoints of the protocol peers, otherwise they are inapplicable even
within the minimal trust [7], but also the viewpoints of the cards may become
relevant. The Shoup-Rubin protocol, which consists of 11 steps, is the longest
protocol analysed so far using the Inductive Approach. Even encoding it in an
inductive definition required a certain effort, which offers an additional justi-
fication to research towards a common language for specifying cryptographic
protocols [11]. Our proofs establish that the protocol achieves its goals for a
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pair of peers whose cards are safe from the spy. In particular, the goals are
achieved independently from risks to other agents’ cards, signifying that local
breaches of security only have local consequences. Not only does this support
the claim that the protocol makes an intelligent use of the smart cards, but it
also encourages research towards the tamper resistance of the cards. However,
if the cards give their outputs in an unspecified order, then two of the protocol
messages need extra explicitness in order for the goals to be confirmed to the
peers.

New protocols based on smart cards are being developed for electronic pay-
ment over the Internet. They establish a form of electronic currency whereby
a coin is just a unique random number created and signed by a bank. The se-
crets stored in the cards should help prevent, for example, double spending. We
believe that verifying those protocols may help develop the path to pervasive
E-commerce. Mechanised inductive proofs now shed some light on that path.
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