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Abstract—SET (Secure Electronic Transaction) is an im-
mense e-commerce protocol designed to improve the secu-
rity of credit card purchases.

In this paper we focus on the initial bootstrapping phases
of SET, whose objective is the registration of cardhold-
ers and merchants with a SET certificate authority. The
aim of registration is twofold: getting the approval of the
cardholder’s or merchant’s bank, and replacing traditional
credit card numbers with electronic credentials that card-
holders can present to the merchant, so that their privacy is
protected.

These registration sub-protocols present a number of
challenges to current formal verification methods. First,
they do not assume that each agent knows the public keys
of the other agents. Key distribution is one of the protocols’
tasks. Second, SET uses complex encryption primitives
(digital envelopes) which introduce dependency chains: the
loss of one secret key can lead to potentially unlimited losses.

Building upon our previous work, we have been able to
model and formally verify SET’s registration with the in-
ductive method in Isabelle/HOL. We have solved its chal-
lenges with very general techniques.
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I. I NTRODUCTION

Cryptographic protocols allow people to com-
municate securely across an open network, even
in the presence of hostile or compromised agents.
Such protocols are hard to design and numerous
researchers have developed ways of finding errors
automatically [10], [13] or proving protocols cor-
rect [6], [14]. (Many additional references could be
given.) Here we report our verification of the reg-
istration protocols of SET, a giant protocol for elec-
tronic commerce, proposed by Visa and MasterCard
as an industry standard [11].

The idea behind the registration protocols of SET
is that only registered cardholders and merchants can
engage in transactions. A registered cardholder has
been cleared by a bank and has a digital certificate to
prove it. Subsequently, he can show his certificates
rather than his credit card number to an equally cer-
tified merchant. The merchant will rest assured that
there is a credit card behind the private key signing
a bill, and the cardholder will be sure that incompe-
tent or dishonest merchants will not publish his credit
card details on the internet.

At this level of abstraction, the registration pro-



tocols look trivial: they just distribute public key
certificates. However, past experience shows that
simplifying a protocol’s encryption mechanisms can
hide major errors [16]. SET presents two major chal-
lenges to formal methods:

1) it involves several levels of encryption, using
many combinations of symmetric cryptogra-
phy, asymmetric cryptography and hashing;

2) it does not assume that each agent has his own
private key (so that the only problem is the dis-
tribution of the public keys), but allows card-
holders and merchants to invent asymmetric
keys at will.

The first challenge comes from SET’s use of RSA
digital envelopes. One part of a digital envelope is
the main body of the message, encrypted using a
fresh symmetric key. The other part contains that
key and is encrypted with the recipient’s public en-
cryption key. The two parts may have some com-
mon data, possibly hashed, in order to confirm that
they are tied together. This combination of symmet-
ric and asymmetric encryption ought to be more ef-
ficient than using asymmetric crypto alone and more
secure than using symmetric encryption alone. How-
ever, it makes a protocol much harder to analyze. For
instance, assuming that long-term asymmetric keys
are secure, as all verification techniques do, will not
guarantee us that the data in a digital envelope is safe:
the key may be lost.

Furthermore, digital envelopes can be used to send
keys, which are used to package new envelopes, ad
infinitum. A complicated case is in the last message
exchange of cardholder registration, where a digital
envelope conveys a symmetric key that the recipient
uses to encrypt the reply. This creates dependency
chains such that the loss of a secret key can lead to
a cascade of losses. Nothing like this can be found
in the customary benchmark for protocol verifica-
tion methods, the Clark-Jacobs library [5]. There-
fore, many protocol verification formalisms [8] as-
sume that to prove secrecy it is enough to show that
the long-term keys encrypting the short-term keys are
safe. Past protocols were too simple to reveal this
point.

The second challenging aspect of the SET proto-
cols is the possibility for cardholders and merchants
to invent public/private key pairs at will for their
electronic credentials. The difference with session
key and key agreement protocols is minimal: asym-
metric keys join nonces and session keys among the

objects that can be invented during a protocol run.
We do not make the usual assumption that each

agent knows the other agents’ public keys.
However, all current verification approaches func-

tionally associate asymmetric and other long-term
keys to agents. This modelling choice substantially
eliminates asymmetric keys from the hard part of the
modelling: namely reasoning about what an agent
can encrypt and decrypt and the introduction of fresh
values. Once asymmetric keys are fixed from the out-
set, and at most are unknown to the intruder, reason-
ing about asymmetric encryption is substantially re-
duced to an equality check between the agent holding
the message and the agent associated to the key. In
model checking, these modelling choices have fur-
ther advantages: the introduction of fresh values can
be limited to nonces and symmetric keys, thus cut-
ting the explosion of the state space.

We have not only verified these protocols but
found what appears to be a general method for treat-
ing such protocol mechanisms.

This paper presents an introduction to the SET reg-
istration protocols (§II). Next, the formal model of
the registration protocols is presented (§III). The
main secrecy proofs for cardholder registration and
presented (§IV). A final section discusses related
work and presents conclusions (§V).

II. T HE SET REGISTRATION PROTOCOLS

People normally pay for goods purchased over the
Internet by giving the merchant their credit card de-
tails. To prevent eavesdroppers from stealing the
card number, the message undergoes a session of the
SSL protocol. This arrangement requires the card-
holder and merchant to trust each other. That require-
ment is undesirable even in face-to-face transactions,
and across the Internet it admits unacceptable risks.

• The cardholder is protected from eavesdroppers
but not from the merchant himself. Some mer-
chants are dishonest, some are incompetent at
protecting sensitive information.

• The merchant has no protection against dishon-
est cardholders who supply an invalid credit
card number or who claim a refund from their
bank without cause. Contrary to popular belief,
it is the merchant who has the most to lose from
fraud. Legislation in most countries protects the
cardholder.
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As stated in the Introduction, SET aims to reduce
fraud by introducing a preliminary registration pro-
cess. Cardholders and merchants must register with
a certificate authority(CA) before they can engage
in transactions. The cardholder thereby obtains elec-
tronic credentials to prove that he is trustworthy. The
merchant similarly registers and obtains credentials.
Later, when the cardholder wants to make purchases,
he and the merchant exchange their credentials. If
both parties are satisfied then they can proceed. SET
includes separate subprotocols (calledtransactions)
for cardholder and merchant registration.

When assessing the goals of this protocol it is im-
portant to note that SET is supposed to run within the
web of trust of the current credit card infrastructure.

Customers do trust accredited VISA or Master-
Card merchants when doing transactions in the phys-
ical worlds: when paying at the restaurant the cus-
tomer just hands the credit card to the waiter and wait
for him to return with a plausible looking receipt to
sign. For what he knows, the mafia owned restaurant
may be cloning his card. Yet, he is confident because
outside the protocol there is a procedure to deal with
fraudsters. The same is true for the merchant.

On the electronic world customers have no way
to see the placard “VISA” on the restaurant window
and merchants have no way to see the plastic card
with the logo and the hologram on it.

The protocol only attempts to recreate this web of
trust that gives confidence against misbehavior. In
other words: in the Internet you can’t see that the
agent at the other side of a TCP/IP connection has
a valid credit card and can’t see the signature on the
card. The SET protocol assures the merchant that the
customer has a valid credit card with a corresponding
signature. At the time of purchase, by looking at the
credential and the signature on the transaction, the
merchant can stay assured that he’ll be paid. Dually,
the customer is assured by SET that the merchant has
signed the transaction.

Confidentiality of credit card data avoids potential
problems due to penetration of merchant sites rather
than willing misbehavior.

A. The Registration Phase

We focus first oncardholder registration(Fig-
ure 1), which is the more complicated of the two.
The cardholder proves his identity by giving the CA
personal information previously shared with his issu-
ing bank. He chooses a private key, which he will use

later to sign orders for goods, and registers the cor-
responding public key, which merchants can use to
verify his signature. The cardholder receives a cer-
tificate, signed by the CA, that associates the pub-
lic key to his identity. Notice that the protocol does
not assume that the key submitted by the cardholder
is unique, nor that is fresh. So, the usual assump-
tion that the cardholder registershis key should be
replaced by the more appropriate that the cardholder
registerssomekey.

The protocol is complicated because it has many
objectives. It must certify a signature key and asso-
ciate it with the credit card number, while keeping
the latter secret. In this way, the merchant can be as-
sured that an order signed by a key certified by Visa’s
CA is matched by the corresponding credit card is-
sued by Visa, even if he does not see the credit card
number.

However, it hasnot the objective to provide au-
thentication to the various parties as usually intended
in the protocol verification literature (see Lowe [9]
for some possible definitions). There is no problem
here if the certification authority receives the same
request more than once, or if there is a mismatch be-
tween the number of runs of the merchant and the
certification authority, and so on. Such possibilities
are foreseen in the specification which assumes that
unreliable software or communication crashes may
occur at any time. As long as an intruder has no
way to trick a certification authority to associate a
wrong key to a customer’s credit card or to expose
the credit card details the protocol has achieved its
security goals.

Cardholder registration consists of six messages.
We have abbreviated some of the SET terminology,
for instance ChallC has become NC1. Notice that
SET requires each CA to have separate key pairs for
signature and encryption.

a) Initiate Request: The cardholder sends his
name to the CA, with a freshness challenge (NC1).

1. C → CA : C, NC1

b) Initiate Response: The CA responds to
the challenge and returns its public key certificates,
which are signed by the Root Certificate Authority.
The cardholder needs the CA’s public keys for the
various SET protocols.

2. CA→ C : SignCA(C, NC1), CertRCA(pubEK CA),

CertRCA(pubSK CA)
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Fig. 1. Cardholder Registration

c) Registration Form Request:The cardholder
requests a registration form. In this message, he sub-
mits his credit card number to the CA. SET calls this
thePAN, for Principal Account Number. This mes-
sage is our first example of a digital envelope: some
data is encrypted using the key KC1, which is itself
encrypted using the CA’s public key.

3. C → CA : CryptKC1(C, NC2, Hash PAN),

CryptpubEK CA(KC1, PAN, Hash(C, NC2))

d) Registration Form: The CA uses the credit
card number to determine the cardholder’s issuing
bank and returns an appropriate registration form.
SET does not specify the details of such forms,
which we therefore omit from the formalization. The
CA again sends its public key certificates.

4. CA→ C : SignCA(C, NC2, NCA),

CertRCA(pubEK CA),

CertRCA(pubSK CA)

e) Cardholder Certificate Request:The card-
holder chooses an asymmetric signature key pair.
He gives the CA the public key,pubSK C, and the
completed registration form. He also encloses Card-
Secret, a random number that must be kept secure
permanently. This message is another digital enve-
lope, using the key KC3. Another key, KC2, is sent

to the CA to use for encrypting the response. The
proliferation of keys complicates reasoning about
this protocol.

5. C → CA : CryptKC3(m, S),

CryptpubEK CA(KC3, PAN, CardSecret)

wherem = C, NC3, KC2, pubSK C

andS = CryptpriSK C(Hash(m, PAN, CardSecret))

f) Cardholder Certificate: The bank checks
the various details and, if satisfied, authorises the CA
to complete the registration. The CA signs a certifi-
cate that includes the cardholder’s public signature
key and the cryptographic hash of PANSecret: a se-
cret number known to the cardholder. PANSecret is
the exclusive-OR of the CardSecret (chosen by the
cardholder) and NonceCCA (chosen by the CA). The
cardholder will use the PANSecret to prove his iden-
tity when making purchases.

6. CA→ C : CryptKC2

(Sign CA(C, NC3, CA, NonceCCA),

CertCA(pubSK C),

CertRCA(pubSK CA)))

The merchant registrationprotocol (Figure 2) is
simpler. No credit card number is involved. The CA
determines the appropriate registration form merely
on the basis of the merchant’s name1. This eliminates
one message exchange: there is no registration form
request message. The merchant chooses two private
keys, for signature and encryption, and registers the
corresponding public keys (one at a time). The main
goal of this protocol is to provide the merchant with
certificates, signed by the CA, that associate the pub-
lic keys to the merchant’s identity. Here are the four
messages in more detail.

g) Initiate Request: The merchant sends his
name to the CA, with a freshness challenge (NM1).

1. M → CA : M, NM1

h) Registration Form: The CA determines the
merchant’s bank (known as the acquirer) and returns

1Observe that there are many more cardholders than merchants and
that becoming an accredited merchant costs money and time, so that a
name search is feasible. As for privacy, the name of a merchant and his
accepted credit cards are public and indeed the more public the better
for the merchant himself.
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an appropriate registration form, along with its pub-
lic key certificates.

2. CA→ M : SignCA(M, NM2, NCA),

CertRCA(pubEK CA),

CertRCA(pubSK CA)

i) Merchant Certificate Request: The mer-
chant chooses two asymmetric public/private key
pairs, one for signature, the other for encryption.
He submits the two public keys,pubSK M and
pubEK M , along with the completed registration
form to the CA, who forwards it to the bank. This
message is yet another digital envelope, using the
session key KM1.

3. M → CA : CryptKM1 S, CryptpubEK CA KM1

whereS =

Sign(priSK M)(M, NM2, pubSK M, pubEK M)

j) Merchant Certificates:The bank checks the
various details and, if satisfied, authorises the CA
to issue certificates. The CA signs two certificates,
one including the merchant’s public signature key
and the merchant’s identity, the other including the
merchant’s public encryption key and the merchant’s
identity. The CA wraps up the two certificates in a
single message using no hashing, and sends it to the
merchant. When the merchant receives the certifi-

cates, he is ready to sell goods over the Internet.

4. CA→ M : CryptKC2

(Sign CA(M, NM3, CA, NonceCCA),

CertCA(pubSK M),

CertRCA(pubSK CA))

What is the point of verifying SET’s registration
protocols? The subsequent purchase protocols per-
form the actual E-commerce, and protocol verifiers
often assume that participants already possess all
needed credentials. However, the registration proto-
cols are difficult, particularly when it comes to prov-
ing that cardholder registration actually keeps the
PANSecret secret, an explicit goal of SET [11]. The
digital envelopes introduce many keys and nonces,
with non-trivial dependency chains.

III. M ODELLING THE REGISTRATION

PROTOCOLS

Our protocol models owe much to the work of
Piero Tramontano, who devoted many hours to help
us decipher and interpret 1000 pages of SET docu-
mentation [3]. Our aim was to capture the essential
protocol mechanisms while omitting optional parts
and needless complications.

We use the inductive method of protocol verifica-
tion, which has been described elsewhere [14]. This
operational semantics assumes a population of hon-
est agents obeying the protocol and a dishonest agent
(the Spy) who can steal messages intended for other
agents, decrypt them using any keys at his disposal
and send new messages as he pleases. Some of the
honest agents arecompromised: the Spy has full ac-
cess to their secrets. A protocol is modelled by the
set of all possible traces of events that it can generate.
Events are of three forms:

• Says A B X meansA sends messageX to B.
• Gets A X meansA receives messageX.
• Notes A X meansA storesX in his internal

state.
There is no guarantee, in general, that aSays A B

X event implies aGets B X event because reception
cannot be guaranteed over an insecure means like the
network.

We have flattened SET’s hierarchy of certificate
authorities [11]. The Root Certificate Authority is
responsible for certifying all other CAs. Our model
includes compromised CAs, though we assume that
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the root is uncompromised. The compromised CAs
complicate the proofs — large numbers of session
keys and other secrets fall into the hands of the Spy.
But even if we assumed that all CAs were honest, a
realistic model would have to include the possibility
of secrets becoming compromised.

Here is a brief summary of the notation:
• set_cr is the set of traces allowed by card-

holder registration;
• set_mr is the set of traces allowed by merchant

registration;
• used gathers the set of items appearing in a

trace, and serves to express freshness;
• symkeys is the set of symmetric keys;
• Nonce , Pan, Key, Agent , Crypt and Hash are

obvious message constructors;
• {|X1, ..., Xn|} is ann-component message;
• sign is the message constructor for signatures,

defined by
sign K X == {|X, Crypt K (Hash X) |},
whereK is a private signing key.

• certC is the message constructor for a card-
holder’s public-key certificates, which includes
his PANP and the PanSecretPS. It is defined by
signCert K X == {|X, Crypt K X |}
certC P Ka PS T signK ==

signCert signK
{|Hash {|Nonce PS, Pan P |}, Key Ka, T |}

• cert is the message constructor for public-key
certificates of CAs and merchants:
cert A Ka T signK ==

signCert signK {|Agent A, Key Ka, T |}
Since our earlier work on this protocol [3], we

have streamlined the model. For example, the notion
of crucial cryptographic keys has been eliminated, as
we have found a simpler formalization of the many
types of agents and their keys. Two public/private
key pairs — one for signature, one for encryption
— are functionally associated to each agent’s name.
For example,priSK RCA denotes the private signa-
ture key of the Root Certificate Authority. However,
no agent knows anyone else’s public keys at the be-
ginning of a session but, rather, every agent uses pub-
lic keys received inside certificates.

A. Cardholder Registration in Isabelle/HOL

A fragment of our inductive model for cardholder
registration is shown in Figure 3. The figure omits
the rules modelling the early messages of the pro-
tocol and the rules that are common to most proto-

cols, such as the definition of the Spy’s capabilities.
It presents the full rules for messages 5 and 6, which
areSET_CR5andSET_CR6respectively. Each rule de-
tails how to extend a given trace of the protocol (# is
the list “cons” operator) and refers to a typical CACA

i and to a typical cardholderC, who is defined using
theCardholder constructor.

In rule SET_CR5, variableevs5 refers to the cur-
rent event trace. The preconditions of the rule require
the cardholder to issue two fresh noncesNC3 and
CardSecret , and two fresh symmetric keys,KC2and
KC3. Also, two events must have occurred inevs5 :
the Says event signifies thatC sent an appropriate
instance of message 3 to the CA; theGets event sig-
nifies thatC received the CA’s reply, which carries
a certificate signed by the Root Certificate Authority
and establishingEKi to be the CA’s public encryption
key2. Another certificate states thatSKi is the CA’s
public signature key.

Then,C encrypts usingEKi a message containing
his credit card number (pan C) and the keyKC3, and
encrypts usingKC3 a message containing the sym-
metric keyKC2 and the public signature key to be
certified. The two encrypted messages constitute the
digital envelope thatC sends to the CA.

In ruleSET_CR6, variableevs6 refers to the current
event trace. The rule may fire when the CA receives
an instance of message 5, requesting a certificate for
the keycardSK . The rule lets CA send protocol mes-
sage 6, a digital envelope containing the desired cer-
tificate and encrypted by a symmetric key received
from the cardholder. The certificate also contains
the PANSecret, which is computed as the exclusive-
OR of theCardSecret (sent by the cardholder) and
NonceCCA(generated by the CA). While sending the
message, the CA stores the key just certified in or-
der to prevent its being certified more than once. The
rule for message 6 checks that the keycardSK has
not previously been registered by imposing the pre-
condition

Notes (CA i) (Key cardSK) /∈ set evs6

which elegantly replaces a less readable precondition
we used initially [3].

Modelling C’s generation of fresh public/private
key pairs is not difficult, as we have reported already
[3]. It involves replacingpubSK C andpriSK C with
variables ranging over keys, and extending the pre-

2The flagonlyEnc in the certificate indicates that it refers to an
encryption key, whileonlySig indicates a signature key.
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SET CR5:
" [[evs5 ∈ set cr; C = Cardholder k;

Nonce NC3 /∈ used evs5; Nonce CardSecret /∈ used evs5;
NC3 6= CardSecret;
Key KC2 /∈ used evs5; KC2 ∈ symKeys;
Key KC3 /∈ used evs5; KC3 ∈ symKeys; KC2 6=KC3;
Gets C {|sign (invKey SKi) {|Agent C, Nonce NC2, Nonce NCA |},

cert (CA i) EKi onlyEnc (priSK RCA),
cert (CA i) SKi onlySig (priSK RCA) |}

∈ set evs5;
Says C (CA i)

{|Crypt KC1 {|Agent C, Nonce NC2, Hash (Pan (pan C)) |},
Crypt EKi {|Key KC1, Pan (pan C),

Hash {|Agent C, Nonce NC2 |}|}|}
∈ set evs5 ]]

=⇒ Says C (CA i)
{|Crypt KC3
{|Agent C, Nonce NC3, Key KC2, Key (pubSK C),

Crypt (priSK C)
(Hash {|Agent C, Nonce NC3, Key KC2,

Key(pubSK C), Pan(pan C), Nonce CardSecret |}) |},
Crypt EKi {|Key KC3, Pan (pan C), Nonce CardSecret |}|}

# evs5 ∈ set cr"

SET CR6:
" [[evs6 ∈ set cr;

Nonce NonceCCA /∈ used evs6;
KC2 ∈ symKeys; KC3 ∈ symKeys; cardSK /∈ symKeys;
Notes (CA i) (Key cardSK) /∈ set evs6;
Gets (CA i) {|Crypt KC3 {|Agent C, Nonce NC3, Key KC2, Key cardSK,

Crypt (invKey cardSK)
(Hash {|Agent C, Nonce NC3, Key KC2,

Key cardSK, Pan(pan C), Nonce CardSecret |}) |},
Crypt (pubEK (CA i)) {|Key KC3, Pan (pan C),

Nonce CardSecret |}|}
∈ set evs6 ]]

=⇒ Says (CA i) C (Crypt KC2
{|sign (priSK (CA i))
{|Agent C,Nonce NC3,Agent(CA i), Nonce NonceCCA |},

certC (pan C) cardSK (XOR(CardSecret,NonceCCA))
onlySig (priSK (CA i)),

cert (CA i) (pubSK(CA i)) onlySig (priSK RCA) |})
# Notes (CA i) (Key cardSK)
# evs6 ∈ set cr"

Fig. 3. Modelling Cardholder Registration (fragment)

conditions ofSET_CR5 with the extra requirements
that the newly introduced public keys are fresh and
asymmetric.

B. Merchant Registration in Isabelle/HOL

The machinery developed above can be reused to
model merchant registration. A typical merchantM

is defined using theMerchant constructor. The in-
ductive rules modelling the last two messages of the
protocol appear in Figure 4.

Rule SET_MR3specifies that the merchantM gen-
erates a single session keyKM1and asks for certifi-
cation of both his public keys. This differs from the
previous protocol, where cardholder generates two
session keys and asks for certification of his signa-
ture key only. The rule may fire only if the merchant
sent message 1 of the protocol, as stated by theSays

event, and received message 2, as stated by theGets

event.

If the CA agrees to certify the merchant’s keys,
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SET MR3:
" [[evs3 ∈ set mr; M = Merchant k; Nonce NM2 /∈ used evs3;

Key KM1 /∈ used evs3; KM1 ∈ symKeys;
Gets M {|sign (invKey SKi) {|Agent X, Nonce NM1, Nonce NCA |},

cert (CA i) EKi onlyEnc (priSK RCA),
cert (CA i) SKi onlySig (priSK RCA) |}

∈ set evs3;
Says M (CA i) {|Agent M, Nonce NM1 |} ∈ set evs3 ]]

=⇒ Says M (CA i)
{|Crypt KM1 (sign (priSK M) {|Agent M, Nonce NM2,

Key(pubSK M), Key(pubEK M) |}),
Crypt EKi (Key KM1) |}

# evs3 ∈ set mr"

SET MR4:
" [[evs4 ∈ set mr; M = Merchant k;

merSK /∈ symKeys; merEK /∈ symKeys;
Notes (CA i) (Key merSK) /∈ set evs4;
Notes (CA i) (Key merEK) /∈ set evs4;
Gets (CA i) {|Crypt KM1 (sign (invKey merSK)

{|Agent M, Nonce NM2, Key merSK, Key merEK |}),
Crypt (pubEK (CA i)) (Key KM1) |}

∈ set evs4 ]]
=⇒ Says (CA i) M {|sign (priSK (CA i))

{|Agent M, Nonce NM2, Agent (CA i) |},
cert M merSK onlySig (priSK (CA i)),
cert M merEK onlyEnc (priSK (CA i)),
cert (CA i) (pubSK (CA i)) onlySig (priSK RCA) |}

# Notes (CA i) (Key merSK)
# Notes (CA i) (Key merEK)
# evs4 ∈ set mr"

Fig. 4. Modelling Merchant Registration (fragment)

it must also record them, as stated by ruleSET_MR4.
The conclusion of the rule adds the three correspond-
ing events to the current trace. The merchant’s cer-
tificates have the same form as the CA’s certificate
— indeed, all of them are expressed using the same
message constructor,cert . These certificates are
sent in clear, since the message for issuing certifi-
cates “shall be signed but not encrypted if the [cer-
tificate recipient] is a Merchant or Payment Gate-
way” [12, p.191]. However, SET requires the last
message of cardholder registration to be encrypted.

Merchant registration is simpler than cardholder
registration. It involves fewer sensitive components.
There is no equivalent of the PAN or of the PAN-
Secret, and there are fewer digital envelopes.

IV. SECRECYPROOFS FORCARDHOLDER

REGISTRATION

For cardholder verification we proved 64 theo-
rems in total; for merchant registration we proved 31.

These include all the main goals for these protocols
and all necessary lemmas. We have space to present
only a small selection. We concentrate on the most
difficult and interesting proofs concerning secrecy in
cardholder registration. Here we have introduced the
new methods to deal with digital envelopes.

A primary goal is that cardholder registration guar-
antees secrecy of the PANSecret. No message of
the protocol sends this number, not even in en-
crypted form. Rather, both parties compute it as the
exclusive-OR of other numbers. So, do those num-
bers remain secret? Since they are encrypted us-
ing symmetric keys, the proof requires a lemma that
symmetric keys remain secret.

The first complication is that some symmetric keys
do not remain secret, namely those involving a com-
promised CA. The second, major complication is
that some symmetric keys are used to encrypt oth-
ers: the loss of one key can compromise a second
key, leading possibly to unlimited losses.

The problem of one secret depending on another
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has occurred previously, with the Yahalom [15] and
Kerberos [4] protocols. Both of these are compar-
atively simple: the dependency relation links only
two items. Cardholder registration has many depen-
dency relationships. It also has a dependency chain
of length three: in the last message, a secret num-
ber is encrypted using a key (KC2) that was itself en-
crypted using another key (KC3).

To solve this problem, we have generalized the
method described in earlier work to chains of any
length. While the definitions become more compli-
cated than before, they follow a uniform pattern. The
idea is to define a relation, for a given trace, between
pairs of secret items:(K, X) are related if the loss
of the keyK leads to the loss of the key or nonceX.
Two new observations can be made about the depen-
dency relation.

1) It should ignore messages sent by the Spy,
since we can only hope to prove secrecy for
honest participants. This greatly simplifies
some proofs.

2) It must be transitive, since a dependency
chain leading to a compromise could have any
length. Past protocols were too simple to re-
veal this point.

Secrecy of session keys is proved as it was for Ker-
beros [4], by defining the relationKeyCryptKey DK

K evs that takes two keysDK and K, and an event
traceevs . It holds on a trace containing a message
in which the first key encrypts the second key. As we
shall see, reasoning aboutKeyCryptKey will allow
us to prove that most symmetric keys remain secure.

From that result, one might think it would be easy
to prove that nonces encrypted using those keys re-
main secret. However, secrecy proofs for nonces ap-
pear to require the same treatment as secrecy proofs
for keys. We must define the dependency relation be-
tween keys and nonces. Then the proofs can be car-
ried forward as it was for Yahalom [15], except that
there are many key-nonce relationships rather than
one.

A. Relations between secrets

The relationKeyCryptKey DK K evs is defined
as a primitive recursive function in Figure 5. Rule
KeyCryptKey Nil , the base case of the recursion,
states that the relation is false on an empty trace.
Rule KeyCryptKey Cons formalizes the recursive
step. For the relation to hold on the extended trace

ev#evs the relation must either hold on the origi-
nal traceevs , or the new eventev must have a spe-
cific structure. It could be an instance of message 5
(shown above in§III) in which some principal who
is not Spy usesKC3 to encryptKC2. Alternatively,ev

could be any event in which someone encryptsKC3

using a public key. In the latter case,KeyCryptKey

holds of the corresponding private key, which can de-
crypt the message. In reading the definition, note that
“∨” denotes logical disjunction, while “| ” is part of
the “case ” syntax.

Figure 6 defines the dependency relation for
nonces. Here are some hints towards understand-
ing this definition. The only important case involves
Says events. The first disjunct refers to message 5,
where keyKC3 encrypts nonceNC3; it also cov-
ers a similar encryption in message 3. The second
and third disjuncts refer to message 6; they involve
KeyCryptKey because that encryption uses a key re-
ceived from outside. The fourth disjunct essentially
says that we are not interested in asymmetric keys
(they are never sent, so there is no risk of compro-
mise).

B. Verification of Secrecy Properties

Now we outline the verification of cardholder reg-
istration. The handling of fresh public keys does not
add technical difficulties thanks to Isabelle’s level of
automation. What we found difficult were the se-
crecy properties, and we concentrate on them here.
We first sketch informally the key steps of our rea-
soning to give a feel of the proof effort. Three are
the main lemmas:

• keys can be compromised only through the dis-
closure of other keys;

• keys sent by cardholders to uncompromised
CAs are never disclosed;

• nonces cannot be compromised through the dis-
closure of keys;

Building on these lemmas, we are able to prove our
key theorems:

• the CardSecret is secure if the cardholder sends
the certificate request message to an uncom-
promised CA;

• the NonceCCA is secure if it is contained in
a cardholder certificate received by the card-
holder from an uncompromised CA;

• the PAN is secure unless the cardholder has sent
acertificate requestmessage to a compromised
CA.

9



KeyCryptKey Nil:
"KeyCryptKey DK K [] = False"

KeyCryptKey Cons:
"KeyCryptKey DK K (ev # evs) =

(KeyCryptKey DK K evs ∨
(case ev of

Says A B Z ⇒
(( ∃N X Y. A 6= Spy ∧

DK ∈ symKeys ∧
Z = {|Crypt DK {|Agent A, Nonce N, Key K, X |}, Y |}) ∨

( ∃C. DK = priEK C))
| Gets A’ X ⇒ False
| Notes A’ X ⇒ False))"

Fig. 5. Relation between Keys in Cardholder Registration

KeyCryptNonce DK N (ev # evs) =
(KeyCryptNonce DK N evs ∨

(case ev of
Says A B Z ⇒

A 6= Spy ∧
(( ∃X Y. Z = {|Crypt DK {|Agent A, Nonce N, X |}, Y |}) ∨

( ∃K i X Y.
Z = Crypt K {|sign (priSK i) {|Agent B, Nonce N, X |}, Y |} ∧
(DK=K ∨ KeyCryptKey DK K evs)) ∨

( ∃K i NC3 Y.
Z = Crypt K

{|sign(priSK i) {|Agent B, Nonce NC3, Agent(CA i), Nonce N |},
Y|} ∧

(DK=K ∨ KeyCryptKey DK K evs)) ∨
( ∃ i. DK = priEK i))

| Gets A’ X ⇒ False
| Notes A’ X ⇒ False))

Fig. 6. Relation between Keys and Nonces in Cardholder Registration

Obviously, we have to trust the certificate authority.
The CA’s task is to certify that there is a correspon-
dence between a certificate and a credit card number.
To obtain this goal, the CA must be able to see the
credit card number.

In the sequel, each theorem is stated first in En-
glish and then using Isabelle notation. Each has
been mechanically verified with Isabelle/HOL, typ-
ically by some form of induction. Some of them
are so-called regularity properties, which are easy to
prove [14]. For example, one protocol goal is almost
trivial: if a certificate bears the signature of an un-
compromised CA, then it was sent by the CA.

To prove our main results we need a number of
preliminary technical lemmas. For example, we
never haveKeyCryptKey DK K evs where DK is
fresh (in the traceevs ), since a fresh key cannot have
been used to encrypt anything. Several other obvious
properties ofKeyCryptKey turn out to be needed in

the proofs below.
We can then move on to thesession key compro-

mise theorem. It states that a key can be lost only by
the keys related to it byKeyCryptKey . It is used in
other proofs to reason about situations in which some
session keys might be compromised.

Lemma 1—symKeycompromise:Except in triv-
ial cases, no symmetric key can be compromised
through the disclosure of other keys.

[[evs ∈ set cr; SK ∈ symKeys;
∀K∈KK. ¬ KeyCryptKey K SK evs ]] =⇒

(Key SK ∈ analz (Key‘KK ∪ knows Spy evs)) =
(SK ∈KK ∨ Key SK ∈ analz(knows Spy evs))

We can interpret this theorem as asserting that
KeyCryptKey expresses all circumstances in which a
symmetric key can become compromised. The proof
is a big, difficult induction consisting of 10 proof
commands. The simplification step requires a spe-
cialized set of rewrite rules, including lemmas about
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KeyCryptKey , and is relatively slow (14 seconds).
The peculiar form of the lemma represents the gener-
alization needed to make the induction succeed. Here
are the preconditions in detail:

• evs ∈ set cr simply means thatevs is a trace
of cardholder registration. All proofs about the
protocol will include this assumption.

• SK ∈ symKeys means thatSK is a symmetric
key.

• ∀K∈KK. ¬KeyCryptKey K SK evs means that
KK is a set of keys, none of which immediately
compromisesSK in the traceevs .

In the conclusion, the formula

Key SK ∈ analz (Key‘KK ∪ knows Spy evs)

means thatSK can be derived fromKK together with
the Spy’s knowledge (which mainly consists of ob-
servable traffic). The right-hand side of the conclu-
sion is

(SK ∈KK ∨ Key SK ∈ analz (knows Spy evs))

which means that eitherSK is itself a member of
the setKK or SK is already derivable from the Spy’s
knowledge alone.

We could simplify the right-hand side above, and
many other formulas, by definingKeyCryptKey to
be reflexive. The intuition is attractive, for then
KeyCryptKey would hold when there was a chain of
decryptions from one key to another, of length possi-
bly zero. However, this change would strengthen the
precondition of Lemma 1, making it harder to prove
(when we need to use the induction hypothesis) and
harder to apply.

Lemma 2—symKeysecrecy:Symmetric keys sent
by cardholders to uncompromised CAs are never dis-
closed.

[[CA i /∈ bad; K ∈ symKeys; evs ∈ set cr;
Says (Cardholder k) (CA i) X ∈ set evs;
Key K ∈ parts {X} ]]

=⇒ Key K /∈ analz (knows Spy evs)

This result follows from Lemma 1, but not trivially.
It states a general law for any symmetric key (K

above) that is part of (K ∈ parts{X} ) any messageX
sent by the cardholder. Since the proof requires ex-
amination of all protocol steps, it involves another
induction and the simplification again needs special
rewrite rules concerning secrecy. It is not an explicit
protocol goal — symmetric keys are just part of the
underlying machinery — but it is obviously desir-
able.

Lemma 3—Noncecompromise:No nonce can be
compromised through the disclosure of keys except
in trivial cases.

[[evs ∈ set cr;
∀K∈KK. ¬ KeyCryptNonce K N evs ]] =⇒

(Nonce N ∈ analz (Key‘KK ∪ knows Spy evs)) =
(Nonce N ∈ analz (knows Spy evs))

In both statement and proof, this result resembles
Lemma 1. In particular, the precondition∀K∈KK. ¬
KeyCryptNonce K N evs means thatKK is a set of
keys, none of which immediately compromises the
nonceN. The conclusion is that the Spy could de-
rive N with the help of the setKK only if he could
have derivedN without using that set. The situation
is complicated by the many different nonces used
in cardholder registration, only some of which are
kept secret. So the proof is even longer than that of
Lemma 1, despite its appealing to that lemma; it re-
quires 14 proof steps and involves reasoning about
bothKeyCryptKey andKeyCryptNonce .

Theorem 1—CardSecretsecrecy:If a cardholder
sends thecertificate requestmessage to an uncom-
promised CA, then the chosen CardSecret will re-
main secure.

[[CA i /∈ bad;
Says (Cardholder k) (CA i)
{|X, Crypt EKi {|Key KC3, Pan p,

Nonce CardSecret |}|} ∈ set evs;
Gets A
{|Z, cert (CA i) EKi onlyEnc (priSK RCA),

cert (CA i) SKi onlySig (priSK RCA) |}
∈ set evs;

KC3 ∈ symKeys; evs ∈ set cr ]]
=⇒ Nonce CardSecret /∈ analz (knows Spy evs)

This is an important goal: SET purchases are safe
only if CardSecret is uncompromised. The proof in-
volves another complicated induction despite its use
of Lemmas 1 and 3. In the preconditions, note that
the cardholder builds the digital envelope using any
symmetric keyKC3; the public key,EKi , is bound
to the CA through a certificate signed byRCA. The
main body of the argument is an induction that addi-
tionally assumesKC3 to be uncompromised; later, an
appeal to Lemma 2 removes that assumption.

Theorem 2—NonceCCAsecrecy:If a cardholder
sends thecertificate requestmessage to an uncom-
promised CA and receives in response thecard-
holder certificate, then the value of NonceCCA con-
tained in the latter will remain secure.

[[CA i /∈ bad;
Gets (Cardholder k)
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(Crypt KC2
{|sign(priSK(CA i))
{|Agent C, Nonce N, Agent(CA i),

Nonce NonceCCA|},
X, Y |}) ∈ set evs;

Says (Cardholder k) (CA i)
{|Crypt KC3

{|Agent C, Nonce NC3, Key KC2, X’ |},
Y’ |} ∈ set evs;

Gets A
{|Z, cert (CA i) EKi onlyEnc (priSK RCA),

cert (CA i) SKi onlySig (priSK RCA) |}
∈ symKeys; evs ∈ set cr ]]

=⇒ Nonce NonceCCA /∈ analz (knows Spy evs)

This result is as important as Theorem 1, since
both CardSecret and NonceCCA are ingredients of
the all-important PANSecret. The proof resembles
that of Theorem 1 but is a bit more complicated,
since it refers to two protocol messages. Variables
such asX andY refer to irrelevant parts of messages.

This theorem is a guarantee to the cardholder: it is
expressed in terms of events that the cardholder can
verify. We have not proved the analogous guarantees
for the CA. Although NonceCCA originates with the
CA, its compromise would do the CA no harm.

Theorems 1 and 2 are as close as we can come to
expressing the secrecy of the PANSecret, since our
model does not let us reason about exclusive-OR.
Our next goal is to prove secrecy of the PAN: the
credit card number.

Lemma 4—analzinsert pan: A PAN cannot be
compromised through the disclosure of symmetric
keys.

[[evs ∈ set cr; K /∈ invKey‘pubEK‘range CA ]]
=⇒
(Pan P ∈ analz(insert(Key K)(knows Spy evs)))
=
(Pan P ∈ analz(knows Spy evs))

This result resembles Lemma 3 but is much easier to
prove because PANs are encrypted only with public
keys. As the model does not allow public keys to
be broken during a trace, no key dependency chains
complicate the reasoning. In essence, the inductive
argument examines all protocol messages to confirm
that symmetric keys are never used to encrypt PANs.

The obscure premiseK /∈ invKey ‘ pubEK ‘

range CA states that the keyK is not the private
encryption key of any CA. The lemma says that
if the Spy can discover a PAN with the help ofK,
then he could have discovered the PAN without us-
ing K. To make the induction work, we had to prove
a stronger statement (not shown); it generalizes the

lemma above to replaceK by a set of symmetric keys.
The final guarantee about the PAN says that it re-
mains secure unless it is sent to a compromised CA
(for its private keys are known to the Spy).

Theorem 3—panconfidentiality: If a PAN has
been disclosed, then the cardholder has sent acer-
tificate requestmessage to a compromised CA.

[[Pan (pan C) ∈ analz(knows Spy evs);
C 6= Spy; evs ∈ set cr ]] =⇒
∃ i X K HN.

Says C (CA i)
{|X, Crypt (pubEK(CA i))

{|Key K, Pan(pan C), HN |}|}
∈ set evs

∧ (CA i) ∈ bad

This result is proved by induction, using Lemma 4
and the usual rewriting rules for secrecy proofs.

Merchant registration is much easier to analyze
than cardholder registration. The simpler form of
the certificate request message eliminates the de-
pendence between symmetric keys. The lack of the
fields PAN, CardSecret and NonceCCA leaves us
with little to prove secret.

V. RELATED WORK AND CONCLUSIONS

Of the many other efforts into protocol verifi-
cation, the most relevant is TAPS by Ernie Co-
hen [6]. Given a protocol, Cohen’s system auto-
matically generates asecrecy invariant, which serves
the same purpose as the relationsKeyCryptKey and
KeyCryptNonce . Potentially, TAPS could verify
cardholder registration, though the protocol’s size
and complexity may present difficulties in the auto-
matic generation of invariants.

As far as we are aware, no other group has at-
tempted to verify the SET registration protocols di-
rectly out of the specifications. Recently, based on
our previous formalization [3], Ernie Cohen has ver-
ified the card-holder registration with TAPS obtain-
ing substantially the same results as ours. The same
formalization has also been used in the course of the
AVISS project [1] for verification with infinite state
model checking. They could not verify the main se-
crecy and unicity goals (the AVISS systems are so
far restricted to classical authentication properties),
but an “attack” on authentication has been found: the
noncesNC3 andNC2 do not provide injective agree-
ment, and the CA may receive twice the same re-
quest for a certificate for the same key for the same
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client. As we already noted here and in our previ-
ous work [3], agreement fails because it is optional
to send back received nonces but this fact is immate-
rial, since it does not affect the goals of the protocol.

What can be concluded from our analysis of the
SET registration protocol?

From the standpoint of protocol verification, the
general treatment of secrecy proofs, as exemplified
in KeyCryptKey andKeyCryptNonce , is a major out-
come of our work. The definitions of these relations
are complicated but conform to an obvious pattern
that could be automated. Verifying the registration
protocols was valuable preparation for our later veri-
fication of the purchase protocols [2].

The complicated RSA digital envelopes and sig-
nature conventions make proofs difficult and slow.
Compared with other protocols that researchers have
verified, SET’s registration protocols use encryption
heavily, resulting in gigantic terms or complex case
splits. Sometimes Isabelle presents the user with
subgoals spanning several pages of text. One should
not attempt to prove such a monstrosity directly. One
useful strategy is to look for terms that can be simpli-
fied and prove the corresponding rewrite rules. This
may cut the monstrosity down to size.

Our model does not include the algebraic proper-
ties of exclusive-OR, such asX ⊕ Y ⊕ X = Y ,
and this prevents us from proving the security of
the PANSecret. We assume thatX ⊕ Y is secure if
bothX andY are. Our treatment of the PANSecret
amounts to assuming that it is computed as the hash
of X andY , which would certainly be an improve-
ment over exclusive-OR. A bad CA can force the
PANSecret to take on a chosen valueN by setting
NonceCCA to be CardSecret⊕ N . The cardholder
has no defence against this attack unless he knows
the value ofN .

From the standpoint of protocol security, one can
conclude that the registration protocol has some con-
structions that make it a bit unwieldy and cumber-
some, uses too many layers of encryption but that,
all in all, it does what it claims to do in the specifi-
cations, given the assumptions about its environment
(see again Section II).

It remains to be seen whether it does all that it
should do. For instance, should the protocol also
satisfy various forms of authentication and agree-
ment? This is a tricky question because we elimi-
nated fields that are immaterial to the main goals of
the protocol but that may be essential for other se-

curity properties. For instance we have eliminated
request-response identifiers which are recommended
by Gong and Syverson [7] to make authentication
protocols more robust and secure.

One may also argue that SET should also satisfy
more advance properties such as non repudiation.
For instance a cardholder should be able to prove to
a third party that a misbehaving CA tampered with
the PANSecret. However, the verification of these
properties implies major changes in the specifica-
tions and in the assumptions about the environment,
and is likely to result in dubious proofs of security
or highly debatable attacks. The verification of addi-
tional properties must be based on a clearly defined
and widely agreed model for e-commerce protocol
goals revising the classical Dolev-Yao model for au-
thentication protocol. We leave this open for future
investigations.
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