
A short survey of automated reasoning

John Harrison

Intel Corporation, JF1-13
2111 NE 25th Avenue, Hillsboro OR 97124, USA

johnh@ichips.intel.com

Abstract. This paper surveys the field of automated reasoning, giving some his-
torical background and outlining a few of the main current research themes. We
particularly emphasize the points of contact and the contrasts with computer al-
gebra. We finish with a discussion of the main applications so far.

1 Historical introduction

The idea of reducing reasoning to mechanical calculation is an old dream [75]. Hobbes
[55] made explicit the analogy in the slogan ‘Reason [. . .] is nothing but Reckoning’.
This parallel was developed by Leibniz, who envisaged a ‘characteristica universalis’
(universal language) and a ‘calculus ratiocinator’ (calculus of reasoning). His idea was
that disputes of all kinds, not merely mathematical ones, could be settled if the parties
translated their dispute into the characteristica and then simply calculated. Leibniz even
made some steps towards realizing this lofty goal, but his work was largely forgotten.

The characteristica universalis

The dream of a truly universal language in Leibniz’s sense remains unrealized and prob-
ably unrealizable. But over the last few centuries a language that is at least adequate for
(most) mathematics has been developed.

Boole [11] developed the first really successful symbolism for logical and set-
theoretic reasoning. What’s more, he was one of the first to emphasize the possibility of
applying formal calculi to several different situations, and doing calculations according
to formal rules without regard to the underlying interpretation. In this way he antic-
ipated important parts of the modern axiomatic method. However Boole’s logic was
limited to propositional reasoning (plugging primitive assertions together using such
logical notions as ‘and’ and ‘or’), and it was not until the much later development of
quantifiers that formal logic was ready to be applied to general mathematics.

The introduction of formal symbols for quantifiers, in particular the universal quan-
tifier ‘for all’ and the existential quantifier ‘there exists’, is usually credited indepen-
dently to Frege, Peano and Peirce. Logic was further refined by Whitehead and Russell,
who wrote out a detailed formal development of the foundations of mathematics from
logical first principles in their Principia Mathematica [109]. In a short space of time,
stimulated by Hilbert’s foundational programme (of which more below), the usual log-
ical language as used today had been developed.

English Symbolic Other symbols
false ⊥ 0, F
true > 1, T
not p ¬p p, −p, ∼ p
p and q p ∧ q pq, p&q, p · q
p or q p ∨ q p + q, p | q, p or q
p implies q p ⇒ q p → q, p ⊃ q
p iff q p ⇔ q p = q, p ≡ q, p ∼ q
for all x, p ∀x. p (x)p
there exists x such that p ∃x. p (Ex)p

At its simplest, one can regard this just as a convenient shorthand, augmenting the
usual mathematical symbols with new ones for logical concepts. After all, it would seem
odd nowadays to write ‘the sum of a and b’ instead of ‘a+b’, so why not write ‘p∧q’ in-
stead of ‘p and q’? However, the consequences of logical symbolism run much deeper:
arriving at a precise formal syntax means that we can bring deeper logical arguments
within the purview of mechanical computation.

Hilbert’s programme

At various points in history, mathematicians have become concerned over apparent
problems in the accepted foundations of their subject. For example, the Pythagore-
ans tried to base mathematics just on the rational numbers, and so were discombob-
ulated by the discovery that

√
2 must be irrational. Subsequently, the apparently self-

contradictory treatment of infinitesimals in Newton and Leibniz’s calculus disturbed
many, as later did the use of complex numbers and the discovery of non-Euclidean ge-
ometries. Later still, when the theory of infinite sets began to be pursued for its own
sake and generalized, mainly by Cantor, renewed foundational worries appeared.

Hilbert [53] suggested an ingenious programme to give mathematics a reliable foun-
dation. In the past, new and apparently problematic ideas such as complex numbers and
non-Euclidean geometry had been given a foundation based on some well-understood
concepts, e.g. complex numbers as points on the plane. However it hardly seems fea-
sible to justify infinite sets in this way based on finite sets. Hilbert’s ingenious idea
was to focus not on the mathematical structures themselves but on the proofs. Given a
suitable formal language, mathematical proofs could themselves become an object of
mathematical study — Hilbert called it metamathematics. The hope was that one might
be able to show in this way that concrete conclusions reached using some controversial
abstract concepts could nevertheless be show still to be valid or even provable without
them.

The calculus ratiocinator

Gödel’s famous incompleteness theorems [40, 98, 37] show that formal systems for de-
ducing mathematics have essential weaknesses. For example, his first theorem is that
any given formal system of deduction satisfying a few natural conditions is incomplete

in the sense that some formally expressible and true statement is not formally provable.
It is generally agreed that Gödel’s results rule out the possibility of realizing Hilbert’s
programme as originally envisaged, though this is a subtle question [65, 96]. What is
certainly true is that Gödel’s theorem was the first of a variety of ‘impossibility’ results
that only really become possible when the notion of mathematical proof is formalized.

Inspired by techniques used in Gödel’s incompleteness results, Church [23] and Tur-
ing [106] proposed definitions of ‘mechanical computability’ and showed that one fa-
mous logical decision question, Hilbert’s Entscheidungsproblem (decision problem for
first-order logic) was unsolvable according to their definitions. Although this showed
the limits of mechanical calculation, Turing machines in particular were an important
inspiration for the development of real computers. And before long people began to
investigate actually using computers to formalize mathematical proofs.

In the light of the various incompleteness and undecidability results, there are es-
sential limits to what can be accomplished by automated reasoning. However, Gödel’s
results apply to human reasoning too from any specific set of axioms, and in principle
most present-day mathematics can be expressed in terms of sets and proven from the ax-
ioms of Zermelo-Fraenkel set theory (ZF). Given any conventional set of mathematical
axioms, e.g. a finite set, or one described by a finite set of schemas, such as ZF, there is
at least a semi-decision procedure that can in principle verify any logical consequence
of those axioms. Moreover many suitably restricted logical problems are decidable.
For example, perhaps the very first computer theorem prover [29] could prove formu-
las involving quantifiers over natural numbers, but with a linearity restriction ensuring
decidability [85].

2 Theorem provers and computer algebra systems

Before we proceed to survey the state of automated reasoning, it’s instructive to con-
sider the similarities and contrasts with computer algebra, which is already an estab-
lished tool in biology as in many other fields of science. In some sense theorem provers
(TPs) and computer algebra systems (CASs) are similar: both are computer programs
to help people with formal symbolic manipulations. Yet there is at present surprisingly
little common ground between them, either as regards the internal workings of the sys-
tems themselves or their respective communities of implementors and users. A theorem
prover might be distinguished by a few features, which we consider in the following
sections.

Logical expressiveness

The typical computer algebra system supports a rather limited style of interaction [27].
The user types in an expression E; the CAS cogitates, usually not for very long, before
returning another expression E′. The implication is that we should accept the theorem
E = E′. Occasionally some slightly more sophisticated data may be returned, such as a
set of possible expressions E′

1, . . . , E
′
n with corresponding conditions on validity, e.g.

√
x2 =

{
x if x ≥ 0
−x if x ≤ 0

However, the simple equational style of interaction is by far the most usual. By
contrast, theorem provers have the logical language available to express far more so-
phisticated mathematical concepts such as the ε− δ definition of continuity:

∀x ∈ R. ∀ε > 0. ∃δ > 0. ∀x′. |x− x′| < δ ⇒ |f(x)− f(x′)| < ε

In particular, the use of a full logical language with quantifiers often unifies and
generalizes existing known concepts from various branches of mathematics. For in-
stance, the various algorithms for quantifier elimination in real-closed fields starting
with Tarski’s work [103] can be considered a natural and far-reaching generalization
of Sturm’s algorithm for counting the number of real roots of a polynomial. At the
same time, quantifier elimination is another potentially fruitful way of viewing the no-
tion of projection in Euclidean space. Chevalley’s constructibility theorem in algebraic
geometry ‘the projection of a constructible set is constructible’, and even some of its
generalizations [45], are really just quantifier elimination in another guise.

Clear semantics

The underlying semantics of expressions in a computer algebra system is often unclear,
though some are more explicit than others. For example, the polynomial expression
x2 + 2x + 1 can be read in several ways: as a member of the polynomial ring R[x]
(not to mention Z[x] or C[x] . . .), as the associated function R → R, or as the value
of that expression for some particular x ∈ R. Similarly, there may be ambiguity over
which branch of various complex functions such as square root, logarithm and power
is considered, and it may not really be clear in what sense ‘integral’ is meant to be un-
derstood. (Riemann? Lebesgue? Just antiderivative?) Such ambiguities are particularly
insidious since in many situations it doesn’t matter which interpretation is chosen (we
have x2 + 2x + 1 = (x + 1)2 for any of the interpretations mentioned above), but there
are situations where the distinction matters.

By contrast, theorem provers usually start from a strict and precisely defined logical
foundation and build up other mathematical concepts by a sequence of definitions. For
example, the HOL system [42] starts with a few very basic axioms for higher-order logic
and a couple of set-theoretic axioms, and these are given a rather precise semantics in
the documentation. From that foundation, other concepts such as natural numbers, lists
and real and complex numbers are systematically built up without any new axioms.

Logical rigour

Even when a CAS can be relied upon to give a result that admits a precise mathematical
interpretation, that doesn’t mean that its answers are always right. With a bit of effort,
it’s not very hard to get incorrect answers out of any mainstream computer algebra
system. Particularly troublesome are simplifications involving functions with complex
branch cuts. It’s almost irresistible to apply simplifications such as log(xy) = log(x)+
log(y) and

√
x2 = x, and many CASs will do this kind of thing freely. Although

systematic approaches to keeping track of branch cuts are possible, most mainstream

systems don’t use them. For example, using the concept of ‘unwinding number’ u(z)
[28], we can express rigorously simplification rules such as:

w 6= 0 ∧ z 6= 0 ⇒ log(wz) = log(w) + log(z)− 2πiu(log(w) + log(z))

Most users probably find such pedantic details as branch cut identification a pos-
itively unwelcome distraction. They often know (or at least think they know) that the
obvious simplifications are valid. In any case, if a CAS lacks the expressiveness to
produce a result that distinguishes possible cases, it is confronted with the unpalatable
choice of doing something that isn’t strictly correct or doing nothing. Many users would
prefer the former.

By contrast, most theorem provers take considerable care that all alleged ‘theorems’
are deduced in a rigorous way, and all conditions made explicit. Indeed, many such
as HOL actually construct a complete proof using a very simple kernel of primitive
inference rules. Although nothing is ever completely certain, a theorem in such a system
is very likely to be correct.

What’s wrong with theorem provers?

So far, we have noted several flaws of the typical computer algebra systems and the
ways in which theorem provers are better. However, on the other side of the coin, CASs
are normally easier to use and much more efficient. Moreover, CASs implement many
algorithms useful for solving real concrete problems in applied (and even pure) math-
ematics, e.g. factoring polynomials and finding integrals. By contrast, theorem provers
emphasize proof search in logical systems, and it’s often non-trivial to express high-
level mathematics in them. Thus, it is not surprising that CASs are more or less main-
stream tools in various fields, whereas interest in theorem provers is mainly confined to
logicians and computer scientist interested in formal correctness proofs for hardware,
software and protocols and the formalization of mathematics.

Since the strengths and weaknesses of theorem provers and CASs are almost per-
fectly complementary, a natural idea is to somehow get the best of both worlds. One
promising idea [50] is to use the CAS as an ‘oracle’ to compute results that can then be
rigorously checked in the theorem prover. This only works for problems where check-
ing a result is considerably easier than deriving it, but this does take in many important
applications such as factoring (check by multiplying) and indefinite integration in the
sense of antiderivatives (check by differentiating).

3 Research in automated reasoning

We can consider various ways of classifying research in automated reasoning, and per-
haps some contrasts will throw particular themes into sharp relief.

AI versus logic-oriented

Some researchers have attacked the problem of automated theorem proving by attempt-
ing to emulate the way humans reason. Crudely we can categorize this as the ‘Artificial
Intelligence’ (AI) approach. For example in the 1950s Newell and Simon [81] designed
a program that could prove many of the simple logic theorems in Principia Mathemat-
ica [109], while Gelerntner [38] designed a prover that could prove facts in Euclidean
geometry using human-style diagrams to direct or restrict the proofs. A quite different
approach was taken by other pioneers such as Gilmore [39], Davis and Putnam [31],
and Prawitz [84]. They attempted to implement proof search algorithms inspired by re-
sults from logic (e.g. the completeness of Gentzen’s cut-free sequent calculus), often
quite remote from the way humans prove theorem.

Early indications were that machine-oriented methods performed much better. As
Wang [107] remarked when presenting his simple systematic program for the AE frag-
ment of first order logic that was dramatically more effective than Newell and Simon’s:

The writer [...] cannot help feeling, all the same, that the comparison reveals a
fundamental inadequacy in their approach. There is no need to kill a chicken
with a butcher’s knife. Yet the net impression is that Newell-Shore-Simon
failed even to kill the chicken with their butcher’s knife.

Indeed, in the next few decades, far more attention was paid to systematic machine-
oriented algorithms. Wos, one of the most successful practitioners of automated reason-
ing, attributes the success of his research group in no small measure to the fact that they
play to a computer’s strengths instead of attempting to emulate human thought [111].

Today, there is still a preponderance of research on the machine-oriented side, but
there have been notable results based on human-oriented approaches. For example
Bledsoe attempted to formalize methods often used by humans for proving theorems
about limits in analysis [10]. Bledsoe’s student Boyer together with Moore developed
the remarkable NQTHM prover [13] which can often perform automatic generaliza-
tion of arithmetic theorems and prove the generalizations by induction. The success of
NQTHM, and the contrasting difficulty of fitting its methods into a simple conceptual
framework, has led Bundy [20] to reconstruct its methods in a general science of rea-
soning based on proof planning. Depending on one’s point of view, one can regard the
considerable interest in proof planning as representing a success of the AI approach, or
the attempt to present aspects of human intelligence in a more machine-oriented style.

Automated vs. interactive

Thanks to the development of effective algorithms, some of which we consider later,
automated theorem provers have become quite powerful and have achieved notable suc-
cesses. Perhaps the most famous case is McCune’s solution [76], using the automated
theorem prover EQP, of the longstanding ‘Robbins conjecture’ concerning the axioma-
tization of Boolean algebra, which had resisted human mathematicians for some time.
This success is just one particularly well-known case where the Argonne team has used
Otter and other automated reasoning programs to answer open questions. Some more
can be found in the monograph [77].

However, it seems at present that neither a systematic algorithmic approach nor a
heuristic human-oriented approach is capable of proving a wide range of difficult math-
ematical theorems automatically. Besides, one might object that even if it were possible,
it is hardly desirable to automate proofs that humans are incapable of developing them-
selves [35]:

[...] I consider mathematical proofs as a reflection of my understanding and
‘understanding’ is something we cannot delegate, either to another person or
to a machine.

A more easily attained goal, and if one agrees with the sentiments expressed in that
quote perhaps a more desirable one, is to create a system that can verify a proof found
by a human, or assist in a more limited capacity under human guidance. At the very
least the computer should act as a humble clerical assistant checking the correctness
of the proof, guarding against typical human errors such as implicit assumptions and
forgotten special cases. At best the computer might help the process substantially by
automating certain parts of the proof. After all, proofs often contain parts that are just
routine verifications or are amenable to automation, such as algebraic identities. This
idea of a machine and human working together to prove theorems from sketches was
already envisaged by Wang [107]:

[...] the writer believes that perhaps machines may more quickly become of
practical use in mathematical research, not by proving new theorems, but by
formalizing and checking outlines of proofs, say, from textbooks to detailed
formalizations more rigorous than Principia [Mathematica], from technical pa-
pers to textbooks, or from abstracts to technical papers.

The idea of a proof assistant began to attract particular attention in the late 1960s,
perhaps because the abilities of fully automated systems were apparently starting to
plateau. Many proof assistants were based on a batch model, the machine checking in
one operation the correctness of a proof sketch supplied by a human. But a group at
the Applied Logic Corporation who developed a sequence of theorem provers in the
SAM (Semi-Automated Mathematics) family made their provers interactive, so that the
mathematician could work on formalizing a proof with machine assistance. As they put
it [46]:

Semi-automated mathematics is an approach to theorem-proving which seeks
to combine automatic logic routines with ordinary proof procedures in such
a manner that the resulting procedure is both efficient and subject to human
intervention in the form of control and guidance. Because it makes the math-
ematician an essential factor in the quest to establish theorems, this approach
is a departure from the usual theorem-proving attempts in which the computer
unaided seeks to establish proofs.

In 1966, the fifth in the series of systems, SAM V, was used to construct a proof
of a hitherto unproven conjecture in lattice theory [19]. This was certainly a success
for the semi-automated approach because the computer automatically proved a result

now called “SAM’s Lemma” and the mathematician recognized that it easily yielded
a proof of the open conjecture. Not long after the SAM project, the AUTOMATH [32,
33], Mizar [104, 105] and LCF [43] proof checkers appeared, and each of them in its
way has been profoundly influential. Many of the most successful interactive theorem
provers around today are directly descended from one of these.

Nowadays there is active and vital research activity in both ‘automated’ and ‘inter-
active’ provers. Automated provers for first-order logic compete against each other in
annual competitions on collections of test problems such as TPTP [102], and the Vam-
pire system has usually come out on top for the last few years. There is also intense
interest in special provers for other branches of logic, e.g. ‘SAT’ (satisfiability of purely
propositional formulas), which has an amazing range of practical applications. More
recently a generalization known as ‘SMT’ (satisfiability modulo theories), which uses
techniques for combining deduction in certain theories [80, 93], has attracted consid-
erable interest. Meanwhile, interactive provers develop better user interfaces and proof
languages [48], incorporate ideas from automated provers and even link to them [58],
and develop ever more extensive libraries of formalized mathematics. For a nice survey
of some of the major interactive systems, showing a proof of the irrationality of

√
2 in

each as an example, see [110].

Proof search vs. special algorithms

Right from the beginning of theorem proving, some provers were customized for a par-
ticular theory or fragment of logic (such as Davis’s prover for linear arithmetic [29]),
while others performed general proof search in first-order logic from a set of axioms.
The explicit introduction of unification as part of Robinson’s resolution method [88]
made it possible for the machine to instantiate variables in an entirely algorithmic way
which nevertheless has an almost “intelligent” ability to focus on relevant terms. This
gave a considerable impetus to general first-order proof search, and for a long time
special algorithms were subordinated to resolution or similar principles rather than
being developed in themselves. There are numerous different algorithms for general
proof search, such as tableaux [7, 54], model elimination [70] as well as resolution [88]
and its numerous refinements [64, 71, 72, 34, 87, 97]. Despite the general emphasis on
pure first-order logic, there has also been research in automating higher-order logic [1],
which allows quantification over sets and functions as part of the logic rather than via
additional axioms.

However, there have been some successes for more specialized algorithms. In par-
ticular, there has always been strong interest in effective algorithms for purely equa-
tional reasoning. Knuth-Bendix completion [63] led to a great deal of fruitful research
[3, 4, 56]. Automated proof of geometry problems using purely algebraic methods has
also attracted much interest. The first striking success was by Wu [108] using his spe-
cial triangulation algorithm, and others have further refined and applied this approach
[22] as well as trying other methods such as resultants and Gröbner bases [61, 89]. Inci-
dentally Gröbner bases [16, 17] are more usually considered a part of computer algebra,
but as a tool for testing ideal membership they give a powerful algorithm for solving
various logical decision problems [95, 60].

4 Applications of automated reasoning

At present there are two main applications of automated reasoning.

Formal verification

One promising application of formalization, and a particularly easy one to defend on
utilitarian grounds, is to verify the correct behaviour of computer systems, e.g. hard-
ware, software, protocols and their combinations. We might wish to prove that a sorting
algorithm really does always sort its input list, that a numerical algorithm does return
a result accurate to within a specified error bound, that a server will under certain as-
sumptions always respond to a request, etc.

In typical programming practice, programs are usually designed with clear logical
ideas behind them, but the final properties are often claimed on the basis of intuitive un-
derstanding together with testing on a variety of inputs. As programmers know through
bitter personal experience, it can be very difficult to write a program that always per-
forms its intended function. Most large programs contain ‘bugs’, i.e. in certain situations
they do not behave as intended. And the inadequacy of even highly intelligent forms of
testing for showing that programs are bug-free is widely recognized. There are after all
usually far too many combinations of possibilities to exercise more than a tiny fraction.
The idea of rigorously proving correctness is attractive, but given the difficulty of get-
ting the formal proof right, one might wish to check the proof by machine rather than
by hand.

Formal verification first attracted interest in the 1970s as a response to the perceived
“software crisis”, the fundamental difficulty of writing correct programs and delivering
them on time, as well as interest in computer security; see [74] for a good discussion.
But over the last couple of decades there has been increased interest in formal ver-
ification in the hardware domain. This is partly because hardware is usually a more
amenable target for highly automated techniques. Such techniques include SAT (propo-
sitional satisfiability testing), using new algorithms or high-quality implementations of
old ones [14, 100, 92, 79, 41], sophisticated forms of symbolic simulation [15, 91], and
temporal logic model checking [24, 86, 25]. Also, hardware verification is particularly
attractive because fixing errors is often invasive and potentially expensive. For exam-
ple, in response to an error in the FDIV (floating-point division) instruction of some
early Intel Pentium processors in 1994 [83], Intel set aside approximately $475M
to cover costs.

Since the 1980s there has been extensive research in formal verification of micropro-
cessor designs using traditional theorem proving techniques [57, 26, 44, 59, 99]. Gen-
erally there has been more emphasis on the highly automated techniques like model
checking that lie somewhat apart from the automated reasoning mainstream. However,
recently there has been something of a convergence, as interest in SMT (satisfiability
modulo theories) leads to the incorporation of various theorem-proving methods into
highly automated tools. There has also been renewed interest in applications to soft-
ware, particularly partial verification or sophisticated static checking rather than com-
plete functional verification [5]. And for certain applications, especially implementa-
tions of mathematically sophisticated algorithms, more general and interactive theorem

proving is needed. A particularly popular and successful target is the verification of
floating-point algorithms [78, 90, 82, 49].

The formalization of mathematics

The formalizability in principle of mathematical proof is widely accepted among pro-
fessional mathematicians as the final arbiter of correctness. Bourbaki [12] clearly says
that ‘the correctness of a mathematical text is verified by comparing it, more or less
explicitly, with the rules of a formalized language’, while Mac Lane [73] is also quite
explicit (p377):

As to precision, we have now stated an absolute standard of rigor: A Mathe-
matical proof is rigorous when it is (or could be) written out in the first-order
predicate language L(∈) as a sequence of inferences from the axioms ZFC,
each inference made according to one of the stated rules. [. . .] When a proof
is in doubt, its repair is usually just a partial approximation to the fully formal
version.

However, before the advent of computers, the idea of actually formalizing proofs
had seemed quite out of the question. (Even the painstaking volumes of proofs in Prin-
cipia Mathematica are for extremely elementary results compared with even classical
real analysis, let alone mathematics at the research level.) But computerization can of-
fer the possibility of actually formalizing mathematics and its proofs. Apart from the
sheer intellectual interest of doing so, it may lead to a real increase in reliability. Math-
ematical proofs are subjected to peer review before publication, but there are plenty of
well-documented cases where published results turned out to be faulty. A notable exam-
ple is the purported proof of the 4-colour theorem by Kempe [62], the flaw only being
noticed a decade later [51], and the theorem only being conclusively proved much later
[2]. The errors need not be deep mathematical ones, as shown by the following [69]:

Professor Offord and I recently committed ourselves to an odd mistake (Annals
of Mathematics (2) 49, 923, 1.5). In formulating a proof a plus sign got omit-
ted, becoming in effect a multiplication sign. The resulting false formula got
accepted as a basis for the ensuing fallacious argument. (In defence, the final
result was known to be true.)

A book written 70 years ago by Lecat [68] gave 130 pages of errors made by major
mathematicians up to 1900. With the abundance of theorems being published today, of-
ten emanating from writers who are not trained mathematicians, one fears that a project
like Lecat’s would be practically impossible, or at least would demand a journal to it-
self! Moreover, many proofs, including the modern proof of the four-colour theorem [2]
and the recent proof of the Kepler conjecture [47], rely on extensive computer checking
and it’s not clear how to bring them within the traditional process of peer review [66].

At present we are some way from the stage where most research mathematicians
can pick up one of the main automated theorem provers and start to formalize their
own research work. However, substantial libraries of formalized mathematics have been
built up in theorem provers, notably the mathematical library in Mizar, and a few quite

substantial results such as the Jordan Curve Theorem, the Prime Number Theorem and
the Four-Colour Theorem have been completely formalized. As mathematical libraries
are further built up and interactive systems become more powerful and user-friendly,
we can expect to see more mathematicians starting to use them.

5 Conclusions

Automated reasoning is already finding applications in formal verification and the for-
malization of mathematical proofs. At present, applications to mainstream applied math-
ematics are limited, and so it may be premature to seek applications in computational
biology. However, theorem proving has sometimes been applied in unexpected ways.
For instance, many combinatorial problems are solved better by translating to SAT than
by customized algorithms! Perhaps this short survey will lead some readers to find ap-
plications of automated reasoning in the biological sciences. In any case, we hope it has
given some flavour of this vital and fascinating research field.

References

1. P. B. Andrews, M. Bishop, S. Issar, D. Nesmith, F. Pfenning, and H. Xi. TPS: A theorem
proving system for classical type theory. Journal of Automated Reasoning, 16:321–353,
1996.

2. K. Appel and W. Haken. Every planar map is four colorable. Bulletin of the American
Mathematical Society, 82:711–712, 1976.

3. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.
4. L. Bachmair, N. Dershowitz, and D. A. Plaisted. Completion without failure. In H. Aı̈t-Kaci

and M. Nivat, editors, Resolution of Equations in Algebraic Structures. Volume 2: Rewriting
Techniques, pages 1–30. Academic Press, 1989.

5. T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. McGarvey, B. Ondrusek,
S. Rajamani, and A. Ustuner. Thorough static analysis of device drivers. In Proceedings of
EuroSys’06, the European Systems Conference, 2006.

6. P. Benacerraf and H. Putnam. Philosophy of mathematics: selected readings. Cambridge
University Press, 2nd edition, 1983.

7. E. W. Beth. Semantic entailment and formal derivability. Mededelingen der Koninklijke
Nederlandse Akademie van Wetenschappen, new series, 18:309–342, 1955.

8. N. L. Biggs, E. K. Lloyd, and R. J. Wilson. Graph Theory 1736–1936. Clarendon Press,
1976.

9. G. Birtwistle and P. A. Subrahmanyam, editors. VLSI Specification, Verification and Syn-
thesis, volume 35 of International Series in Engineering and Computer Science. Kluwer,
1988.

10. W. W. Bledsoe. Some automatic proofs in analysis. In W. W. Bledsoe and D. W. Love-
land, editors, Automated Theorem Proving: After 25 Years, volume 29 of Contemporary
Mathematics, pages 89–118. American Mathematical Society, 1984.

11. G. Boole. The calculus of logic. The Cambridge and Dublin Mathematical Journal, 3:183–
198, 1848.

12. N. Bourbaki. Theory of sets. Elements of mathematics. Addison-Wesley, 1968. Translated
from French ‘Théorie des ensembles’ in the series ‘Eléments de mathématique’, originally
published by Hermann in 1968.

13. R. S. Boyer and J. S. Moore. A Computational Logic. ACM Monograph Series. Academic
Press, 1979.

14. R. E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE Transac-
tions on Computers, C-35:677–691, 1986.

15. R. E. Bryant. A method for hardware verification based on logic simulation. Journal of the
ACM, 38:299–328, 1991.

16. B. Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes
nach einem nulldimensionalen Polynomideal. PhD thesis, Mathematisches Institut der Uni-
versität Innsbruck, 1965. English translation to appear in Journal of Symbolic Computation,
2006.

17. B. Buchberger. Ein algorithmisches Kriterium fur die Lösbarkeit eines algebraischen Gle-
ichungssystems. Aequationes Mathematicae, 4:374–383, 1970. English translation ‘An
Algorithmical Criterion for the Solvability of Algebraic Systems of Equations’ in [18], pp.
535–545.

18. B. Buchberger and F. Winkler, editors. Gröbner Bases and Applications, number 251 in
London Mathematical Society Lecture Note Series. Cambridge University Press, 1998.

19. R. Bumcrot. On lattice complements. Proceedings of the Glasgow Mathematical Associa-
tion, 7:22–23, 1965.

20. A. Bundy. A science of reasoning. In J.-L. Lassez and G. Plotkin, editors, Computational
Logic: Essays in Honor of Alan Robinson, pages 178–198. MIT Press, 1991.

21. B. F. Caviness and J. R. Johnson, editors. Quantifier Elimination and Cylindrical Algebraic
Decomposition, Texts and monographs in symbolic computation. Springer-Verlag, 1998.

22. S.-C. Chou. An introduction to Wu’s method for mechanical theorem proving in geometry.
Journal of Automated Reasoning, 4:237–267, 1988.

23. A. Church. An unsolvable problem of elementary number-theory. American Journal of
Mathematics, 58:345–363, 1936.

24. E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons us-
ing branching-time temporal logic. In D. Kozen, editor, Logics of Programs, volume 131
of Lecture Notes in Computer Science, pages 52–71, Yorktown Heights, 1981. Springer-
Verlag.

25. E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
26. A. Cohn. A proof of correctness of the VIPER microprocessor: The first level. In Birtwistle

and Subrahmanyam [9], pages 27–71.
27. R. M. Corless and D. J. Jeffrey. Well. . . it isn’t quite that simple. SIGSAM Bulletin, 26(3):2–

6, August 1992.
28. R. M. Corless and D. J. Jeffrey. The unwinding number. SIGSAM Bulletin, 30(2):28–35,

June 1996.
29. M. Davis. A computer program for Presburger’s algorithm. In Summaries of talks presented

at the Summer Institute for Symbolic Logic, Cornell University, pages 215–233. Institute for
Defense Analyses, Princeton, NJ, 1957. Reprinted in [94], pp. 41–48.

30. M. Davis, editor. The Undecidable: Basic Papers on Undecidable Propositions, Unsolvable
Problems and Computable Functions. Raven Press, NY, 1965.

31. M. Davis and H. Putnam. A computing procedure for quantification theory. Journal of the
ACM, 7:201–215, 1960.

32. N. G. de Bruijn. The mathematical language AUTOMATH, its usage and some of its ex-
tensions. In Laudet et al. [67], pages 29–61.

33. N. G. de Bruijn. A survey of the project AUTOMATH. In J. P. Seldin and J. R. Hindley,
editors, To H. B. Curry: Essays in Combinatory Logic, Lambda Calculus, and Formalism,
pages 589–606. Academic Press, 1980.

34. H. de Nivelle. Ordering Refinements of Resolution. PhD thesis, Technische Universiteit
Delft, 1995.

35. E. W. Dijkstra. Formal techniques and sizeable programs (EWD563). In E. W. Dijkstra,
editor, Selected Writings on Computing: A Personal Perspective, pages 205–214. Springer-
Verlag, 1976. Paper prepared for Symposium on the Mathematical Foundations of Com-
puting Science, Gdansk 1976.

36. E. A. Feigenbaum and J. Feldman, editors. Computers & Thought. AAAI Press / MIT
Press, 1995.

37. T. Franzén. Gödel’s Theorem. An Incomplete Guide to its Use and Abuse. A. K. Peters,
2005.

38. H. Gelerntner. Realization of a geometry-theorem proving machine. In Proceedings of
the International Conference on Information Processing, UNESCO House, pages 273–282,
1959. Also appears in [94], pp. 99–117 and in [36], pp. 134–152.

39. P. C. Gilmore. A proof method for quantification theory: Its justification and realization.
IBM Journal of research and development, 4:28–35, 1960.

40. K. Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter
Systeme, I. Monatshefte für Mathematik und Physik, 38:173–198, 1931. English transla-
tion, ‘On Formally Undecidable Propositions of Principia Mathematica and Related Sys-
tems, I’, in [52], pp. 592–618 or [30], pp. 4–38.

41. E. Goldberg and Y. Novikov. BerkMin: a fast and robust Sat-solver. In C. D. Kloos and
J. D. Franca, editors, Design, Automation and Test in Europe Conference and Exhibition
(DATE 2002), pages 142–149, Paris, France, 2002. IEEE Computer Society Press.

42. M. J. C. Gordon and T. F. Melham. Introduction to HOL: a theorem proving environment
for higher order logic. Cambridge University Press, 1993.

43. M. J. C. Gordon, R. Milner, and C. P. Wadsworth. Edinburgh LCF: A Mechanised Logic of
Computation, volume 78 of Lecture Notes in Computer Science. Springer-Verlag, 1979.

44. B. T. Graham. The SECD Microprocessor: A verification case study, volume 178 of Kluwer
international series in engineering and computer science. Kluwer Academic Publishers,
1992.

45. A. Grothendieck. Éléments de Géométrie Algébraique IV: Étude locale de schémas et des
morphismes de schémas, volume 20 of Publications Mathématiques. IHES, 1964.

46. J. R. Guard, F. C. Oglesby, J. H. Bennett, and L. G. Settle. Semi-automated mathematics.
Journal of the ACM, 16:49–62, 1969.

47. T. C. Hales. The Kepler conjecture. Available at http://front.math.ucdavis.
edu/math.MG/9811078, 1998.

48. J. Harrison. Proof style. In E. Giménez and C. Paulin-Mohring, editors, Types for Proofs
and Programs: International Workshop TYPES’96, volume 1512 of Lecture Notes in Com-
puter Science, pages 154–172, Aussois, France, 1996. Springer-Verlag.

49. J. Harrison. Floating-point verification using theorem proving. In M. Bernardo and
A. Cimatti, editors, Formal Methods for Hardware Verification, 6th International School
on Formal Methods for the Design of Computer, Communication, and Software Systems,
SFM 2006, volume 3965 of Lecture Notes in Computer Science, pages 211–242, Bertinoro,
Italy, 2006. Springer-Verlag.

50. J. Harrison and L. Théry. A sceptic’s approach to combining HOL and Maple. Journal of
Automated Reasoning, 21:279–294, 1998.

51. P. J. Heawood. Map-colour theorem. Quarterly Journal of Pure and Applied Mathematics,
24:332–338, 1890. Reprinted in [8].

52. J. v. Heijenoort, editor. From Frege to Gödel: A Source Book in Mathematical Logic 1879–
1931. Harvard University Press, 1967.

53. D. Hilbert. Die logischen Grundlagen der Mathematik. Mathematische Annalen, 88:151–
165, 1922.

54. J. Hintikka. Form and content in quantification theory. Acta Philosophica Fennica — Two
papers on Symbolic Logic, 8:8–55, 1955.

55. T. Hobbes. Leviathan. Andrew Crooke, 1651.
56. G. Huet. A complete proof of correctness of the Knuth-Bendix completion procedure.

Journal of Computer and System Sciences, 23:11–21, 1981.
57. W. A. Hunt. FM8501: A Verified Micrprocessor. PhD thesis, University of Texas, 1985.

Published by Springer-Verlag as volume 795 of the Lecture Notes in Computer Science
series, 1994.

58. J. Hurd. Integrating Gandalf and HOL. In Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin,
and L. Théry, editors, Theorem Proving in Higher Order Logics: 12th International Con-
ference, TPHOLs’99, volume 1690 of Lecture Notes in Computer Science, pages 311–321,
Nice, France, 1999. Springer-Verlag.

59. J. J. Joyce. Formal verification and implementation of a microprocessor. In Birtwistle and
Subrahmanyam [9], pages 129–158.

60. A. Kandri-Rody, D. Kapur, and P. Narendran. An ideal-theoretic approach to word problems
and unification problems over finitely presented commutative algebras. In J.-P. Jouannaud,
editor, Rewriting Techniques and Applications, volume 202 of Lecture Notes in Computer
Science, pages 345–364, Dijon, France, 1985. Springer-Verlag.

61. D. Kapur. Automated geometric reasoning: Dixon resultants, Gröbner bases, and character-
istic sets. In D. Wang, editor, Automated Deduction in Geometry, volume 1360 of Lecture
Notes in Computer Science. Springer-Verlag, 1998.

62. A. B. Kempe. On the geographical problem of the four colours. American Journal of
Mathematics, 2:193–200, 1879. Reprinted in [8].

63. D. Knuth and P. Bendix. Simple word problems in universal algebras. In J. Leech, editor,
Computational Problems in Abstract Algebra. Pergamon Press, 1970.

64. R. A. Kowalski and D. Kuehner. Linear resolution with selection function. Artificial Intel-
ligence, 2:227–260, 1971.

65. G. Kreisel. Hilbert’s programme. Dialectica, 12:346–372, 1958. Revised version in [6].
66. C. W. H. Lam. How reliable is a computer-based proof? The Mathematical Intelligencer,

12:8–12, 1990.
67. M. Laudet, D. Lacombe, L. Nolin, and M. Schützenberger, editors. Symposium on Auto-

matic Demonstration, volume 125 of Lecture Notes in Mathematics. Springer-Verlag, 1970.
68. M. Lecat. Erreurs de Mathématiciens des origines à nos jours. Ancne Libraire Castaigne

et Libraire Ém Desbarax, Brussels, 1935.
69. J. E. Littlewood. Littlewood’s Miscellany. Cambridge University Press, 1986. Edited by

Bela Bollobas.
70. D. W. Loveland. Mechanical theorem-proving by model elimination. Journal of the ACM,

15:236–251, 1968.
71. D. W. Loveland. A linear format for resolution. In Laudet et al. [67], pages 147–162.
72. D. Luckham. Refinements in resolution theory. In Laudet et al. [67], pages 163–190.
73. S. Mac Lane. Mathematics: Form and Function. Springer-Verlag, 1986.
74. D. MacKenzie. Mechanizing Proof: Computing, Risk and Trust. MIT Press, 2001.
75. W. Marciszewski and R. Murawski. Mechanization of Reasoning in a Historical Perspec-

tive, volume 43 of Poznań Studies in the Philosophy of the Sciences and the Humanities.
Rodopi, Amsterdam, 1995.

76. W. McCune. Solution of the Robbins problem. Journal of Automated Reasoning, 19:263–
276, 1997.

77. W. McCune and R. Padmanabhan. Autoamted Deduction in Equational Logic and Cubic
Curves, volume 1095 of Lecture Notes in Computer Science. Springer-Verlag, 1996.

78. J. S. Moore, T. Lynch, and M. Kaufmann. A mechanically checked proof of the correctness
of the kernel of the AMD5K86 floating-point division program. IEEE Transactions on
Computers, 47:913–926, 1998.

79. M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering
an efficient SAT solver. In Proceedings of the 38th Design Automation Conference (DAC
2001), pages 530–535. ACM Press, 2001.

80. G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures. ACM
Transactions on Programming Languages and Systems, 1:245–257, 1979.

81. A. Newell and H. A. Simon. The logic theory machine. IRE Transactions on Information
Theory, 2:61–79, 1956.

82. J. O’Leary, X. Zhao, R. Gerth, and C.-J. H. Seger. Formally verifying IEEE compliance
of floating-point hardware. Intel Technology Journal, 1999-Q1:1–14, 1999. Available
on the Web as http://developer.intel.com/technology/itj/q11999/
articles/art 5.htm.

83. V. R. Pratt. Anatomy of the Pentium bug. In P. D. Mosses, M. Nielsen, and M. I.
Schwartzbach, editors, Proceedings of the 5th International Joint Conference on the the-
ory and practice of software development (TAPSOFT’95), volume 915 of Lecture Notes in
Computer Science, pages 97–107, Aarhus, Denmark, 1995. Springer-Verlag.

84. D. Prawitz, H. Prawitz, and N. Voghera. A mechanical proof procedure and its realization
in an electronic computer. Journal of the ACM, 7:102–128, 1960.

85. M. Presburger. Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer
Zahlen, in welchem die Addition als einzige Operation hervortritt. In Sprawozdanie z I
Kongresu metematyków slowiańskich, Warszawa 1929, pages 92–101, 395. Warsaw, 1930.
Annotated English version by [101].

86. J. P. Queille and J. Sifakis. Specification and verification of concurrent programs in CE-
SAR. In Proceedings of the 5th International Symposium on Programming, volume 137 of
Lecture Notes in Computer Science, pages 195–220. Springer-Verlag, 1982.

87. J. A. Robinson. Automatic deduction with hyper-resolution. International Journal of Com-
puter Mathematics, 1:227–234, 1965.

88. J. A. Robinson. A machine-oriented logic based on the resolution principle. Journal of the
ACM, 12:23–41, 1965.

89. J. Robu. Geometry Theorem Proving in the Frame of Theorema Project. PhD thesis, RISC-
Linz, 2002.

90. D. Rusinoff. A mechanically checked proof of IEEE compliance of a register-transfer-level
specification of the AMD-K7 floating-point multiplication, division, and square root in-
structions. LMS Journal of Computation and Mathematics, 1:148–200, 1998. Available on
the Web at http://www.onr.com/user/russ/david/k7-div-sqrt.html.

91. C.-J. H. Seger and R. E. Bryant. Formal verification by symbolic evaluation of partially-
ordered trajectories. Formal Methods in System Design, 6:147–189, 1995.

92. M. Sheeran and G. Stålmarck. A tutorial on Stålmarck’s proof procedure for propositional
logic. In G. Gopalakrishnan and P. J. Windley, editors, Proceedings of the Second Inter-
national Conference on Formal Methods in Computer-Aided Design (FMCAD’98), volume
1522 of Lecture Notes in Computer Science, pages 82–99. Springer-Verlag, 1998.

93. R. Shostak. Deciding combinations of theories. Journal of the ACM, 31:1–12, 1984.
94. J. Siekmann and G. Wrightson, editors. Automation of Reasoning — Classical Papers on

Computational Logic, Vol. I (1957-1966). Springer-Verlag, 1983.
95. H. Simmons. The solution of a decision problem for several classes of rings. Pacific Journal

of Mathematics, 34:547–557, 1970.
96. S. Simpson. Partial realizations of Hilbert’s program. Journal of Symbolic Logic, 53:349–

363, 1988.
97. J. R. Slagle. Automatic theorem proving with renamable and semantic resolution. Journal

of the ACM, 14:687–697, 1967.
98. R. M. Smullyan. Gödel’s Incompleteness Theorems, volume 19 of Oxford Logic Guides.

Oxford University Press, 1992.

99. M. K. Srivas and S. P. Miller. Applying formal verification to the AAMP5 microprocessor:
A case study in the industrial use of formal methods. Formal Methods in System Design,
8:31–36, 1993.

100. G. Stålmarck and M. Säflund. Modeling and verifying systems and software in proposi-
tional logic. In B. K. Daniels, editor, Safety of Computer Control Systems, 1990 (SAFE-
COMP ’90), pages 31–36, Gatwick, UK, 1990. Pergamon Press.

101. R. Stansifer. Presburger’s article on integer arithmetic: Remarks and translation. Technical
Report CORNELLCS:TR84-639, Cornell University Computer Science Department, 1984.

102. C. B. Suttner and G. Sutcliffe. The TPTP problem library. Technical Report AR-95-03,
Institut für Infomatik, TU München, Germany, 1995. Also available as TR 95/6 from Dept.
Computer Science, James Cook University, Australia, and on the Web.

103. A. Tarski. A Decision Method for Elementary Algebra and Geometry. University of Califor-
nia Press, 1951. Previous version published as a technical report by the RAND Corporation,
1948; prepared for publication by J. C. C. McKinsey. Reprinted in [21], pp. 24–84.

104. A. Trybulec. The Mizar-QC/6000 logic information language. ALLC Bulletin (Association
for Literary and Linguistic Computing), 6:136–140, 1978.

105. A. Trybulec and H. A. Blair. Computer aided reasoning. In R. Parikh, editor, Logics of
Programs, volume 193 of Lecture Notes in Computer Science, pages 406–412, Brooklyn,
1985. Springer-Verlag.

106. A. M. Turing. On computable numbers, with an application to the Entscheidungsproblem.
Proceedings of the London Mathematical Society (2), 42:230–265, 1936.

107. H. Wang. Toward mechanical mathematics. IBM Journal of research and development,
4:2–22, 1960.

108. W. Wen-tsün. On the decision problem and the mechanization of theorem proving in ele-
mentary geometry. Scientia Sinica, 21:157–179, 1978.

109. A. N. Whitehead and B. Russell. Principia Mathematica (3 vols). Cambridge University
Press, 1910.

110. F. Wiedijk. The Seventeen Provers of the World, volume 3600 of Lecture Notes in Computer
Science. Springer-Verlag, 2006.

111. L. Wos and G. W. Pieper. A Fascinating Country in the World of Computing: Your Guide
to Automated Reasoning. World Scientific, 1999.

