
Ribbon Proofs for Separation Logic
John Wickerson

University of Cambridge
john.wickerson@cl.cam.ac.uk

Mike Dodds
University of Cambridge
mike.dodds@cl.cam.ac.uk

Matthew Parkinson
Microsoft Research Cambridge

mattpark@microsoft.com

A program proof should not merely certify that a program is
correct; it should explain why it is correct. A proof should
be more than ‘true’: it should be informative, and it should
be intelligible. Extending work by Bean [1], we introduce a
system that produces readable program proofs that are highly
scalable and easily modified.

The de facto standard for presenting program proofs in
Hoare logic [2] is the proof outline, in which the program’s
instructions are interspersed with ‘enough’ assertions to allow
the reader to reconstruct the derivation tree. As an example,
Fig. 1a presents a proof outline for a program that performs
in-place list reversal. A key asset of the proof outline is
what we shall call instruction locality: that one can verify
each instruction in isolation (by confirming that the assertions
immediately above and below it form a valid Hoare triple) and
immediately deduce that the entire proof is correct.

The proof outline suffers several drawbacks, however. First,
there is much repetition: ‘list αx’ appears redundantly in six
consecutive assertions before it is used on line 25. Second,
there is no distinction between those parts of an assertion that
are affected by an instruction and those that are merely in what
separation logic calls the frame. For instance, line 19 affects
only the second and fourth conjuncts of its preceding assertion,
but it is difficult to deduce its effect because two unchanged
conjuncts are interspersed. (Had we followed common practice
and reduced the size of the proof outline by combining this
line with the assignment on line 17, the effect would be even
harder to deduce.) Third, the use of logical variables is unclear.
For instance, spotting that the β in line 20 differs from the
one in line 22 requires careful examination, or else, as we
have done, an explicit textual comment. These minor problems
in our illustrative example quickly become devastating when
scaled to large programs.

Separation logic [3], [4] provides a mechanism for handling
a second dimension of locality: resource locality. One can use
separation logic’s small axioms to reason about an instruction
operating only on the resources (i.e. memory cells) that it
needs, and immediately deduce its effect on the entire state us-
ing the frame rule. To depict this mechanism in a proof outline,
one must show applications of the frame rule explicitly. But
this is tedious; moreover, it is difficult to know when and what
to frame. Meanwhile, the ribbon proof inherently supports
resource locality. Its primitive steps correspond exactly to the
small axioms. It is thus an ideal representation for exploiting
both forms of locality that separation logic provides.

Figure 1b recasts our proof as a ribbon proof. The state is

distributed across several ribbons (thick borders). Horizontally
separated ribbons describe disjoint parts of the state. The
instructions are in grey bars, and the scope of each logical
variable is delimited by an existential box (thin borders).
We are free to stretch ribbons as required by the layout,
and, because ∗ is commutative, we can ‘twist’ them too. A
temporarily inactive ribbon slides discreetly down the side
of the proof. This effect is achieved by invoking the frame
rule at each instruction; but crucially in a ribbon proof, these
invocations are implicit and do not increase the diagram’s
complexity. Observe that the repetition has disappeared, and
that each instruction’s effect is clear: it affects exactly those
assertions directly above and below it, while framed assertions
(which must not mention variables written by the instruction)
bypass to the left or right. Existential boxes extend vertically
to indicate the range of steps over which the same witness is
used, thus making the usage of logical variables visually clear.

In our full paper [5]:
• we present an Isabelle-checked graph-based formalisation

of our proof system;
• we showcase, with a ribbon proof of the memory manager

from Version 7 Unix, the ability of our diagrams to
present readable proofs of large, complex programs; and

• we describe a prototype tool for mechanically checking
ribbon proofs in Isabelle. Provided with a small proof
script for each primitive step, our tool assembles a script
that verifies the entire diagram. The tool handles tediums
such as the associativity and commutativity of ∗ automat-
ically, leaving the user to concentrate on the interesting
parts of the proof.

This work lays the foundations for a new way to use logic to
understand programs. Where a proof outline essentially flattens
a proof to a list of assertions, our system produces geometric
objects that illuminate the structure of proofs, and which can
be navigated, modified and simplified by leveraging human
visual intuition.

REFERENCES

[1] J. Bean, “Ribbon proofs,” in MFPS, 2003.
[2] C. Hoare, “An axiomatic basis for computer programming,” Communica-

tions of the ACM, vol. 12, no. 10, October 1969.
[3] J. C. Reynolds, “Separation logic: A logic for shared mutable data

structures,” in LICS, 2002.
[4] S. Ishtiaq and P. W. O’Hearn, “BI as an assertion language for mutable

data structures,” in POPL, 2001.
[5] J. Wickerson, M. Dodds, and M. J. Parkinson, “Ribbon proofs for sepa-

ration logic,” May 2012, http://www.cl.cam.ac.uk/~jpw48/ribbons.html.



1
{
list δ x

}
2 y:=0;

3
{
list δ x ∗ list εy

}
4 // Choose α := δ and β := ε

5 while
{
∃α, β. list αx ∗ list β y ∗ δ .

= β† · α
}

6 (x!=0) {

7
{
x ˙6= 0 ∗ (∃α, β. list αx ∗ list β y ∗ δ .

= β† · α)
}

8
{
∃α, β.x ˙6= 0 ∗ list αx ∗ list β y ∗ δ .

= β† · α
}

9 // Unfold list def

10

∃α, β. (∃α′, i, Z.x 7→ i, Z ∗ list α′ z ∗ α .
= i · α′)

∗ list β y ∗ δ .
= β† · α


11 // Choose α := α′

12

∃α, β, i, Z.x 7→ i, Z ∗ list αZ ∗ δ .
= β† · (i · α)

∗ list β y


13 z:=[x+1];

14
{
∃α, β, i. list αz ∗ x 7→ i,z ∗ δ .

= β† · (i · α) ∗ list β y
}

15 // Reassociate i

16
{
∃α, β, i. list αz ∗ x 7→ i,z ∗ δ .

= (i · β)† · α ∗ list β y
}

17 [x+1]:=y;

18
{
∃α, β, i. list αz ∗ x 7→ i,y ∗ δ .

= (i · β)† · α ∗ list β y
}

19 // Fold list def

20
{
∃α, β, i. list αz ∗ list (i · β)x ∗ δ .

= (i · β)† · α
}

21 // Choose β := (i · β)
22

{
∃α, β. list αz ∗ list β x ∗ δ .

= β† · α
}

23 y:=x;

24
{
∃α, β. list αz ∗ list β y ∗ δ .

= β† · α
}

25 x:=z;

26
{
∃α, β. list αx ∗ list β y ∗ δ .

= β† · α
}

27 }

28
{
x
.
= 0 ∗ (∃α, β. list αx ∗ list β y ∗ δ .

= β† · α)
}

29
{
∃α, β.x .

= 0 ∗ list αx ∗ list β y ∗ δ .
= β† · α

}
30 // Unfold list def

31
{
∃α, β. α .

= ε ∗ list β y ∗ δ .
= β† · α

}
32 // Concatenate empty sequence

33
{
∃β. list β y ∗ δ .

= β†
}

34 // Fold list def

35
{
list δ† y

}
(a) A proof outline

while (x!=0) {

}

list δ x
y:=0

list εy

Choose α := δ and β := ε
∃α
∃β

list αx list β y δ
.
= β† · α

x ˙6= 0

Unfold list def

∃α′, i, Z.x 7→ i, Z
∗ list α′ z ∗ α .

= i · α′

Choose α := α′

∃α
∃i

∃Z.x 7→ i, Z ∗ list αZ δ
.
= β† · (i · α)

z:=[x+1]

list αz x 7→ i,z Reassociate i

δ
.
= (i · β)† · α[x+1]:=y

x 7→ i,y

Fold list def

list (i · β)x

Choose β := (i · β)
∃β

list β x δ
.
= β† · α

y:=x

x:=z list β y

list αx

x
.
= 0

Unfold list def

α
.
= ε

Concatenate empty sequence

δ
.
= β†

Fold list def

list δ† y

(b) A ribbon proof

Fig. 1. Two proofs of list reverse. For a binary relation r, we write x ṙ y for x r y∧emp. We write · for sequence concatenation, (−)† for sequence reversal
and ε for the empty sequence, and define list as the smallest predicate satisfying list αx⇔ x

.
= 0∗α .

= ε∨x ˙6= 0∗∃α′, i, x′. x 7→i, x′∗α .
= i·α′∗list α′ x′.


