
Declarative foreign function binding through
generic programming

Jeremy Yallop, David Sheets and Anil Madhavapeddy

University of Cambridge Computer Laboratory

Abstract. Foreign function interfaces are typically organised monolith-
ically, tying together the specification of each foreign function with the
mechanism used to make the function available in the host language. This
leads to inflexibile systems, where switching from one binding mechanism
to another (say from dynamic binding to static code generation) often
requires changing tools and rewriting large portions of code.
In contrast, approaching the design of a foreign function interface as a
generic programming problem allows foreign function specifications to be
written declaratively, with easy switching between a wide variety of bind-
ing mechanisms — static and dynamic, synchronous and asynchronous,
etc. — with no changes to the specifications.

1 Introduction

The need to bind and call functions written in another language arises frequently
in programming. For example, an OCaml programmer might call the C function
gettimeofday to retrieve the current time:

int gettimeofday(struct timeval *, struct timezone *);

Before calling gettimeofday, the programmer must write a binding that exposes
the C function as an OCaml function. Writing bindings presents many opportu-
nities to introduce subtle errors [8, 12, 14], although it is a conceptually straight-
forward task: the programmer must convert the arguments of the bound function
from OCaml values to C values, pass them to gettimeofday, and convert the re-
sult back to an OCaml value.

In fact, bindings for functions such as gettimeofday can be produced mechan-
ically from their type definitions, and tools that can generate bindings (e.g. [2])
are widely available. However, using an external tool — i.e. operating on rather
than in the language — can be damaging to program cohesiveness, since there
is no connection between the types used within the tool and the types of the
resulting code, and since tools introduce types and values into a program that
are not apparent in its source code.

This paper advocates a different approach, based on generic programming
(e.g. [9]), a collection of techniques for defining functions such as equality, seri-
alisation, and traversal that can be applied at a wide variety of types. Generic
programming involves introducing a representation of some collection of types,

then writing generic functions, parameterised by that representation, that can
operate across all of the corresponding types.

The starting point of generic programming is typically a representation of
host language types. However, as this paper shows, generic programming tech-
niques can also be applied to binding foreign functions, where the types of in-
terest are the types of the foreign language, and the generic functions are bind-
ing strategies that turn the names and types of foreign-language functions into
functions that can be called from the host language. In this way it is possible to
eliminate the boilerplate needed to bind foreign functions — not by generating it
with an external tool, but by using the abstraction mechanisms of the language
to parameterise over the common type structure. The result is type-safe, flexible,
and tightly integrated into the host language.

For concreteness, this paper focuses on ocaml-ctypes, a widely-used library
for calling C functions from OCaml based on the generic programming approach,
and assumes some knowledge of OCaml language features such as functors and
generalized algebraic data types (GADTs) [13]. However, the techniques de-
scribed in the following pages can be used to build a declarative foreign function
library in any language that supports generic programming.

1.1 Outline

The generic programming approach presented here involves two key ingredients.
The first ingredient is an interpretation-independent representation of foreign

language types as host language values (§2).
The second ingredient is an abstract binding interface that can be imple-

mented in different ways to support different binding mechanisms. Section §3
develops various such mechanisms, including an evaluator for binding foreign
functions dynamically (§3.1), a code generator for generating bindings statically
(§3.2), an inverted approach for exposing host language functions to the foreign
language, and some more exotic approaches, for asynchronous calls and out-of-
process calls with improved memory safety (§3.3).

The techniques used for declarative binding of foreign-language functions can
also be applied to determining the layout of foreign-language objects (§4).

The extended version of this paper offers more complete code listings of some
of the generic functions and generated code from this edition and additional
evidence for the practicality of the generic programming approach to foreign
function interface design, including a description of a number of real-world uses
of ocaml-ctypes in commercial and free software, and measurements that show
that the performance of bindings generated by ocaml-ctypes is comparable to
that of hand-written code.

2 Representing foreign types as native values

The first step in building a generic foreign function library is constructing a
representation of foreign language types as host language values.

type _ ctype =

Void : unit ctype

| Char : char ctype

| Int : int ctype

| Pointer : α ctype → α ptr ctype

| View : { read : β → α; write : α → β; ty: β ctype } → α ctype

| Struct : struct_type → α structure ctype

| Funptr : α cfn → α funptr ctype

and _ cfn =

Returns : α ctype → α cfn

| Fn : α ctype * β cfn → (α → β) cfn

and α structure = (* elided *) and struct_type = (* elided *)

and α ptr = (* elided *)

Fig. 1: C type representations, concretely

module type TYPE = sig

type α cty

val void: unit cty

(* Scalar types *)

val char: char cty

val int: int cty

val ptr: α cty → α ptr cty

val view: (α → β) → (β → α) → α cty → β cty

(* Aggregate types *)

type τ structure and (α, τ) field

module type STRUCTURE = sig

type t

val t : t structure cty

val field: string → α cty → (α, t) field

val seal: unit → unit

end

val structure: string → (module STRUCTURE)

(* Functions and function pointers *)

type α fn

val returning: α cty → α fn

val (@→): α cty → β fn → (α → β) fn

type α funptr

val funptr: α fn → α funptr cty

end

Fig. 2: C type representations, abstractly

Figure 1 defines generalized algebraic datatypes (GADTs) ctype and cfn for
representing a variety of C object and function types. Each C type is mapped
to a corresponding OCaml type, which is represented by the type parameter of
ctype; for example, a value of type int ctype represents a C type that appears
in OCaml as a value of type int.

The TYPE signature (Figure 2) provides an abstract interface for building type
representations, with an abstract type cty in place of the concrete type ctype

and a function for each constructor. Using cty rather than using ctype directly
introduces additional flexibility in mapping types as described by the user to
concrete representations of types, as Section 4 will show.

Representing C scalar types The constructors Void, Char and Int represent
the C types with corresponding names, which are mapped to the OCaml types
unit, char and int. (The full implementation supports the other scalar types
— float, short, etc.) The Pointer constructor builds a C type representation
from another C type representation, much as the C type constructor * builds a
type from a type. (In the full implementation the parameterised type ptr comes
with various operations for reading and writing values, but they are not needed
in the exposition here.) The View constructor uses an isomorphism to vary the
mapping between C types and OCaml types; for example, given functions for
converting between char ptr and string

val string_of_ptr : char ptr → string

val ptr_of_string : string → char ptr

the following expression builds a value of type string ctype to represent values
that appear in C as char * and in OCaml as string:

View {read = string_of_ptr; write = ptr_of_string; ty = Pointer Char}

Representing C aggregate types Besides scalar types such as integers and
pointers, C supports a number of aggregate types. The TYPE signature (Figure 2)
exports types structure and field for representing structs and struct fields,
with a function structure for creating new struct types, and with a signature
STRUCTURE that exposes a value t representing a struct, a function field that
adds a field to an existing struct type, and a function seal that converts an
incomplete type to a complete type that cannot be further extended. The two
type parameters of field represent the type of the field and the type of the
structure to which the field belongs. The type t in the STRUCTURE signature
operates as a static tag: each call to structure generates an instance of STRUCTURE
whose t is distinct from all other types in the program; this prevents struct

representations from being used interchangeably, which would violate type safety.

Figure 3 shows the STRUCTURE machinery in action. Each line of OCaml code
(on the right) corresponds to the corresponding line of the C code (on the left),
which declares a struct timeval with two fields.

The first line creates a module Tv representing an initially empty struct type
timeval. The actual representation of the struct type, based on the Struct con-
structor of Figure 1, is internal to the Tv module; only the field and seal func-
tions and the type representation t are exposed through the interface.

The second and third lines call the Tv.field function to add unsigned long

fields with the names tv_sec and tv_usec. Calling Tv.field performs an effect
and returns a value: that is, it extends the struct represented by Tv with an
additional field, and it returns a value representing the new field, which may be
used later in the program to access struct tv values.

The final line “seals” the struct type representation, turning it from an in-
complete type into a fully-fledged object type with known properties such as
size and alignment, just as the closing brace in the corresponding C declaration
marks the point in the C program at which the struct type is completed. Adding
fields to the struct representation is only possible before the call to seal, and
creating values of the represented type is only possible afterwards; violation of
either of these constraints results in an exception.

There are multiple possible implementations of the STRUCTURE interface and
its operations field and seal, which are explored further in Section 4.

struct timeval {

unsigned long tv_sec;

unsigned long tv_usec;

};

module Tv = (val structure "timeval")

let sec = Tv.field "tv_sec" ulong

let usec = Tv.field "tv_usec" ulong

let () = Tv.seal ()

Fig. 3: The timeval struct in C and OCaml

As with ptr, structure comes with various operations for reading and writing
fields, allocating new structures, and so on, but they are again not needed in
this exposition. Additionally, the full implementation supports union and array
types.

Representing C function types Finally, besides object (i.e. value) types,
C supports function and function pointer types. The TYPE interface (Figure 2)
exports a type fn for representing C function types, along with constructors
returning and @→, and a type funptr for representing C function pointer values,
along with a value funptr for constructing function pointer type representations.
The following expression constructs a representation of the type of gettimeofday
from the introduction:

ptr Tv.t @→ ptr Tz.t @→ returning int

which has the following type, writing tv for Tv.t structure, and similarly for tz:

(tv ptr → tz ptr → int) fn

As the type parameter tv ptr → tv ptr → int indicates, the @→ builds cur-
ried OCaml functions to represent C functions of multiple arguments. However,
returning and @→ carefully distinguish object types, which are represented with
cty, from function types, which are represented with fn. A C function that takes

one argument and returns a function pointer that accepts another argument is
quite different from a function of two arguments, and the coding represents them
differently. More precisely, returning builds a representation of a function type
from the object type that the function returns, and @→ adds an object type as an
additional argument to an existing function type. The funptr function supports
the inverse conversion, turning object types into function types.

In the concrete representation of Figure 1, the ctype datatype supports a
additional constructor Funptr for representing function pointers. The Returns and
Fn constructors of the datatype fn correspond to the TYPE functions returning

and @→ functions for building fn values.

3 Interpreting type representations

module type FOREIGN = sig

type α res

val foreign: string → α fn → α res

end

Fig. 4: The FOREIGN interface

The type representations of Section 2 can support a number of generic opera-
tions including sizeof, allocation, and pretty-printing of types and values. This
section focuses on various implementations of an abstract operation foreign,
which builds a binding to a foreign function from its name and a representation
of its type. Figure 4 shows the FOREIGN signature, which contains a single func-
tion, foreign. The return type, res, is left abstract so that each binding strategy
can instantiate it appropriately.

module Bindings(F : FOREIGN) = struct

let gettimeofday =

F.foreign "gettimeofday" (ptr Tv.t @→ ptr Tz.t @→ returning int)

end

Fig. 5: Binding gettimeofday, abstractly

Figure 5 shows a binding for gettimeofday, abstracted over the implementa-
tion of FOREIGN.

3.1 Dynamically interpreting foreign function bindings

Interpreting calls The first implementation of foreign evaluates the type
representation to build bindings dynamically. The parameterised type res in the
FOREIGN signature is instantiated with the alias α res = α, so the type of foreign
is as follows:

val foreign : string → α fn → α

That is, foreign turns a C function type description and a name into an OCaml
function. Applying foreign to the name and type representation of gettimeofday
in the top level returns a function that can be called immediately:

let f = foreign "gettimeofday" (ptr Tv.t @→ ptr Tz.t @→ returning int)

val f : tv ptr → tz ptr → int = <fun>

The call to foreign resolves the name "gettimeofday" and dynamically syn-
thesises a call description of the appropriate type. In the ocaml-ctypes implemen-
tation, dynamic name resolution is implemented by the POSIX function dlsym

and call frame synthesis uses the libffi library to handle the low-level details.
Call synthesis involves two basic types. The first, ffitype, represents C types;

there is a value of ffi_type for each scalar type:

type ffitype

val int_ffitype : ffitype

val char_ffitype : ffitype

val pointer_ffitype : ffitype

The second type, callspec, describes a call frame structure. There are prim-
itive operations primitives for creating a new callspec, for adding arguments,
and for marking the callspec as complete and specifying the return type:

type callspec

val alloc_callspec : unit → callspec

val add_argument : callspec → ffitype → int

val prepare_call : callspec → ffitype → unit

(The return type of add_argument represents an offset which is used for writing
each argument into the appropriate place in a buffer when performing a call.)

Finally, the call function takes a function address, a completed callspec, and
callback functions that write arguments and read return values from buffers.

val call : address → callspec → (address→unit) → (address→α) → α

The complete implementation of foreign may be found in the extended ver-
sion of this paper.

Building a typed interface to these libffi primitives – that is, using them to
implement foreign – is straightforward. Each call to foreign uses alloc_callspec
to create a fresh callspec; each argument in the function representation results
in a call to add_argument with the appropriate ffitype value. The Returns con-
structor results in a call to prepare_call; when the arguments of the function
are supplied the call function is called to invoke the resolved C function. There
is no compilation stage: the user can call foreign interactively, as shown above.

typedef int (*compar_t)(void*, void*);

int qsort(void*,size_t,size_t,compar_t)

Fig. 6: The C qsort function

Interpreting callbacks The dynamic foreign implementation turns a function
name and a function type description into a callable function in two stages: first,
it resolves the name into a C function address; next, it builds a call frame from the
address and the function type description. In fact, this second stage is sometimes
useful independently, and it is supported as a separate operation:

let compar_t = dfunptr (ptr void @→ ptr void @→ returning int)

module Bindings(F : FOREIGN) = struct

let qsort = F.foreign "qsort"

(ptr void @→ size_t @→ size_t @→ compar_t @→ returning void)

end

Fig. 7: Using dfunptr to bind to qsort

val fn_of_ptr : α fn → unit ptr → α

Conversions in the other direction are also useful, since an OCaml function
passed to C must be converted to an address:

val ptr_of_fn : α fn → α → unit ptr

The implementation of ptr_of_fn is based on the callspec interface used
to build the call interpreter and uses an additional primitive operation, which
accepts a callspec and an OCaml function, then uses libffi to dynamically
construct and return a “trampoline” function which calls back into OCaml:

val make_function_pointer : callspec → (α → β) → address

These conversion functions are rather too low-level to expose directly to
the user. Instead, the following view converts between addresses and pointers
automatically:

let dfunptr fn = view (funptr fn) (fn_of_ptr fn) (ptr_of_fn fn)

val dfunptr : α fn → α cty

The dfunptr function builds object type representations from function type
representations, just as C function pointers build object types from function
types. Figure 7 shows dfunptr in action, describing the callback function for qsort
(Figure 6). The resulting qsort binding takes OCaml functions as arguments:

qsort arr nmemb sz

(fun l r → compare (from_voidp int !@l) (from_voidp int !@r))

(The from_voidp function converts from a void * value to another pointer type.)
This scheme naturally supports even higher-order functions: function pointers

which accept function pointer as arguments, and so on, allowing callbacks into
OCaml to call back into C. However, such situations appear rare in practice.

3.2 Statically compiling foreign function bindings

Interpreting function type descriptions as calls is convenient for interactive de-
velopment, but has a number of drawbacks. First, the implementation suffers
from significant interpretative overhead (quantified in the extended version of
this paper). Second, there is no check that the values passed between OCaml
and C have appropriate types. The implementation resolves symbols to function

addresses at runtime, so there is no checking of calls against the declared types
of the functions that are invoked. Finally, it is impossible to make use of the
many conveniences provided by the C language and typical toolchains. When
compiling a function call a C compiler performs various promotions and con-
versions that are not available in the simple reimplementation of the call logic.
Similarly, sidestepping the usual symbol resolution process makes it impossible
to use tools like nm and objdump to interrogate object files and executables.

Fortunately, all of these problems share a common cure. Instead of basing the
implementation of foreign on an evaluation of the type representation, the rep-
resentation can be used to generate both C code that can be checked against the
declared types of the bound functions and OCaml code that links the generated
C code into the program.

Transforming the evaluator of Section 3.1 into a code generator can be seen
as a form of staging, i.e. specializing the dynamic foreign function based on
static information (i.e. the type description) in order to improve its performance
when the time comes to supply the remaining arguments (i.e. the arguments
to the bound function). As we shall see, the principles and techniques used in
the staging and partial evaluation literature will be helpful in implementing the
code-generating foreign.

Generating C In all, three new implementations of the FOREIGN signature are
needed. The first FOREIGN implementation, GenerateC, uses the name and the type
representation passed to foreign to generate C code. The functor application
Bindings(GenerateC) passes the name and type representation for gettimeofday

to GenerateC.foreign, which generates a C wrapper for gettimeofday.
The generated C code, shown below, converts OCaml representations of val-

ues to C representations, calls gettimeofday and translates the return value rep-
resentation back from C to OCaml1. If the user-specified type of gettimeofday

is incompatible with the type declared in the C API then the C compiler will
complain when building the generated source.

value ctypes_gettimeofday(value a, value b) {

struct timeval *c = ADDR_OF_PTR(a);

struct timezone *d = ADDR_OF_PTR(b);

int e = gettimeofday(c, d);

return Val_int(e);

}

Generating OCaml The second new FOREIGN implementation, GenerateML, gen-
erates an OCaml wrapper for ctypes_gettimeofday. The ctypes_gettimeofday

function deals with low-level representations of OCaml values; the OCaml

1 There are no calls to protect local variables from the GC because the code gener-
ator can statically determine that the GC cannot run during the execution of this
function. However, it is not generally possible to determine whether the bound C
function can call back into OCaml, and so the user must inform the code generator
if such callbacks may occur by passing a flag to foreign.

wrapper exposes the arguments and return types as typed values. The func-
tor application Bindings(GenerateML) passes the name and type representation of
gettimeofday to GenerateML.foreign, which generates an OCaml module GeneratedML

that wraps ctypes_gettimeofday.
The OCaml module generated by GenerateML also matches the FOREIGN sig-

nature. The central feature of the generated code is the following foreign imple-
mentation that scrutinises the type representation passed as argument in order
to build a function that extracts raw addresses from the pointer arguments to
pass through to C:

external ctypes_gettimeofday : address → address → int

= "ctypes_gettimeofday"

let foreign : type a. string → a cfn → a =

fun name t → match name, t with

| "gettimeofday",

Fn (Pointer _, Fn (Pointer _, Returns Int)) →
(fun x1 x2 → ctypes_gettimeofday (rawaddr x1) (rawaddr x2))

The type variable a is initially abstract but, since the type of t is a GADT,
examining t using pattern matching reveals information about a. In particular,
since the type parameter of cfn is instantiated to a function type in the definition
of the Fn constructor (Figure 1), the right-hand side of the first case of the defi-
nition of foreign above is also expected to have function type. Similar reasoning
about the Pointer, Int and Returns constructors reveals that the right-hand side
should be a function of type σ ptr → τ ptr → int for some types σ and τ , and
this condition is met by the function expression in the generated code.

Linking the generated code The generated OCaml module GeneratedML

serves as the third FOREIGN implementation; it has the following type:

FOREIGN with type α fn = α

The application Bindings(GeneratedML) supplies GeneratedML as the argument
F of the Bindings functor (Figure 5). The generated foreign function above
becomes F.foreign in the body of Bindings, and receives the name and type
representation for gettimeofday as arguments. The inspection of the type rep-
resentation in foreign serves as a form of type-safe linking, checking that the
type specified by the user matches the known type of the bound function. In the
general case, the type refinement in the pattern match within foreign allows the
same generated implementation to serve for all the foreign function bindings in
the Bindings functor, even if they have different types.

The Trick The pattern match in the GeneratedML.foreign function can be seen
as an instance of a binding-time improvement known in the partial evaluation
community as The Trick [7]. The Trick transforms a program to introduce new
opportunities for specialization by replacing a variable whose value is unknown

with a branch over all its possible values. In the present case, the GeneratedML

.foreign function will only ever be called with those function names and type
representations used in the generation of the GeneratedML module. Enumerating
all these possibilities as match cases results in simple non-recursive code that
may easily be inlined when the Bindings functor is applied.

Cross-stage persistence The scheme above, with its three implementations of
FOREIGN, may appear unnecessarily complicated. It is perhaps not immediately
obvious why we should not generate C code and a standalone OCaml module,
eliminating the need to apply the Bindings functor to the generated code.

One advantage of the three-implementation scheme is that the generated code
does not introduce new types or bindings into the program, since the generated
module always has the same known type (i.e. FOREIGN). However, there is also a
more compelling reason for the third implementation.

The GeneratedML.foreign function converts between typed arguments and
return values and low-level untyped values which are passed to C. In the case
where the type of an argument is a view, converting the argument involves ap-
plying the write function of the view representation. For example, the following
binding to the standard C function puts uses the string view of Section 2 to
support an argument that appears in OCaml as a string and in C as a char *:

let puts = foreign "puts" (string @→ returning int)

Calling puts with an argument s involves applying ptr_of_string to s to obtain
a char*. However, there is no way of inserting ptr_of_string into the generated
code. In the representation of a view the write function is simply a higher-
order value, which cannot be converted into an external representation. This is
analogous to the problem of cross-stage persistence in multi-stage languages: the
generated code refers to a value in the heap of the generating program.

The three-implementation approach neatly sidesteps the difficulty. There is
no need to externalise the write function; instead, the generated foreign im-
plementation simply extracts write from the value representation at the point
when Bindings is applied:

let foreign : type a. string → a cfn → a =

fun name t → match name, t with

| "puts", Fn (View {write}, Returns Int) →
(fun x1 → ctypes_puts (write x1).addr)

| (* ... *)

Thus, the third implementation of FOREIGN makes it possible to use views and
other higher-order features in the type representation.

3.3 Further interpretations

Inverted bindings Section 3.1 showed how to invert the call interpreter to
support callbacks; Section 3.2 showed how to stage the call interpreter to improve

safety and speed. The question naturally arises: Is there a use for an inverted,
staged interpreter? It turns out that there is.

The primary use of ocaml-ctypes is making C libraries available to OCaml
programs. However, as the discoveries of disastrous bugs in widely-used C li-
braries continue to accumulate, the need for safer implementations of those
libraries written in high-level languages such as OCaml becomes increasingly
pressing. As this section shows, it is possible to expose OCaml code to C via
an interpretation of FOREIGN that interprets the parameter of the res type as a
value to consume rather than a value to produce.

Specialising the res type of the FOREIGN signature (Fig 5) with a type that
consumes α values gives the following type for foreign:

val foreign : string → α fn → (α → unit)

that is, a function which takes a name and a function description and consumes
a function. This consumer of functions is just what is needed to turn the ta-
bles: rather than resolving and binding foreign functions, this implementation of
foreign exports host language functions under specified names.

Continuing the running example, this foreign implementation can export a
function whose interface matches gettimeofday. Once again, it suffices to apply
the Bindings functor from Figure 5 to a suitable module. As with the staged call
interpreter (Section 3.2), Bindings is applied multiple times – once to generate
a C header and a corresponding implementation which forwards calls to OCaml
callbacks, and again to produce an exporter which connects the C implementa-
tion with our OCaml functions.

As mentioned in Section 3, ocaml-ctypes includes a generic pretty-printing
function that formats C type representations using the C declaration syntax.
Applying the pretty-printer to the gettimeofday binding produces a declaration
suitable for a header:

int gettimeofday(struct timeval *, struct timezone *);

The generation of the corresponding C implementation proceeds similarly to
the staged call interpreter, except that the roles of OCaml and C are reversed:
the generated code converts arguments from C to OCaml representations, calls
back into OCaml and converts the result back into a C value before returning
it. The addresses of the OCaml functions exposed to C are stored in an array
in the generated C code. The size of the array is determined by the number of
calls to foreign in the functor – one, in this case.

The generated OCaml module GeneratedInvML populates the array when the
module is loaded by calling a function register_callback with a value of type
t callback.

val register_callback : α callback → α → unit

The type parameter of the callback value passed to register_callback is the
type of the registered function:

type _ callback = Gettimeofday : (address → address → int) callback

Finally, the generated foreign function is reminiscent of the staged imple-
mentation of Section 3.2; it scrutinises the type representation to produce a
function consumer, which passes the consumed function to register_callback:

let foreign : type a. string → a cfn → (a → unit) =

fun name t → match name, t with

|"gettimeofday",

Fn (Pointer tv, Fn (Pointer tz, Returns Int)) →
(fun f → register_callback Gettimeofday

(fun x1 x2 → f (makeptr tv x1) (makeptr tz x2)))

The applied module Bindings(GeneratedInvML) exports a single function,
gettimeofday, which consumes an OCaml function to be exported to C:

val gettimeofday : (tv ptr → tz ptr → int) → unit

The complete code generated for the inverted binding may be found in the
extended version of this paper.

Asynchronous calls Since the standard OCaml runtime has limited support
for concurrency, many modern OCaml programs make use of cooperative con-
currency libraries such as Lwt [16]. Cooperative concurrency requires taking care
with potentially blocking calls, since a single blocking call can cause suspension
of all threads. To help mitigate the problem, Lwt supports a primitive

val detach : (α → β) → α → β Lwt.t

which associates a potentially blocking computation with one of a pool of system
threads. It is sometimes useful to wrap detach around calls to foreign functions.

As the signature of detach indicates, Lwt has a monadic interface: potentially
blocking computations run in the Lwt.t monad. A simple generalization of the
TYPE signature turns foreign calls into monadic computations:

module type TYPE’ = sig

type α comp

val returning : α ctype → α comp fn

(* otherwise the same as TYPE *)

end

(The original TYPE signature of Figure 5 can be recovered from TYPE’ by substitut-
ing type α comp = α.) The implementation of Section 3.2 requires corresponding
changes: each foreign call in the generated OCaml code is enclosed in a call to
detach, and each generated C call includes code to release OCaml’s runtime lock.

Applying Bindings to this Lwt-specialised implementation of FOREIGN builds
a binding to gettimeofday that runs in the Lwt monad:

val gettimeofday : tv structure ptr → tz structure ptr → int Lwt.t

Out-of-process calls High-level languages often make strong guarantees about
type safety that are compromised by binding to foreign functions. Safe languages
such as OCaml preclude memory corruption by isolating the programmer from
the low-level details of memory access; however, a single call to a misbehaving
C function can result in corruption of arbitrary parts of the program memory.

One way to protect the calling program from the corrupting influence of a
C library is to allow the latter no access to the program’s address space. This
can be accomplished using a variant of the staged call interpreter (Section 3.2)
in which, instead of invoking bound C functions directly, the generated stubs
marshall the arguments into a shared memory buffer where they are retrieved
by an entirely separate process which contains the C library.

Once again, this cross-process approach is straightforward to build from ex-
isting components. The data representation is based on C structs: for each foreign
function the code generator outputs a struct with fields for function identifier,
arguments and return value (Figure 8). The struct is built using the type repre-
sentation constructors (Section 2) and printed using the generic pretty printer.
These structs are then read and written by the generated C code in the two

struct gettimeofday_frame {

enum function_id id;

struct timeval *tp;

struct timezone *tz;

int return_value;

};

Fig. 8: A struct for making cross-process calls to gettimeofday

processes. Besides the C and ML code generated for the staged interpreter, the
cross-process interpretation also generates C code that runs in the remote pro-
cess and a header file to ensure that the two communicants have a consistent
view of the frame structs.

The extended version of this paper describes experiments that quantify the
overhead of these cross-process calls.

4 Interpreting type descriptions

As Section 2 showed, the structure, field and seal functions (Figure 2, Sec-
tion 2) can together be used to describe C struct types. The implementation of
these operations must determine both the appropriate memory offsets of each
field in the struct, and the size and alignment requirements of the whole struct;
these numbers are determined by the order of the fields, the memory alignment
requirements of each field type, and sometimes by additional compilation direc-
tives. As with FOREIGN, there are a variety of approaches to implementing the
STRUCTURE interface.

Computing layout information The simplest approach to implementing
STRUCTURE is to give implementations of field and seal that simply compute
the appropriate layout directly.

module Types(T: TYPE) = struct

module Tv = (val T.structure "timeval")

let sec = Tv.field "tv_sec" ulong

let usec = Tv.field "tv_usec" ulong

let () = Tv.seal ()

end

Fig. 9: timeval layout, abstractly

The structure function builds an incomplete empty struct with no alignment
requirements. The field function computes the next alignment boundary in the
struct for its field argument, and updates the alignment requirements for the
struct. The seal function inserts any padding necessary to align the struct and
marks it as complete. The extended version of this paper gives the full code.

Computing structure layout in this way works for simple cases, but has a
number of limitations that make it unsuitable to be the sole approach to lay-
ing out data. First, libraries may specify non-standard layout requirements (e.g.
with the __packed__ direction), and attempting to replicate these quickly be-
comes unmanageable. Second, some libraries, (e.g. libuv), define structs with
interspersed internal fields which vary both across platforms and across versions.
Replicating this variation in the bindings quickly leads to unmaintainable code.

Retrieving layout information These drawbacks can be avoided with an al-
ternative implementation of STRUCTURE that, instead of attempting to replicate
the C compiler’s structure layout algorithm, uses the C compiler itself as the
source of layout information, much as the staged foreign (Section 3.2) gener-
ates C code to bind functions rather than using libffi to replicate the calling
convention.

As with the staged foreign function, the idea is to use The Trick to transform
field and seal from functions which compute the layout into functions which
map particular concrete arguments into previously computed layout information.
In order to bring the layout information directly into the OCaml program an
additional stage is needed: first, the Types structure (Figure 9) is applied to a
module Generate_C to produce a C program which retrieves layout information
with calls to offsetof and sizeof:

printf("{ftype;fname;foffset=%zu}\n", offsetof(struct timeval, tv_sec));

Compiling and running the C program produces an OCaml module Types_impl

which satisfies the TYPE signature, and which contains implementations of field
and seal specialized to the structs and fields of the Types module:

let field s fname ftype = match s, fname with

| Struct { tag = "timeval"}, "tv_sec" → {ftype; fname; foffset = 4}

(* ... *)

The application Types(Types_impl) passes the layout information through to the
calls to Tv.field and Tv.seal, making it available for use in the program.

This technique extends straightforwardly to retrieving other information that
is available statically, such as the values of enum constants or preprocessor macros.

5 Related work

The approach of representing foreign language types as native language values
is inspired by several existing FFIs, including Python’s ctypes, Common Lisp’s
Common FFI and Standard ML’s NLFFI [4], each of which takes this approach.

This paper follows NLFFI’s approach of indexing foreign type representations
by host language types in order to ensure internal consistency (although OCaml’s
GADTs, unavailable to the author of NLFFI, make it possible to avoid most of
the unsafe aspects of the implementation of that library). However, this paper
departs from NLFFI in abstracting the declaration of C types from the mecha-
nism used to retrieve information about those types, using OCaml’s higher-order
module system to perform the abstraction and subsequent selection.

The use of functors to abstract over interpretations of the TYPE and FOREIGN

signatures is a central technique in this paper. Carette et al [5] use functors in
a similar way, first abstracting over the interpretation of an embedded object
language (λ calculus), then developing a variety of increasingly exotic interpre-
tations which perform partial evaluation, CPS translation and staging of terms.

The use of GADTs to represent foreign language types, and their indexes
to represent the corresponding native language types (Section 2) can be viewed
as an encoding of a universe of the kind used in dependently-typed program-
ming [15, 3]. Altenkirch and McBride [1] use universes directly to represent the
types of one programming language (Haskell) within another (OLEG) and then
to implement generic functions over the corresponding values.

Mapping codes to types and their interpretations by abstracting over a pa-
rameterised type constructor is a well-known technique in the generic program-
ming community [17, 6]. Hinze [10] describes a library for generic programming
in Haskell with a type class that corresponds quite closely to the TYPE signa-
ture of Section 2, except that the types described are Haskell’s, not the types
of a foreign language. There is a close connection between Haskell’s type classes
and ML’s modules, and so Karvonen’s implementation of Hinze’s approach in
ML [11] corresponds even more directly to this aspect of the design presented
here.

References

[1] Thorsten Altenkirch and Conor McBride. Generic programming within depen-
dently typed programming. In Proceedings of the IFIP TC2/WG2.1 Working
Conference on Generic Programming, pages 1–20, 2003.

[2] David M. Beazley. SWIG : An easy to use tool for integrating scripting languages
with C and C++. In USENIX Tcl/Tk Workshop, 1996.

[3] Marcin Benke, Peter Dybjer, and Patrik Jansson. Universes for generic programs
and proofs in dependent type theory. 10(4):265–289, 2003.

[4] Matthias Blume. No-longer-foreign: Teaching an ML compiler to speak C “na-
tively”. Electronic Notes in Theoretical Computer Science, 59(1):36–52, 2001.

[5] Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. Finally tagless, partially
evaluated: Tagless staged interpreters for simpler typed languages. J. Funct. Pro-
gram., 19(5):509–543, September 2009.

[6] James Cheney and Ralf Hinze. A lightweight implementation of generics and
dynamics. Haskell ’02, pages 90–104, New York, NY, USA, 2002. ACM.

[7] Olivier Danvy, Karoline Malmkjær, and Jens Palsberg. Eta-expansion does the
trick. ACM Trans. Program. Lang. Syst., 18(6):730–751, November 1996.

[8] Michael Furr and Jeffrey S. Foster. Checking type safety of foreign function calls.
PLDI ’05, pages 62–72, New York, NY, USA, 2005. ACM.

[9] Jeremy Gibbons. Datatype-generic programming. In Datatype-Generic Program-
ming, volume 4719, pages 1–71. Springer Berlin Heidelberg, 2007.

[10] Ralf Hinze. Generics for the masses. J. Funct. Program., 16(4-5), July 2006.
[11] Vesa A.J. Karvonen. Generics for the working ML’er. ML ’07. ACM, 2007.
[12] Goh Kondoh and Tamiya Onodera. Finding bugs in Java Native Interface pro-

grams. ISSTA ’08, pages 109–118. ACM, 2008.
[13] Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy, and

Jérôme Vouillon. The OCaml system (release 3.12): Documentation and user’s
manual. INRIA, July 2011.

[14] Siliang Li and Gang Tan. Finding reference-counting errors in Python/C programs
with affine analysis. In ECOOP 2014, pages 80–104. 2014.

[15] Bengt Nordström, Kent Petersson, and Jan M. Smith. Programming in Martin-
Löf type theory: an introduction. Clarendon, 1990.

[16] Jérôme Vouillon. Lwt: A cooperative thread library. ML ’08. ACM, 2008.
[17] Zhe Yang. Encoding types in ML-like languages. ICFP ’98. ACM, 1998.

	Declarative foreign function binding through generic programming

