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Outline
• Multiple levels human heterogeneity

– Local community structures
– Diversity of centrality in different scales
– Four categories of human relationship

• Heterogeneous forwarding algorithms
– Design space
– RANK (centrality based forwarding)
– LABEL (community based forwarding)
– BUBBLE RAP (centrality meets community)

• Approximation and predictability
– Decentralized approximation of centrality
– Human predictability
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The first goal of this research is to move
to a third generation of human mobility

models, understanding heterogeneity at
multiple levels of detail.

Understanding multiple levels
of heterogeneity
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Social Structures Vs Network Structures

• Community structures
– Social communities, i.e. affiliations
– Topological cohesive groups or modules

• Centralities
– Social hubs, celebrities and postman
– Betweenness, closeness, inference power

centrality
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K-clique Community Definition
• Union of k-cliques reachable through a series

of adjacent k-cliques [Palla et al]
• Adjacent k-cliques share k-1 nodes
• Members in a community reachable through

well-connected well subsets
• Examples

– 2-clique (connected components)
– 3-clique (overlapping triangles)

• Overlapping feature
• Percolation threshold pc (k)= 1/[(k-1)N]^(1/(k-1))
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K-clique Communities in
Cambridge Dataset
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K-clique Communities in
Infocom06 Dataset

Barcelona Group
Paris Group A
Paris Group B
Lausanne Group

Paris Groups
Barcelona Group

Lausanne Group

K=3
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K-clique Communities in
Infocom06 Dataset

Barcelona Group
Paris Group A
Paris Group B
Lausanne Group

Paris Groups Barcelona Group

Lausanne Group

K=4
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K-clique Communities in
Infocom06 Dataset

Barcelona Group
(Spanish)

Paris Group A (French)
Paris Group B (French)

Italian

K=5



Imperial College LondonFebruary 2007

Other Community Detection Methodologies

• Betweenness [Newman04]
• Modularity [Newman06]
• Information theory[Rosvall06]
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Centrality in Temporal Network

• Large number of unlimited flooding
• Uniform sourced and temporal traffic

distribution
• Number of times on shortest delay

deliveries
• Analogue to Freeman centrality [freeman]
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Homogenous Centrality
Reality Cambridge

Infocom06 HK
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Within Group Centrality
Cambridge Dataset

Group A Group B
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Within Group Centrality
Reality Dataset

Group A

Group DGroup C

Group B
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Model Node Centrality

Node centrality should be modelled in
different levels of heterogeneity
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Regularity and Familiarity

R
egularity

Familiarity

IV

III

III

I: Community   II. Familiar Strangers  III. Strangers  IV. Friends

Correlation
Coefficient
= 0.9026
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Reality

Infocom05 Infocom06

HK

c: 0.6604 c: 0.5817

c: 0.8325 c: 0.7927
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Heterogeneous Forwarding

The second goal of this research is to
devise efficient forwarding algorithms for

PSNs which take advantage of both a
priori and learned knowledge of the

structure of human mobility.
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Interaction and Forwarding
• Third generation human interaction model

– Categories of human contact patterns
– Clique and community
– Popularity/Centrality

• Dual natures of mobile network
– Social network
– Physical network

• Benchmark Forwarding strategies
– Flooding, Wait, and Multiple-copy-multiple-hop

(MCP)
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Design Space
Explicit Social Structure

Structure in Degree

Structure in
Cohesive Group

Label

Rank, Degree

Clique
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Greedy Ranking Algorithm  (RANK)

• Use pre-calculated centrality/rank
• Push traffic to nodes have higher rank
• Good performance in small and

homogeneous
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Greedy Ranking Algorithm
• Hierarchical organization
• Hierarchical paths [Trusina et al]
• High percentage in most dataset
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Problem with RANK
• Heterogeneous at multiple levels
• Best node for the whole system may not be

best node for a specific community
D

AE

D C

B
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Problem with RANK

Hop distribution and rank at dead-end for HK dataset
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Label Strategy (LABEL)
• Priori label, e.g. affiliation
• Correlated interaction
• Forward to nodes have same label as the destination
• Good performance in conference mixing environment

Infocom06
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Problem with LABEL
• In a less mixing environment (e.g. Reality)
• A person in one group may not meet

members in another group so often
• Wait for destination group not efficient
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Centrality meets Community
• Population divided into communities
• Node has a global and local ranking
• Global popular node like a postman, or

politician in a city
• Local popular node like Christophe Diot in

SIGCOMM
• BUBBLE-A
• BUBBLE-B
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Ranking

Source

Destination

Global Community

Sub community

Sub community

Subsub community
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Centrality meets Community



Imperial College LondonFebruary 2007

Making Centrality Practical

How can each node know its own
centrality in decentralised way?

How well does past centrality predict
the future?
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Approximating Centrality

• Total degree, per-6-hour degree
• Correlation coefficients, 0.7401 and 0.9511
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Approximating Centrality
• DEGREE
• S-Window
• A-Window (Exponential Smoothing)
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Predictability of Human Mobility

• Three sessions of Reality dataset
• Two sessions using the ranking calculated

from the first session
• Almost same performance
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Conclusion and Future Woks
• Forwarding using priori label or social

structure inferred through observation
• Distributed k-clique building through

gossiping
• Why per-6-hour?
• Weighted version of k-clique detection
• Third generation modeling
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