Part 3. Research Themes

* Social-based Communication
» Epidemiology

* Complex Networks
 Human Mobility

* Social Phenomena

-« DTN Capacity



Impact of Altruism on Opportunistic
Communication

* Opportunistic Communication

— Largely relies on human as relays
— Problems (battery life)

— Requires altruistic behaviour

e Human Communication Pattern

— Community-biased
* Findings

— Opportunistic networks are very robust to the distributions
of altruism



Methodology

« Simulation of asynchronous messaging on Static social

network topologies

e Emulation on real hume=

 Performance metrics

— Successful delivery ratio

— Deliverv delav

[ Commmunity gezstation modal | ER Sf | Smople | Cawemez | NP | Rumpul
Numbder of nodes 1000 1000 000 1000 9] o
Nuzaber of odges 4482 | 4509 4492 4500 4503 4511

Drameter ¢ 4 7 10 2 7
Chastering cosff clent 00105 | 03891 | 03487 | 07389 | 01136 0.2065
Max dezres 1§ 634 17 13 28 33
Number of communties § 13 28 4 4 17
Averago size of commommties | 125 | 769231 | 357143 | 20.8333 | 247.75 | 38.8235
Expenmental data set Cambndge | InfocomO> | InfocomO® | Kaalty
Device Moz Mot IMote Phone
Nemwork type Bluetooth | Bluetooth | Blustooth | Bluetooth
Duration (days) 11 3 3 246
Granulanity (seconds) 600 120 120 30
Number of experimental devices 54 41 o8 97
Number of internal contacts 10,873 22450 101,336 54.667
Average no. of contacts’pair/day 0.345 46 6.7 0024




Altruism and Traffic Models

e Altruism Models

— Percentage of selfishness

— Uniform, normal

— Geometric P(X =k)=(1-p""p

— Community-biased Pivira + Pinter =1

— Degree-biased

(ki - kmin)a
(kma:r - kmm>a

 Traffic Models

— Uniform

<kma;lt - kz>a

with o > 0
(kmam - k’mm>af

a; = with a >0 ¢; =

4 — Community-biased
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Results and Evaluations (2)
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Results and Evaluations (3)
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Delivery success ratio

Results and Evaluations (4)
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Conclusions & Future Work

Opportunistic communication and information dissemination
in social networks are very robust toward altruism distribution
due to their multiple forwarding paths

Altruism values resulting from gaming strategies
Feedbacks from previous delivery histories

Power consumption of nodes, and how it 1s affected by the
altruism



Epidemic Modeling (LNCS ACRI 2008)

e Demographics
* Non-homogeneous population

— Age Dependency
* Influenza spread firstly in children aged 3-4 (Browstein)

* Infectivity/Susceptibility varies with age

— Location Dependency
 Human Mobility
* Social Containment Strategies

» Vaccination Strategies



*Nature [0028-0836] Eubank (2004)
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Seasonal Factor

RCGP weekly consultation rates for Influenza- like liness (ILI),
Total Respiratory Disease (TRD) & Acute Bronchitis (AB)1998-2008
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Model

If person 7 goes to location k, an edge T} is drawn. We could also extend
this definition by weighing the link with the time spent in the location, and
considering time coincidence. However, due to the lack of precise data, we just
consider the average one-day window, and set T;, = 1 if the person is expected to
spend more than one hour in that location. The effective social contact network
Ji; is then obtained as

probability of a susceptible becoming exposed, we first define the notion of pair-
wise propensity of infection Q(i,s) between a susceptible of age s and infective
of age 1:

Q(i,s) = Inf(i) - Sus(s) -V - T, (5)

V' are assumed to be constant. To estimate the overall probability P s(s,1) of
susceptible of age s catching the disease in the location [, we take the normalised
summation of the above pairwise infection propensity:

Pp)s(s,1) = > J%(é;él?(m) ()
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Epidemic Spreading

Day 16 ' Day 18 l
Day 20 Day 21

e Parameters:

 External Model based

on population density
and travel statistics
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Age Dependency
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Vaccination Strategies
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Future Work

* More realistic Contact Network
— Time/Age dependency
— Human Dynamics/Mobility Model
— Probabilities for infection
— Network Parameters
— Non Co-location Infection
— Demographical Information

e Social Containment Policies

». Travel Patterns
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Complex Networks

* Community Detection in Large Networks

— Static Social Networks
— Time Dependent/Dynamic Networks

* Novel Network Characteristics

— Recurrence Plots

 Novel Network Models

— Time dependent networks

18



Community Detection in Large

Somal Networks
e Orkut Online Social

Network (3M nodes,
0.2B edges)(Mislove et.
Al)

« Largest available
network (1B edges)

» Traditional Modularity-
optimization approach
1s slow

e Aim : Real-time

Linear

Accurate



Real Time Community Detection (in
submission to PRE)

* Label Propagation (Nandini, Albert et. Al.)

g




Real Time Community Detection

Modularity, Q
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* Asynchronous v. Synchronous

e m, Label Preference
* 0, Hop Attenuation
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Real Time Commun]j

* Linear Running Time
(almost) — O(/E])

 Accurate
— 5% within state of the art

* Adaptive
* Exploitable:

— Localised Metric — Easily
Parallelised

22— Avoid updating nodes well
mmside the commimitv




Future Work

 Static Network (OSN, Amazon,
Google...relatively speaking) can be boring

* Mostly done offline

* Community Detection in Dynamic
Networks in Real-Time

 Idea: Consider moving spin glasses

* Can apply a similar paradigm as the basis
for the detection

23

e More realistic mobility model



Summary

e Altruism in Opportunistic Communication
* Contact Network Modeling of Epidemics

e Real-Time Community Detection 1n Large

Networks

24



Thank You!
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Selfish DTN capacity
Experimental estimation

Dagstuhl Seminar DTN II
February 2009

Joint work of

PU Tournoux, V. Conan, J. Crowcroft,
J. Leguay, F. Benbadis, M De Amorim



DTN performance

* Measured 1n terms of packet delivery ratio,
packet delay for non-congested networks

* Performance is limited by:
— Storage constraints
— Transmission constraints

— Node selfishness

27



For a glven trafflc pattern what is the
maximum total demand that can be
achieved before the network becomes
- saturated, elther Ip I|nk capac:|ty orin
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Capacity estimation

Use traces of node contacts as input

Consider fixed demands

— One demand = transfer x Kbits from node s to node d
injected at time t

Traffic 1s routed
at Wardrop equilibrium

Increase x for all demands

Overload

“«———— DTN Capacity

Stop when storage/trans e

mission overload increases Lo

c ° Number of overloaded nodes\

faSter than lOad — Network overload

J
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Wardrop equilibrium

The journey times (or costs) in all routes
actually used are equal and less than those
which would be experienced by a single
vehicle (or message) on any unused route.

For additive and separable positive and
continuous cost functions the Wardrop
equilibrium is a convex minimization problem.
The equilibrium is unique, and may be
obtained by running the Frank-Wolfe
algorithm



Time Discretized Graph
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Fastest route
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Weight on delay = 1
Weight on transmission cost = 1

* Delay is costly: the fastest route 1s chosen
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Costly transmissions
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* Increasing transmission cost forces usage of slower routes
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More delay
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* Allowing for more delay forces usage of even more slow routes
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Infocom data set
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« Capacity increases with delay tolerance
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Conclusions

* Delay-tolerance helps
increase capacity.

* Routing protocols
should be multi-
dimensional.

» Selfishness makes ||
network engineering

challenging. —
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