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Outline

ultiple levels human heterogeneity

- Local community structures

- Diversity of centrality in different scales

- Four categories of human relationship
eterogeneous forwarding algorithms

- Design space

- RANK (centrality based forwarding)

- LABEL (community based forwarding)

- BUBBLE RAP (centrality meets community)
pproximation and predictability

- Decentralized approximation of centrality

- Human predictability
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Understanding multiple levels
of heterogeneity

The first goal of this research is to move

to a third generation of human mobility

models, understanding heterogeneity at
multiple levels of detail.
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Social Structures Vs Network Structures

ommunity structures
- Social communities, i.e. affiliations
- Topological cohesive groups or modules

entralities

- Social hubs, celebrities and postman

- Betweenness, closeness, inference power
centrality
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K-clique Community Definition

nion of k-cliques reachable through a series
f adjacent k-cligues [Palla et al]

djacent k-cliques share k-1 nodes

embers in a community reachable through
ell-connected well subsets

xamples

- 2-clique (connected components)

- 3-clique (overlapping triangles)

verlapping feature

ercolation threshold p. (k)= 1/[(k-1)N]*(1/(k-1))
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K-clique Communities in
Cambridge Dataset
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K-clique Communities in
InfocomO6 Dataset
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K-clique Communities in
InfocomO6 Dataset
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K-clique Communities in
InfocomO6 Dataset
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Other Community Detection Methodologies

etweenness [Newman04]
odularity [Newman006]
nformation theory[Rosvall06]
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Centrality in Temporal Network

arge number of unlimited flooding

niform sourced and temporal traffic
Istribution

umber of times on shortest delay
eliveries

nalogue to Freeman centrality [freeman]
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Homogenous Centrality
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Within Group Centrality
Cambridge Dataset
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Within Group Centrality
Reality Dataset

1F B 1+ i

08 8 4
> 2
E 06 4 ﬁ 06 -
k= k=
()] (]
O O

0.4 4 04

0.2 0.2 -

| | |

0 0 4 5 6 8
Node Node
Group C Group D

0.8 |- B 0.8 - q
2 2
e ©
5 5
O O

o e,

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 1 2 3 4 6 7
Node Node

February 2007 Imperial College London



Model Node Centrality

Node centrality should be modelled in
different levels of heterogeneity
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Regularity and Familiarity
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Heterogeneous Forwarding

The second goal of this research is to
devise efficient forwarding algorithms for
PSNs which take advantage of both a
priori and learned knowledge of the
structure of human mobility.
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Interaction and Forwarding

hird generation human interaction model
— Categories of human contact patterns
— Cligue and community
— Popularity/Centrality

ual natures of mobile network
— Social network
— Physical network

enchmark Forwarding strategies

— Flooding, Wait, and Multiple-copy-multiple-hop
(MCP)
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Design Space
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Greedy Ranking Algorithm (RANK)

se pre-calculated centrality/rank
ush traffic to nodes have higher rank

ood performance in small and
omogeneous

Time TTL Time TTL
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Greedy Ranking Algorithm

lerarchical organization
lerarchical paths [Trusina et al]
igh percentage in most dataset

Experimental data set | % hierarchical paths
Rummidge s8r20-2.44+4.3)
Reality 51.9(-3.1.43.3)
Infocom5 623 (-2.542.5)
Infocomia 69.5(-4.1.+2.4)
Hong Kong 335 (-4.04+4.0
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Problem with RANK

eterogeneous at multiple levels

est node for the whole system may not be
est node for a specific community
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Problem with RANK
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Label Strategy (LABEL)

riori label, e.g. affiliation

orrelated interaction

orward to nodes have same label as the destination
ood performance in conference mixing environment
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Problem with LABEL

n a less mixing environment (e.g. Reality)

person in one group may not meet
embers in another group so often

ait for destination group not efficient

Time TTL
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Centrality meets Community

opulation divided into communities

ode has a global and local ranking

lobal popular node like a postman, or
olitician in a city

ocal popular node like Christophe Diot in
|IGCOMM

UBBLE-A

UBBLE-B
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Sub community

z

Sub community
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L Centrality meets Community

T
0.7 - 4+ 14 MCP +—+—i +
MCP +—+— D-LABEL F—¢— I
D-LABEL —%—i RANK —%—i
RANK ——%—i BUBBLE-A —&—
06 | BUBBLE-A —&—i 12 | BUBBLE-B 4
: BUBBLE-B
FLOOD
05+ 10 L
ke
©
% _-\—l
() [ 3 [
& o4 TS 8
S ot
@ 5
2 o
> L
= 03 6
[a)]
0.2 - 4 -
01 2
_/
0k R p— . 01 ———— - I \ [
2 min 10 min Thour 3h 6h Tday2d 4d1w 3weeks 2 min 10 min 1hour 3h 6h 1day2d 4d1w 3weeks
Time TTL Time TTL

February 2007 Imperial College London



Making Centrality Practical

How can each node know its own
centrality in decentralised way?

How well does past centrality predict
the future?
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Approximating Centrality
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Approximating Centrality
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Predictability of Human Mobility

hree sessions of Reality dataset

WO sessions using the ranking calculated
rom the first session

Imost same performance
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Conclusion and Future Woks

orwarding using priori label or social
tructure inferred through observation

Istributed k-clique building through
ossiping

hy per-6-hour?

eighted version of k-clique detection
hird generation modeling
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