NETWORK QOS FOR GRID SYSTEMS

Saleem N. Bhattit
Soren-Aksel Sgrensen’
Peter Clark2

Jon Crowcroft3

Abstract

Grid users may wish to have fine-grained control of qual-
ity of service (QoS) guarantees in a network in order to
allow timely data transfer in a distributed application en-
vironment. We present a discussion of the issues and
problems involved, with some critical analysis. We pro-
pose possible solutions by making reference to and ana-
lysing existing work. Also, we describe the mechanisms
being proposed as part of a work-in-progress (being con-
ducted by the authors) that uses a peer-to-peer approach
to micro-manage network capacity allocations at the
edge of the network, at end-sites, in a multi-domain sce-
nario. Scheduling controllers at the end-sites are em-
ployed, which are subject to local administrative controls
and have flexibility in resource allocation based on user
requests for network capacity. We highlight the issues in
scaling such systems to large numbers of users and the
issues concerning the interfaces available to applica-
tions and end-users for accessing such services.

Key words: Author: please provide key words

The International Journal of High Performance Computing Applications,
Volume 17, No. 3, Summer 2003, pp. 000—-000
© 2003 Sage Publications

1 Introduction and problem statement

Consider two users (applications) wishing to share some
large data files and who have a specific deadline for the
transfers of those files from one site to another. The
users would like to signal the network to request some
protected capacity to ensure the data are transferred by
the deadline they have specified. This may be, for exam-
ple, because the files are used as part of a large distrib-
uted processing application and so synchronization of
input/output processing across the distributed system is
required. Other users may have more traditional network
resource requirements; for example, they wish to have a
video conference between two sites using AccessGrid
technology (AccessGrid, 2002). In both these cases, the
users need to have some level of quality-of-service (QoS)
guarantee. Additionally, these users may be geographi-
cally dispersed and so the QoS control mechanisms they
use, both at the network level and application level,
must operate across the boundaries of various adminis-
trative domains along the network path.

Normally, applications assume that the network capac-
ity they require for such operations is always available to
them, and do not explicitly model into the design of the
application any mechanisms to deal with situations where
such capacity is not available. This has not been a major
issue for many applications used for high performance
computing for a number of reasons: for example

 applications tend to be running on single-site opera-
tion with high-speed local area connectivity between
any distributed processing units;

* applications have a mode of operation that can cope
with highly asynchronous communication, e.g. message
passing, transactional services (e.g. based on remote
procedure calls);

¢ applications tend not to require large amounts of data
(tens or hundreds of MB) to be transferred between
them across wide-area networks.

For the last of these points, in a non-Grid environment,
where such movement of data is required, it is dealt
with out-of-band, e.g. by sending tapes or hard disks by
courier between sites. One reason for the existence of
Grid systems is to use network services to transfer data

' COMPUTER SCIENCE, UNIVERSITY COLLEGE LONDON
(UCL), UK

% PHYSICS AND ASTRONOMY, UNIVERSITY COLLEGE
LONDON (UCL), UK

* COMPUTER LABORATORY, CAMBRIDGE UNIVERSITY, UK

and so make such distributed processing easier. So, for
high performance computing, using large datasets in a
distributed environment we may need to ask the net-
work for a high-capacity reservation in order to provide
an assurance of timely data transfer. There are many
users within the Grid community with such needs, e.g.
astronomers, bio-informatics researchers and high-energy
physicists. So, for such users (amongst others) we require
network-level mechanisms to enable QoS services and
application-level mechanisms to use such services. Addi-
tionally, in some cases, the applications themselves may
need to adapt their operation in order to accommodate
the interaction with the network that this will involve.
Normally, we would like to provide QoS for a specific
flow of information. In our case, we consider a flow to
be a sequence of packets with some sort of semantic
relationship at the application level.! Assuming commu-
nication using the Internet Protocol (IP) suite, a flow is
identified in terms of header fields found in IP packets:
for example destination and source addresses, destina-
tion and source port numbers. Whilst the identification
of flows can be performed using a much more complex
combination of header fields from the network-level,
transport-level and application-level headers, in this paper,
we will use only simple examples to illustrate our dis-
cussion. It is assumed that the reader is familiar with the
basic functional aspects of IPv4, IPv6, TCP, and UDP.

1.1 QOS SERVICES ARCHITECTURE

IP-based networks, and the Internet itself will be used to
allow communication across Grid Systems. The IP and
the Internet were never designed to handle QoS-sensitive
traffic and so the Internet community must evolve the
network and enhance the Internet protocols in order to
cater for the needs of these new and demanding applica-
tions (Bhatti, 1999).

Clark et al. (1992) speak of the Internet evolving to
an integrated services packet network (ISPN), and identify
four key components for an Integrated Services architec-
ture for the Internet:

1. service-level, the nature of the commitment made
by the network for a network flow, and a descrip-
tion of a set of control parameters to describe
traffic patterns;

2. service interface, a set of parameters passed between
the application and the network in order to invoke
a particular QoS service-level, i.e. some sort of
signalling protocol plus a set of data structures
and parameter definitions;

3. admission control, for establishing whether or not
a service-request can be honoured before allow-
ing the flow to proceed;

4. scheduling mechanisms within the network, the
network must be able to handle packets in accor-
dance with the QoS service requested.

As an example, a simple description of the interactions
between these components is as follows.

* A service-level is defined (e.g. within an administra-
tive domain or, with global scope, by the Internet
community). The definition of the service-level includes
all the service semantics; descriptions of how packets
should be treated within the network, how the appli-
cation should inject traffic into the network as well as
how the service should be policed. Knowledge of the
service semantics must be available within routers and
within applications.

* An application makes a service-request invocation
using the service interface and a signalling protocol.
This typically happens before data packets are trans-
mitted. The service-request includes specific informa-
tion about the traffic characteristics required for the
flow, e.g. data rate. The network will indicate if the
service invocation was successful or not. Also, once
data packets start to flow, the network may also inform
the application, via a well-defined interface and proto-
col, if there is a service violation, either by the applica-
tion’s (mis)use of the service, or if there is a network
failure.

e Before the service invocation can succeed, the net-
work must determine if it has enough resources to
accept the service request. This is the job of admis-
sion control, which uses the information in the ser-
vice request, plus knowledge about the other service
requests it is currently supporting, to determine if it
can accept the new request. The admission control
function will also be responsible for policing the use
of the service, making sure that applications do not
use more resources than they have requested. This
will typically be implemented within the network rout-
ers that handle the packets. Policing policies dictate
the action to be taken when packets are found to be
violating the parameters in the service request. Such
actions include dropping the packet (easy to imple-
ment but may damage the flow), remarking the packet
into a “worse” QoS class (easy to implement but could
then affect “well-behaved” traffic using the other class)
and re-shaping or delaying packets (harder to imple-
ment and may still spoil the performance of the flow
due the additional delay).

* Once a service invocation has been accepted, the net-
work must employ mechanisms that ensure that the
packets within the flow receive the service that has
been requested for that flow. This requires the use of
scheduling mechanisms and queue management for

flows within the routers to ensure correct packet han-
dling.

In this paper, we deal mainly with the application-level
issues in points 1 and 2 above (service definitions and
service interfaces), with some discussion of point 3 (admis-
sion control) as it affects the application. Issues related
to point 4 (packet handling in the network) can be found
in Bhatti and Crowcroft (2000).

2 Network-level QoS mechanisms

In our overall discussion, we intend to concentrate on
the application-level aspects. However, we need to con-
sider the network-level mechanisms, as the services
offered at these levels must be understood in order for
the applications to make correct and appropriate ser-
vice-requests. The network-level mechanisms are con-
cerned with enabling routers to treat certain packets with
a “better” service than others. The definition of “better”
constitutes the QoS service-level or in some cases ser-
vice-class that is being requested for a flow.

There has been much work in the community for over
two decades to address the problem of QoS control. Ini-
tially, work concentrated on the network-level issues and
the kind of mechanisms required in the routers to allow
correct packet handling (classification, queuing, sched-
uling and forwarding of packets). While work in this
area continues, current research takes in areas of appli-
cation-level and middleware QoS issues also. In this
section, we present some related work in the network-
related areas and discuss issues and problems that arise.
Note that the presentation here is not exhaustive; we
have selected and focused on work and activities that
are current at the time of writing and relevant specifi-
cally to Grid systems.

2.1 IETF INTSERV

The IETF INTSERV WG (INTSERV) has proposed an
architecture for evolving the Internet to an Integrated
Services Network (ISN). To support the architecture,
INTSERYV have produced a set of specifications for spe-
cific QoS service-levels based on a general network ser-
vice specification template (Shenker and Wroclawski,
1997a) and some general QoS parameters (Shenker and
Wroclawski, 1997b). The template allows the definition
of how network elements should treat traffic flows. With
the present IP service enumerated as best-effort, two
service-level specifications are currently defined:

e controlled-load service (Wroclawski, 1997a) — the
behavior for a network element required to offer a

service that approximates the QoS received from an
unloaded, best-effort network;

* guaranteed service (Shenker et al., 1997) — the behav-
ior for a network element required to deliver guaran-
teed throughput and delay for a flow.

Also specified is how to use a signalling protocol, RSVP
(Braden et al., 1997), to allow the use of these two ser-
vices to be signalled through the network (Wroclawski,
1997b). Part of the INTSERV work is the definition of
an architecture for a QoS Manager (QM) entity that coor-
dinates flow activities and resource usage at the end
system. Note that this architecture requires that the net-
work elements and applications have semantic knowl-
edge about the service-levels for the application flows,
as specified in the service templates.

RSVP is used by applications to make a resource res-
ervation, by asking the network to provide a defined
quality of service for a flow. The reservation request
consists of a FlowSpec identifying the traffic characteris-
tics and service-level required. One part of the FlowSpec
is a TSpec, a description of the traffic characteristic
required for the reservation. So it is possible for the same
traffic characteristic to be used with different service
levels. (This difference in QoS service-level could, for
example, act as a way for offering cost differentials on
the use of a particular application or service.)

To invoke a particular service (make a service-request),
the application uses RSVP, for a particular communica-
tion session (which may consist of one or more flows).
To make a resource reservation, an appropriate FlowSpec
is used along with session IP destination address, the
protocol number in the IP packet and, optionally, the
destination port number in the service invocation. The
reservation procedure is as follows. The sender trans-
mits a Path message (effectively “advertising” the session
QoS requirements) towards the destination IP address. All
RSVP-enabled routers forwarding the Path message hold
soft-state — information about the resource reservation
required — until one of the following happens: a PathTear
is sent from the sender cancelling the reservation, a Resv
message is transmitted from a receiver effectively con-
firming the reservation, or the soft-state times out. A
Resv message from a receiver is sent back along the
same route as the Parh message,” establishing the reser-
vation and then the application starts sending data pack-
ets. Path and Resv messages are sent by the sender and
receiver, respectively, during the lifetime of the session
to refresh the soft-state and maintain the reservation. A
PathTear or ResvTear message explicitly tears down the
reservation and allows resources to be freed. It is possi-
ble for the reservation to be changed dynamically dur-
ing the lifetime of the session. RSVP can be used for
unicast or multicast (many-to-many) sessions.

Note that RSVP

¢ provides end-to-end signalling (between applications)
¢ RSVP sets up unidirectional reservations
* is specific to one session

¢ requires the applications and the network elements all
to be RSVP and INTSERYV aware.

2.2 PROBLEMS WITH INTSERV AND RSVP

The main issue concerning Integrated Services provisioning
is the handling of the individual packets that make up a
flow in order to honour the QoS requirements of that
flow. The router has a non-trivial forwarding process
for each packet:

e classify the packet in order to identify its QoS require-
ments (classification);

¢ determine when the packet should be forwarded (sched-
uling);

* manage the output queues under congestion condi-
tions (queue management).

Note these activities are logically distinct from the rout-
ing functions that all routers must be able to perform in
order to determine in which direction to forward a packet
(i.e. which output interface should be used). Several
schemes have been developed within the Internet com-
munity for performing classification, scheduling and
queue management tasks, and they are currently under-
going experimentation and development (Bhatti and
Crowcroft, 2000).

RSVP uses a soft-state technique with a two-pass
protocol. We summarize the main problems with RSVP
below (Wolf et al., 1997).

1. During reservation establishment if the first pass
of each of two separate reservation requests are
sent through the same network element, where
one request is a super-set of the other, the lesser
one may be rejected (depending on the resources
available), even if the greater one eventually fails
to complete (of course it is possible to re-try).

2. If the first pass does succeed, the router must
then hold a considerable amount of soft-state for
each flow and this burden of state maintenance
increases as you approach the core of the net-
work where many more flows pass through the
network routers.

3. The routers must communicate with receivers to
refresh soft-state, generating extra traffic, other-
wise the reservation will time out.

4. If there are router failures along the path of the
reservation, this results in IP route changes, so
the RSVP reservation fails and the communica-
tion carries on at best-effort service, with the other
routers still holding the original reservation until
an explicit tear-down or the reservation times out
or the reservation can be re-established along the
new path.

5. The applications must be made RSVP aware,
which is a non-trivial goal to realize for the many
current and legacy applications that already exist,
including multimedia applications with QoS sen-
sitive flows.

Resource reservation could be expensive on router
resources and adaptation capability is still required
within the application to cope with reservation failures
or lack of end-to-end resource reservation capability.
Indeed, the Internet community has acknowledged the
shortcomings of RSVP, especially with respect to scala-
bility, and it is recommended for use only in restricted
network environments (Mankin et al., 1997). Such con-
cerns about resource reservation have directed the Internet
community to consider alternatives; specifically differen-
tiated services. Without resource reservation, we require
some mechanisms to allow service differentiation within
the network, but also we require a more flexible and
dynamic adaptation capability within the application.

2.3 IETF DIFFSERV

The IETF DIFFSERV WG takes a different view of
using network resources to that of the INTSERV WG
(Blake et al., 1998). The general model is to define a
class-based system where packets are effectively marked
with a well-known value. This value identifies the aggre-
gate service-level the packet will receive along with other
packets with the same value, much like a letter can be
marked as first-class or second-class delivery. This is
a much coarser granularity of service, but reflects a
well-understood service model used in other commer-
cial areas. The DIFFSERV model is quite different to
the INTESRV/RSVP model. A key distinction of the
DIFFSERV model is that it is geared to a business
model of operation, based on administrative bounds.
Whereas RSVP can act on a per-flow basis, each of the
DIFFSERYV classes may be used by many flows simul-
taneously. Any packets within the same class must share
resources with all other packets in that class. The pack-
ets are treated on a per-hop (per router) basis by traffic
conditioners, functions in the router that determine the
way a packet should be treated based on a policy that is
selected by examining the value of the class marking of
the packet. The policy could be applied to all the traffic

DIFFSERV

E’—_E) INTSERV =
—)
------- G; nd-3|t<-a IP host end-site

IP router

Fig.1 Scope of INTSERV compared to DIFFSERV.

from a single user (or user group), and could be set up
when subscription to the service is requested, or on a
configurable profile basis. The DIFFSERV mechanisms
would typically be implemented within the network itself,
without requiring runtime interaction from the end-system
or the user, so are particularly attractive as a means of
setting up tiered services, each with a different price to
the customer.

The INTSERV/RSVP mechanism seeks to introduce
well-defined, end-to-end; per-flow QoS guarantees by use
of a sophisticated signalling procedure. The DIFFSERV
work seeks to provide a “virtual pipe” with given prop-
erties in which the user may require adaptation capabil-
ity or further traffic control (if there are multiple flows
competing for the same “virtual pipe” capacity).

The QoS service itself will be defined in terms of a
service level agreement (SLA) that embodies the con-
tract between the service user and service provider. The
policy implemented by the SLA may include constraints
other than QoS that must be met, e.g. security, time-of-
day constraints, etc. Figure 1 highlights the main difference
between INTSERV and DIFFSERYV scope. INTSERV tries
to provide, per application, end-to-end resource reserva-
tion. DIFFSERYV aims to provide an SLA-based contract
between service networks. One very attractive feature of

DIFFSERYV is that it can be introduced into existing net-
works in a piecewise manner, without having to modify
current or legacy applications. The packets leaving a net-
work are marked for DIFFSERYV handling by DIFFSERV-
capable routers that sit at administrative boundaries.
Therefore, only these routers need to be updated and the
applications themselves can remain unchanged. (How-
ever, this does not preclude individual hosts or individual
applications being DIFFSERV-aware and marking pack-
ets accordingly as they leave the host.) The DIFFSERV-
capable routers could be at the edge of the customer net-
work or part of the provider’s network. If the DIFFSERV-
marking is performed within the customer network, then
policing is required at the ingress router at the provider
network in order to ensure that customer does not try to
use more resources than allowed by the SLA.

The DIFFSERV work is aimed at providing a way of
setting up QoS using policy statements that form part of
a service level agreement between service user and ser-
vice provider. The policy may use several packet header
fields to classify the packet, but the classification mark-
ing is a simple identifier (currently a single byte) within
the packet header. The classification is by way of a spe-
cial value for a single header field, the DS (differenti-
ated services) byte, which will be used in place of the

ToS (Type of Service) field in IPv4 packets or the traf-
fic-class field in IPv6 packets. The DS byte will have
the same syntax and semantics in both IPv4 and IPv6.
There are already defined some global DS values — DS
codepoints (DSCPs) — agreed for the DS field within the
IETF but the intention is that the exact policy governing
the interpretation of the DSCPs and the handling of the
packets is subject to some locally agreed SLA. SLAs
could exist between customer and Internet Service Pro-
vider (ISP) as well as between service providers. The
DSCPs are used to identify packets that should have the
same aggregate per-hob behavior (PHB) with respect to
how they are treated by individual network elements.

The meaning of the DSCPs and the content of SLASs
are established at subscription time and, although there
will be scope for change by agreement between cus-
tomer and provider, the kind of dynamic and flexible
resource reservation that is described above for using
RSVP is not envisaged for DIFFSERV.

DIFFSERYV is not without its problems. However,
these would appear to be less difficult to overcome
than those for INTSERV and RSVP.

2.4 PRACTICAL USAGE OF THE IETF WORK

It would be possible to make use of both INTSERV and
DIFFSERV without modifying the application. A net-
work management tool could be used by network admin-
istrators to configure the network routers appropriately
before data packets started to flow. However, such a mech-
anism is clearly not scalable to a large number of users
(ignoring the other scaling problems of INTSERV) and
does not give the level of control that Grid users might
expect. Such users would prefer to have mechanisms
that are directly accessible from the application via an
API or specific middleware. However, we may need to
apply local administrative controls (as well as security
and access control) if general access to these services is
permitted from users via client systems in this way.

The use of DIFFSERV has received great interest
lately, as users and researchers begin to understand how
to deploy and make use of SLAs across administrative
domains. However, there still remain problems in trying
to provision DIFFSERYV. Some standard PHBs have been
defined and these are being used provide specific ser-
vices, such as Expedited Forwarding (EF; Davie et al.,
2002) for low loss, low delay services, and Assured For-
warding (AF; Heinanen et al., 1999) for high throughput
adaptive services that can tolerate some loss. There is
also a Less-than Best Effort (LBE) PHB (Shalunov and
Teitelbaum, 2001) which is intended to be used to pro-
vide services for long-lived flows using reliable trans-
port for applications such as large file transfers and
continuous-update applications. Such flows would be

treated as low-priority or “background flows” so they
could use any network capacity that remains unused by
other flows, such as best-effort flows and EF-marked
flows. However, in the presence of other traffic, LBE
would have a fixed minimum allocation so that LBE-
marked flows are not starved (e.g. 1% of total capacity)
but have lower priority than best-effort flows.

There have been numerous activities within the research
community to try to provide mechanisms for QoS con-
trol in IP-based networks, mostly focusing on the use
of DIFFSERYV, in projects such as AQUILA (1999),
TEQUILA (2002), MESCALE (2002), Task Force —
Next Generation Networking (TF-NGN, 2002) and QBone
(2002). These have concentrated on the mechanisms and
protocols needed to provide a network service which
allows some kind of QoS control as well as aspects of
admission control and management of the network
resources. Indeed, AQUILA, TEQUILA and MESCALE
are EU-funded projects that try to provide a practical
solution for some of the problems and issues that arise
in a DIFFSERYV network trying of offer a real service,
e.g. definition and management of Service Level Agree-
ments (SLAs) and mapping of Service Level Specifica-
tion (SLSs). TF-NGN and QBone look at the practical
aspects of deploying the mechanisms in a service envi-
ronment. Recently, the use of DIFFSERV QoS mecha-
nisms at high-speeds is also being investigated by some of
the authors in the Managed Bandwidth — Next Generation
(MB-NG, 2002) project, which involves the UK Educa-
tion and Research Networking Association (UKERNA)
and Cisco as project partners.

A problem that is encountered in all these projects is
the idea of allowing QoS reservations. The original
INTSERV work is not capable of scaling to Internet-
wide usage, so various communities have decided to
build their own systems. The e-Science community uses
General-purpose Architecture for Reservation and Allo-
cation (GARA, 2002) and the authors are involved in a
decentralized approach for DIFFSERV EF reservations
within the Grid Resource Scheduling (GRS, 2002) pro-
ject. We will provide more details of both of these later.

3 Application-level Grid access to
network QoS services

For an application to be able to request QoS services, it
must signal the network with information about (at the
very least):

* the QoS service that is required;

e the identity of the flow that is to receive that QoS ser-
vice;

* QoS-service-specific parameters, such as the data rate
required, etc.

data

tokens, rate r

|

peak rate, p

v

Fig. 2 The token-bucket traffic descriptor.

For DIFFSERV, the QoS service (or class) that is required
for a flow is indicated by the DSCP value in the packets
for that flow. For identifying a flow, we can use packet
header fields such as source and destination IP address.
For describing the traffic parameters, however, it is not
immediately obvious what we should use. An obvious
but naive approach would be to ask for the expected
mean data rate of the flow. Using a mean data rate to
make a reservation does not account for the burstiness
of data traffic (ratio of peak rate to mean rate). Asking
for a reservation of the mean rate only would mean that
peak rate bursts might be subject to policing policy (e.g.
packets are dropped). Asking for a reservation of the
peak rate may be inefficient if the flow does not trans-
mit at the peak very often. The model used within the
IETF work recognizes the bursty nature of traffic and
uses the foken bucket to describe traffic characteristics.
The token bucket parameters are:

e 7, the token rate;

¢ b, the bucket size;

* p, the peak rate;

* m, the minimum policed unit (effective minimum
packet size);

* M, the maximum packet size.

End-to-End Metwork APL 2.g. 10Mb/s from process A to process B
GARA API e.3. 10Mb/s for flow & at router R {remote)

Grid Security Infrastructure | authenticate user (PKI-hased Grid Security Infr.)

LRAM &PI e.3. 10Mb/s for flow & at router R {(local)

Fesource Manager Admizsion control and reservation enforcement

Resource e.0. router

Fig. 3 The GARA architecture (source http://www-fp.
mcs.anl.gov/qos/gara.htm).

The key parameters are r, b and p, and the relationship
between them is explained with help of Figure 2.

The bucket starts full with b bytes. The bucket is
filled with tokens, which control the flow of data. If the
token has b/ tokens in it, then b/ bytes of data may be
transmitted. The bucket is then drained of b/ bytes of
tokens. This is the size of the burst that can be sent, at a
maximum rate (peak rate) p. Note that p is not necessar-
ily the maximum transmission rate of the network inter-
face. The bucket fills again at the rate r bytes per second.
At any time £, the amount of data sent, d is such that d <
rt+b.

This acts as a traffic control at the application end but
also allows the network to police the flow.

The parameters m and M are used by the network,
as required and we do not discuss these details here.
Typically, an application would set these values to cor-
respond to application-specific needs. Note that M is
considered to be a maximum, but packets smaller than
m can be transmitted, but will, for policing purposes, be
treated as being of size m.

3.1 GARA

GARA (2002) is popular among the Grid community as
an application-level interface to the network QoS ser-
vices. In fact, GARA is intended as a general purpose
platform allowing reservation of numerous resources,
including CPU cycles and disc space, not just network
capacity. GARA provided a simple and useful platform
for early adopters of the Grid who required reservation
capability. Figure 3 shows the GARA architecture. The
End-To-End API is a high-level API that is specific to a
particular resource, e.g. network capacity, CPU, etc. Below
that sits the main GARA API. This makes use of the
Grid Security Infrastructure (GSI) for authentication and
access control. A Local Resource Access Manager
(LRAM) provides controlled access to the local resource
(network, CPU, disc etc) via a Resource Manager (RM).

As used for network reservation, the End-to-End Net-
work Reservation (EENR) API is currently under devel-
opment to allow co-ordinated reservations across multi-
ple domains. This requires that a reservation be made in
each domain that the end-to-end network path will tra-
verse. This is not necessarily as restrictive as the RSVP
soft-state which requires each router along the network
path to maintain state. However, the existence of the
EENR will mean that the application need not contact
each domain and make the reservation itself. Neverthe-
less, a GARA system must exist at each domain bound-
ary and maintain state about all reservations.

The GARA API allows reservations to be created,
modified and cancelled including the ability to have
callbacks to notify the application of changes to any res-
ervations that have been made. A simple string-based
mechanism is used to specify the resource requirement.
The attributes that can be specified for the network
resource are:

* endpoint-a, endpoint-b — the IP addresses of the two
end-points of the reservation;

e Bandwidth — network capacity required, in Kb s™';

* Directionality — whether the reservation is uni-directional
or bi-directional.

Although GARA does not specifically need Globus (2002)
to function, invariably Globus is used. GARA has been
used to demonstrate the provision of reservations using
DIFFSERV (Sander et al., 2000).

3.2 PROBLEMS WITH GARA

GARA is not designed specifically to deal only with
network QoS control so it'has drawbacks. It allows res-
ervations to be made for CPU cycles and disc space as
well (for example). Such resources are fundamentally
very different to network capacity. Resources such as
CPU cycles and disc space are localized to certain end-
systems and reservations can be made at the remote end-
systems where such resources are located. Network capac-
ity is a-distributed resource requiring reservations at the
local and remote end-systems as well as the network
path between the local and remote systems.

So, the architecture requires GARA/Globus systems
to be present in each domain that the network path will
traverse. This is so that the some state about the reserva-
tion can be held on each of the domains. Also, the EENR
is still being developed so in a multiple domain scenario,
so it will be necessary to make explicit reservations along
each domain of a network path. This means discovering
the network path, locating the GARA server and then
requesting a reservation. The same is true when reserva-
tions have to be modified or deleted. Of course, if a res-

ervation is not deleted but not used (e.g. application is
terminated or application changes its operation), the res-
ervation remains in place and cannot be released for
other users, although GARA does require that reserva-
tions are bound to specific flows when the reservation is
required. Also, if the network paths changes, due to the
dynamic routing used for IP, then the reservation will
fail if the network path change is not detected and a new
reservation established along the new path. In this case,
the network flow might suffer even if the new path does
have capacity available for the given service-class, just
because the reservation state has not been established.
So, maintaining the reservations state is troublesome.
However, dynamic routing changes can be hard to deal
with in any circumstance not just with GARA.

The API and Resource Specification Language (RSL)
do not allow.the specification of the policing mecha-
nism for a request (e.g. drop, re-mark, re-shape). Also,
the RSL does not allow the port numbers of the flow to
be specified and they must be specified in a separate
binding stage using the APIL. The reason for doing this is
not clear, nor how this is to allow dynamic flows to be
established but the way this is reflected down to the
resource in a timely way. Additionally, it is not possible for
the user to specify the token bucket parameters described
above. A knowledgeable network applications programmer
can adjust the values of these parameters to tune the
end-to-end delay that the flow experiences across the
network. Of course, it is only useful to allow these addi-
tional parameters to be passed across the interface if
they can be communicated to and used by the underly-
ing resource (e.g. router) in a meaningful way.

Another problem that exists, but may be resolved with
the EENR, is that for a user to be able to contact all the
GARA servers along a network path to establish an end-
to-end reservation would require that user to have the
correct security and access control at each GARA server.
This could make management of users hard for large
numbers of users and dynamically changing populations.
Indeed, it is evident that this will not scale well for Grid
users and Internet-wide usage. For GARA, this has been
addressed in a model that allows inter-Bandwidth-Bro-
ker communication (Sander et al., 2001) but has yet to
see wide usage.

4 The Network Resource Scheduling
Entity

In the GRS project (2002) the authors are developing a
Network Resource Scheduling Entity (NRSE) to per-
form a similar job to GARA but specific to reserving
network capacity. We have used the excellent work in
GARA to inform our own work. We intend that as many
of the mechanisms that are we developing will be gen-

..

)]

A

NRSE

7 €)

NRSE

Fig. 4 The NRSE reservation model.

eral enough to be adopted for use for scheduling of other
resources, not just network capacity. The main features
planned for the NRSE are (in no particular order):

¢ allows reservations of network capacity across multi-
ple domains based on SLAs;

* allows decentralized state for the reservations and does
not require NRSEs to hold reservation state at all domain
boundaries, just at end-sites which are involved in the
reservation;

¢ allows creation, deletion and modification of reserva-
tions;

¢ allows configurable notifications from NRSEs to appli-
cations regarding violations to QoS;

¢ the flow identification can use most of the standard
IP, TCP and UDP header fields;

* QoS service class, directionality and policing can be
specified in the SLA,;

¢ the NRSE uses a localized polling mechanism for the
application holding the reservation (keep-alive) so that
resources can be reclaimed if an application fails;

¢ allows flexible scheduling of jobs to deadlines for
non-real-time service-requests (e.g. file transfers);

¢ can be configured with local policies that control the
operation of the system, with such local policies being
autonomously managed;

* has a hierarchical trust model so that security and
access control information remains as localized as
possible.

These features will be explained below, with further
discussion about general issues in multi-domain reser-
vation in a separate section.

4.1 GENERAL MODEL

We have seen with QoS reservations using INTSERV
and RSVP and also with GARA, that signalling and
per-flow state overhead can cause end-to-end QoS res-
ervation schemes to scale poor to large numbers of users
and multi-domain operation. We address this in our work
by storing the per-flow/per-application state only at the
end-sites that are involved in the communication. Ser-
vice requests can be dynamic or can be in advance. The
amount of capacity that is allocated to dynamic/advance
reservations at each end site is controlled by local pol-
icy, and configured by local network administrators.

In Figure 4, Network Resource Scheduling Entities
(NRSEs) at each end-site (each domain) are responsible
for receiving user service-requests, checking if the request
can be honoured site-to-site, and then issuing configuring
instructions to the local network elements in order to
provide the requested QoS. The arrows show the paths
for signalling messages. Host end-systems may send to
the NRSEs requests for a protected QoS allocation, in
the form of a local; service level agreement (SLA). NRSEs
then communicate to arrange “booking” of the request
at both ends of the communication path (2). At the appro-
priate times, the NRSEs in each domain issue local
instructions to program the requested QoS into the net-
work elements. The signalling protocols (1) and (2) are
application-level protocols, whilst (3) is a purely local
protocol.

After a reservation has been made, the NRSE can
inform the application if there are violations to the QoS,
including if the reservation has had to be aborted for
some reason.

Additionally, during the lifetime of the reservation, a
scheme of keep-alive polls can be used between the NRSE
and the application so that reservations are never left in
place if an application is no longer active. Potentially,
such polling could create a lot of traffic if used naively.
The use and frequency of these keep-alive polls is sub-
ject to local policy. We would expect these to have a
frequency of several 10s of seconds to several minutes.
This can be determined by local policy, e.g. if it is a rel-
atively large reservation, then we would poll frequently
so that the resource can be reclaimed quickly if the appli-
cation fails or stops. If the reservation is quite small, the
polling period will be less frequent. Also, as the polling
is in the local area, where network capacity is not nor-
mally so scarce, the polling traffic should not raise too
much cause for concern.

<id> <!-- this will be used to identify the
request, along with
user info -->
<timestamp>2002-10-02-10150000</timestamp>
<req no>42</req no> <!-- e.g. 32-bit ran-
- - dom number -->
</id>

<user info> <!-- administrative info -->
<user_name>Saleem Bhatti</user_ name>
<user_credentials>TBA<user credentials>
</user info>

4.2 THE SLA FROM THE USER

The SLA from the user contains some administrative
information. The <user_credentials> are a certificate or
other mechanism as specified by policy local to the
NRSE. It is not required that two NRSEs have the same
policy local to their site. Here we show a human user
but the certificate could easily identify an application
instead. The <timestamp> and <req_no> are local to the
NRSE. The whole of the SLA is also signed (according
to local policy) so that SLAs cannot be forged, modified
or replayed.

In our scheme, a domain is defined by the presence
of an NRSE. All resources that are controlled via that
NRSE form part of the same domain. Local policy will
dictate whether this is coincident with, for example, a
DNS domain, e.g. cs.ucl.ac.uk.

<time span> <!-- this is optional: if it is
not present then this
SLA should remain in place
until explicitly removed

<!-- one of start time and end time must
be present, but both also
OK -->

<start_ time>2002-11-01-0000</start_time>
<!-- nearest minute is
fine here for now -->

<end_time>2002-11-02-0000</end_time>
<!-- nearest minute is
fine here for now -->

</time_span>

Effectively, this SLA is between the user and the local
NRSE. The local NRSE establishes a logically separate
SLA between itself and the remote NRSE on behalf of
the user. This separation between the inter-domain and
intra-domain application-level relationships has some
advantages, as we shall discuss later. Also, in the local
scope, it provides a point at which local policy can be
enforced and cannot be by-passed by users.

The SLA also contains an indication of when in time
this reservation is to be executed; if <time_span> is not
present, then the SLA is to be executed immediately and
remain in place until it is explicitly removed. Only the
user who creates an SLA or a local administrator can
delete or modify the SLA.

The SLA also, of course contains information about
the reservation to be made, including the identity of the
flow, the traffic description of the flow, and the QoS
service-class required:

<filter>
<!-- could also have other level3 or
level4 header fields
but just stick with these for now
-=>
<src_ ipv4>128.16.10.1</src_ipv4> <!-- could
be name or address -->
<src_port>1284</src_port>
<dst ipv4>128.16.10.11</dst ipv4>
<dst_port>8080</dst port>
</filter>

<tspec>
<!-- all rates in Kbps -->
<peak_rate>1000</peak_rate>
<token rate>800</token rate>

<!-- all sizes in bytes -->

<bucket_size>2048</bucket_size>

<min_policed unit>48</min policed unit>

<max_pkt_size>1024</max_pkt_size>
</tspec>

<gos>
<quality>premium</quality> <!-- “premium”
mapped to EF, “low” mapped
to LBE —-->

<policing> <!-- for future, also “delay” or
“remark” are possible -->
<action>drop</action>
</policing>
<direction mode> <!-- {uni|bi}directional
(multicast for future) -->
bidirectional
</direction mode>
<flow type> <!-- real time or non real time -->
non_real time
</flow_ type>
</qgos>

4.3 NOTIFICATIONS

<notifications> <!-- this is optional -->

<notification sink> <!--multiple instances
of this are possible -->
<dst_ipvé4>morland.cs.ucl.ac.uk</dst ipv4>
<dst port>4242</dst port>
</notification_sink>

<start notification> <!-- this is optional -->
1 <!-- number of second before start of
reseravtion -->
</start notification>

<end notification> <!-- this is optional -->
1 <!-- number of seconds before end of
reservation -->

</end_notification>

<notification flags service gos viola-
tion="on" <!-- on or off -->
user_gos_violation="on"
abnormal termination="on"
administrator interven-
tion="on" />
</notifications>

The SLA also allows a user to specify if they would like
notifications sent from the NRSE under certain condi-
tions. The user can ask for a notification to be sent just
before the reservation starts and ends, as well as when
the reservation is terminated due to QoS violations, and
also when the SLA is modified or deleted through admin-
istrator intervention. Here, <notification_sink> specifies
where the notifications are to be sent and can have mul-
tiple instances. <start_notifcation> specifies the number
of seconds before the reservation actually starts that a
notification should be sent; <end_notification> is simi-
lar but gives “warning” of the end of the reservation.
This might be used, for example, by an application that
may run over its reservation time to try to modify the
reservation for a longer duration as required. It is also
useful for distributed applications because, although the
reservation may have been made for a certain time, fine-

grained clock synchronization would be required to ensure
that reservations and the start and end of data flows are
coordinated. The use of the <start_notification> and
<end_notification> allows well-defined synchronization
points without the need for a distributed clock synchroni-
zation mechanism. The notifications can be implemented
as callbacks or asynchronous events at the API and so
are easily integrated into the application.

4.4 COMMUNICATION BETWEEN NRSES

<id> <!-- this will be used to identify the
request, along with
user info -->
<timestamp>2002-10-02-10180000</timestamp>
<req no>19</req no> <!-='e.g. 32-bit ran-
dom number -=>
</id>

<user_info> <!-= administrative info - TBC -->
<user_name>nrs001€cs.ucl.ac.uk</user_name>
<user_credentials>TBA<user credentials>
</user_info>

Between NRSEs, and thus between domains, a trust rela-
tionship must be established. The administrative infor-
mation used here reflects the communication between
the NRSEs and does not identify individual users at the
end sites. This means that the trust relationship between
NRSEs is independent of the trust relationship between
local users and their respective local NRSE. For the
SLA above, when the information it contains is sent to
the remote NRSE to check that he reservation is possi-
ble, the only real difference will be the identity and cre-
dentials.

Note that, here, the value of <id> differs from the
user-side SLA as does the <user_name>. This is the
local NRSE sending a request, on behalf of the user, to
the remote NRSE. So trust relationships should be more
manageable than when end-users have to contact remote-
sites (or intermediate sites) directly. It is left for the local
administrators of each domain/NRSE to agree the nature
of the credentials used between them to establish trust,
and this is in keeping with the peer-to-peer model of the
interaction between NRSEs.

When QoS violations or administrator intervention
occurs, notifications are sent between NRSEs involved
in the reservation.

4.5 THE NRSE INTERNAL
ARCHITECTURE

The NRSE itself has similar functional blocks to GARA
(see Figure 5). The NRS-A is the application-facing
interface and protocol, allowing SLAs to be created,

user (human
4

or application)
3

: NRSE
) NRS-A
local <4 “— Scheduling Control ~ [*—> NRSP ket other
management| | NRS-M i NRSEs
N NRS-L < RD

v
network elements
(e.g. routers, switches, etc.)

Fig. 5 The NRSE internal architecture.

deleted and modified, to send notifications and to allow
keep-alive polling. The NRS-P is the peer-entity facing
interface and protocol. This allows peer-to-peer com-
munication between NRSEs and allows (via the NRS-L)
management of the trust relationships between NRSE
peers.

The NRS-L is the local interface to resources, allowing,
for example, configuration information for new flows to
be passed to routers. This will be specific to the resource,
e.g. with Cisco routers, one would expect to generate
some CiscolOS commands to control and configure the
router in response to SLA requests. It is also used to
monitor the progress of the flow and detect any QoS
violations. Here, we will be re-using mechanisms being
developed in other projects, such as DataTAG (2002),
EU-DataGrid (2002), NetLogger (2002) and GridProbe
(2002).

The RD function is resource discovery, allowing
NRSEs to find each other. Here again, we intend to
re-use mechanisms developed elsewhere. We are likely
to provide mechanisms to allow multiple resource dis-
covery protocols to be used as there is no consensus on
how to provide service location and discovery within a

Grid environment. So, various mechanisms could be used
including, directory services ala Globus, UDDI (2002),
the DNS (a similar mechanism to allow Internet mail-
servers to be located) and the IETF Service Location
Protocol (Guttman et al., 1999). The RD module could
also be used by the NRSE to discover local network
resources, which would need to be configured for pro-
viding QoS through localized resource discovery mech-
anisms.

The NRS-M is the local management interface allow-
ing administrators to access to all aspects of the NRSE
operation and configuration. End-sites typically employ
their own local administrative controls. In order to allow
users to have common services across a multi-domain
communication path, there will need to be some com-
mon semantics at the end-sites in the offered QoS ser-
vices. However, we should respect the autonomy of the
local systems and allow them to impose any local con-
trols they see fit on how those QoS services should be
used, e.g. allocation of protected capacity (EF) versus
best-effort capacity. So, the QoS control system must be
manageable through local interfaces with local policy.

data rate

start time

end time

Non-real-time request

data rate

start time

end time

e area NG

Real-time request |_—— — fixed

! T

start time end time

Fig. 6 Real-time and non-real-time jobs.

We will explain the role of the Scheduling Control
separately, below.

4.6 SCHEDULING CONTROL AND
RESERVATION TYPE

The Scheduling Control shown in Figure 5 is initially
configured, subject to local policy and constraints, to
allow some capacity allocation for both real-time and
non-real time service requests. In both cases, a protected
service is required, but there are different semantics to
the booking. As shown in Figure 6, a real-time SLA
request represents a booking for a fixed data-rate with
specific start and end times, e.g. for a video call. A
non-real time SLA request is for a protected and fixed
data transfer capacity; the start time and end time are
fixed constraints but the Scheduling Control is permit-
ted, within these time constraints, to negotiate with the
user as to how the request is actually fulfilled, e.g. for a
file transfer for the distributed application example above.
This allows some flexibility in how the non-real-time
requests are scheduled within the protected service
provisioning, allowing better distribution of service
requests and more even use of the QoS services. The

user can indicate the reservation type in the SLA —
“real-time” or “non-real-time”.

4.7 USE OF DIFFSERV

Currently, the architecture assumes that DIFFSERV is
being used. Specifically, we are currently aiming to
allow reservations for EF capacity. We enable decen-
tralized reservations with per-flow state held only at the
edge sites by exploiting the DIFFSERYV architecture with
the use of SLAs between service provider and customers
at the edges, but also the chain of SLAs that exist in the
provisioning to the core within a DIFFSERYV scenario.
There are some difficulties in certain multi-domain sce-
narios (explained later) but the assumption is that a pro-
vider will not sell downstream a service that they cannot
provide from their own resourcing, i.e. the services they
have purchased upstream. How this is achieved within a
particular service provider’s network is a decision for that
provider. For example, a pilot, nationwide DIFFSERV
service currently being used within UKERNA uses a con-
servative “sum of peak rates” policy for admission con-
trol. With such an assumption, the job of the NRSEs
becomes to micro-manage the EF service for a domain,

i.e. decide which packets originating from end-systems
within that domain get marked as being EF, based on
the SLA service-requests that are received. This means
that the QoS state information regarding a flow need
only be maintained at the edge-sites as this is the only
place it is actually required. Indeed, for now, we may
make a stronger assumption (at least in the current
usage scenarios of research networks); that the core is
over-provisioned.

4.8 BENEFITS TO GRID USERS

The main benefit that could be seen for Grid users is
that of a “one-stop-shop” approach to making network
reservations. When a user requires network capacity, even
in a multi-domain scenario, as long as users have estab-
lished a trust relationship within their local domain, they
are then permitted, subject to local policy, to make net-
work resource reservations for their applications based
on SLA requests made to local entities, without requir-
ing knowledge of the administrative details and trust
relationships that must be set up with the remote sites.
Taking the examples introduced earlier — the video con-
ference (e.g. for example using AccessGrid) and the dis-
tributed application — we can show how the use of a QoS
reservation service implemented using NRSE approach
benefits Grid users.

For the video conference between two sites capacity
could be reserved, separately, for the each-of the media
streams — audio and video. Two separate SLAs would be
required, one for the audio flow and one for the video
flow. A bi-directional reservation could be set-up by one
end of the conference or two separate uni-directional res-
ervations could be set up as required. These can be
adjusted independently, via a single point of access (the
NRSE), depending on the audio and video quality con-
sidered appropriate for the conference.

The other example given at the start of this paper was
a high-speed data transfer. Consider a situation where a
Grid user wishes data to be generated at P from a spe-
cific application then to be transferred to Q for process-
ing and then to be transferred to R for visualization,
displaying the result on his/her on terminal at S. The
user may, of course, have to reserve computational and
storage resources at P, Q, R and S in order to complete
his/her task. The network resources required can then be
reserved, independently, once the reservations for these
other resources have been confirmed, specifying data
transfer deadlines between P, Q, R and S based on the
timing of the reservations for the other resources at
these end-points.

Note that in both these scenarios, the co-ordination of
the reservations of the various resources is considered to
be an application-level issue. Indeed, we might consider

that such co-ordinated, multi-domain, multi-resource
scheduling could (and should) be something that is han-
dled outside of the application. This would then become
the function of a middleware substrate to co-ordinate
activities between, say, the NRSE and other resource
scheduling mechanisms. However, it is also evident that,
with a very distributed application, such distributed sched-
uling co-ordination activities could become quite com-
plex. So, expressing the requirements, dependencies and
relationships between resources policies and SLAs in
such scenarios could also be complex (and such issues
are currently being researched within the Grid commu-

nity).

4.9 CURRENT STATUS

The work onthe NRSE is ongoing. Currently, we are
investigating the provision of micro-management of
access to a DIFFSERV EF service. Effectively, the NRSEs
receive SLA requests containing a packet filter specifi-
cation and a token bucket specification. A peer-to-peer
relationship between NRSEs at end-sites is used to
allow negotiation of the reservation for user requests
and when the request is agreed, the state is stored at
each end-site by the NRSEs — the core network incurs
no extra overhead for state storage other than that which
is required for normal DIFFSERYV EF operation. There
is some additional signalling between the NRSEs at each
site, but this is application-level traffic and does not
need to be inspected/checked by routers. The test-bed is
being built on RedHat Linux 7.2 and TC (see http:/
diffserv.sourceforge.net/). The implementation is in Java
and will use BEEP (Rose, 2001) for the communication
with and between NRSEs. The work will be realized in
four phases, starting with a single-domain, homogeneous
scenario and extending to a multi-domain, heterogeneous
scenario. There are a number of options being investi-
gated for resource discovery. There are plans to offer an
Open Grid Services Architecture (OGSA) interface (see
http://www.globus.org/ogsa/) to this service towards the
end of the project (Q2/2004).

The source and documentation will be made freely
available to the research community from the GRS pro-
ject Web page at http://www.cs.ucl.ac.uk/research/grs/
(Q2/2004) as and when stable releases become avail-
able.

5 Multi-domain issues in QoS reservation

The biggest problem that we see for any reservation sys-
tem is that of dealing with reservations across multiple
domains. Here, we must coordinate resource usage across
multiple administrative boundaries. This is eased some-
what with the use of DIFFSERV and the NRSE holding

MAN

Provider 1 core

MAN

MAN

site networks

Fig. 7 A multi-domain scenario.

state only at the edges of the network. However, there
are still some technical problems, which we highlight
with examples from our ongoing involvement in various
other collaborative projects.

5.1 MULTI-DOMAIN EF SERVICE
CAPACITY

In Figure 7 we see a simplified version of the scenario
currently being piloted in the UK by UKERNA. Uni-
versities and research institutes typically connect to the
UKERNA core via Metropolitan Area Networks (MANSs).
These MANSs operate autonomously (as do indeed the
site networks) and will usually also have additional com-
mercial customers connecting to other core providers.
Where site networks share the same MAN (e.g. A and
B), local routing can be arranged and the EF provision
is via a single provider. So, the model for the NRSE
operation described above, where the NRSEs simply
micro-manage their respective ends of the EF service,
will hold. However, when the EF service is required
between sites that are on separate MANS, then there are
several problems (e.g. between A and C).

Firstly, let us say that the MAN connecting A and B
has provisioned 10 Mb s~ EF services to each of A and
B. In principle, it should then be possible to get 10Mb/s
EF services from A to B. Now let us say that site C also
has a 10 Mb s™' EF service provided by its MAN. Using
the NRSE model naively, we might expect to get 10 Mb
s™' EF between A and C. In fact, it may be that the con-
nection from A’s MAN to the core has only a 5 Mb s
EF service and the MAN connecting C has only 2 Mb
s EF provisioned to the core. In this case, it is not suf-
ficient simply to use the NRSE model described above
and rely on the edge systems alone to make the reserva-
tion. There has to be some mechanism of discovering
the EF capability along the entire path from A to C. In
fact, we need to find the EF provisioning bottleneck.
This problem is compounded when you consider inter-
national connectivity, where one national core provider
would have peering arrangements with another national
core provider.

GARA avoids this problem by insisting the reserva-
tions be made in each domain. However, we wish to
avoid this for the reasons of poor scaling and difficulties in
management discussed earlier. It may be sufficient to have
resource management entities in each domain that maintain

information about the EF resource pool on ingress/egress
links as a whole. That is, when a reservation is made,
there is no need to maintain per-flow state, just to record
how much of the available pool is currently in use and
how much is available. When a reservation is requested,
the NRSE must use its resource discovery mechanisms
to query the resource pools and discover if the reserva-
tion is possible or not.

5.2 ADVANCED RESERVATIONS

There are still problems here with advanced reserva-
tions — reservations made some time before they are
actually needed. At the time the service request is made,
there is no way of knowing how many other advance
reservations may be competing for the same bottleneck
resource pool. We are currently investigating the use of
resource pools via a combination of administrative con-
trols and dynamic signalling. This will try to address the
same problem as the GARA inter-Bandwidth-Broker com-
munication (Sander et al., 2001), but will try to prevent
signalling state being stored within the core as much as
possible, with signalling traffic for reservation setup orig-
inating from the edge sites (local and remote) only and
not propagating further than is required in order to update
the appropriate resource pool.

5.3 A PROPOSAL FOR AN INTERIM
SOLUTION

At the time of writing, even without these more com-
plex inter-domain issues being considered, there would
be some increase in utility to Grid users simply by
employing resource reservation-mechanisms (GARA or
the NRSE) at the edge sites. Let us consider that, for the
relatively small number of “heavy duty” (high capacity
and real-time) Grid users on the research networks, we
can assume that the core is over-provisioned and that
the bottlenecks are at the links that connect the site net-
works to their service providers. So, managing only these
bottleneck links would allow some increase in the QoS
control that is offered to traffic. Such a system is easy to
implement, requiring only the end-sites to deploy the
correct software. In the UKERNA scenario discussed
above (Figure 5), the situation is helped further in that
the core network does indeed recognize the EF codepoint
and provides correct packet handling as well as being
over-provisioned. However, we expect that within the
next 12-24 months, many of these heavy duty users
(certainly the researchers at our respective institutions)
will require such network QoS control mechanisms.

5.4 DIFFSERV CODEPOINT VALUES

Other issues for DIFFSERYV provisioning include use of
DIFFSERV codepoint (DSCP) values across domains.
Whilst some DSCP values are agreed (e.g. EF and LBE),
many people use other values in the DSCP field in the
IP header. This may be proprietary usage or usage of a
historic Type of Service (ToS) mechanism for IP. This
causes problems at administrative boundaries as the DCSP
values have to be mapped, i.e. the packet is re-marked.
This may be done unilaterally by the provider receiving
the packets and so the end-to-end service is disrupted if
the service semantics are not maintained. This remains
an issue for further study.

6 Summary

High performance distributed applications may need to
use network QoS control mechanisms to guarantee that
data are available at remote systems when required for
processing. In order to do this, mechanisms are required
within the network to provide QoS services, but also we
need application-level mechanisms in order to allow
applications to make QoS service requests as well as
manage and monitor network usage during the course of
the operation of the application. For example, a distrib-
uted application may have made reservations of CPU
and disk space at remote sites, and so wishes to ensure
that the network capacity is available to provide the data
for the use of these resources at the appropriate times.

The GARA system is widely used and offers some
vital core functionally for providing network resource
reservation (as well as reservation of other resources
such as CPU and disc). However, we see that it has
some limitations with respect to managing reservations
especially in a multi-domain scenario.

We have given some details of work-in-progress within
the GRS project, which seeks to provide a network QoS
reservation system that attempts to overcome some of the
drawbacks of GARA as well as allowing decentralized
state for the reservations, configurable notifications to
applications regarding violations to QoS and administra-
tor intervention, localized management mechanisms and
flexible scheduling of jobs to deadlines for non-real-time
service-requests (e.g. file transfers).

Multi-domain issues, especially dealing with infor-
mation about service provisioning and usage along a
multi-domain network path, remain a major issue, which
we are currently considering in our work.

AUTHOR BIOGRAPHIES

Dr Saleem N. Bhatti is Lecturer in the Department of
Computer Science and is the coordinator of the UCL

NETSYS Group (http://www.netsys.ucl.ac.uk/). He is
involved in several Grid/e-Science projects at UCL,
specifically in the area of networked systems. His work
has covered a wide range of networked systems topics,
including multi-service networking, tele-working, multicast,
network and systems management, network protocol
design, network and application security, IPv6 and QoS
adaptability support for Internet applications and adap-
tive systems.

Dr Spren-Aksel Sorensen is a Senior Lecturer in the
Department of Computer Science at UCL. He works in
the fields of parallel, distributed, large-scale, modelling
and simulation. His current interests relate to autono-
mous, migrating processes in large-scale Grid and clus-
ter environments. He is Co-I on the UK eProtein project
(official title: A Distributed Pipeline for Structure-based
Proteome Annotation using Grid Technology), a BBSRC
flagship project with partners from UCL, Imperial Col-
lege and EBI. Prior activities have included develop-
ment of commercial LAN products and CORBA-based
service networks.

Professor Peter Clarke is Professor of Physics at UCL
and is involved in several Grid/e-Science project and ini-
tiatives. He is also Chair of the PPNCG (Particle Phys-
ics Network Coordinating Group) and Deputy Chair of
the UK Grid Network Team (GNT). He is a member. of
the Global Grid Forum Governing Body (the Grid Forum
Steering Group) and Director of the Data Area for the
GGF. Prof. Clarke is also WP7 Deputy Chair (Networking)
in the EU-DataGRID project and involved with network-
ing activities in the DataTAG project.

Professor Jon Crowcroft is Professor of Communica-
tion Systems at the Cambridge Computer Laboratory
and has been involved in many collaborative projects in
networked and distributed systems. He is a Fellow of
the Royal Academy of Engineering, a Fellow of the IEE
and a Fellow of the ACM. He is a member of the UK
Grid Network Team (GNT), the Technical Advisory
Group (TAG) and is also on the on the UK EPSRC
Technical Opportunities Panel (TOP). He has served on
the programme committees of various conferences and
workshops including ACM SIGCOMM, IWQoS, QoFIS,
NetGames and INFOCOM; on the Internet Architecture
Board (IAB); and is currently involved with the Grid
High Performance Networking Research Group of the
GGF.

NOTES

' Unfortunately, the literature contains many definitions of what

constitutes a flow. We have chosen a definition here that is

suitable for this discussion, but is also applicable to the IETF
DIFFSERV QoS architecture discussed later.

It is assumed that routes are symmetrical and relatively sta-
ble, but this is not always true in the wide area (Paxon
1997).

REFERENCES

AccessGrid. 2002. http://www-fp.mcs.anl.gov/fl/accessgrid/.

AQUILA. 1999. http://www.ist-aquila.org/.

Bhatti, S. N. 1999. IP and Integrated Services. In R. Osso, ed.,
Handbook of Communications Technologies: The Next
Decade, pp. 217-238, CRC Press, Boca Raton, FL.

Bhatti, S. N., and Crowcroft, J. 2002. QoS Sensitive Flows:
Issues in IP Packet Handling. /IEEE Internet Computing,
4(4):48-57.

Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z., and
Weiss, W. 1998. An Architecture for Differentiated Ser-
vices, RFC2475, IETF DIFFSERV WG.

Braden, R., Zhang, L., Berson, S., Herzog, S., and Jamin, S.
1997. Resource ReSerVation Protocol (RSVP) — Version
1 Functional Specification, RFC2205, IETF INTSERV
WG.

Clark, D. D., Shenker, S., and Zhang, L. 1992. Supporting
Real-Time Applications in an Integrated Services Packet
Network: Architecture and Mechanism. In Proceedings
of ACM SIGCOMM’92, pp14-26.

DataTAG. 2002. http://datatag.web.cern.ch/datatag/.

Davie, B., Charny, A., Bennett, J. C. R, Benson, K., Le
Boudec, J-V., Courtney, W., Davery, S., Firoiu, V., and
Staliadis, D. 2002. An Expedited Forwarding PHB (Per-
Hop Behavior), RFC3246, IETF DIFFSERV WG.

EU-DataGrid. 2002. http://eu-datagrid.web.cern.ch/eu-datagrid/.

GARA (General-purpose Architecture for Reservation and
Allocation). 2002. http://www-fp.mcs.anl.gov/qos/.

Globus. 2002. http://www.globus.org/.

GridProbe. 2002. http://umbriel.dcs.gla.ac.uk/NeSC/action/pro-
jects/ project_action.cfm?title=63.

Grid Resource Scheduling (GRS). 2002. http://www.cs.ucl.ac.
uk/research/grs/.

Guttman, E., Perkins, C., Veizades, J., and Day, M. 1999. Ser-
vice Location Protocol, Version 2.RFC2608, IETF.
Heinanen, J., Baker, F., Weiss, W., and Wroclawski, J. 1999.
An Assured Forwarding PHB Group, RFC2597, IETF

DIFFSERV WG.

Mankin, A., Baker, F., Braden, B., Bradner, S., O’Dell, M.,
Romanow, A., Weinrib, A., and Zhang, L. 1997. Resource
ReSerVation Protocol (RSVP) — Version 1 Applicability
Statement Some Guidelines on Deployment, RFC2208,
IETF INTSERV WG.

Managed Bandwidth — Next Generation (MB-NG). 2002. http://
www.mb-ng.net/.

MESCAL. 2002. http://www.mescal.org/.

NetLogger. 2002. http://www-didc.1bl.gov/NetLogger/.

Paxson, V. 1997. End-to-End Routing Behavior in the Internet.
IEEE/ACM Transactions on Networking, 5(5):601-615.

Qbone. 2002. http://gbone.internet2.edu/.

Rose, M. 2001. The Blocks Extensible Exchange Protocol
Core, RFC3080, IETF.

Sander, V., Foster, 1., Roy, A., and Walker, L. 2000. A Differ-
entiated Services Implementation for High Performance
TCP Flows. In Proceedings of INWQoS’2000.

Sander, V., Adamson, W. A., Foster, I., and Roy, A. 2001.
End-to-End Provision of Policy Information for Network
QoS. http://gbone.internet2.edu/bb/BB-to-BB_Security_
Model.pdf.

Shalunov, S., and Teitelbaum, B. 2001. QBone Scavenger
Service (QBSS) Definition, Internet2 Technical Report.
http://qos.internet2.edu/wg/wg-documents/qbss-definition.
txt.

Shenker, S., Partridge, C., and Guerin, R. 1997. Specification
of Guaranteed Quality of Service, RFC2212, IETF
INTSERV WG.

Shenker, S., and Wroclawski J. 1997a. General Characterization
Parameters for Integrated Service Network Elements,
RFC2215, IETF INTSERV WG.

Shenker, S., and Wroclawski, J. 1997b, Network Element Ser-
vice Specification Template, RFC2216, IETF INTSERV
WG.

TEQUILA. 2002. http://www.ist-tequila.org/.

Task Force — Next Generation Networking (TF-NGN). 2002.
http://www.terena.nl/tech/task-forces/tf-ngn/.

UDDI. 2002. http://www.uddi.org/.

Wolf, L., Gridwodz, C., and Steinmetz, R. 1997. Multimedia
Communication. Proceedings of the IEEE, 85(12):1915-1933.

Wroclawski, J. 1997a. Specification of the Controlled-Load
Network Element Service, RFC2211, IETF INTSERV
WG.

Wroclawski, J. 1997b. The Use of RSVP with IETF Inte-
grated Services, RFC2210, IETF INTSERV WG.

