
CASPEr: Containment-Aware
Security for Pervasive Computing

Environments

Boris Dragovic

St John’s College

University of Cambridge

A thesis submitted for the degree of

Doctor of Philosophy

March, 2006

Figures/UnivShield.eps

2

I dedicate this thesis to all those out there who are able and deserving but
never get a chance.

Acknowledgements

Without the unreserved love and support from my family I would never be where I am
now...

There are no words that can express my gratitude to my supervisor, Prof Jon Crowcroft,
for all his support provided during the PhD and for admitting me in the first place. I am
also thankful for all those blitz idea exchanges which regularly left me more confused than
I used to be previously. I am just about now starting to appreciate them...

From a different perspective, I thank Dr Mark Nicholls, my College tutor who always
endeavoured to fulfil all my personal needs. He contributed greatly to the feeling that the
College cared about myself to a great extent.

A number of people, to whom I am indebted, have invested considerable time in reviewing
this thesis in various stages of its creation. These are: Calicrates Policroniades, Martin
Vechev, Rashid Mehmood, Julian Chesterfield, Anil Madhavapeddy, Evangelos Kotsovinos,
Russel Ross and Meng How Lim. During my PhD I have collaborated with a number of
people from the Computer Lab and wider — I am thankful to them for sharing ideas,
knowledge and experience with me. Special thanks for thesis related idea exchanges to
Calicrates, Pablo Vidales, Javier Baliosian and David Richerby. Last but not the least, I
thank Petya Blumbach for all her efforts to contribute some style to my written English.

The time spent in Cambridge would have been substantially less pleasurable had there not
been sincere friends around. Their spirit and support was invaluable. Thank you Cali and
Pablo for getting me so badly hooked on salsa, teaching me to love hot food, demonstrating
me the intricacies of tequila drinking, all those moments in between and, mostly, for putting
up with me all this time — it must have been a nightmare! To Martin, who I have met
slightly later, I thank for all those inspiring chats and chalga gym sessions. Also, thank you
amigos for numerous other things I should really not mention here... for the lack of space,
of course.

I am grateful to Jovana and Dusanka for being there when I needed them the most and
when it mattered the most.

Last but not the least, I would have never arrived at this point in the PhD path without
generous financial support from St John’s College Benefactors’ Scholarship, Overseas Re-
search Scholarship (ORS), Cambridge Overseas Trust and Cambridge Philosophical Society.

Summary

Over a decade after Mark Weiser defined and inaugurated the study of Ubiquitous
Computing, its elusive shapes are starting to appear through the proliferation of
mobile, embedded computing and wireless communications technologies. The
paradigm shift away from classical distributed computing not only gives rise to
novel security challenges, but also causes qualitative shifts in the attributes upon
which many existing security models rely. The fluidity of data movement, for ex-
ample, leads to the dissolution of the notion of the secure perimeter. With it goes
the ability to predict the range contexts in which a piece of sensitive information
may exist over time and, thus, the threat models that it may experience.

In this thesis, we identify a class of information confidentiality threats that arise
as a side-effect of otherwise legitimate information management and handling
procedures as employed in a particular context. They occur unwittingly on the
part of the information custodian. We refer to them as information exposure
threats and present their characterisation and systematisation. Current security
engineering practises, when applied to the threats, result in a static solution to
a dynamic problem, and often in an indiscriminate manner. Thus, they turn out
to have an overly oppressive effect on information availability, as well as on wider
system usability, most of the time. This seriously undermines some of the prime
qualities of the ubiquitous computing vision and represents a hurdle on the path
to its full embracement.

We offer a novel paradigm, CASPEr, that aims at continuous and adaptive provi-
sion of adequate protection in the face of unpredictably changing information ex-
posure threat models whilst making an active effort to minimise its intrusiveness.
As a basis for CASPEr, we develop a data-centric model of the world, structured
around the concept of a container as a protective enclosure. The model allows
for fine-grained reasoning about threat effects and facilitates the placement of
protection toward the threatened assets (data) — confining its impact. We in-
troduce the concept of a level of exposure and develop a dynamic programming
algorithm which, together, provide for an optimal threat mitigation strategy dis-
covery. CASPEr champions the utilisation of standard information handling and
management procedures for threat mitigation, adding another dimension to the
ability to sustain information availability and system usability. We also show
how the full spatial and temporal continuity in data protection is achieved. The

contribution encompasses µCASPEr, a policy-based specialisation of CASPEr
and an adaptation of its architecture for highly-constrained platforms.

The feasibility of CASPEr deployment is discussed theoretically, at the archi-
tectural and the conceptual levels of abstraction. The overall flexibility of the
CASPEr model is shown to account for the envisaged heterogeneity of the tar-
get platforms. CASPEr facilitates incremental deployment, with graceful ser-
vice degradation in constrained environments. Moreover, both CASPEr and
µCASPEr have been designed to fully support operational autonomy of the host-
ing devices. We show, by means of a qualitative comparison, how CASPEr is
complementary to the major information security paradigms, filling a gap in the
big picture not previously addressed in a systematic and adequate manner. With
the µCASPEr evaluation we demonstrate the applicability of CASPEr concepts
even on the thinnest of the ubiquitous computing platforms.

Declaration

I hereby declare that this dissertation is not substantially the same as any I
have submitted for a degree or diploma or any other qualification at any other
university. Further, no part of the dissertation has already been or is being
concurrently submitted for any such degree, diploma or other qualification.

In Chapter 5 we present a policy based system that instantiates a number of con-
cepts presented in the thesis. The policy model utilised originates from [BS04].
The manner in which the model is deployed, including the policy structuring,
to address information exposure threats within the constraints of the target set-
ting and with the resulting characteristics is completely my own contribution.
The system architecture presented in Section 5.3 resembles that presented in
[VBS+05]. The resemblance, however, is to the extent required by the common
policy model solely, as indicated explicitly in the chapter text. Otherwise, the
identified architecture components, their individual roles as well as the specifi-
cation of the related processes are fully my own contribution. This is further
supported and acknowledged as presented in [DBVC06] 1 — a publication result-
ing from collaboration among the authors.

Other chapters are solely my own work even if they share ideas developed jointly
with my supervisor. The section ”Author Publications” lists all publications co-
authored by myself during the course of this PhD course, sharing ideas with this
thesis and otherwise, along with the full authorships.

This dissertation does not exceed sixty thousand words, including tables and
footnotes, and it does not contain more than one hundred and fifty figures.

Boris Dragovic, March 2006.

1The same paper was initially submitted to ESORICS 2005, with the submission deadline of 01/04/05,
but was rejected on the grounds of being outside the target scope.

List of Publications

The following list contains references to all the publications that I co-authored
during the course of this PhD course.

Referred Publications

• B. Dragovic and C. Policroniades. Information SeeSaw: Availability vs.
Security Management in the UbiComp World. In Proceedings of the 2nd

VLDB Workshop on Secure Data Management (SDM ’05), Lecture Notes
in Computer Science, vol. 3674, pp. 200–216. Springer-Verlag, Berlin
Heidelberg, Germany, 2005.

• B. Dragovic and J. Crowcroft. Containment: from Context Awareness to
Contextual Effects Awareness. Presented at the 2nd ICPS International
Workshop on Software Aspects of Context (IWSAC ’05), Santorini, Greece,
July 2004.

• J. Scott and B. Dragovic. Audio Location: Accurate Low-Cost Location
Sensing. In Proceedings of the 3rd International Conference on Pervasive
Computing (Pervasive ’05), Lecture Notes in Computer Science, vol. 3468,
pp. 1–18. Springer-Verlag, Berlin Heidelberg, Germany, 2005.

• B. Dragovic and J. Crowcroft. Information Exposure Control through Data
Manipulation for Ubiquitous Computing. In Proceedings of the 2004 Work-
shop on New Security Paradigms (NSPW ’04), pp. 57–64. ACM Press, New
York, NY, USA, 2005.

• B. Dragovic and J. Crowcroft. Context-Adaptive Information Security for
UbiComp Environments. Presented at the 2nd UK-UbiNet Workshop: Se-
curity, Trust, Privacy and Theory for Ubiquitous Computing, Cambridge,
UK, May 2004.

• A. Fernandes, E. Kotsovinos, S. Ostring and B. Dragovic. Pinocchio: Incen-
tives for Honest Participation in Distributed Trust Management. In Proceed-
ings of the 2nd International Conference on Trust Management (iTrust ’04),
Lecture Notes in Computer Science, vol. 2995, pp. 63–77. Springer-Verlag,
Berlin Heidelberd, Germany, 2004.

• B. Dragovic. Knowing Your Place: Containing Ubiquitous Systems. Pre-
sented at 1st UbiComp Workshop on Location Aware Computing, UbiComp 2003,
Seattle, WA, USA, October 2003.

• B. Dragovic and J. Crowcroft. Containment: Knowing Your Ubiquitous Sys-
tems’ Limitations. Poster and extended abstract in Adjunct Proceedings of
the 4th International Conference on Ubiquitous Computing (UbiComp 2003),
Seattle, WA, USA, October 2003.

• R. Chakravorty, P. Vidales, B. Dragovic, C. Policroniades, and L. Patanapong-
pibul. Ubiquity in Diversity – A Network-Centric Approach. Poster and ex-
tended abstract in Adjunct Proceedings of the 4th International Conference
on Ubiquitous Computing (UbiComp 2003), Seattle, WA, USA, October
2003.

• P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebar,
I. Pratt and A. Warfield. Xen and the Art of Virtualization. In Proceedings
of the ACM Symposium on Operating Systems Principles (SOSP ’03), pp.
164–177. ACM Press, New York, NY, USA, 2003.

• B.Dragovic, E. Kotsovinos, S.Hand and P. Pietzuch. XenoTrust: Event-
based Distributed Trust Management. In Proceedings of the 2nd IEEE In-
ternational Workshop on Trust and Privacy in Digital Business (DEXA
TrustBuss), pp. 410–414.

• B. Dragovic, S. Hand, T. Harris, E. Kotsovinos and A. Twigg. Managing
Trust and Reputation in the XenoServer Open Platform. In Proceedings of
the 1st International Conference on Trust Management (iTrust ’03), Lecture
Notes in Computer Science, vol. 2692, pp. 59–74. Springer-Verlag, Berlin
Heidelberd, Germany, 2003.

Technical Reports

• P.R. Barham, B. Dragovic, K.A. Fraser, S.M. Hand, T.L. Harris, A.C. Ho,
E. Kotsovinos, A.V.S. Madhavapeddy, R. Neugebauer, I.A. Pratt and A.K.
Warfield. Xen 2002. Technical Report 553, University of Cambridge Com-
puter Laboratory, January 2003.

Submitted for Publication

• B. Dragovic, J. Baliosian, P. Vidales and J. Crowcroft. Autonomic Sys-
tem for Context Adaptive Security in Ubiquitous Computing Environments.
Submitted to Elsevier Journal on Pervasive and Mobile Computing, April
2006.

Glossary

ACL Access Control List
AES Advanced Encryption Standard
CASPEr Containment Aware Security for Pervasive Computing Environments
CC Common Criteria
CCL Client Connectivity Layer
CML Context Modelling Layer
CMM Containment Model Manager
CR Conflict Resolver
CS Control Set
DAC Discretionary Access Control
DCON Information Dissemination Control
DRM Digital Rights Management
DT Deterministic Transducer
DVD-CSS Digital Video Disc Content Scrambling System
ECA Event-Condition-Action
EM Enforcement Manager
ER External Repository
FSA Finite State Automata
FSM Finite State Machine
FST Finite State Transducer
GUI Graphical User Interface
HCI Human Computer Interaction
IT Information Technology
LoE Level of Exposure
MAC Mandatory Access Control
MLS Multi-Level Secure
MP Message Push
OCD Optimal Cover Discovery
PBT Payment-Based Type
PC Personal Computer
PCIM Policy Core Information Model

PDA Personal Digital Assistant
PDM Policy Deployment Module
PDP Policy Decision Point
PEM Policy Evaluation Master
PFT Payment-Free Type
PM Policy Manager
PSI Policy Specification Interface
RBAC Role-Based Access Control
TCB Trusted Computing Base
TF Tautness Function
TFFST Finite State Transducer with Tautness Functions and Identities
UCON Information Usage Control
VM Virtual Machine
XML Extensible Markup Language
ZIA Zero Interaction Authentication

x

Contents

Acknowledgements iii

Summary v

Declaration vi

List of Publications viii

Glossary x

1 Introduction 1
1.1 Motivating Scenarios . 2
1.2 Information Exposure — What to Watch Out for 4
1.3 The Challenges . 7
1.4 Thesis Contribution . 9
1.5 Thesis Outline . 10

2 Background 13
2.1 Chapter Overview . 13
2.2 Context and Context-Aware Computing . 14

2.2.1 Defining Context . 15
2.2.2 Context-Aware Computing . 16

2.3 Autonomic Computing . 17
2.4 Ubiquitous Computing and Security . 19

2.4.1 The Challenges . 19
2.4.2 The Security Properties . 21

2.5 Information Flow Control . 23
2.5.1 Classifications, Clearances and Security Labels 23
2.5.2 The Foundations: Bell-LaPadula . 24
2.5.3 MLS System Examples . 25
2.5.4 The Lattice Model Formalisation and Extensions 26

2.6 Information Dissemination Control . 27

xi

CONTENTS

2.6.1 Shapes of DCON . 27
2.6.2 DCON Architectures . 28

2.7 Access Control . 31
2.7.1 Discretionary Access Control . 31
2.7.2 Mandatory Access Control . 33
2.7.3 Role-Based Access Control . 35
2.7.4 Active Access Management . 38
2.7.5 Context-Aware Access Control and Architectures 38

2.8 Information Usage Control . 39
2.9 Mobile Device Data Protection . 40
2.10 Modeling the World . 42
2.11 Summary . 43

3 Containers and Containment — Modelling the World 45
3.1 Chapter Overview . 45
3.2 Information Exposure: from Context to Contextual Effect Awareness 46

3.2.1 What is a Contextual Effect? . 46
3.2.2 Why Explicit Contextual Effects Modelling? 47
3.2.3 Contextual Effects Characterisation 48
3.2.4 Information Exposure Threats as Contextual Effects 48
3.2.5 Information Exposure Threats: The Probabilistic Nature 49
3.2.6 Information Exposure Threat Characterisation 49

3.3 Container - the Basic Building Block . 51
3.3.1 Motivating Example . 51
3.3.2 Container: The Definition . 52
3.3.3 Toward a Container Ontology . 56

3.4 Containment - the Model of the World . 60
3.4.1 The Model of the World: Containment Trees 60
3.4.2 Containment Expressions . 61
3.4.3 State of the World . 62
3.4.4 Containment Path Expressions . 64
3.4.5 Model Maintenance - Realms and Authorities 66
3.4.6 Model Update Operations . 67

3.5 Contextual Effect Propagation and its Consequences 69
3.5.1 Contextual Effect Propagation . 69
3.5.2 Controlling Threat Propagation - Threat Mitigation Operations . . . 71
3.5.3 Information Exposure Threat Characterisation Revisited 72
3.5.4 The Join Algebra . 74

3.6 Intensity Reduction Property . 75
3.6.1 IRP & the Modelling Granularity . 76
3.6.2 Container Fusion . 77

xii

CONTENTS

3.7 Summary . 78

4 Information Security vs. Utility: Balancing the SeeSaw 79
4.1 Chapter Overview . 79
4.2 Information Utility . 80

4.2.1 What is Information Utility? . 81
4.2.2 The Aim - Balancing The SeeSaw . 82
4.2.3 Information Utility Factors . 82
4.2.4 Information Utility Measure . 84

4.3 Information Exposure: The Risk Perspective 86
4.3.1 Risk vs. Information Exposure Degree 86
4.3.2 Information Exposure Degree Significance Level 88

4.4 Levels of Exposure . 89
4.4.1 Threat Mitigation Offset Range . 89
4.4.2 Level of Exposure - The Definition 90
4.4.3 LoEs: Threat Specificness . 92
4.4.4 An Example and a Note on Transparency Functions 93
4.4.5 LoEs: Information Sensitivity Classification Consequences 94
4.4.6 LoEs Model . 96

4.5 Threat Mitigation: The LoE Way . 99
4.5.1 Action Impact as a Discrimination Criteria 100
4.5.2 The Protective Cover . 101
4.5.3 Information Utility and Containment Configuration 104
4.5.4 The 0-1 Knapsack Problem . 105
4.5.5 A Single Container Optimal Cover Determination 106
4.5.6 The Realm-Wide Optimal Cover Determination 109
4.5.7 Discussion . 114

4.6 Summary . 116

5 From CASPEr to µCASPEr: Architecture & Policy Model 119
5.1 Chapter Overview . 119
5.2 CASPEr Architecture Overview . 119

5.2.1 CASPEr Components . 120
5.3 µCASPEr Architecture . 122

5.3.1 The Management Side . 124
5.3.2 The Client Side . 125

5.4 The Policy Model . 126
5.4.1 Ponder as a Deontic Policy Language 126
5.4.2 Policy Specification . 127
5.4.3 An Evaluation Model Based on Finite State Transducers 129
5.4.4 Modelling Policies with TFFSTs . 131

xiii

CONTENTS

5.4.5 Per-Client Policy Structure . 136
5.5 µCASPEr Operation . 137

5.5.1 Policy Specification and Generation 137
5.5.2 Policy Translation . 138
5.5.3 Conflict Resolution . 139
5.5.4 Policy Deployment . 141
5.5.5 Policy Evaluation . 142
5.5.6 Dynamic Policy Conflict Resolution - TF Computation 144
5.5.7 Policy Enforcement . 146

5.6 CASPEr Data Model: An Outline . 147
5.6.1 Requirements and Implications . 147
5.6.2 Data Layout Specification . 148
5.6.3 Storage Subsystem Architecture . 149

5.7 Summary . 150

6 Discussion and Evaluation 153
6.1 Chapter Overview . 153
6.2 CASPEr Discussion . 154

6.2.1 A Comment on LoE Modelling Granularity 154
6.2.2 Containment Modelling Size Overheads 155
6.2.3 Computational Overheads . 157
6.2.4 Modelling Communications Channels 159
6.2.5 Modelling Input Devices . 160

6.3 µCASPEr Evaluation . 162
6.3.1 µCASPEr Client Side Overheads: An Overview 162
6.3.2 Policy Size as a Inhibiting Factor . 163
6.3.3 Policy Evaluation Complexities . 167
6.3.4 Summary . 169

6.4 OCD Algorithm Generalisation and Evaluation 170
6.4.1 Constraints on Threat Mitigation Operation Composition 170
6.4.2 Termination Analysis . 172
6.4.3 Comments on Complexity: Theory and Practise 173

6.5 Qualitative Analysis and Comparison . 174
6.5.1 Common Criteria and CASPEr . 175
6.5.2 Qualitative Comparison . 176
6.5.3 Visualising CASPEr in the Big Picture 181
6.5.4 Summary - Comments on CASPEr Uniqueness 184

7 Conclusions 185
7.1 Thesis Summary . 185
7.2 Comments on the Future Research . 188

xiv

CONTENTS

A µCASPER Policy Example 191
A.1 Example Policy — Threat Model View . 191
A.2 Example Policy — Containment View . 194
A.3 Example Policy — TFFST View . 194

References 202

xv

CONTENTS

xvi

List of Figures

2.1 Evolution chain. 17
2.2 Example security label lattice. 24
2.3 DCON systems categorisation. 28
2.4 DCON Architectures Taxonomy. 29
2.5 RBAC models. 37
2.6 ABC model components. 40

3.1 Example transparency functions. 55
3.2 Percentage impact across exposure degree range. 55
3.3 Cumulative transparency impact - single parameter change. 56
3.4 Example container classification. 58
3.5 Snapshot of a partial state of the world. 64
3.6 Partial snapshot of the Model of the World state. 67
3.7 Example threat propagation in a realm. 69
3.8 Example threat “typification”. 73

4.1 Example discrete risk-exposure plot. 88
4.2 Continuous risk-exposure mapping - significance levels. 88
4.3 Example intuitive representation of LoEs. 93
4.4 Example LoEs. 94
4.5 The NULL LoE threat type dependence. 95
4.6 Realm covers example. 103
4.7 Container-local algorithm example. 109
4.8 Common Cheapest Path algorithm example. 113

5.1 High-level representation of the CASPEr architecture. 120
5.2 Example component authority - container mapping. 122
5.3 µCASPEr architecture. 123
5.4 Ponder obligation syntax. 127
5.5 Policy translation process example. 132
5.6 Rule 4 TFFST representation. 133
5.7 Rule 5 (Constraint) TFFST. 134

xvii

LIST OF FIGURES

5.8 Rule 4 and Rule 5 composition TFFST. 135
5.9 Example active Client TFFST policy structure. 137
5.10 Policy deployment process. 141
5.11 A data transformation scenario. 148
5.12 Storage enforcement system architecture. 149

6.1 Example containable relationship specification. 156
6.2 Main CASPEr operation scenarios. 157
6.3 Communications channels modelling example. 160
6.4 Per-Client TFFST policy scalability. 166
6.5 Number of conditions vs. TFFST out-degree. 167
6.6 Average TFFFST evaluation time. 168
6.7 General form of the evaluated TFFSTs. 169
6.8 OCD operating dimensions. 173
6.9 CASPEr qualitative analysis and comparison. 179
6.10 CASPEr in the information security big picture. 181
6.11 CASPEr in relation to DAC, MAC and RBAC. 182
6.12 The Subject-Object-Device triangle. 183

A.1 Example policy: threat model view, part 1. 192
A.2 Example policy: threat model view, part 2. 193
A.3 Example policy: partial data item containment view. 196
A.4 Containment 1: contextual state - LoE mapping TFFST. 197
A.5 Containment 1: LoE - mitigation operation mapping TFFST. 197
A.6 Containment 1: contextual state - mitigation operation TFFST. 198
A.7 Containment 1: full policy TFFST. 198
A.8 Containment 6: contextual state - LoE mapping TFFST. 199
A.9 Containment 6: LoE - mitigation operation mapping TFFST. 199
A.10 Containment 6: contextual state - mitigation operation TFFST. 200
A.11 Containment 3: full policy TFFST. 201

xviii

Chapter 1

Introduction

The most profound technologies are those that disappear. They wave themselves into the
fabric of everyday life until they are indistinguishable from it. This is how, in his seminal
paper [Wei91], Mark Weiser referred to what is nowadays a common term — Ubiquitous
Computing. We are irrevocably marching toward it, and possibly more so than we realise.
Nowadays even non-technical people interact on a regular basis with dozens of micropro-
cessors, blissfully ignorant of it. Tasks being as mundane as conducting business, driving,
communicating, shopping, doing household activities and entertaining ourselves to mention
only a few.

On one estimate by IDC1, people in United States interact with about 150 embedded
systems every day, whether aware of it or not. Less than 2% of more than 3 billion 8-
bit microprocessors sold on the market yearly (as of 2005) are destined for conventional
Personal Computers (PCs), the vast majority of the rest are deployed in embedded systems2.
Computing is inevitably entering every aspect of our lives. Perhaps most notably, this is
in the areas of mobile communications and mobile computing — ubiquitous computing
forerunners. The world appetite for mobile phones has exceeded even the most optimistic
expectations, according to Gartner3 analysts. They estimate 2.6 billion units in use by the
end of 2009. The fastest growing category of the device being, so called, smart-phones —
transforming an otherwise purpose specific platform into a more general computing platform.
On the purely mobile computing front, Gartner estimates the market to grow by 18% in 20054

reaching 55.4 million units — while the overall PC market will grow at less than 8%.

The boom goes hand-in-hand with the development and proliferation of wireless commu-
nications technologies and services. If one considers public places such as airport lounges,
coffee shops or even streets, it is becoming increasingly difficult to imagine them without
network access of one form or another. This is even more prominent in the business and

1http://www.idc.com
2According to the Semiconductor Industry Association, http://www.sia-online.org.
3http://www.gartner.com
4The exact figures for 2005 were not available at the time of writing of this thesis.

1

1. INTRODUCTION

domestic environments. Computing power and interconnection technologies are everywhere,
representing the basic substrate for Mark Weiser’s vision.

To realise the holistic vision of ubiquitous computing we are, however, missing the global
synergy of the parts: “bringing together all these hidden processing nodes into a coherent
entity worthy of being called a system” [SC03]. Creating the coherent architecture involves
solving a number of hard problems. Some challenges are purely technical but some, perhaps
more importantly for actualising the vision, are socio-technical. Security is, by and large, one
of the latter. It is also a paradigmatic example of a property of a system as a whole. If the
holistic vision of ubiquitous computing is ever to set off truly, the security research community
has to come up with ubiquitous security. This is as opposed to the patchy, incoherent, add-on
and, more often than not, highly intrusive approach to security in current systems.

The issues in the domain of ubiquitous computing security can be, broadly speaking,
divided into two categories: i) those solvable by the tools we have developed for the more
traditional computing settings, and ii) the novel ones requiring original solutions. The latter
stem from the manner in which the vision of ubiquitous computing redefines the notions
of computation and human computer interaction as well as the concepts of data input and
output, its persistence and ownership. With respect to the abundance of mobile devices
itself, the threat it poses is generally recognised as twofold: firstly, mobile computing devices
can be used to introduce large volumes of unauthorised data or programs to corporate
computing infrastructures, but perhaps more worryingly, they are regularly used to store,
access and otherwise leverage extensive amounts of sensitive data in a variety of contexts —
characterised by different and unpredictably varying threat models. We refer to the quality
of ubiquitous systems that prompts the latter threat as information omnipresence. It denotes
information being available where, when, in the form and through the means as needed by a
user for completion of a task. Information omnipresence is seen as one of the prime qualities
and promises of ubiquitous computing. Along with its benefits, of course, come a number of
security challenges.

In this thesis we identify and systematise a novel class of information security threats, that
we name information exposure threats, brought into forefront by the advent of ubiquitous
computing, in general, and through its promise of information omnipresence and the manners
in which it is exploited, in particular. The thesis presents a novel paradigm [DC04] that we
baptise CASPEr — Containment Aware Security for Pervasive Computing Environments,
aimed specifically at addressing information exposure threats.

1.1 Motivating Scenarios

To create an intuitive feel for information exposure threats and illustrate the desired be-
haviour of CASPEr we offer a small set of example scenarios. The scenarios are also intended
to hint at the CASPEr scope. Let Alice5 assume a job that regularly exposes her to a large

5A character well known to most computer security researchers, thus requiring no further introduction.

2

1.1 Motivating Scenarios

amount of sensitive information. Alice spends most of the working hours outside the secure
perimeter where she relies on a number of mobile computing devices — a laptop, Personal
Digital Assistant (PDA) and mobile phone, to provide her with the corporate, sensitive
information wherever and whenever needed.

• Alice is leaving her office. As she steps across the physically secure perimeter, data
classified as Top Secret, contained on her laptop and PDA get securely destroyed.
Secret data gets safely encrypted on the laptop but erased from both the PDA and
mobile phone to account for the respective likelihoods of physical abduction of the
devices themselves (mainly due to their physical size and mobility characteristics).

• Alice is giving a presentation to a wide auditorium. The slides contain corporate Con-
fidential information and comments. However, the sensitive pieces of information are
displayed only on the laptop screen — observable solely by Alice, while the information
accessible to the auditorium gets automatically pruned in an adequate fashion.

• Alice is in an airport lounge, she wishes to read a sensitive document while she waits.
To avoid information exposure, the document is displayed in a Graphical User Interface
(GUI) window of a strictly constrained size. She also has an option of using the PDA
display for the purpose. The measures ensure that no discreet, over-the-shoulder, looks
are possible.

• To open the document, in the setting of the previous use case, Alice needs to undergo
an additional level of password authentication. Rather than using the widely observ-
able laptop keyboard, PDA touchscreen and a specialised interface which reduces the
likelihood of correlating physical and the resulting input sequences are automatically
activated for the password entry. Alice is suitably notified of the decision and the
reasons leading to it.

• Alice sees a friend nearby and goes to greet her. As the distance between Alice and her
laptop increases the window displaying the document shrinks and subsequently gets
minimised. Prolonged absence causes high sensitivity data to be fully erased from the
laptop storage as well as from all the intermediate buffers.

• Actually, rather than being destroyed, the sensitive documents are migrated to Alice’s
PDA which suffers less likelihood of abduction as it is attached to her belt. The
transfer is accomplished over a secure (encrypted) link. Upon return to her laptop,
Alice wishes to continue the work and the documents must be reinstated on the laptop.
A spatially and directionally localised Infra-Red (IrDA) link is used instead of other
available technologies. Non sensitive transfers proceed over a higher capacity, but less
secure, channel.

3

1. INTRODUCTION

• Back in the office, Alice wishes to listen to an audio memo from a closed meeting. She
puts it up on a set of speakers. The volume is automatically limited so that the audio
cannot be heard in neighbouring offices. As a colleague from a different department
approaches the door the volume goes down. As he opens the door and enters the audio
replay is switched to Alice’s headphones.

Thinking about it, we can notice that analogous adaptive behaviour is typical for humans
in their everyday lives, albeit to an extent limited by their cognitive (in)abilities. However,
it is unrealistic to expect humans to be able to grasp the complexities leading to security
issues in highly heterogeneous and dynamic pervasive computing environments. The average
user of mobile computing technologies nowadays is fully technologically illiterate and should
not be relied on, under any circumstances, to be able to reason about such threats at all.
From the cognitive point of view, it is well known [AS99] [YBAG00] [YBAG04] that even
the simplest of the password schemes pose unsurmountable usability problems for the aver-
age user in general. Along with the identification of the existence of information exposure
threats themselves, as well as the recognition of their potential severity in the highly dynamic
ubiquitous computing environments, this is precisely where the seed of our motivation for
designing CASPEr originates.

1.2 Information Exposure — What to Watch Out for

Information exposure threats are a subset of the broader class of information leakage threats.
Information leakage itself can be described as a consequence of an event that causes informa-
tion to become available to unauthorised parties from what was designed to be a “closed”6

system. An information leakage threat is a prospect of such an event occurring.
To be able to characterise information leakage, and thus distinguish information expo-

sure, we firstly introduce the notion of information7 custodian. An information custodian is
a person in a legitimate8 possession of information. A custodian is not necessarily an infor-
mation owner or its user. Being the owner does not imply being in custody of the “owned”
data at any point in time. Being in custody of a piece of information does not, on the other
hand, imply any reference to the information — as assumed by the notion of a data user.
For example, a postal courier can be seen as in custody of the mail they are to deliver.

Based on the information custodian’s level of conscious awareness of and their involvement
in information confidentiality compromise we can distinguish between:

• Intentional, and

6A system where an explicit distinction exists between authorised and unauthorised users, specified by
a security policy [And01] and established through a set of dedicated mechanisms.

7Information may exist in a digital system only in the form of its particular representation, i.e. encoding,
referred to as data. Thus, we use the term data to denote its actual information content and its characteristics.

8As determined by a set of authentication and authorisation mechanisms and defined by a security policy.

4

1.2 Information Exposure — What to Watch Out for

• Unintentional information leakage.

Intentional information leakage arises in either of the following two situations: i) an
information custodian makes an active effort to leak the information, or ii) an information
custodian fails to make an active effort to prevent information leakage they are aware of.
As opposed to the intentional, unintentional information leakage assumes information cus-
todian’s complete ignorance of the leakage process or the respective threat. Information
custody, thus, denotes solely the capacity of a principal handling the information to cause
intentional or unintentional information leakage. For example, a secure courier who is in
custody of diplomatic mail is neither its owner or user but is still in the capacity to relay
the sensitive documents to unauthorised parties.

Information Exposure as Information Leakage

The work on CASPEr, as presented in this thesis, was motivated by the prospect of in-
formation exposure or, more precisely, information exposure threats. Information exposure
represents unintentional information leakage into the environment occurring as a side-effect
of an otherwise legitimate set of data management and handling procedures as employed to
ensure information omnipresence in the particular context. We say that the context deter-
mines the threat model. A fundamental characteristic of information exposure channels is
that they are shared with or indivisible from legitimate information flow and storage channels
— they co-occur.

The term information flow traditionally applies to flows of information between objects
in a system [DD77]. We extend the concept to also encompass flows of information among
an object in a system and a principal in the environment. For example, a person reading
a document of a computer screen implies an information flow. The term information man-
agement and handling procedure, as used in the definition of information exposure, in this
case refers to the particular manner in which information is presented on the screen (GUI
window size, font typeface and size, rendering method etc.). Thus, when we say that infor-
mation is exposed it means that that it becomes available to unauthorised third parties as
a side effect of an otherwise authorised, legitimate, information flow or storage channel due
to its characteristics. In other words, information exposure channels are tightly, indivisibly,
bound to the legitimate information flow and storage channels they are a direct consequence
of. Moreover, information exposure and the corresponding legitimate information flow often
share a single channel, as illustrated by the motivating scenarios and also in the following
examples. The most notable examples of information exposure are due to:

• Physical abduction of the information containing device — where the information exists
in a form that facilitates its subsequent recovery by the thief.

• Information being displayed in a form and on a screen visually accessible by a third
party, either directly [TC03] or indirectly through e.g. analysing optical emanations
[KA98] [Kuh05].

5

1. INTRODUCTION

• Data entry on an input device which, due to its physical characteristics, allows key
strokes to be captured visually or reconstructed otherwise [ZZT05] [Zal05].

• Audio information replay through speakers at a volume which facilitates, in the par-
ticular context, the information to be overheard by unauthorised parties.

• Transmission in plain-text over an unprotected wireless link whose signal penetrates
into a publicly accessible area.

The only “tangible” and, thus, the instance of information exposure threats that arouses
the most attention nowadays is that incurred by the physical loss or theft of a mobile com-
puting device. Frequent high-profile incidents that make it to the media headlines regularly
exercise our awareness. The magnitude of the threat is well illustrated by the results of an
original survey9 that shows that a staggering 63,135 mobile phones, 5,838 pocket PCs and
4,973 laptops have been left in licensed taxi cabs by their London customers over a period
of 6 months only. Furthermore, as reported in ISBS-200410, 45% of large UK11 businesses
have suffered physical theft of computer equipment in 2004. The damage caused by the
incidents does not come from the cost of the hardware lost and stolen but from the value of
information that they contained.

A rough feel for the amount of proprietary, corporate sensitive, information potentially
affected by information exposure is obtained when estimates on the size of the mobile work-
force12 is considered. IDC expects the mobile worker population to increase from 650 million
in 2004 to 850 million in 2009. The US had the highest percentage of mobile workforce in
2004 — a staggering 70%, while Asia Pacific accounted for the largest quantity. The numbers
speak volumes when considering that the mobile workforce implies availability of sensitive
data on mobile devices and access to it in highly dynamic, unpredictably changing, contexts
in a myriad fashions.

The Trust Model

The overall trust model implied by information exposure threats and assumed in this thesis
is that of a cooperating user — a non-malicious user who needs help in protecting the data
it is in custody of due to the sheer complexity of the issues involved in reasoning about
its security in a particular setting. CASPEr is intended as an aid to users in protecting
information in their custody as opposed to aiming at representing a non-circumventable

9 Available freely from http://www.pointsec.com on request.
10Information Security Breaches Survey 2004, commissioned by the UK Department of Trade and done

by PriceWaterhouseCoopers (PwC).
11Similar results have been obtained for the US by the 2004 CSI/FBI Computer Crime and Security

Survey, available from http://www.gocsi.com.
12Workers leveraging mobile computing devices and interconnection technologies to accomplish business

related tasks outside the confines of traditional office space.

6

1.3 The Challenges

information security mechanism as is the case with, for example, Digital Rights Management
solutions and Trusted Computing platforms (Chapter 2).

1.3 The Challenges

The vision of ubiquitous computing represents a move toward purely data centric environ-
ments. The importance and semantics of hardware and perimeters fades deeply into the
background and what comes into the forefront is the fluidity of data movement. The notion
of secure perimeter, one of the concepts that shape the way we think about security in tra-
ditional systems, becomes dispersed and obliterated. The ability to predict threat models
or control the movement of data is lost. The same applies to the means by which and the
situations in which information is leveraged by users — bringing into the spotlight the risk of
information exposure. Thus, proactive information security protection solutions are needed.

As widely recognised, security is a complex socio-technical problem [And93] [San03]
[Sas03] [BDGS04] [Yee04]. The social aspect gains increasingly more weight as we move
toward the vision of ubiquitous computing. The focus of attention on data makes users in-
creasingly aware of any enforced restrictions and emphasises their intrusiveness and obstruc-
tiveness. For instance, the principle of the secure perimeter approach to security engineering
does not sit well with the fluidity of data movement as envisaged for the novel setting.
Generalising, the unnecessary adverse effects on information omnipresence and wider system
usability incurred by following the traditional methodology of pushing the protection toward
threat source, and away from the threatened entities (data), gains substantial importance
in ubiquitous computing environments. This is perhaps most notable in the field of mo-
bile computing security where the application of the traditional secure perimeter approaches
to security engineering result in overly oppressive policies and mechanisms having an over-
whelmingly adverse affect on the functionality and inherent benefits of mobile computing.
Thus, we believe that the shift in paradigms toward the placement of protection as close to
data as possible is required.

Stomp severely on users’ usability and functionality expectations and the result is active
effort to circumvent any “offending” security mechanisms — “security is not a goal most
users strive for; rather, it is seen to get in the way of their production tasks.” [Sas03]. This
is increasingly true with the advent of pervasive computing. Sanctioning does not work,
non-circumventable sanctioning is next to non-existent. In ubiquitous computing environ-
ments we need good-enough security [San03], explicitly balancing information omnipresence,
together with the more general system usability and availability, with the level of protection
provided. This proves to be an insurmountable challenge for classical security models due to
their lack of flexibility and support for adaptive behaviour in dynamically and unpredictably
changing environments. The issue is even more stressed in the context of information expo-
sure threats due to their shared nature with legitimate information flow and storage channels.
Any constraints placed on an information exposure channel are automatically reflected on

7

1. INTRODUCTION

the associated legitimate information flow channel — adversely affecting the information
availability.

Throughout its lifetime in a ubiquitous computing system, a piece of information is
subjected to highly unpredictable changes in its surrounding context and, thus, experienced
information exposure threat models. Information exposure of different kinds may occur
whether information is at rest or actively used, whether it is on a storage device, on a
display, being transmitted or otherwise. This calls for temporal and spatial continuity in
protection — which, in conjunction with addressing the above challenges, is not provided
by the current solutions. Temporally, active13 information security mechanisms are often
associated with the points of explicit request, such as access, or the duration of explicit
information usage. Thus, they often fail to provide protection at the point of actual threat
model change which may occur throughout information lifetime. Spatially, the vast majority
of temporally continuous mechanisms provide solely for information protection on storage
devices — for data at rest, or within communications channels — for data in transit, typically
in a data-wise indiscriminate manner. This leaves data vulnerable at a number of its other
potential whereabouts within a system, such as e.g. displays.

The tightly bound, often shared, nature of the information exposure and legitimate infor-
mation flow channels makes the exposure process itself, as well as its prospect, rather elusive.
This is especially true when we consider that the average user of mobile computing devices
nowadays is fully technology illiterate. Current security models entrust users with handling
data in a security savvy manner once the identification, authentication and authorisation
phases are successfully completed. In the context of information exposure, this assumes
users’ ability to reason about dynamically changing threat models and the implications vari-
ous information management and handling procedures have on them. As previously argued,
this is highly infeasible.

Potential manifestations of information exposure observable to the affected parties are
typically temporally distant from the actual incident occurrence. In other words, the cause
and effect of an information exposure are temporally distant and their relationship is difficult
to establish. This makes the task of linking the two hard, often impossible, in practise.
Consequently, threat analysis and correlation as well as evaluation of effectiveness of relevant
protection mechanisms and models must, by and large, rely on non empirical methods such
as historical evidence, expert opinion, etc. This is even further stressed when we consider the
inherently sensitive nature of the incidents themselves which significantly limits the ability
to conduct realistic experiments for evaluation purposes.

13As opposed to passive protection of data at rest, such as encryption.

8

1.4 Thesis Contribution

1.4 Thesis Contribution

In this dissertation we make the following contributions, as part of our quest to address the
above challenges:

1. We identify and systematise a novel set of threats to information confidentiality that
we name information exposure threats, which are brought into the spotlight and the
severity of which is emphasised by the vision of ubiquitous computing. [In Chapters 1
and 3.]

2. We develop CASPEr — a theoretical framework for fine-grained, information-centric,
spatially and temporally continuous information exposure threat protection in an au-
tonomic fashion. CASPEr aims at addressing the challenges stated in the previous
section at the conceptual level of abstraction. This overall, broadly stated, contribu-
tion is comprised of the following major (sub-)contributions:

• We introduce a novel method for structured, information-centric and fine-grained
threat analysis. The method is founded on an original approach to modelling the
world, physical as well as virtual, in a data object centric, fully distributed and
highly flexible manner, based on the novel concept of a container as a protec-
tive enclosure. The model addresses the relevant requirements of the ubiquitous
computing vision and honours the operational autonomy of target deployment
platforms. (In Chapter 3)

• We present an approach to strictly localised threat mitigation that maximises in-
formation omnipresence while providing for adequate protection based on threat
model severity assessment. The contribution encompasses the utilisation of stan-
dard information handling and management procedures for threat mitigation,
leveraging their side-effects. At the heart of the approach lies a dynamic pro-
gramming algorithm that we developed together with the supporting reasoning
model. (In Chapter 4)

3. We develop a policy based system, µCASPEr, that instantiates the general CASPEr
concepts. The system is targeted at highly constrained target platforms and fully
supports their operational autonomy. The contribution of µCASPEr is within the
system architecture, based on the more general CASPEr architecture, and the manner
in which the particular policy model is applied to achieve the stated goals.

Overall, CASPEr moves the state-of-art barriers in ubiquitous computing information
security through filling a gap in the information security protection big picture brought into
the spotlight by the vision of ubiquitous computing and not systematically addressed by the
current security paradigms and mechanisms. Furthermore, CASPEr is complementary to all
major information security paradigms. This is detailed in Chapters 2 and 6.

9

1. INTRODUCTION

CASPEr does not, per se, represent a novel security mechanism that aims at address-
ing any individual information security threat in particular — such as wireless security or
location privacy, for example. Rather, it represents a theoretical framework that allows for
leveraging existing security mechanisms as well as standard information management and
handling procedures in an original manner to address the holistic class of information ex-
posure threats while providing additional benefits — making it particularly appealing for
deployment in the target environment. The targeted class of information exposure threats
does, indeed, encompass a number of individual, specific, threats tackled previously in iso-
lation. With respect to addressing these, CASPEr offers additional flexibility, adaptability
and management of the usability and information omnipresence tradeoffs.

1.5 Thesis Outline

The rest of the thesis is structured as follows.

Chapter 2 focuses on the outline of the major information security models and paradigms
that create the big picture in which CASPEr fits and helps put CASPEr into perspective. We
start of by an overview of the concepts of context and context-aware computing as used in
ubiquitous computing; we describe the principles of autonomic computing, which guide some
of the design decisions of CASPEr; and we present the major security challenges brought
about by the vision of ubiquitous computing, as recognised in the literature. Since one of
the major contributions of CASPEr is the approach to modeling the world based on the
concept of container (Chapter 3), we also provide reference to the major related findings of
the mobility theory and geo-information systems.

Chapter 3 is devoted to the presentation of a data centric approach to modelling the
world based on the concepts of container and containment — the foundation stone for in-
formation exposure threat reasoning and mitigation in CASPEr. To set the scene, we firstly
provide a systematisation of information exposure threats and discuss the benefits of explicit
threat reasoning more generally. We proceed to formally define the model itself and detail
its enabling role in spatially and temporally continuous, data item grained, information ex-
posure reasoning. We also show how the model can be leveraged for localised information
exposure threat mitigation in an autonomic fashion. The chapter concludes by formally
stating properties of the model that are built on in the following chapters.

Chapter 4 presents tools and techniques, as employed by CASPEr, for dynamically bal-
ancing the information utility vs. level of protection tradeoff. The concept of information
utility is defined as the criterion for information omnipresence characterisation. We intro-
duce the Optimal Cover Determination algorithm as a dynamic programming solution for
discovery of the most optimal, information utility-wise, protection strategy in the face of a
set of information exposure threats as present in a context. In its decision making process,
the algorithm is supported by the, so called, Levels of Exposure model — used for matching
the perceived exposure severity to adequate mitigation operations, also introduced in the

10

1.5 Thesis Outline

chapter.
Chapter 5 describes the architecture and the operation of µCASPEr, a specialisation of

CASPEr targeted at highly constrained ubiquitous computing devices. µCASPEr rests on a
policy model based on a variant of Finite State Automata. We outline the policy model and
show how it is leveraged in µCASPEr to meet the design objectives. The chapter opens with
a high-level overview of system architecture to support CASPEr, which is subsequently built
upon. We conclude with a brief description of the requirements and an outline architecture
of a data management model for CASPEr.

Chapter 6 provides a discussion of CASPEr concepts as well as a theoretical and example-
driven evaluation of both CASPEr and µCASPEr. The goal of the evaluation being the
definitive deployment feasibility argument. µCASPEr is evaluated in terms of the complex-
ities incurred by the employed policy model. Termination and complexity of the Optimal
Cover Discovery algorithm is assessed and its potential generalisations are discussed. A
substantial part of the chapter is devoted to the qualitative comparison of CASPEr to the
major information security paradigms as overviewed in Chapter 2. The criteria used were
chosen to provide for a clear placement of CASPEr within the big picture, thus crystallising
the overall, conceptual, contribution of this dissertation.

Chapter 7 concludes the thesis with a brief summary of the work presented and an outline
of several directions in which we envisage CASPEr being taken in the future.

11

1. INTRODUCTION

12

Chapter 2

Background

2.1 Chapter Overview

The material that we present in this chapter has a two-fold aim: firstly it describes the
wider setting of this thesis and points at the constraints and requirements implied by it and,
secondly, it paints the information security big picture to which CASPEr contributes.

We set off with a brief outline of the concept of context and context-aware computing
(Section 2.2), relevant from the point of view of the information exposure threat modelling.
Next, we present the principles of IBM’s vision of autonomic computing (Section 2.3) and ex-
plain how they influence the design of CASPEr. We proceed to present the general challenges
ubiquitous computing poses for security (Section 2.4), as established and agreed upon by the
literature in the area. For each of the challenges mentioned, we briefly state how CASPEr
relates to it conceptually. To paint the big picture to which CASPEr contributes we describe
the four major information security paradigms: Information Flow Control (Section 2.5), In-
formation Dissemination Control (Section 2.6), Access Control (Section 2.7) and Information
Usage Control (Section 2.8). Particular attention is drawn to the types of threats addressed
by each of the paradigms — which later helps to demonstrate the contribution of this thesis.
Direct comparison of CASPEr with the outlined paradigms is postponed to Chapter 6, after
all the contributing concepts have been detailed. For completeness purposes, going below
the level of abstraction at which CASPEr is presented, in Section 2.9 we briefly outline the
main trends in data protection on mobile computing devices. These, however can be seen as
encompassed by CASPEr. Finally, in Section 2.10, we relate the approach to modeling the
world based on the notions of container and containment, as presented in Chapter 3, with
the research conducted in the field of mobility theory and geo-information systems.

The chapter does not pretend to be exhaustive but only tries to present the major, and
the most influential, contributions in the relevant research areas, setting the scene for the
rest of the thesis.

13

2. BACKGROUND

Terminology: Ubiquitous vs. Pervasive Computing

Prior to delving into the chapter we firstly need to clarify a piece of terminology. Ubiquitous
computing, the term coined by Mark Weiser, is often also referred to as pervasive computing
in the literature. However, the letter was defined by Lyytinen and Yoo [LY02] to assume
embedded but static computing infrastructure. Thus, the concept of ubiquitous computing
[Wei91] could be seen as actually encompassing that of pervasive computing, along with
the support for mobile hosts and mobile code. To the contrary, the editor in chief of IEEE
Pervasive Computing Magazine declares, in the inaugural issue [Sat02], that the two terms
are synonymous. In this thesis we embrace the latter definition and use the two terms
interchangeably. In addition, we bind the concept of ubiquitous computing tightly with that
of autonomic computing [IBM01] [KC03] and proactive computing [Ten00].

2.2 Context and Context-Aware Computing

Mark Weiser describes ubiquitous computing as inherently calm [Wei91]. The computation
fades into the background and from there it actively supports user tasks in a non-intrusive
fashion. To meet the challenge and provide for effective decision making in face of high
degrees of heterogeneity and dynamism, a pervasive computing system has to be context-
aware. A user’s context can be rather rich, comprised of attributes describing state of
its physical surroundings (such as location, presence or activity), user’s physiological and
emotional states, mobility profile, historical behaviour patterns and many more [Sat02].

The notion of context has intuitive connotation in human reasoning. If a human, as
opposed to a digital, assistant were given details about the user’s context they would use
them to make proactive decisions, anticipating the user’s needs. In making these decisions,
the human assistant would strive to minimise disturbance to the user — otherwise its own
role would become meaningless. One of the fundamental questions motivating research in
context-awareness is whether and how a pervasive computing system may emulate such a
human assistant [Sat02].

The notion of context is far from being exclusive to pervasive computing or tied to a user
centric view of the world. It is also leveraged where more general, wider-scale, adaptation to a
dynamic environment is sought, such as in e.g. distributed systems or ad-hoc networking. In
these cases, the term context is interpreted from the point of view of entities affected by the
state of their environment, such as system processes, applications or pieces of information.
For example, a context of a computer process (such as a mobile agent) can, in addition to
accounting for the state of physical surrounding of a platform it executes on, incorporate
any relevant state of its computing environment, such as resource loads, service availability
or authorisations of respective users etc.

14

2.2 Context and Context-Aware Computing

2.2.1 Defining Context

The first step in outlining the semantics of context-aware computing is defining the notion
of context itself. Broadly speaking, the concept of “context” has a long history in literature,
philosophy, artificial intelligence and linguistics [Mos04]. In the field of pervasive computing
the notion of context is often interpreted in an application specific manner. Due to its heavy
exploitation in different domains the term context enjoys myriad definitions. Consequently,
it remains a general word with a vague meaning.

Context is usually defined in terms of examples, such as used above, or by leveraging
recursive terms such as state of environment, surrounding or situation. While the former
are hard to generalise, the latter offer no insight into the relevant contextual elements. For
long, researchers have been struggling to provide a precise, unique, definition of context
[Sch95a] [SAW94] [SBG99] [Pas98] [Dey01] [ADB+99]. However, the efforts have resulted in
little success. It is the general lack of precise, mathematical formalisms, that cause the wide
confusion of the meaning of the term itself. On the other hand, they are next to impossible
to define due to the exploitation of the concept across a wide body of research areas and
application scenarios, even confined solely to pervasive computing, with differing semantics.
To pinpoint the meaning of context as used in this thesis, we briefly outline a selection of
relevant definitions in a chronological order.

Schilit et al. [SAW94] define context by dividing it into three aspects and referring to
each through a set of examples. The aspects are: where you are, who you are with and
what resources are nearby. Schilit et al. clearly state that the first category implies not only
location but a wider physical context such as lighting, noise level, network connectivity etc.
A common criticism of the definition is the lack of time related aspect [CK00].

In [ADB+99] Abowd et al. provide a thorough analysis of context and context-awareness
and contribute, perhaps the most popular, definition of context:

Context is any information that can be used to characterise the situation of
an entity. An entity is a person, place or object that is considered relevant to
the interaction between the user and an application, including the user and the
application themselves.

We can see how the definition is user centric, focusing on interaction between user and
application. Abowd et al. [ADB+99] also distinguish between primary and secondary types
of context. The former are: identity, location, activity and time. All other types of context
are declared as secondary as they are typically associated with at least one of the primary
types. Having mentioned the location, we acknowledge that it is possibly the most extensively
practically exploited type of contextual information [HSK04]. It is agreed in the literature
that the pioneering work on location-awareness was the ActiveBat ultrasonic location system,
presented in [HHS+99].

Chen and Kotz [CK00] distinguish between contextual information that requires a change
in behaviour of mobile computing applications as opposed to contextual information users

15

2. BACKGROUND

should be only notified of directly. Accordingly, they provide for a suitable definition of
context:

Context is the set of environmental states and settings that either determines an
application’s behaviour or in which an application event occurs and is interesting
to the user.

Depending on the point of view at which context is considered various authors have
proposed a number of approaches to categorisation of contextual information. In analogy to
the definitions, the categorisations themselves remain diverse, vague and ambiguous — thus,
open to interpretation. Different suggestions for context categorisation are nicely summarised
in [MPR04].

In this work we embrace the definition of context as offered by Abowd et al. [ADB+99]
and stated above. As we create an information centric view of the world, modelling it from
the point of view of data objects1 (Section 3) we interpret the term entity, as used in the
above definition, to be a piece of information. The situation of an entity is then used to
denote a set of information exposure threats as experienced by a piece of information in an
environment. However, we do not consider the context as being relevant only to the quality
of interaction between user and application — we see it as determining wider application
behaviour, as in the context definition by Chen and Kotz [CK00].

2.2.2 Context-Aware Computing

In order to be used, contextual information has to be modelled. Context models determine
internal representation of contextual information as well as its level of abstraction. Different
approaches to the former are nicely summarised in [SLP04]. Widely accepted structuring
and modelling of contextual information has been proposed by Henricksen et al. in [HIR02]
and [HI04].

Context-awareness deals with the problem of ways in which abundant contextual in-
formation can be leveraged effectively by applications. The term context awareness has
been first introduced by Schilit et al. in [SAW94]. They identify four types of context
aware applications, along two orthogonal axes, depending on whether the adaptation task
gets information or executes a command and whether the task is triggered automatically
or manually. CASPEr would thus be classified as obtaining information and providing for
automatic adaptation.

Pascoe [Pas98] suggests a taxonomy of context aware features as: contextual sensing, con-
textual adaptation, contextual resource discovery and contextual augmentation. According
to this taxonomy, CASPEr represents a contextual adaptation application.

Abowd et al. [ADB+99] combine the above two classifications and define three categories
of context-awareness features applications may support as: presentation of information and

1A generic term used to refer to a collection of data.

16

2.3 Autonomic Computing

services to a user, automatic execution of a service and tagging context (context augmenta-
tion) with information for subsequent retrieval. CASPEr falls into the second category.

Finally, Chen and Kotz [CK00] distinguish between active and passive context awareness.
The former refers to applications that automatically adapt their behaviour to contextual
changes while the letter denotes applications that only relay information about context to
users. CASPEr qualifies largely as active context awareness application, however, in order to
mitigate a threat it is sometimes sufficient just to make user aware of its presence. Thus, we
see CASPEr as actually crossing the boundary between active and passive context awareness.
In other words, CASPEr lies on the boundary between seamless and seamful approaches to
context-aware adaptation design [MG04] [Cha03] [Cha02].

+ +
Distributed
Computing

Mobile
Computing

Ubiquitous
Computing

Mobile Networks
Mobile Information Access

Adaptive Applications

Context-Awareness
Ad-hoc Networks

Smart Sensors & Devices

Figure 2.1: Evolution chain.

Figure 2.1 [SLP04] shows the placement of context-awareness, and other relevant fac-
tors, in the evolution chain leading from distributed to ubiquitous computing via mobile
computing. In general, when we refer to the term context-awareness in this thesis, we as-
sume the features as defined by Pascoe [Pas98]. Context sensing and modelling techniques,
mechanisms and tools are outside the scope of this thesis. We assume their existence for the
context-adaptation, i.e. information exposure threat mitigation, purposes as required by the
material presented in this thesis.

2.3 Autonomic Computing

Prompted by the growing complexity of computer systems and software in general, seen as
the main obstacle to further progress of the IT industry, in late 2001 IBM released a manifesto
in which they introduce Autonomic Computing as a visionary approach to addressing the
issue. As pervasive computing inherently extends complexities present in the traditional
systems we see the IBM’s vision of the solution as highly applicable. In fact, we believe that
the notion of pervasive computing itself should encompass autonomic computing to a large
extent.

The concept of autonomic computing describes computing systems that can manage
themselves independently of infrastructure or service availability given high-level objectives
to accomplish. The notion of autonomy in decision making and enforcement is particularly

17

Figures/Chapter_II/evolution_chain.eps

2. BACKGROUND

important from the point of view of security in highly dynamic and heterogeneous envi-
ronments such as ubiquitous computing. From the point of view of CASPEr, to be able to
guarantee continuous information exposure protection, its design must facilitate autonomous
operation.

IBM specifies the concept of autonomic computing through eight distinct principles. We
briefly overview the principles and state how they apply to CASPEr where applicable. As
the CASPEr concepts referred to below are not yet meaningful, we also provide pointers
to the corresponding explanatory chapters of the thesis. The eight principles of autonomic
computing are:

1. An autonomic system needs to “know itself”. An autonomic system will need detailed
knowledge of its components, current status, ultimate capacity, and all connections to
other systems to govern itself. Through its containment-based model of the world
CASPEr facilitates continuous spatial and temporal tracking of sensitive pieces of
information within a system (Chapter 3). In other words, it “knows itself”.

2. An autonomic system must configure and reconfigure itself under, often unpredictably,
varying conditions. Through its containment based model of the world, CASPEr dy-
namically reflects relevant changes in environment and it re-evaluates its decision upon
any condition changes. CASPEr is modular and allows for dynamic, run-time, recon-
figurations and addition of threat mitigation components and strategies (Chapter 5).

3. An autonomic system never settles for the status quo — it always looks for ways to
optimise itself. CASPEr decisions are dynamically re-evaluated to best balance the
tradeoff between information utility, system usability and the level of protection pro-
vided (Chapter 4).

4. An autonomic system must be self-healing — it must be able to recover from events
that may cause parts of it to malfunction. This principle is not directly applica-
ble to CASPEr but is to the platforms on which CASPEr is deployed. Having said
this, CASPEr degrades gracefully when the richness or completeness of the relevant
containment-based model of the world or availability of threat mitigation operations is
decreased (Chapter 3).

5. An autonomic system must be an expert in self protection. CASPEr contributes to a
target platform meeting this principle.

6. An autonomic system must be context adaptive. Context is leveraged in CASPEr for
information exposure threat modelling which, when required, triggers an appropriate
adaptation process.

7. An autonomic system must implement open standards not to be isolated in a hetero-
geneous environment. CASPEr is platform localised model and it does not currently

18

2.4 Ubiquitous Computing and Security

engage in systematic interaction with services or other entities in the environment. In-
teraction for the purposes of context sensing is considered out of the scope of CASPEr
and is handled by dedicated components of the target platform.

8. An autonomic system will marshal IT resources to shrink the gap between the business
and personal goals of users in an optimal fashion. One of the fundamental benefits
of CASPEr is that it explicitly considers the tradeoff between information utility and
system usability versus the level of provided protection in its decision making process
(Chapter 4).

In other words, not only is CASPEr is designed to be autonomous in itself (principles
1, 2, (3) and 6 above) but it also contributes to the overall autonomy of a target pervasive
computing platform (principles 5, 6 and 8 above). Note how certain aspects of CASPEr
apply to more than one autonomic computing principle. This is so due to rather blurry
boundaries in the statement of the principles of autonomic computing themselves.

2.4 Ubiquitous Computing and Security

The motivation for information security in pervasive computing environments is equivalent
to the motivation in all other computing systems. It can be summarised by stating that
information must not be obtained, modified or access to it denied in an unauthorised fashion.
However, many of the assumptions and usage scenarios underlying classical security concepts
simply do not hold for ubiquitous computing [TS04a] [Sta02] [SC03] [NWET04]. At the
same time, security is one of the unavoidable hurdles on the path to realisation and wide
embracement of the holistic vision of disappearing computer and omnipresent information.

In [Sta02], Stajano defines security as a complex process that encompasses assessing
threats (bad things that may happen), vulnerabilities (weaknesses in systems and their de-
fences) and attacks (threat actualisations), estimating likelihoods for attacks given vulner-
abilities, estimating attack costs, developing safeguards and countermeasures and applying
them in the most optimal manner. Inherent characteristics of pervasive computing redefine
the way we think about every single aspect of the above definition.

2.4.1 The Challenges

Realising that pervasive computing systems must provide adequate security as an inherent
property, researchers have striven to identify fundamental challenges that should lead the de-
sign of security models and solutions for ubiquitous computing, rather than jumping straight
to securing particular usage scenarios [TS04a] [SC03]. The more so as it is profoundly hard,
perhaps impossible, to predict all emerging shapes of ubiquitous computing, as Mark Weiser
himself candidly observed:

19

2. BACKGROUND

Neither an explication of the principles of ubiquitous computing nor a list of the
technologies involved really gives a sense of what it would be like to live in a world
full of invisible widgets. To extrapolate from today’s rudimentary fragments of
embodied virtuality resembles an attempt to predict the publication of Finnegan’s
Wake after just having invented writing on clay tablets. Nevertheless the effort
is probably worthwhile.

Therefore, to sense what there is for security in ubiquitous computing, researchers try
to extrapolate from the fundamental characteristics of the vision, mostly through compar-
ison with and from the experience gained from more traditional computing environments,
clinging onto limited set of practical socio-technological insights provided, so far, by mobile
computing. In [TS04a] Thomas and Sandhu explore the challenges and research directions
in building models, protocols and architectures to support security in pervasive computing
environments. They identify seven fundamental challenges as:

1. The need to integrate socio-technical perspective. If pervasive computing is to be inter-
twined into our daily activities issues related to usability of and confidence in security,
as well as how deployed security models and solutions fit into wider sociological, cog-
nitive, economic and legal perspectives need to be considered. CASPEr facilitates
meeting this challenge through accounting for the subjective, information utility im-
pact of the information exposure mitigation process (Chapter 4).

2. Breakdown of classical perimeter security and the need to support dynamic trust rela-
tionship. This challenge, and the role of CASPEr in addressing it, was outlined in the
thesis introduction.

3. Balancing non-intrusiveness and security strength. Pervasive computing puts into spot-
light the tension between usability and security. Security relevant information has to be
sensed from context and utilised minimising user’s involvement. CASPEr tries to min-
imise intrusiveness by leveraging standard data management and handling procedures
for information exposure mitigation (Chapter 4).

4. Context awareness. As stated above, the ability to utilise contextual information for
threat model establishment and mitigation is crucial for making security more pro-
active and less intrusive in pervasive computing environments. CASPEr leverages
contextual information for information exposure threat correlation (Chapter 3).

5. Mobility, dynamism and optimality. In a pervasive computing system users migrate
freely through environments and so does data. No guarantees on connectivity or service
availability can be provided in general. Threat models change unpredictably. Security
models, protocols and architectures must be highly adaptive. The core aim of CASPEr
is to be able to adapt to dynamic changes in information exposure threat models in an
autonomic fashion.

20

2.4 Ubiquitous Computing and Security

6. Resource constrained operations. Irrespective of the resource poverty of a target plat-
form can security of a piece of information be compromised. Resource poverty en-
visaged for some pervasive computing platforms poses serious constraints on security
operations, protocols and mechanisms that can be deployed. Although CASPEr is not
expected to incur substantial resource overheads (Chapter 6), in Chapter 5 we present
µCASPEr, a policy-based instantiation of CASPEr for highly constrained pervasive
computing platforms.

7. Balancing security and other service tradeoffs. For the vision of pervasive computing to
take off it has to offer the right set of tradeoffs between attributes like security, usabil-
ity, quality-of-service and cost for every application area. Furthermore, as pervasive
computing systems tend to have highly personal components, these tradeoffs must be
tunable. CASPEr explicitly accounts for a set of criteria, referred to as action impact,
denoting system wide side effects in the threat mitigation process (Chapter 4).

We do not fully agree with the challenge 3 above as stated by Thomas and Sandhu.
Security decisions often make systems behave in a way which, even if fine tuned, is not
exactly as desired or expected by users. If the decisions account for the dynamic state of
environment they may cause system to behave in a manner which seems inconsistent over
time. In some cases, inability of users to explain the inconsistencies in system’s decision
making may result in a substantial drop in their confidence in the overall system reliability.
Thus, we advocate a certain degree of seamful design [MG04] [Cha03], necessary for user
awareness of the motivation behind certain decisions made.

In another effort [SC03], Stajano and Crowcroft identify, at a higher level of abstraction
and specificness, four challenges for security in pervasive computing environments as: control
(over the invisible, proactive and autonomic systems), ownership (of omnipresent embedded
components and data), privacy (issues raised by the volume and permanence of private
information collected at every step in an unnoticeable manner) and mistrust (in the behaviour
of the “hidden” computers).

2.4.2 The Security Properties

A universally accepted taxonomy divides computer security threats based on whether they
affect confidentiality, integrity or availability. We briefly review the three from the point of
view of pervasive computing.

Confidentiality

Confidentiality is a property that is violated if information is revealed to unauthorised prin-
cipals2. Threat to confidentiality is known as disclosure.

2Principal is used to denote entity in its most abstract sense (people, agents, devices...).

21

2. BACKGROUND

The opinion that prevails in literature, [Sta02], is that information confidentiality in per-
vasive computing is stressed due to mainly two factors: i) the ease of passive eavesdropping on
wireless communications technologies, and ii) the amount of information of sensitive nature
contained within pervasive computing devices and infrastructure components. The severe
consequences of the latter, confined to mobile computing, have been hinted at in Chapter 1.
The prospect of automatic collection, retention and use of sensitive information by “invisi-
ble” pervasive computing systems and infrastructure has fuelled research in the areas of trust
and privacy preserving technologies. A comprehensive and up to date overview of research
in the area of trust in ubiquitous computing environments is provided in [NWET04].

Communications confidentiality is typically ensured through encryption3. It is commonly
stated in the literature that standard cryptographic primitives are too costly to be performed
on mobile computing devices. However, suitable cryptographic primitives have been devised
for deployment on highly resource constrained devices — peanut processors [Sta02] [And01],
such as sensor platforms. Furthermore, the popular and ubiquitous mobile computing de-
vices, like mobile phones and PDAs, have been shown to sustain even the most expensive
public key operations [AVTO03] nowadays.

CASPEr focuses almost exclusively on information confidentiality protection as threat-
ened by information exposure. Information exposure threats point at many more, perhaps
not directly obvious, instances in which information confidentiality can be compromised in
pervasive computing environments beyond eavesdropping on wireless channels or pervasive
computing platform compromise. One of the benefits of CASPEr, for its deployment in
environments characterised by wide heterogeneity, is that it leverages a plethora of standard
information handling and management procedures, subject to availability and depending on
a context, to ensure information confidentiality rather than being tied to availability of a
single protection mechanism (e.g. encryption).

Integrity

Integrity is a property that is violated if information is modified in an unauthorised way4.
Threat to integrity can be dubbed corruption [Sta02].

As with respect to communications integrity, cryptographic mechanisms such as digi-
tal signatures, chains of hashes [ABC+98] or Message Authentication Codes (MACs) are
standardly used to protect information integrity [Sta02]. Considering pervasive computing
devices and “invisible” infrastructural components containing large volumes of potentially
sensitive information, not only is their own integrity critical but, perhaps more importantly,
trust [NWET04] in them not to alter the information they legitimately handle.

In some cases, CASPEr provides for limited integrity protection as a side effect of confi-
dentiality protection, as discussed in Chapter 6.

3An excellent textbook on cryptography is [Sch95b].
4By a principal not authorised to alter information in the particular way.

22

2.5 Information Flow Control

Availability

Availability is a property that is violated if a system does not perform its advertised service
in a timely fashion upon an authorised request. From a point of view of data objects,
and CASPEr, availability is violated when information is not promptly accessible to an
authorised user as requested. The threat to availability is called denial of service. Gligor
[Gli83] proposes the concept of maximum waiting time as a criterion for assessing service
availability.

The vision of ubiquitous computing poses challenges for availability along a number of
axes. Roaming mobile code may abuse host platforms, wireless communications channels
are prone to jamming, platforms hosting services allowing for public queries may be abused
by sleep deprivation [Sta02], etc. If the vision of ubiquitous computing is to become reality,
services provided by it must seem uninterruptible to end users.

We do not discuss availability, or mechanisms ensuring it, any further in this thesis as it
is considered out of the scope.

2.5 Information Flow Control

Denning and Denning [DD77] define information flow control as regulation of information
dissemination 5 among objects in a system. Information flow control is all about information
confidentiality protection. An information flow policy consists of a set of information security
classes, a binary flow relation defining legal flows among the classes and a method of binding
the classes to information storage objects6. Any operation, or a series of operations, that
uses a value (information content) of some data object, A, to derive a value of another object,
B, is said to cause a flow from A to B. For the flow to be legal the given information flow
policy needs to allow for it.

While Denning and Denning [DD77] confine information flows to objects within a single
system, in CASPEr we consider information flows between objects in a system and objects,
or principals, outside the system — in its respective environment, or context. In CASPEr,
in order to distinguish legality of information flows, we adopt the definition of information
flow policy as specified by Denning and Denning.

2.5.1 Classifications, Clearances and Security Labels

The concepts of classification, clearance and security label as well as formal policy models
[And01] originate from the military sector.

5We use the term dissemination control in this thesis with slightly different semantics, as introduced by
Park et al. in [PSS00] and presented in the next section.

6Although Denning and Denning are not explicit in the semantics of an object we assume it to be an
“undefined” primitive concept, a passive container for information (Chapter 3).

23

2. BACKGROUND

(SECRET, {})

(SECRET, {NUCLEAR, FOREIGN})

(SECRET, {NUCLEAR}) (SECRET, {FOREIGN})

(TOP SECRET, {})

(TOP SECRET, {NUCLEAR, FOREIGN})

(TOP SECRET, {NUCLEAR}) (TOP SECRET, {FOREIGN})

Figure 2.2: Example security label lattice.

In order to quantify sensitivity of documents for purposes of access control as well as
handling, in the Second World War and the Cold War era, NATO countries moved to a
document marking scheme. The basic scheme consisted of four labels called classification
levels, namely Unclassified, Confidential, Secret and Top Secret, in the order of strictly
increasing sensitivity respectively. The basic scheme has since been extended by additional
labels both in the US and in the UK — even hindering the data flow between the two
jurisdictions [And01].

While classification applies to documents (information containers) the labels may also
be associated with principles, originally government employees, to denote the level of trust
they have been vetted with. In this case, the labels are called clearances. Classifications
and clearances play a role in information flow and access control as outlined below and in
Section 2.7 respectively.

To be able to implement need-to-know principle [And01] a system of codewords was
devised to complement security classes. Codewords are used for qualification of information
of a particular classification level. A classification level together with a set of codewords forms
a security label, or a compartment. From the point of view of principals, the codewords can
be seen as denoting areas of competence — guiding the need-to-know. Figure 2.2 shows an
example lattice of security labels — with the codewords enclosed within the curly braces.

2.5.2 The Foundations: Bell-LaPadula

The seminal work on information flow policies, and more widely, security models, was pub-
lished in 1973 by David Bell and Leonard LaPadula [BL73]. It is widely know as the Bell-
LaPadula or multilevel security model. The systems that implement it are referred to as

24

Figures/Chapter_II/lattice.eps

2.5 Information Flow Control

multilevel secure (MLS) systems. The principle feature of the Bell-LaPadula model is that
information is never allowed to flow downward — where the information flow source object
is at a higher classification level than the destination object. The Bell-LaPadula model rests
on the following two properties:

• The simple security property : no process may read data at a higher classification level
— also known as No Read Up (NRU).

• The ⋆ − property: no process may write data at a lower classification level — also
known as No Write Down (NWD).

Only the active entities in a system may initiate and carry out an information flow. That
is why the above properties are stated in terms of processes — programs in execution. A
classification level of a process can be considered to be equal to the highest level among the
objects it has ever touched. The fundamental innovation of the model is considered to be
the ⋆− property. It was inspired by the prospect of malicious code, such as “trojan horses”,
leaking information to objects of lower classifications.

The original Bell-LaPadula suffered ample criticism regarding issues such as covert chan-
nels, composability and the cascade problem and polyinstantiation — nicely summarised
by Anderson in [And01]. Perhaps most notably, Bell-LaPadula is silent about controlling
object creation and destruction in a system. Furthermore, the practise has shown it to be
too rigid to model information flows in realistic organisations as it does not account for
the naturally occurring information declassification. In other words, it forbids the natural
feedback between parts of an organisation if it involves information of differing classification
levels.

A significant advantage of the model, however, is that it can be expressed in terms
of a simple mathematical formalism that facilitates formal proofs of security of a given
system. This is often lost in more expressive and complex security models, such as e.g.
Harrison-Ruzzo-Ullman (HRU) model (the access matrix) [HRU75] [HRU76]. Despite its
many criticisms, the Bell-LaPadula model is considered one of the biggest contributions in
the information security field.

2.5.3 MLS System Examples

Multilevel security has been implemented in a number of ways, with or without hardware
support, as operating system add-ons or with specialised operating system kernels, as appli-
cation wrappers or with application awareness. They all, however, rest on the existence of
a reference-monitor — a mediator component that can be verified to ensure security policy
enforcement, akin trusted computing base [Gro] nowadays.

In 1983 Honeywell launched the Secure Communications Processor (SCOMP), a deriva-
tive of Multics [Fra83]. It had formally verified hardware and software and was extensively
used in the US government sector. SCOMP served as a model for the development of the

25

2. BACKGROUND

Trusted Computer Systems Evaluation Criteria [oD85], also known as the Orange Book.
This was followed by Blacker [BB94] — a series of encryption devices forming a MLS sys-
tem, NRL-Pump [KM93] — a one way data transfer device, and a series of related products
[And01].

Majority of the available MLS systems are derivations of Unix. Examples are AT&T Sys-
tem V/MLS [Amo94], Compartmented Mode Workstations [Hub94] [CFG+87] [BPWC90],
trusted X Window [EMO+94] etc. In a need to allow users to run standardised applications
to process sensitive information, and still provide for the MLS properties, Purple Penelope
[PW98] was developed by Britain’s Defence Evaluation and Research Agency, as a Windows
NT MLS wrapper.

2.5.4 The Lattice Model Formalisation and Extensions

The seminal work on systematisation of formalisation of the lattice model of secure infor-
mation flow was done by Denning in 1976 [Den76]. Since then the lattice model has become
highly popular for computer security models. An example lattice has been shown in Figure
2.2.

In [DD77] Denning and Denning utilise the lattice model in their, yet another, seminal
work on static validation of information flows in programs. They divide information flow
control into run-time, where a dedicated system component (a monitor) enforces the policy
through monitoring read and write operations of processes (examples from the above section),
and static, more complex, involving analysis of program code and structures to determine
flows between input and output objects. The latter rests on extensive programming language
analysis and compiler support.

Realising the limitations imposed by absence of declassification methods in previous
information flow control models, Myers and Liskov develop a new model targeted at highly
decentralised systems [ML97]. The crucial difference to the previous work, e.g. by Denning
and Denning [DD77], is that the Myers-Liskov model allows individual users to explicitly
declassify (i.e. downgrade) data they own at their own discretion. As such, the model focuses
on providing security guarantees to individual users rather than a monolithic organisation.
The model provides for both static program analysis and run-time information flow checking
for more dynamic entities, such as file systems.

An important contribution to static information flow control was offered by Myers in
[Mye99]. Myers develops JFlow, an extension to Java adding statically checked annotations,
and supporting features previously never integrated with information flow control, such as
objects, sub-classing, dynamic type tests, exceptions etc.

Static program checking is not applicable for analysing information flows implied in
information exposure, as defined by CASPEr, due to their dynamic nature — i.e. they do
not involve solely program entities identifiable through code analysis of any sort but entities
that may, or may not, be present in the program’s execution environment (context).

26

2.6 Information Dissemination Control

2.6 Information Dissemination Control

Information Dissemination Control (DCON) is targeted at controlling and tracking infor-
mation after it has been delivered to a legitimate recipient in the form of a digital object.
The notion of control encompasses the usage of, including the access to, the digital object as
well as its further dissemination, through e.g. super-distribution7. The trust model assumed
in DCON is that the digital object’s receiving end can never be trusted. In other words, that
it is not possible to separate honest and dishonest users of the digital content. In CASPEr,
on the other hand, we assume information custodians can be trusted not to willingly leak
sensitive information. For CASPEr, this relaxes the need for formal verification of system
components, hardware and software, as well as their tamper-proofness, as required in some
DCON usage scenarios (outlined below).

2.6.1 Shapes of DCON

DCON comes in many different shapes. Most notable example in the past several years
is Digital Rights Management (DRM) — driven largely by the entertainment and aimed
at ensuring revenues from copyrighted digital content distribution. The seminal work on
systematisation of DCON comes from Park et al. [PSS00], taken forward by Thomas and
Sandhu [TS04b].

In [PSS00] Park et al. identify two main categories of DCON systems as Payment-Based
Type (PBT) and Payment-Free Type (PFT). In PBT, a payment function is required to
ensure financial revenue from information dissemination. PBT systems typically characterise
the entertainment industry, where they are known as DRM systems. Security breaches in
PBT DCON systems result in financial loss to the content provider and copyright holder. In
PFT DCON systems, no payment is involved but dissemination must be controlled to meet
information security requirements, most notably confidentiality. PFT systems are deployed
for handling information of inherently sensitive and/or proprietary nature. Examples are
intelligence classified information, business and trade proprietary information as well as
private personal information such as medical or bank records. Security breaches in PFT
DCON systems may result in much more severe damage to information originator and related
parties than solely financial loss8.

Table in the Figure 2.3 represents a decomposition of the DCON space along two axes,
as defined by Thomas and Sandhu in [TS04b]. The vertical axis categorises information by
the type of its significance to the originator while the horizontal axis denotes the required
strength of protection. The cells specify some example schemes and requirements for the
respective DCON systems. The figure shows that a DCON system may require dedicated

7An approach to digital content dissemination by encouraging users to pass the content to others.
8While super-distribution approach to information dissemination may be tolerable, or even encouraged,

in PBT scenarios this is not the case in PFT systems.

27

2. BACKGROUND

Hardware based trusted

viewers, displays and

inputs

Software-based client

controls for documents

Analyst and business

reports protected by

server access controls

Sensitive,

proprietary

and revenue

Dongle-based copy

protection, hardware-

based trusted viewers,

displays and inputs

DRM-enabled media

players such as for

digital music and

eBooks

IEEE, ACM digital

libraries protected by

server access controls

Revenue

driven

Hardware based trusted

viewers, displays and

inputs

Software-based client

controls for documents

Password-protected

documents

Sensitive and

proprietary

StrongMediumWeak

Strength of Protection
Content type

and value

Hardware based trusted

viewers, displays and

inputs

Software-based client

controls for documents

Analyst and business

reports protected by

server access controls

Sensitive,

proprietary

and revenue

Dongle-based copy

protection, hardware-

based trusted viewers,

displays and inputs

DRM-enabled media

players such as for

digital music and

eBooks

IEEE, ACM digital

libraries protected by

server access controls

Revenue

driven

Hardware based trusted

viewers, displays and

inputs

Software-based client

controls for documents

Password-protected

documents

Sensitive and

proprietary

StrongMediumWeak

Strength of Protection
Content type

and value

Figure 2.3: DCON systems categorisation.

software and hardware components, as well as their formal verification, to ensure higher
levels of confidence in the protection of more sensitive data.

Information dissemination control had been researched, to an extent, prior to the intro-
duction of the term DCON, [PSS00], under the term originator control (ORCON) [AHK+91]
[MMN90]. However, no efforts have been made to understand the holistic problem of dissem-
ination control and generalise individual instances as well as supporting system architectures
in a systematic fashion.

In pervasive computing research arena, DCON systems have been investigated largely
as the enabling technology for information privacy preservation [HZ04] [KK02] [Lan02]
[MPB03]. From the industry perspective, Mobile Phone Work Group of the Trusted Com-
puting Group (TCG) [Gro] focuses on enhancement of TCG concepts as needed for adoption
in the mobile computing arena.

2.6.2 DCON Architectures

In [PSS00], Park et al. generalise and systematise security architectures for controlled infor-
mation dissemination by means of a taxonomy. The taxonomy is established based on three
factors: the presence of a Virtual Machine (VM), the deployed Control Set (CS) type and
the digital content distribution style. Figure 2.4 shows a diagrammatic representation of the
taxonomy — identifying the 8 distinct DCON architectures.

Park and Sandhu [PS02a] define VM as a trusted, tamper resistant, recipient-side ap-

28

Figures/Chapter_II/dcon_table.eps

2.6 Information Dissemination Control

w/o VM w/ VM

MP ER

MP MP MPER ER ER
NC1 NC2

FC1 FC2 EC1 EC2 XC1 XC2

VM: Virtual Machine
MP: Message Push
ER: External Repository
CS: Control Set

NC1: No CS architecture w/ MP
NC2: No CS architecture w/ ER
FC1: Fixed CS architecture w/ MP
FC2: Fixed CS architecture w/ ER
EC1: Embedded CS architecture w/ MP
EC2: Embedded CS architecture w/ ER
XC1: External CS architecture w/ MP
XC2: External CS architecture w/ ER

Fixed CS
Embedded CS

External CS

Figure 2.4: DCON Architectures Taxonomy.

plication software and/or hardware9 component that runs either standalone or on top of
a vulnerable computing environment and employs control functions to provide the means
to control and manage access and usage of digital information. Trusted hardware in con-
junction with attested10 software layer forms the Trusted Computing Base (TCB) [Gro].
Effectively, the VM performs the role of a reference monitor [And72] of a trusted computing
base. Systems that do not have a VM cannot perform explicit control of digital content
usage (NC1, NC2 in Figure 2.4). They usually rely on legislative deterrents to prevent il-
legitimate re-dissemination of digital information. The trust model assumed for CASPEr,
bearing confidence in custodians not to compromise information confidentiality willingly
and/or knowingly, eliminates the need for a full VM-like reference monitor and stringent
requirements on the formal verification of correctness of its components.

CSs encapsulate rules governing the legitimate use of disseminated digital objects as
enforced by a VM. In the DRM terminology, CS represents the licence. The taxonomy
distinguishes three types of control sets: fixed, embedded and external. Fixed control set
is hardwired into a VM and applies equally to all digital objects processed by the VM.
Most notable example of the fixed CS is the DVD encryption system (DVD-CSS) [Ass].
Embedded control set is tightly, indivisibly, bound to each digital object. This binding is
accomplished by cryptographic means. External control set is distributed by a control centre
as a separate object to the digital content it applies to. Access to the digital content is,

9For example, Trusted Platform Module (TPM) [Gro05].
10The term usually used for chained verification of integrity of software platform running on trusted

hardware.

29

Figures/Chapter_II/dcon_arch.eps

2. BACKGROUND

however, impossible without the presence of the CS.

Park et al. [PSS00] identify message push (MP) and external repository (ER) as two
possible dissemination styles. In MP, digital content is delivered to the recipient directly.
In ER, the recipient obtains digital content from a dedicated server. ER allows for content
distributor to forbid local storage of digital content on the recipient’s side. External CS can
be used to force the user to connect to control centre on every access to digital content or
periodically. In conjunction, the ER and external CS, provide for the maximum level of
control of digital content use and flexibility of permission revocation.

DCON Architectures and Pervasive Computing

Most of existing DCON, especially DRM, solutions require extensive support from the in-
frastructure and target platforms — for which the vision of pervasive computing poses a
number of challenges.

In all of the architectures, apart from NC1 and NC2, digital container [SBW95] is used to
ensure tamper-resistance of distributed digital content and CS. Digital container is effectively
a cryptographic wrapper, an electronic envelope, for the distributed contents ensuring control
of access to it and its usage. The complexity of the cryptographic mechanisms involved in a
digital container may present a problem in their deployment for resource deprived ubiquitous
computing devices. Similar considerations apply to the use of VMs. To what extent can we
expect the standardisation of their functionality and the prevalence of trusted computing
enabled devices at a reasonable cost?

Both embedded and external control sets offer the flexibility of per digital object, per
recipient tailoring and can also be combined with a fixed CS. For the access to and the usage
of digital contents to be bound to a single recipient the CS usually embeds unique identifier
of the target VM. However, the approach binds the digital content to the target platform
rather than an actual authorised user. This somewhat contradicts the pervasive computing
vision where individual users are not assigned ownership of any particular device and expect
their data and choices to move with them right across myriad of, invisible or otherwise,
devices.

In pervasive environments, characterised by unpredictable service quality and availability,
forcing the client to connect frequently to the ER or the control centre in order to be able
to use digital content may have severe consequences on the usability front. Furthermore,
repeated downloads of digital content, if its local storage is forbidden, may be infeasible
resource-wise. Therefore, one of the primary considerations in designing DCON, and es-
pecially DRM, systems for ubiquitous computing environments needs to be the trade-off
between digital content availability and its usage control effectiveness and flexibility.

30

2.7 Access Control

2.7 Access Control

Anderson [And01] describes Access Control as a traditional centre of gravity of computer
security. Access control is the process of mediating requests to access resources within a
system through determining whether to grant or deny them based on a set of criteria. The
definition of the rules and criteria according to which access is to be mediated is referred to
as access control policy. An access control mechanism represents the implementation of the
access control functions as imposed by the access control policy. To be effective, an access
control mechanism must work as a reference monitor [And72].

Access control ensures that only authorised access requests made by subjects are allowed
be carried out on objects in a system. The concept of a subject is often confused to that of
a user [San93]. Every human being known to a system represents a unique user. A subject,
on the other hand, is a process in a system running on behalf of a user. While every subject
is associated with a single user, each user may have many subjects within a system at any
point in time. Each of the subjects may acquire different set of access rights, up to the
maximum as assigned to the user by a wider security policy. Objects represent resources
and entities in a system. Thus, all subjects are also objects while the reverse does not hold
in the general case.

The access control paradigm aims at controlling immediate access to objects without tak-
ing into account information flow paths among objects implied by an outstanding collection
of authorisations. Thus, it is inadequate for addressing general information flow issues as
presented in Section 2.5 above. Often, information flow control mechanisms are designed to
complement access control [Den76] [Sto81]. With respect to this, CASPEr is conceptually
closer to the information flow control paradigm as it effectively attempts to address flows of
information from objects to non-system entities in their environment — with no reference
to subjects making explicit requests for access to objects.

A taxonomy that has established itself in the literature groups access control models into
three classes: Discretionary Access Control (DAC), Mandatory Access Control (MAC) and
Role-Based Access Control (RBAC). In this section we outline the main characteristics of
the three classes as well as some of their extensions.

2.7.1 Discretionary Access Control

Traditionally, discretionary access control policies enforce access on the basis of the identity
of a user on whose behalf the access request is made (by subjects) and a set of explicit rules
that specify the access request types to be granted to known users. The term discretionary
is owing to the ability of users to grant access rights they have on objects to other users
at their own discretion. Note that in the context of DAC, the semantics of a user and
a subject converge from the perspective of authorisations. In other words, DAC models
typically do not provide for restriction of authorisations assigned to a subject relative to the
authorisations available to the user.

31

2. BACKGROUND

The Access Matrix

The subject-object access rights of a discretionary access control policy are conceptualised
in the form of an access matrix. The concept of the access matrix was first proposed by
Lampson [Lam74] and subsequently formalised by Harrison, Ruzzo, and Ullman11 in [HRU75]
and [HRU76]. The latter work offers an extensive analysis of the complexity of determining
an access control policy for Lampson’s access control model. Harrison et al. [HRU76] have
also shown that it is undecidable whether an access right can leak among processes where
access matrix model is leveraged. This is somewhat addressed by Sandhu in [San92], but
remains a substantial criticism of the model.

The name of the model proposed by Lampson [Lam74] comes from the data structure — a
matrix, used for representation of authorisations that hold in a system at a time. The access
matrix model is defined by a triple (S, O, A), where S is the set of subjects, O is the set of
objects — on which subjects may exercise privileges, and A is the access matrix. The rows
of A correspond to subjects (s ∈ S), the columns correspond to objects (o ∈ O) and each
cell A[s, o] contains the authorisations of s on o. For example, write ∈ [s, o] authorises s to
write o. Only the operations authorised by access matrix may be performed. The semantics
of the term discretionary imply that if subject s is the owner of object o (i.e. own ∈ [s, o])
then s can modify the permissions for accessing o. In other words s can modify all the cells
in the access matrix column corresponding to o. Therefore, the access control matrix is a
dynamic entity.

The access matrix model does not say anything about types of objects or operation
permissions. Thus, the model can accommodate different access control settings.

Access Matrix Implementation

Although the matrix structure is good for conceptualisation of authorisations in an access
control policy it is of little practical value when it comes to implementation. For any system
of realistic proportions the access matrix will be of a prohibitive size, and typically sparsely
utilised. There are three practically sound approaches to implementing the access matrix
proposed in the literature:

• Authorisation Table. Authorisation table is a table comprised of non-empty entries of
what would be a sparse access matrix. Each tuple in the table corresponds to a single
authorisation. This approach is popular in database management systems [CFMS94].

• Access Control Lists (ACL). ACLs imply dissecting the access matrix column-wise
and associating each of the columns to the respective object. Each object is, thus,
associated with a list of all authorisations applicable to it. The typical example of
ACL implementation is in the Unix operating system.

11Usually referred to as the HRU model.

32

2.7 Access Control

• Capabilities. Capabilities, as opposed to ACLs, imply dissecting the access matrix row-
wise and associating each of the subjects known to the system with the corresponding
row. Each subject is, thus, associated with a list of all authorisations it can exercise
on objects in the system. An example of a capability system is the EROS [SSF99]
operating system. Public key certificates also represent a form of a capability.

Capabilities and ACLs imply almost opposing sets of benefits and drawbacks for the
authorisation control and management — such as permission delegation and revocation.
Furthermore, ACLs are suited for systems with central authorities while capabilities facilitate
distribution. Anderson [And01] offers an in-depth treatment of the two approaches.

Extending Basic Authorisations

Although the access matrix model remains the basic concept for expressing a discretionary
access control policy, a number of extensions have been developed since its inception. Most
notably, the support for conditions on authorisations and the concept of groups have imposed
themselves as standard features.

Conditions are introduced to constrain the validity of authorisations. For illustration,
conditions may take the form of system and context state predicates, they may be expressed
in terms of the content of an object subjected to access request [Dat03] or they may be
dependent on the relevant authorisation and execution history [EAC98] [AF03].

To reduce administrative and management complexities the concept of groups has been
introduced. Grouping is applicable to all elements of an access control triple — the user, the
object and the action. Grouping reflects natural structure of entities and their authorisation
relationships. While the role of the user and object groups are obvious, grouping actions may
be used to reflect privileges [SD92] or prioritisations and implications thereof [RBKW91].

Further evolution of the access matrix model has gone in application and data model
specific directions. For example, a number of approaches to access control in object oriented
systems exploit the concept of encapsulation to provide for partial authorisation on objects,
as in [RSC92] and [Mica].

2.7.2 Mandatory Access Control

Mandatory access control policies mediate access requests based on rules and regulations
mandated strictly by a central authority. Unlike DAC, MAC typically allows for no permis-
sion passing among users solely at their own discretion. The most widely accepted form of
mandatory access control policy is the multilevel security policy (MLS), already mentioned
in Section 2.5, and based on classification of subjects and objects in a system by assigning
them security labels. The exact semantics of the subject and object classification within
a system employing a MAC policy depends on whether the policy is aimed at information
confidentiality or integrity protection, or both.

33

2. BACKGROUND

Discretionary and mandatory access control policies are by no means mutually exclusive.
Rather, they can be applied effectively jointly. In this case, an access request is granted if
both of the following hold: i) there exists an (discretionary) authorisation for it, and ii) it
satisfies the mandatory policy. Intuitively, the discretionary and the mandatory policies can
be seen as representing layered filters, or mediators, for access requests. To be authorised, a
request needs to pass through both the filters.

Confidentiality-Based MAC Policies

A confidentiality-based MAC policy aims at controlling direct and indirect flows of infor-
mation among objects, on one side, and subjects, on the other side, in order to prevent
information leakage. The more general concept of information flow control outlined in Sec-
tion 2.5 focuses on flows of information solely among objects in a system. Subjects may be
interpreted as objects themselves or may be seen as the entities initiating and carrying out
the information flow.

Confidentiality-based MAC policies rest on the Bell-LaPadula multilevel security model,
first introduced in [BL73], and also outlined previously in Section 2.5. The two properties of
the Bell-LaPadula model, can be rephrased to reflect the goals of a MAC policy as follows:

• NRU : A subject is granted a read access to an object iff the subject’s clearance
dominates the class of the object.

• NWD : A subject is granted a write access to an object iff the subject’s clearance is
dominated by the class of the object.

In any real system the operations available are likely to go beyond read and write (e.g. create,
delete, append etc.). However, the two suffice to illustrate the point of the model as the
other operations can typically be reduced to read and write for the purpose. Interestingly,
the above rules allow an Unclassified user to write a Secret object, possibly damaging its
contents. Thus, the NWD property is sometimes modified to require the security labels of a
subject and a object to be equal for a write to be authorised.

A common misconception in a wide body of literature is the reference to the original
Bell-LaPadula model [BL73] as the BLP model. The BLP model is a MAC policy model,
a variant on the Bell-LaPadula model, introduced by Sandhu in [San93]. The BLP model
is an example of the symbiosis of DAC and MAC policies in which the DAC policy can be
seen as bounded by the MAC policy.

Integrity-Based MAC Policies

The MAC policy outlined above is inadequate for protecting integrity. Inspired by the Bell-
LaPadula model, Biba [Bib77] proposed a dual model that focuses on information integrity
protection. The basic concept in the Biba model is that information should not be allowed
to flow to objects of a higher integrity class.

34

2.7 Access Control

If we represent integrity classes as a lattice, with high integrity placed toward the top
of the lattice and low toward the bottom, then the flow of information as authorised by the
Biba policy is from the top of the lattice to its bottom. This is directly opposite to the
Bell-LaPadula model. Consequently, Biba proposed the following, two property, formulation
of the model:

• The simple integrity property: a subject is granted a read access to an object iff the
clearance of the subject is dominated by the class of the object — also known as No
Read Down (NRD).

• The integrity ⋆ − property: a subject is granted a write access to an object iff the
clearance of the subject dominates the class of the object — also known as No Write
Up (NWU).

Biba also proposed alternative criteria facilitating greater dynamism of the model. The
model is often criticised for its narrow treatment of the integrity problem as a whole.

In [San93], Sandhu shows how the BLP and the Biba model can be combined in systems
where both confidentiality and integrity are a concern.

DAC-MAC Hybrid Models

To overcome individual limitations of DAC and MAC models a number of hybrid models
have been developed. Perhaps the most notable is the Chinese Wall [BN89] policy model, an
attempt to address the issue of commercial discretion with mandatory controls. The goal of
the model is to restrict information flow to prevent conflicts of interest. The authorisation
decisions are made not on the basis of labels but on what a user has accessed previously.

Focusing on addressing the Trojan Horse issue, [Kar87] and [BF85] propose interposing,
between subjects and objects in the system — processes and the file system in particular, a
protected layer, a mediator, imposing further constraints on access. Stoughton, in [Sto81],
offers a model which marries the information flow model of Denning [Den76] with DAC to
derive a hybrid model that he refers to as access flow model. In [WOR+74], Walter et al.
propose application of mandatory properties in a discretionary context: access control lists
are used in place of object classes while subject clearances are cumulative classes of the
accessed objects. Set inclusion is used instead of the dominance relationship among security
labels. The model has been taken forward by Bertino et al. [BVFS98].

In [San93] Sandhu has shown how a number of mandatory access control policies can be
expressed as lattice-based models.

2.7.3 Role-Based Access Control

Role-Based Access Control (RBAC) models [FK92] [SCFY96] represent an alternative to
DAC and MAC models which has been gaining increasing attention over the past several

35

2. BACKGROUND

years, especially for commercial applications. The principle motivation behind RBAC is
the ability to specify, administer and enforce organisation specific security policies in a way
that matches the natural structure of the organisation. RBAC models have been widely
researched and have gained considerable level of maturity.

In the real world, authorisations individual users assume within an organisation are de-
termined by their roles within it. This includes specification of users’ organisational duties,
their responsibilities as well as qualifications. In general, identity of a user is often of lit-
tle importance to access control beyond accountability. Based on this observation, RBAC
models introduce the concept of role as the bearer of authorisations. A role is a semantic
construct around which a RBAC access control policy is formulated [FK92].

In the RBAC model permissions are associated with roles, and roles are assigned to
users. The logical independence in the specification of user authorisations via roles greatly
simplifies the security policy management and administration. Users can easily be assigned
to roles and so can roles be granted new permissions. Users may activate and deactivate
roles they are assigned to, and in some implementations the individual permissions, at their
own discretion, to match the authorisations required to accomplish a task. Each mapping
of a single user to a set of active roles is referred to as a session. Users may have multiple
running sessions in a system at any point in time. While groups in the DAC model define
sets of users, the roles define sets of privileges assigned to users.

In [SCFY96], Sandhu et al. recognise the concept of role as only a base for more complex
features. They define a family of four conceptual models to serve as a basis of reference:

• RBAC0: the base model with users associated with roles and roles associated with
permissions. It is entirely up to the user’s discretion as to which roles are activated in
a given session.

• RBAC1: RBAC0 extended by the concept of role hierarchies (RH) as a natural way to
reflect an organisation’s lines of authority and responsibility.

• RBAC2: RBAC0 extended by the concept of constraints that control user-role, permission-
role and session-role assignments. Activation of roles is not entirely at the user’s dis-
cretion any more.

• RBAC3: is a model that combines RBAC1 and RBAC2.

Figure 2.5 illustrates diagrammatically the features of the four models. US National Institute
of Standards and Technology (NIST) has published a standard for RBAC in [FSG+01].
RBAC2 is also referred to as parametrised RBAC. RBAC2 is of particular interest to pervasive
computing applications as it provides a natural way to express authorisation rules that
incorporate contextual information.

RBAC model inherently supports three important security principles: least privilege, sep-
aration of duties and data abstraction [SCFY96]. Although it offers a number of advantages,

36

2.7 Access Control

Permiss-
ions (P)

Roles
(R)

Users
(U)

User
Assignment

(UA)

Permission
Assignment

(PA)

Sessions (S)

Constraints
(C)

Role
Hierarchy

(RH)

user role

RBAC3

RBAC1
RBAC2

RBAC0

Figure 2.5: RBAC models.

the model cannot be seen as a panacea for all access control issues. One of the main crit-
icisms is the inability to deal with situations in which sequences of operations need to be
controlled, as in workflow-based systems. The concept of active security is introduced, as
outlined below, to address this issue.

In the original RBAC paper, Ferraiolo and Kuhn [FK92] state that RBAC is a form
of mandatory access control but not based on multilevel security requirements. However,
RBAC models are generally considered policy neutral as they can be configured to enforce
both mandatory and discretionary access control policies [OSM00]. RBAC may also be used
to complement DAC and/or MAC in a layered access mediation architecture [SCFY96]. In
[Bar97], Barkley offers an in-depth comparison between RBAC0 and ACLs.

37

Figures/Chapter_II/rbac_models.eps

2. BACKGROUND

2.7.4 Active Access Management

DAC, MAC and RBAC are based on the subject-object view of security. A subject is given
access to an object solely based on the rights it possess within a system. In the real world,
however, users are often assigned authorisations based on a specific task and activity they
are to accomplish. This carries over to distributed computing environments, workflow and
transaction management systems with multiple points of access, control and decision making.

Thomas and Sandhu [TS97] introduce the concept of active security models, referred to as
active access management in the context of access control [BMY02], to denote approaches to
security modelling from the perspective of activities and tasks. Preliminary ideas on active
security originate from [TS93] and [ST94]. In active security models permissions granting,
usage tracking and revocation are coordinated with the progression of tasks automatically.
Active security models can, thus, be seen as a move toward the continuity of access me-
diation, ensuring permissions are assigned to subjects precisely as and when needed for
accomplishment of a task.

To accomplish the above, active access control models account for a wider context, such
as the current state of tasks or workflow, in access mediation. The notion of context as
used in this area, [TS97] [BMY02] [BEM03] [Tho97] [GMPT01], denotes the internal state
of a system and its components directly relevant for the authorisation process. The term
context, as used in pervasive computing and in this thesis (Section 2.2) is a wider concept
that encompasses the digital and physical environments of a target entity.

Work on active access management inspired a wider information usage control paradigm,
outlined in Section 2.8.

2.7.5 Context-Aware Access Control and Architectures

In pervasive computing setting, context in which a user accesses information is highly dy-
namic and, in general, unpredictable. This is reflected onto the relevant threat models. Con-
sequently, not accounting for contextual information in an access control decision process
may put data at risk. Furthermore, the ability to sense and exploit contextual information
for the authorisation process may facilitate proactiveness and reduce intrusiveness of a per-
vasive system as a whole. Thus, a wide body of research concentrates on “enhancing” access
control models with context-awareness. Majority of the recent work focuses on extending
RBAC models, mainly through parametrisation (RBAC2) or introduction of specialised role
types (RBAC0). Note also that authorisation conditions enabled DAC variants may also be
utilised for context-aware decision making.

The most accessible, and widely exploited, contextual factors correspond to spatio-
temporal information. Bertino et al. [BBF01] and Joshi et al. [JBLG05] propose a RBAC
model extension that incorporates temporal, periodic and non-periodic, role enabling and
role dependency specification. Extensions of RBAC model by the concept of spatial role —
a role whose activation is conditioned on spatial position of the requesting user or the target

38

2.8 Information Usage Control

object, seem to be a popular approach to access control spatial context-awareness [HO03a]
[HO03b] [BCDP05].

Generalising beyond spatio-temporal information, Covington at el. [CLS+01] [CMA00]
propose Generalised-RBAC (GRBAC) model, an extension to RBAC by the concept of
environmental role — a role that may be used to capture any sort of contextual condition.
GRBAC is the most widely cited of the context-aware approaches to access control but is
by no means the only one [GMPT01] [SNC02] [CM03] [ZP04]. The former two attempt
at addressing some perceived fallacies of GRBAC. Alternatively, OASIS RBAC allows for
specifying context constraints in its parametrised model [BMY02].

Context-aware access control models, alike any context-aware application, depend on
system architectures which provide for the availability of relevant contextual information.
In [CFZA02], Covington et al. propose a context-aware architecture to meet the GRBAC
[CMA00] model requirements; [SNC02] is a part of wider GaiaOS [RHR+01] security archi-
tecture [VGC01] [AMRCM03]. Myriad other examples exist in the literature. These archi-
tectures represent a general model of pervasive systems context-aware security architectures,
and CASPEr draws from them (Chapter 5).

2.8 Information Usage Control

The access matrix model of access control has remained fundamentally unchanged since its
inception, over three decades ago. The core model has, over time, been elaborated in a num-
ber of directions, such as DAC, MAC and RBAC, to meet the need of real-world policies.
To address the challenges posed by modern systems, coming from different perspectives, re-
searchers have further offered the concepts of trust management, digital rights management,
active access management etc.

Park and Sandhu [PS02b] introduce the concept of Usage Control (UCON) as a compre-
hensive and systematic approach for controls on usage of digital objects in an attempt to
unify modern access control, trust management and DRM. The core of UCON is a family of
what Sandhu and Park [SP03] call ABC models, built around the concepts of authorisations
(A), obligations (B) and conditions (C). UCON is essentially a generalisation of the access
control paradigm over the three concepts.

Figure 2.6 depicts ABC model components [SP03]. The rights in UCON are not pre-
determined and stored in some form of a static structure, like access matrix. Rather, they
are determined on access request, with respect to the ABC factors. Such authorisation is the
job of the usage decision functions. Obligations require an explicit action to be performed by
the subject to gain or retain access. An example would be clicking the “ACCEPT” button
on a license agreement. Conditions, as in RBAC2, specify contextual factors that predicate
access. Authorisations derive semantics from traditional access control.

In addition to the above factors, UCON provides for continuity and mutability properties.
The former ensures ongoing right controls and their immediate revocation for the duration

39

2. BACKGROUND

Authoriza-
tions (A)

Rights
(R)

Obligations
(B)

Conditions
(C)

Subjects
(S)

Objects
(O)

Usage
Decision

Subject
Attributes

Object
Attributes

Figure 2.6: ABC model components.

of an access — unlike in more traditional access control where the decisions are tied to the
point of access. The latter provides for modification of access decision relevant attributes as
a side-effect of the user’s actions. This is particularly useful in DRM scenarios, e.g. to limit
number of viewing of digital content or to debit the user’s account per access.

As specified in [PS02b] [SP03], UCON encompasses access control policies such as DAC,
MAC and RBAC as well as trust management, DRM and active access management. [PS02b]
also presents a selection of UCON applications. UCON seems to have been developed as
an integral part of a wider information dissemination control paradigm, outlined in Section
2.6. In [PS02a] Park and Sandhu show how basic ORCON and UCON can be combined
to provide for full information dissemination control. Implementation of UCON involves
digital container [SBW95] protected information, control set (e.g. in the form of a license)
and client-side reference monitor [And72].

2.9 Mobile Device Data Protection

As hinted at in Chapter 1, proliferation of mobile devices poses a number of challenges for
data security. Most notably, mobile computing breaks the secure perimeter model, both
in its digital and physical dimensions. This brings about unpredictability in information
security threat model estimation, as discussed previously, in Chapter 1. The most widely
recognised threat of information confidentiality compromise is due to the increased likelihood
of the physical theft of the mobile computing devices themselves. A number of approaches

40

Figures/Chapter_II/abc_ucon.eps

2.9 Mobile Device Data Protection

for protecting data contained on mobile devices have been proposed. However, most are
highly rigid and indiscriminate thus seriously hampering information availability, mobile
device usability and functionality.

The first line of defence, most widely exploited and, unfortunately, often considered a
panacea, has been the cryptographic protection of data at rest — i.e. contained within per-
sistent storage. Cryptographic filesystems, e.g. [Bla93], represent the standard mechanism
for this. However, entrusting the capacity to encrypt/decrypt data to mobile devices them-
selves fully may serve equally well to potential device thieves. Corner and Noble, in their
work on Zero-Interaction Authentication (ZIA) [CN02], suggest use of authentication token
for wireless, automatic, proximity-based authentication. The ZIA token is a device worn by
the user, providing the user’s decryption keys to their mobile devices on request. Unless
the token is available, the data is (re-)encrypted. Extending encryption of data at rest, in
[Pro00], Provos outlines a method for cryptographic protection of data on swap space. On
the commercial side, a number of suites have been developed to ensure mandatory, holistic,
data encryption on mobile storage devices. Perhaps the most widely recognised, and also cer-
tified under the Common Criteria [cc:b], is the Pointsec [Poi] mobile device data protection
suite.

Other threats of information compromise in pervasive computing, beyond physical theft,
have also been recognised. For example, utilisation of public services or untrusted commu-
nication links and the inability to control data flow centrally have been widely discussed.
Lacking a flexible, adaptable, fine-grained and reliable enough solution, approaches that fully
disable software and hardware features of the target platform that might potentially lead to
information compromise have been suggested both in the academic world [KFJ03] [PKKJ04]
as well as in the commercial sector. Furthermore, security policies that prohibit use of
mobile devices with corporate infrastructure altogether are becoming increasingly popular,
especially in the governmental sector. It is clear how, and to what extent, such approaches
affect the usability and reduce the benefits brought about by mobile computing. This can
be seen as one of the prime motivations behind CASPEr.

The most significant departure from the indiscriminate mobile device data protection
was offered by Corner and Noble in [CN03], building on their previous work on ZIA [CN02].
In [CN03], Corner and Noble describe an API and the related functionality which exposes
ZIA token’s cryptographic functionality to applications running on mobile devices. More
interestingly, the ZIA token offers a proximity-based call-back service to the applications —
allowing them to implement their own adaptation methods. This is in addition to the event-
driven data storage encryption. Although the work represents a significant advance in terms
of flexibility and context-awareness, the threat model space remains binary as determined
by the state of token presence. The CASPEr model represents a step forward with respect
to threat modelling granularity as well as protection continuity. The CASPEr framework
effectively encompasses the functionality of [CN03].

41

2. BACKGROUND

2.10 Modeling the World

In Chapter 3 we introduce an approach to modeling the world based on the notion of con-
tainer, a protective enclosure, and its hierarchical structuring into containment trees. The
inspiration for the model originates from the research conducted in the area of mobility
theory as well as from the approaches to modeling space in geo-information systems.

To be able to express, reason about and control the location-dependent behavior and
movement of processes in distributed systems, research in the area of mobility theory (mo-
bile computation in particular) has devised a number of ways to model the state of the world.
The common set of entities represented by such models are the (mobile) processes, communi-
cations channels (between the processes) and locations (in which computation occurs). The
processes represent active entities that embed the mobile computation and exhibit dynamic
behavior. The π calculus [Mil99] and its derivatives, such as asynchronous, distributed or
nomadic π calculus, model distributed communications systems solely on the basis of pro-
cesses and communications channels among them. MOBadtl [FMSS03] models the world as
a flat structure based on the notion of a neighborhood as a building block. Join-Calculus
[FG96]and Cardelli’s work on Ambient Calculus and Mobile Ambients [CG98] [CG00] pro-
pose hierarchical models based on the notions of locations and ambients respectively. A
further hierarchical model of the world, based on the concept of a seal, is proposed by the
Seal Calculus [CVN05] — itself partially inheriting from the π calculus. The similarity be-
tween the above notions of neighbourhoods, ambients, locations and seals and the concept of
a container as introduced in this thesis goes only as far as all of them represent a form of an
enclosure, physical or virtual, within which further entities may exist and whose migrations
assume its contents. The semantics of an enclosure in the mobility theory, however, reflects
the fact that its purpose is representing, reasoning about and controlling the behavior (e.g.
mobility) of mobile computation entities (the processes), e.g. mobile agents, within a dis-
tributed system. Consequently, the related formalisms, e.g. calculi, algebras and policies,
are of significant complexity. The notion of a container, as we introduce in Chapter 3, and
its role within the overall model are of a significantly different nature. Firstly, the introduced
model itself is comprised solely of static entities, not capturing mobile computation in any
of its forms. Secondly, the role of a container or, more precisely, of its boundary is solely in
reasoning about the threat models present in its exterior and interior and their dependence
— effectively playing the role of a fully passive filter. Lacking the need of supporting mobile
computation or any active behavior, we model the world (Chapter 3) in a manner which
resembles the subset of the ambient calculus [CG98] which describes the structure of space
with no active processes.

Originally, the inspiration for the concept of a container comes from the research in
representation of space for geo-information systems. Research on spatial databases [SCR+99]
offers a number of geo-information systems inspired ways of structuring the world in field-
oriented and object-oriented ways. Egenhofer and Rodriguez [ER99] [RE00] offer an ontology
of space based on the container-surface paradigm and related algebras. The notion of an

42

2.11 Summary

container, as used in our work, extends the Egenhofer’s container into the virtual world in
which it resembles a passive ambient from Ambient Calculus work [CG00] with an explicit
notion of a container’s boundary and its threat filtering characteristics.

2.11 Summary

The material presented in this chapter serves mainly a two-fold purpose. The initial three
sections on context aware computing, autonomic computing and the general perspective on
security issues in ubiquitous computing described the wider setting of this thesis and the
constraints implied by it. The sections on information flow control, information dissemina-
tion control, access control and information usage control depicted the information security
big picture to which CASPEr contributes. Special emphasis was placed on identifying the
individual entities and the roles they play in each of the mechanisms, nature and source of
the particular threats and the threat types addressed. These are the characteristics that
most clearly distinguish CASPEr from the related work. For completeness purposes briefly
outlined the current trends in mobile device information security protection. Rather than
directly contrasting CASPEr to each of the mentioned security models and mechanisms in
this chapter, we postpone the comparison to Chapter 6, after having introduced all CASPEr
concepts in detail. There, we present a qualitative comparison of CASPEr with the major
relevant information security paradigms — crystallising the contribution this thesis makes
and precisely specifying the role CASPEr plays in the information security big picture. Since
the majority of the novel concepts introduced by CASPEr rely heavily on the approach to
modeling the world that we present in Chapter 3, in the last section of this chapter we related
it to the contributions in the areas of mobility theory and geo-information systems.

43

2. BACKGROUND

44

Chapter 3

Containers and Containment —
Modelling the World

3.1 Chapter Overview

In this chapter we introduce an approach to modelling the world in an information-centric
manner, founded on the concept of a container as a protective enclosure and its structuring
into higher-level containment entities — the basis for describing the state of the world.
The model itself is aimed at providing for well-founded, structured and data object grained
information exposure threat analysis as well as reasoning about localised threat mitigation,
continuously throughout information life-time. The concepts and formalisms introduced in
the chapter lie at the foundation of CASPEr and form a basis on which the material presented
in the following chapters rests.

In the initial section, we provide a formal definition and characterisation of information
exposure threats, as used throughout the thesis. We define the threats in a wider context of
contextual effects — a concept that captures implications a contextual state has on target
entities, and argue for the benefits of explicit contextual effect reasoning. We proceed to
motivate and introduce, in Section 3.3, the fundamental concept of container as a protective
enclosure. The protective capabilities are conceptualised as container transparency — a
quality of the container’s boundary to filter information exposure threats originating in its
exterior and potentially affecting entities enclosed within its interior. Paving the way to
the domain ontology, we present a basic container classification together with a relationship
specifying container nesting capabilities. Based on the latter, as presented in Section 3.4,
containers can be organised into higher-level entities that we refer to as containments which,
in turn, are used to describe the state of the world. To facilitate model manipulation and
maintenance, we introduce a number of related formalisms, leveraged throughout the thesis.
We also show how the model is deployed in units called realms, fully honouring the autonomy
of individual ubiquitous computing devices, tailored to their resource capabilities. Combining

45

3. CONTAINERS AND CONTAINMENT — MODELLING THE WORLD

the container transparency and the structure of the containment-based model of the world,
in Section 3.5 we present the overall approach to fine-grained threat analysis. Furthermore,
we show how the model facilitates reasoning about localised threat mitigation and introduce
two categories of threat mitigation operations. Finally, in Section 3.6, we specify a property
that guarantees the safety, with respect to information exposure protection, of tailoring the
model expressiveness to the capabilities of the target deployment devices.

3.2 Information Exposure: from Context to Contex-

tual Effect Awareness

3.2.1 What is a Contextual Effect?

Research in the area of context aware computing offers a number of approaches to captur-
ing, modelling at various levels of abstraction and dissemination of contextual information.
Apart from the cases in which the obtained contextual information is provided for user
awareness, the aim of context-aware computing is adaptation. Context adaptation binds a
contextual state to one or more adaptation actions. We use the term contextual state in
this thesis to denote contextual information that describes an environment at any level of
abstraction. Contextual state is comprised of contextual fragments. The coupling between
contextual states and adaptation actions is usually specified as a set of rules, forming a
context-adaptation policy, or is, more often than not, hard-wired into context-adaptive ap-
plications themselves. What remains implicit in such approaches is the actual interpretation
of a particular set of contextual fragments that leads to the adaptation. In other words,
the answer to the question: What is the cause of the particular adaptation as seen in the
context?.

For example, while availability of multiple communications links means increased con-
nectivity from a point of view of context aware networking, it may mean higher risk from
the security stance. Similarly, whereas switching displays in favour of a bigger one may
mean enhanced information presentation capabilities from a Human Computer Interaction
(HCI) point of view, it may signify a bigger probability of an unauthorised party overseeing
the information from the information security angle. Each of the interpretations causes a
different adaptation procedure.

Definition. A Contextual Effect is a concept that qualifies and quantifies a single conse-
quence, i.e. a specific impact, that a contextual state as a whole or a set of its fragments has
on a target entity or a set of target entities.

In general, the mapping between contextual states and contextual effects is many-to-
many, as hinted at in the above example.

46

3.2 Information Exposure: from Context to Contextual Effect Awareness

3.2.2 Why Explicit Contextual Effects Modelling?

One of the first proposals that we make in this work is explicit modelling of contextual
effects. Doing so leads us away from the traditional two step adaptation process:

contextual state→ adaptation

To a three step context adaptation process proceeding as:

contextual state→ contextual effect reasoning→ adaptation

Explicit contextual effect modelling can be seen as abiding by the more general separa-
tion of policy and mechanism principle first published in [LCC+75] and since then a “modus
vivendi” in many aspects of computing. The fundamental advantage of the approach is
simplification of changes in policy required to be made to cope with altered operational cir-
cumstances. Honouring the principle, explicit contextual effect modelling allows for dynamic
changes in available application and platform adaptation mechanisms with no, or very little,
need for any policy or component updates. This is of particular importance in the area of
ubiquitous computing characterised by weak or non-existing service availability guarantees.
Even more so when the governing principles of autonomic computing [IBM01] (Section 2.3)
are considered, in particular:

• “An autonomic computing system must configure and reconfigure itself under varying
and unpredictable conditions.”

• “An autonomic computing system never settles for the status quo — it always looks for
ways to optimise its workings.”

We believe that explicit modelling and reasoning about contextual effects is one of the
necessary steps toward the joint vision of ubiquitous autonomic computing. Furthermore,
explicit contextual effect modelling facilitates context reuse at a different dimension from
the pure context abstraction approaches.

Henricksen and Indulska [HI04], and Dey and Abowd [DA00] earlier, recognised a similar
need. However, they attempted at addressing it by introducing yet another level of abstrac-
tion of contextual information. In [HI04], Henricksen and Indulska, propose the situation
as a programming concept which describes in a sufficiently abstract way contextual infor-
mation that determines application behaviour. Situations can be combined promoting reuse
and enabling incremental formation. They are expressed using a form of predicate logic in
terms of contextual fragments. However, the process of abstracting, rather than correlating,
contextual information retains the embedding of the application-specific semantics. Explicit
contextual effects modelling, on the other hand, extracts this semantic information — in
particular the qualification and quantification of impact a contextual state has on a target
entity.

When we refer to the terms context or contextual state in the rest of the thesis we assume
contextual information as a source of contextual effects.

47

3. CONTAINERS AND CONTAINMENT — MODELLING THE WORLD

3.2.3 Contextual Effects Characterisation

Contextual effects have two fundamental characteristics: a type and a degree. Contextual
effect type is intended to capture the nature of a contextual effect. While the type can be
seen as qualifying a contextual effect, the degree represents its quantification. Semantics of
exposure degree are subject to application-specific context interpretation. Contextual effect
type ensures identification of an appropriate adaptation process to perform while the degree
is intended to facilitate the choice of appropriate level of adaptation. In addition to the
type and the degree, contextual effects may also be characterised by a set of application
specific attributes. The attributes may be used for a variety of purposes, most notably for
constraining the set of target entities affected by the contextual effect according to some
criteria. We present relevant examples in the next sections.

3.2.4 Information Exposure Threats as Contextual Effects

Whenever we consider an “accident” in the context of computer security we can distinguish
between the mechanism and the process. The mechanism denotes a characteristic of a
systems component, a specific “feature” or a set thereof, that enables mounting an attack
that leads to an “accident”. The process is described as the actual sequence of steps, or
operations, performed to exploit the mechanism. A single mechanism may be exploited by
multiple processes in different ways.

Definition. Information Exposure Threat characterises information exposure process and
captures the probability that it occurs in a specific context.

The other way around, we say that an information exposure process as it occurs is a
materialisation of a threat. Referring back to the definition of information exposure, an
exposure mechanism assumes a particular set of information management and handling pro-
cedures. On the other hand, context determines the feasibility of and sets the constraints for
existence of a particular information exposure process. Consequently, information exposure
threats represent a class of contextual effects.

For example, in order for a piece of information to be overseen (the process) while being
displayed on a screen in a particular form (the mechanism) an unauthorised party must be
able to exist within a certain proximity to the screen (the context). Similarly, for a piece
of information stored on a storage of a mobile device in plain text (the mechanism) to be
exposed the device needs to be in a place (the context) where it can be abducted (the process)
by a malicious party. In the information exposure terminology, the notion of a threat model
represents a set of information exposure threats that exist in a given context for a piece of
information.

Explicit modelling of information exposure threats represents a clear instance of the
separation of policy and mechanisms principle with all of its benefits, especially emphasised
in the target setting of ubiquitous and autonomic computing. In the rest of the thesis we use

48

3.2 Information Exposure: from Context to Contextual Effect Awareness

the terms threat and exposure to mean information exposure threat, unless explicitly stated
otherwise.

3.2.5 Information Exposure Threats: The Probabilistic Nature

Presence of an exposure threat and existence of an exposure mechanism are necessary but not
sufficient causes for the exposure to actually occur, i.e. for the threat to turn into a process.
Even if we could, hypothetically, assume perfectly precise and detailed context models we
still would not be able to reason with absolute certainty about factors such as motivation,
knowledge and resource capability of an attacker to leverage an exposure mechanism. Thus,
we see information exposure as a highly non-deterministic process. Moreover, due to its
nature, information exposure is not necessarily evident even as it occurs.

Due to the above reasons we need to resort to statistical tools and probabilistic mod-
elling to establish information exposure threats in an environment. In statistics, obtaining
a causality relationship between events rests mainly on empirical methods which are some-
times aided by the deployment of inference processes to complete or set the foundation of
the relevant causality structure. Experimentation in the context of information exposure
threats is, however, highly infeasible due to their sensitive nature.

Therefore, we assume a probabilistic correlation process between individual contextual
fragments and information exposure threats. Frequently heard objections to probabilistic
measures of security in general are due to the essentially unrepeatable nature of the key
events. This is even more so in the case of information exposure due to frequent difficulty in
identification of the key events themselves. Furthermore, for security, the uncertainty often
concerns one-off events. Thus, a subjective, Bayesian like, “strength of belief” interpretation
of probability is required - given by the probabilistic correlation approach.

We do not devote more space to exploration of the relevant statistics and probability
instruments as they are well established and can be found in any textbook on the topic.
In practise, we expect the correlation of context and information exposure threats to come
from risk modelling approaches involving historical experience and expert opinion.

3.2.6 Information Exposure Threat Characterisation

Being contextual effects, information exposure threats inherit the characterisation by the
type, degree and attributes.

Threat Type

We distinguish between primitive and compound threat types. At this point we define only
the former while the latter are defined in Section 3.5 after all the pre-requisite concepts have
been introduced.

49

3. CONTAINERS AND CONTAINMENT — MODELLING THE WORLD

Definition. Primitive information exposure threat type denotes the nature of the exposure
mechanism — as the enabler of the exposure process.

In other words, primitive exposure threat types represent the nature of the respective
information leakage channels. Unless specified otherwise, we use the term threat type to
mean primitive information exposure threat type. For the purpose of clarity of the material
to be presented we provisionally introduce the following threat types:

• Optical information exposure denotes that a piece of information can be “seen”.

• Acoustic information exposure occurs when information can be “heard”.

• Physical information exposure threat type denotes that a device containing sensitive
information, such as a mobile computing device or a removable storage device, can
come under the physical command of a unauthorised party.

Information threat typification shall be systematised along the definition of compound
threat types in Section 3.5.

Exposure Degree

The standard way to quantify information leakage is in terms of amount of data that leaks in
a unit time, e.g. bits/sec. Such a metric characterises an ongoing process. Due to its subtle
nature, information exposure may not be evident as a process, i.e. as it occurs. Therefore,
we characterise information exposure threat severity as the absolute proportion of data that
leaks from an affected data object (e.g. a file) should the threat materialise. Throughout
the thesis we refer to this metric as the width of an information exposure channel.

To quantify information exposure threats, unlike information exposure process, along
the width of an exposure channel threat degree needs to account for two uncertainties:
i) context capturing uncertainty; and ii) threat materialisation uncertainty. The latter is
context dependent and has already been discussed. The former is an intrinsic property of
the context modelling process at all levels of abstraction. It has been a topic of a wide area
of research in context aware computing and we consider it out of the scope of our work.

Information exposure threat degree can be expressed as:

degree(ucontext, pthreat, wchannel) : val

where the first two arguments are the two uncertainties and wchannel is the exposure channel
width. The level of measurement used for expressing the exposure degree is considered
application specific. It is dependent on the methods employed for establishing and expressing
the uncertainties in the context - threat correlation process.

50

3.3 Container - the Basic Building Block

Threat Attributes

Information exposure threat attributes serve the purpose of constraining threat reasoning
to specific target entities — pieces of information, in our case. For example, in an office
with a number of screens oriented in different directions and a location infrastructure able to
determine orientation of individuals, e.g. ActiveBat [HHS+99], we can constrain reasoning
about the threat of, line-of-sight, Optical information exposure to screens in the visibility field
of a particular person. Furthermore, in multi-level security environments, we can leverage
the attributes to match threats to affected data items based on information classification
and principal clearances (Section 2.5).

3.3 Container - the Basic Building Block

3.3.1 Motivating Example

To create an intuitive feel for the notion of a container and the manner in which we build upon
it in the following section to develop an approach to modeling the world, we commence this
section with a simple example drawing from the motivating scenarios presented in Chapter
1. Consider Alice being in a busy airport lounge, waiting for the departure of her flight,
and in a possession of a number of corporate sensitive documents contained on her mobile
computing devices as follows:

1. Displayed full-size on:

(a) 14” laptop display (full-size),

(b) 4” PDA display (full-size).

2. Stored on:

(a) Laptop’s fixed storage device:

• Encrypted, and

• Unencrypted.

(b) PDA’s fixed storage device:

• Encrypted, and

• Unencrypted.

Alice’s environment represents a source of Optical and Physical information exposure
threats. What can we then say about the threats as experienced by the individual docu-
ments? Intuitive thinking suggests that they experience varied exposure degrees depending
on their actual “whereabouts” — i.e. the data handling and management procedures lever-
aged for each.The physical size of Alice’s laptop screen permits its contents to be observed,

51

3. CONTAINERS AND CONTAINMENT — MODELLING THE WORLD

or captured, from a distance that makes the process unobtrusive to her. In other words,
we say that the displayed document is, in this case, under the credible threat of Optical
exposure. The same, however, does not hold for the document shown on the PDA’s screen.
We consider a threat as credible if it necessitates active mitigation. On the other hand, the
documents contained on the storage devices are immune to the threat of Optical exposure.
However, owing to their physical size and mobility characteristics, the two devices are prone
to being abducted. Consequently, the data contained within them is under the threat of
Physical exposure — but not uniformly so. Regarding the information present on the lap-
top’s storage, in spite of the inherent level of security of the environment, the threat for the
unencrypted data can still be considered above the credibility threshold. Encrypting the
data may be considered enough to decrease the experienced threat degree sufficiently to be
considered as an adequate threat mitigation action in this case. On the other hand, as the
PDA is significantly easier to steal, conceal and smuggle, both encrypted and “plain-text”
sensitive documents on its storage device may be considered under the credible degree of
Physical exposure.

The example clearly shows the delineation between the context, seen as exposure threat
source, and data management and handling procedures, providing for threat mitigation. We
refer to the example throughout the section as an illustration of the motivation for modelling
the world based around the concept of container, which we introduce next.

3.3.2 Container: The Definition

Container, alike contextual effect, represents an abstract concept. The fashion in which the
definition of a container is phrased tries to retain the level of abstraction for the purpose of
the concept generalisation beyond the presented application. An exception to this tendency
is making the definition information centric, with no loss of generality, as required in the
context of information exposure threats.

Definition. A container is a semantic construct that represents a physical or a virtual
enclosure in which another container or, ultimately, a piece of information may exist. An
enclosure is a bounded region, physical or virtual, with clearly distinct interior and exterior
delimited by its boundary.

In other words, a container is effectively defined by its boundary. The semantics of an
enclosure imply that migrations as well as destruction of a container assume all of its contents.
Other than that, the manner in which a container boundary delimits container’s interior
and exterior is specific to the nature of contextual effects being modelled — information
exposure threats in our case. Semantically, enclosure is a more abstract concept than a
container. The latter encompasses various application-specific properties of the boundary —
as clarified shortly. In the context of information exposure threats, container may be seen as a
conceptualisation of threat affecting characteristics of information handling and management

52

3.3 Container - the Basic Building Block

procedures. For instance, the motivating example has implied that storage devices block the
threats of Optical exposure and that encryption lessens the degree of Physical exposure.

Container Transparency

The fundamental concept that makes container an enclosure is the boundary. Contextual
effects may arise from the state of context inside or outside a container, relative to the
boundary. The primary role of the container boundary is to confine its contents with respect
to information exposure threats occurring in the container exterior. For a contextual effect
originating outside a container to affect entities contained within the container it has to
“cross” its boundary. The crucial point is that in the process of crossing the container
boundary the threat can be quantitatively affected. This is why we refer to container as a
protective enclosure.

For example, for a sound made inside a room to be audible outside it, the room’s boundary
(consisting of walls, doors, windows etc.) has to be permeable for a set of corresponding
frequencies at the particular volume. In the context of information exposure, we reverse the
point of view and say that a threat of Acoustic information exposure, in this case, penetrates
into the container that represents the room. Similarly, if information displayed on a screen
can be observed by a third party we say that a threat of Optical information exposure
penetrates into the container representing the display. Whenever we refer to information
exposure we assume such, reversed, point of view.

Definition. Container transparency is a quality of the container boundary to reduce degree
of contextual effects as they cross it.

Let C be a set of transparency relevant container characteristics and T be a set of
contextual effect types. Assuming that the degree of contextual effect takes values from a
domain D (the examples in the rest of the thesis use the set of real numbers, R, as the
domain without loss of generality), we can specify the form of the transparency function as:

transparency : P(C)× T ×D −→ D

where P(C) is the power set of C. The degree of an exposure prior to crossing a container
boundary is always greater or equal to its degree afterwards. Container transparency affects
the degree of information exposure threat through lessening the threat materialisation likeli-
hood in the context and/or the width of the exposure channel. An example of the former is
displaying sensitive information on a smaller screen while a reduction in data transmission
rate over a wireless channel illustrates the latter.

The concept of the enclosure is not unknown in the context of modeling the world in
the mobility theory, as referred to in Section 2.10. However, the semantics of the enclosure
boundary in the mobility theory capture the role of enclosure in confining active entities
— mobile computation, their behavior and its effects. On the other hand, the semantics of

53

3. CONTAINERS AND CONTAINMENT — MODELLING THE WORLD

a container boundary as introduced in this thesis are of a different nature. They capture
the role of a container as a protective enclosure, a passive filter for information exposure
threats, with respect to the static entities within its interior. Furthermore, the concept of a
container is devised solely to reflect, in a passive fashion, the respective aspects of the state
of the overall world — the modifications of which are external to the model.

Going back to the motivating example of Section 3.3.1, the notion of transparency allows
us to conceptualise the intuitive difference among the information exposure threat degrees as
experienced by sensitive data contained on the respective devices — modelled as containers.
This is a first step toward the formalisation and generalisation of reasoning about information
exposure threats as experienced by individual pieces of information in a particular setting.
For example, while the PDA screen is less transparent for the threats of Optical exposure,
the storage devices are fully opaque.

Multiplicative vs. Additive Transparency

We distinguish between two main classes of transparency functions as: multiplicative and
additive. Let k represent the transparency coefficient which is dependent on the contextual
effect type and the transparency relevant container characteristics. Multiplicative trans-
parency functions take the general form of:

transparency(X ⊂ P(C), e.type ∈ T, e.degree ∈ R) = k × e.degree, 0 ≤ k ≤ 1

Where e denotes information exposure threat of type e.type and degree e.degree. The class
of additive transparency functions takes the form of:

transparency(X ⊂ P(C), e.type ∈ T, e.degree ∈ R) =

{

e.degree− k if e.degree ≥ k ;

0 if k > e.degree

Figure 3.1 is an illustration of the behaviour of each of the two classes of the transparency
functions. Each of the individual transparency functions in both of the graphs corresponds to
an incremental change in a single threat type relevant container characteristic. For example,
the size of a GUI window in which information is displayed. In Figure 3.1(a) each of the
unit reductions in GUI window size (starting with size p) accounts for a decrease in the
exposure degree by a quarter of the maximum exposure degree. In Figure 3.1(b) each of
the unit size reduction accounts for 50% of the experienced exposure degree. Note that the
former is an absolute change while the latter is a relative change. The difference in the effect
of unit impact in the two example plots is solely for the purpose of clarity of the graphical
presentation.

Figure 3.2 depicts percentage impact of a single unit decrement in the GUI window size
across the exposure degree range. The chosen exposure degree range, [0, 10], serves solely
the purpose of illustration. The transparency coefficients remain the same as in Figure 3.1
respectively. To analyse the graphs, we consider again the case of the two screens used in

54

3.3 Container - the Basic Building Block

e.d

t(p)

t(p-1)

t(p-2)

t(p-3)

k = 0.25*max(e)e
.
d
’

(a) Additive transparency.

t(p)

t(p-1)

e.d

k = 0.5

t(p-2)
t(p-3)

e
.
d
’

(b) Multiplicative transparency.

Figure 3.1: Example transparency functions.

the motivating example. What the graph in Figure 3.2(b) effectively tells is that no matter
how close in front of the screens a third-party is they are always less likely to observe the
contents of the smaller (PDA) display. However, we believe that above a certain proximity
the difference in the screen size would not, in practise, impact the likelihood of information
exposure. With respect to this, the additive transparency function in Figure 3.2(a), in
our opinion, describes the container transparency effect more realistically. This applies to
the class of additive transparency functions in general. The same effect can be obtained
if multiplicative transparency functions are defined non-linearly — with the transparency
coefficient varying across the exposure degree range. We, however, do not consider this
option as it entails substantial modelling and operational complexity.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10

%
im

pa
ct

 /
10

0

esposure degree

2.5/x

(a) Additive transparency.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10

re
la

tiv
e

%
im

pa
ct

 /
10

0

exposure degree

0.5

(b) Multiplicative transparency.

Figure 3.2: Percentage impact across exposure degree range.

Finally, Figures 3.3(a) and 3.2(b) plot the cumulative percentage impact over the unit
decrements in the GUI window size for the additive and the manipulative transparency

55

Figures/Chapter_III/trans_add_general.eps
Figures/Chapter_III/trans_mult_general.eps
./Figures/Chapter_III/trans_add_impact.eps
./Figures/Chapter_III/trans_mult_impact.eps

3. CONTAINERS AND CONTAINMENT — MODELLING THE WORLD

function classes respectively. As implied by the plots, the additive transparency coefficient
scales linearly with the number of unit changes in the respective transparency characteristic.
This is not the case for the multiplicative transparency functions — thus the shape of the
plot in Figure 3.3(b). This further reinforces our stance that the additive transparency better
reflects reality.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4

%
im

pa
ct

 /
10

0

parameter change

0.25*x

(a) Additive transparency.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10

%
im

pa
ct

 /
10

0

parameter change

1-(0.5**x)

(b) Multiplicative transparency.

Figure 3.3: Cumulative transparency impact - single parameter change.

3.3.3 Toward a Container Ontology

The term ontology originates from philosophy where it denotes the study of being and
existence — aiming to discover what entities and what types of entities exist and what are
their relationships. The term ontology, as used in computer science, is derived from the
usage of the term in philosophy. In computer science and information theory, ontology is an
exhaustive and rigorous conceptual schema about a domain — also referred to as a domain
ontology. Ontologies have so far been most commonly used in artificial intelligence and
knowledge representation.

The anatomy of an ontology consists of concepts, their attributes and their relationships.
A concept is any entity about which something can be said, it can be concrete or abstract, it
can be a process or an object. Concepts are also usually referred to as classes. Attributes are
used for describing concepts and they may be used for establishing more complex relation-
ships between concepts than would otherwise be possible. An ontology lacking attributes is
known as a taxonomy. Finally, relationships allow us to fully conceptualise the domain of
interest.

To allow for systematising the knowledge about containers and facilitate concept reuse
we lay foundations for a container ontology which is envisaged to be extended in application
specific manners. The ontology is directed toward the domain of information exposure
threats. However, we emphasise that the concept of a container and the relationships to be
introduced are generalisable to the wider concept of contextual effects.

56

./Figures/Chapter_III/trans_add_falloff.eps
./Figures/Chapter_III/trans_mult_falloff.eps

3.3 Container - the Basic Building Block

Container classification

The first step in developing the container ontology is the definition of container class and
the corresponding classification.

Definition. We say that two containers are of the same class iff:

1. The containers are characterised by the same set of attributes, and

2. They, under the same valuation of their attributes:

• exhibit the same level of transparency for all known information exposure threats,
and

• form the same set of relationships with other containers.

A particular valuation of container class attributes is a property of a container class
instance and we call it container state. The possible relationships among containers shall be
introduced shortly. We use the term container de-facto transparency to denote transparency
inherent to a container class. This means that the transparency of an instance of a container
class may never be greater than its de-facto transparency, irrespective of the values of the
particular container attributes. The de-facto transparency is, thus, a property of container
class rather than of its instance.

Figure 3.4 shows a simple container classification hierarchy. It is by no means complete
but is sufficient to illustrate the concepts presented in this thesis. Having said this, we see the
top two levels of the classification, together with the Data Item container class, as universal
(depicted in red). The most abstract container class is the Container class. It represents
the concept of a container in the most general sense. The next level in the classification
essentially serves the purpose of bridging the physical and virtual worlds:

• Physical containers denote entities that exist solely in the physical world, i.e. can
be characterised by three dimensions in Euclidean space and by their physical volume.
Examples of Physical containers are: a room, a physically secure perimeter, inside of
a car etc.

• Virtual containers, as opposed to Physical containers, denote entities existing solely
in the virtual realm. Virtual containers cannot be characterised by Euclidean dimen-
sions or physical volume. However, they do have explicit virtual boundaries within
which other virtual containers may be confined. The semantics of virtual and physical
boundaries are equivalent. Examples are: a GUI window, an encryption envelope, etc.

• Intermediate containers have a role of bridging the gap between physical and virtual
worlds. They represent physical enclosures within which only Virtual containers may
be confined. In other words, Intermediate containers have virtual volume — alike

57

3. CONTAINERS AND CONTAINMENT — MODELLING THE WORLD

-removable : bool

Storage
-volume : int

-type : int

Audio

-height : int

-width : int

GUI Window

-type : int

-algorithm : int

-keylen : int

Crypto

Communications Channel

WiredWireless

Input

-type : int

Keyboard Touch Screen

-size : int

-brightness : int

Display

-view_angle : int

LCD CRT

-sensitivity : int

Data Item

Image Text

Container

Physical Intermediate Virtual

Cubicle

Mobile Device

Input Interface

Figure 3.4: Example container classification.

Virtual containers, but their size can be described with Euclidean dimensions. Thus,
they draw from both the worlds. Examples are: a screen, a storage device, a network
cable etc.

Depending on the nature of a container, its boundary is itself physical or virtual, and so
are its interior and exterior. However, note that the interior of an Intermediate container is
virtual while its exterior is physical.

Data Item. In order to be able to reason on how information exposure threats affect infor-
mation we define the Data Item container class. A Data Item serves as a data representation
of information. The notion of a data item does not, in general, correspond to the traditional
concept of a file. It represents a finer-grained entity grouping information that is affected in
the same way by all information exposure threats. In our work, a data item groups infor-
mation of the same sensitivity level. The sub-file granularity of a data item facilitates more
flexible, focused and finer-grained information protection.

Figure 3.4 also shows sub-classes of the Data Item class. They are introduced to represent
individual data types in cases where the container classification granularity is at such a
level that the threat transparency relevant attributes can be defined on a per data type
basis. Examples of data type specific attributes would be the image quality and information
obfuscation level in a text document.

58

Figures/Chapter_III/class_diag.eps

3.3 Container - the Basic Building Block

Relationships

As we have previously mentioned, relationships play an important role in the conceptualisa-
tion of an ontology domain. The following two are fundamental for establishing the container
ontology: the “is a” and the “may contain” relationships.

The “is a” relationship. The “is a”, or sometimes referred to also as “kind of”, rela-
tionship is reflected in the structure of the container classification hierarchy as shown in the
Figure 3.4. With respect to the relation, every entity is said to be a child, a sub-class, of
at most one parent class, or superclass. Semantics of the relationship imply that all the
attributes of the parent class are inherited by its children. For example, a Data Item “is a”
Virtual Container and Keyboard “is a” Input Device.

The “may contain” relationship. The “may contain” relationship specifies the nesting
compatibility between instances of container classes. Let C be the set of container classes and
A be the set of all container class attributes. For each a ∈ A there is a set Da of the values
the attribute can acquire — its domain. The “may contain” is a binary relationship defined
on tuples of form 〈c, {(a1, V1), . . . , (an, Vn)}〉 where c ∈ C, a1, ..., an ∈ A are attributes
of the particular container class and Vi ⊆ Dai

, i = 1, . . . , n. In other words, the “may
contain” relationship is defined for pairs of containers based on the values of their attributes.
The relationship is irreflexive, asymmetric and intransitive. It is also not total. In graph
theoretic notation, the “may contain” relationship imposes a directed acyclic graph structure
on instances of container classes.

We model the relationship using the containable predicate. If container a “may contain”
container b then containable(a,b) evaluates to true. At the level of abstraction of Physical,
Intermediate and Virtual containers, the “may contain” relationship is defined as follows:

• Physical containers “may contain”:

1. Physical containers, dimensions and volume permitting.

2. Intermediate containers, dimensions and volume permitting.

• Intermediate containers “may contain” Virtual containers only.

• Virtual containers “may contain” Virtual containers only.

At the lower levels of the hierarchy, the “may contain” relationship is specified on a per
container class basis — which constrains, but does not override, the above rules. In the
general case, the “may contain” relationship is inherited down the container classification
hierarchy and can be further specialised by each sub-class.

Applied to containers of class Data Item, the containable predicate always evaluates to
false. In other words, data items may not contain any other containers irrespective of their

59

3. CONTAINERS AND CONTAINMENT — MODELLING THE WORLD

class or state. This establishes the information centric approach to modelling the world that
we take. We say that containers of class Data Item are atomic containers.

3.4 Containment - the Model of the World

Building on the concept of a container and leveraging the container classification and the
“may contain” relationship allows us to represent the world in a structured and well-founded
way. In this section we introduce the notions of containment and containment based model
of the world. The model is built around the concept of a Containment Tree.

3.4.1 The Model of the World: Containment Trees

We model the world by nesting containers to represent higher level entities in a structured
manner. Observe that this is analogous to the way in which entities are nested in Ambient
Calculus [CG98] [CG00]. For example, a laptop is itself comprised of a number of containers
— a screen, a storage device, a communications interface, a input device etc. These, in turn,
may contain further containers — all the way down to data items.

Definition. A Containment Tree is a rooted, acyclic, connected and directed graph in which
nodes represent containers and edges denote the contains relationship. All the paths from the
root to any of the outer, i.e. leaf, nodes of the graph are of finite length. Each node is of a
finite degree.

We say that container a contains container b, and write a → b, if container b exists
within the boundary of container a. The contains relationship reflects the state of the real
world rather than being a static property of containers or container classes.

We say that a containment tree is well structured if the “may contain” relationship is
never violated during the tree formation. In a well structured containment tree, data items
are always leaf nodes.

Finiteness of the path lengths is guaranteed by the existence of the atomic container
in conjunction with the fact that the “may contain” relationship induces a direct acyclic
graph structure on containers. Degree of a node, i.e. its branching factor, is equivalent
to the number of edges leading away from the node. Finiteness of the container branching
factor for Physical and Intermediate containers is guaranteed by the physical size constraints
of the real-world entities they model. With respect to Virtual containers, the container
degree finiteness is ensured by software and hardware platform resource overheads involved
in management of the real-world entities they represent.

When we refer to the term containment with respect to a particular container it denotes
the sequence of nested containers from the containment tree root to the container. Otherwise,
in the general sense, the term denotes the overall state of being contained. Containment of
a data item can be interpreted as a particular data management and handling procedure the

60

3.4 Containment - the Model of the World

data item is subjected to. For example, being displayed on a large, instead of on a small,
screen or stored in an encrypted, rather than in the plain-text, format as in the motivating
example (Section 3.3.1).

Definition. A containment-based model of the world is, in graph theoretic terminology, a
finite forest of containment trees.

A forest is a directed, acyclic graph in which each of the disconnected components has
a root. When we say that a containment based model of the world, or simply model of the
world, is well-structured it means that all of the containment trees comprising the model are
well-structured as defined above. The finiteness of the forest is ensured by the finite number
of higher level entities, such as individual ubiquitous computing platforms, that exist in the
world.

3.4.2 Containment Expressions

Containment Expressions represent the syntax of Containment Trees. We make extensive use
of containment expressions for identifying containers in a realm, as specified in Section 3.4.4
and leveraged throughout the following two chapters. Furthermore, formally defined syntax
provides for well-founded and sound description and reasoning about the structure of the
world — assumed throughout the thesis. To present the syntax of containment expressions
we break them down into atomic expressions and provide a graphical representation of the
matching containment tree fragment. The notation that we use is: i) lower-case letters of
Latin alphabet are used to refer to containers, assuming their state but not their contents;
and ii) capital letters of Latin alphabet denote containment trees. In both cases we use the
typewriter font style.

Containment Expressions and their Representation

To start with, absence of contents at any level is represented simply by “0”. Thus, a model
comprised of only “0” at the top level represents an empty world.

A tree with only a root node a, whose state is defined by the valuation of its attributes
(a1 = v1, . . . , an = vn), is written as the expression a : a1 = v1, . . . , an = vn; :

a : attributes_list ; a

Note that in the containment tree representation we omit the attributes valuation for
clarity purposes. Furthermore, from now onward we omit the specification of container
attributes valuation in containment expressions unless required for the purposes of argu-
mentation.

61

Figures/Chapter_III/syntax_alpha.eps

3. CONTAINERS AND CONTAINMENT — MODELLING THE WORLD

A forest, consisting of two trees with only root nodes a, of the same container class but
different attribute valuations (not explicitly shown), is written as the expression a|a:

a | a a a

A tree, with a root node labelled a, leading to a subtree P is written as the expression a[P]:

a[P]
a

P

A forest, consisting of two trees P and Q, is written as the expression P|Q:

P QP|Q

Multiple instances of the same tree P is written as the expression !P:

!P P P P...

A tree obtained by joining two trees P and Q at the root a is written by the expression a[P|Q]:

a[P|Q]
P Q

a

3.4.3 State of the World

Using the containment expressions, any well-structured state of the world at the level of
abstraction of Physical, Virtual and Intermediate container classes, is given by:

62

Figures/Chapter_III/syntax_multiple-a.eps
Figures/Chapter_III/syntax_p-inside-alpha.eps
Figures/Chapter_III/syntax_p-q-forest.eps
Figures/Chapter_III/syntax_multiple-p.eps
Figures/Chapter_III/syntax_p-q-in-alpha.eps

3.4 Containment - the Model of the World

world ← world|world

world ← physical

world ← intermediate

physical ← physical|physical

physical ← physical[physical]

physical ← physical[intermediate]

physical ← 0

intermediate ← intermediate|intermediate

intermediate ← intermediate[intermediate]

intermediate ← intermediate[virtual]

intermediate ← 0

virtual ← virtual|virtual

virtual ← virtual[virtual]

virtual ← 0

where physical, intermediate and virtual represent instances of container classes Physical,
Intermediate and Virtual or any inheriting classes respectively. Note that the state of the
world definition above obeys the “may contain” relationship for the respective containers.
Thus, any state described following the above rules is well-structured. Observe that this
syntax is similar to the subset of the ambient calculus [CG98] which describes solely the
structure of space with no active processes, like in semistructured data format described in
[Car99].

The above definition has little practical value in cases where “may contain” relationship is
defined for more specialised containers. Rules for well-structured, syntactical, representation
of the state of the world would then have to be specified in terms of container classes and
their respective states for which the “may contain” relationship is explicitly specified in the
container ontology. The above set of rules illustrates the general approach.

Figure 3.5 represents a snapshot of a partial state of the world representing two con-
tainment trees. The container tree on the left shows a couple of mobile devices, a PDA
and a laptop, physically contained within a office. The other containment tree represents a
mobile phone not present in the office or not identifiable as such. The containment trees also
represent the relevant internal “configuration” of the mobile devices at the point in time.

63

3. CONTAINERS AND CONTAINMENT — MODELLING THE WORLD

Room

...

Legend:

Mobile Device

[P.D.A.]

Mobile Device

[Laptop]

Mobile Device

[Mobile Phone]

Storage

Device Storage

Device

Wired

Wireless

Wireless

Display

Display
Storage

Device

Display Crypto

Wireless

GUI

Window

GUI

Window

GUI

Window

= Data Object

...

...

...

...

...

...

Figure 3.5: Snapshot of a partial state of the world.

Note that a single container in the model may represent multiple corresponding real world
entities that are of the same class and exhibit the same state.

The Congruence Relation

Abiding by the conventional mobility theory, we also define a congruence relation, writ-
ten as ≡. The congruence relation is important for policy matching in the policy model
introduced in Chapter 5. Under the ≡ relation, containment trees are equivalent up to a
simple rearrangement of parts and up to a value of a unique container identifier, if specified.
Not only is the congruence relation reflexive, symmetric and transitive both horizontally
(X ≡ Y ∧ Y ≡ Z ⇒ X ≡ Z) and vertically (X ≡ Y ∧ α ≡ β ⇒ α[X] ≡ β[Y]) but it is
also commutative (X|Y ≡ Y |X), associative (X|(Y |Z) ≡ (X|Y)|Z), and “ignores zeroes”
(X|0 ≡ X).

3.4.4 Containment Path Expressions

To be able to reference a container within a containment model we introduce containment
path expressions, or simply path expressions. The practical significance of the path expres-
sions for this thesis is within the policy model introduced in Chapter 5. A containment
path can be defined as a sequence of containers linked by the contains relationship. Path
expressions are specified using the following syntax:

64

Figures/Chapter_III/model_snapshot.eps

3.4 Containment - the Model of the World

element ← a[: attr list]

| ⋆

attr list ← attribute

| attr list, attribute

attribute ← ATTR NAME = value range

value range ← value

| value range, value

value ← VAL

| VAL−VAL

path ← element

| path / element

| path / ... / element

Terminal symbols in the above syntax are written in capital. The term ATTR NAME is a
container class attribute identifier while the term VAL is an attribute specific domain value
identifier.

A matching set of a path expression is determined as follows:

1. A trivial expression element a matches a container of class a or of a more specialised
class.

2. Expression element a : attr list matches a container of class a or of a more specialised
class iff for all attributes in the attr list the values of corresponding attributes for
the container a match those specified in the attr list. To match, an attribute value
needs to be equal to or within a range of the values for the respective attribute in the
attr list. The comparison relations are value type specific.

3. Expression element ⋆ matches a container of any class and any attribute valuation.

4. Expression e1/e2 matches a1 → a2 if e1 matches a1 and e2 matches a2. If the optional
attr list is specified for any of e1 and e2 rule 2 above applies individually.

5. Expression e1/.../en matches a1 → ... → an if ∀i, 1 < i ≤ n every ei−1/ei matches
ai−1 → ai according to the previous rule.

65

3. CONTAINERS AND CONTAINMENT — MODELLING THE WORLD

Unique container instance identifiers (or the lack thereof). In general, the con-
tainment matching capability of path expressions is not geared toward referencing unique
containers in terms of individual real world entities that they represent. Thus the absence
of an explicit referral to a unique container identifier of any form. Rather, path expressions
are designed to refer to all containers and containments affected in a similar manner by an
information exposure threat — a property of container class and the relevant state of its
instances. The design rationale, made heavy use of throughout Chapter 5, is in the simpli-
fication of the threat mitigation process. It also has substantial consequences on the model
representation size overheads as otherwise each individual instance of a relevant real world
entity would require a separate container representation due to the unique valuation of its
attributes.

3.4.5 Model Maintenance - Realms and Authorities

Although we talk about modelling “the state of the world” we do not envisage a holistic
containment-based picture of a ubiquitous system to exist in a centralised fashion at any
point in the system. This would be in a direct collision with a number of ubiquitous and
autonomic computing characteristics and requirements. The model is devised to be estab-
lished, maintained and referred to for information exposure threat, or more widely contextual
effect, reasoning in a highly distributed, independent and autonomic fashion, across individ-
ual ubiquitous computing platforms, in units representing only small portions of what would
be a true holistic “state of the world”. Each of the “portions” represents the containment
“configuration” of, and is only relevant to, the individual ubiquitous computing platforms
themselves.

Definition. A model authority, or simply authority, is a ubiquitous computing platform
resource-capable to establish, maintain and do the information exposure threat reasoning in
a portion of the containment based model of the world. A model realm, or simply realm, is a
portion of the containment based model of the world maintained by a single model authority.

Individual realms are not envisaged to overlap. However, they are not constrained to
representing individual ubiquitous computing devices. In a temporally and spatially tightly
bound group of devices, such as in a Personal Area Network (PAN) [Zim96], realms of
resource-potent platforms may encompass the devices incapable for fulfilling the model au-
thority role themselves. We refer to a group of devices bounded in such manner as a collab-
oration group.

Figure 3.6 depicts model realms and authorities for the partial model of the world snap-
shot from Figure 3.5. Individual realms in the figure are enclosed in the dash-lined squares
and labelled to denote their respective authorities: the PDA, the Laptop, the Mobile Phone
and the Location Service respectively.

The granularity at which a model authority models its realm depends on its model estab-
lishment and maintenance as well as its computational capabilities. To model and manipulate

66

3.4 Containment - the Model of the World

Room

...

Legend:

Mobile Device

[P.D.A.]

Mobile Device

[Laptop]

Mobile Device

[Mobile Phone]

Storage

Device Storage

Device

Wired

Wireless

Wireless

Display

Display
Storage

Device

Display Crypto

Wireless

GUI

Window

GUI

Window

GUI

Window

= Data Object

...

...

...

...

...

...

P.D.A.

Laptop

Mobile Phone

Location Service

Figure 3.6: Partial snapshot of the Model of the World state.

the full range of Physical, Intermediate and Virtual containers, an authority needs support
and awareness at both the system and application layers of its respective software platform.

We also differentiate between component realms and component authorities. Component
authorities represent processes — active entities within a single software platform, that are
“responsible” for one or more containers. Apart from providing information necessary for
container modelling, component authorities may also provide for container manipulation
operations, as will be introduced in Section 3.5. Component realms, in analogy to model
realms, are non-overlapping portions of a realm that are the responsibility of a single com-
ponent authority.

3.4.6 Model Update Operations

To reflect dynamic changes in the configuration of the world we provide for updating the
model through four operations: enter, leave, migrate and state update. All of the oper-
ations are assumed to be relative to a single realm.

The enter operation reflects a container or a containment tree entering a realm. It is defined
as:

syntax: enter(ctree cta, cpath cpb) rule: a[X] | b[Y]
t
→ b[a[X] | Y]

The operation accepts two arguments, full specification of the containment tree entering a
realm (cta) and the path expression identifying the target container (of the realm) under

67

Figures/Chapter_III/model_realms.eps

3. CONTAINERS AND CONTAINMENT — MODELLING THE WORLD

which it should be “attached” (ctb). The rule specifies, in the containment expression nota-
tion, how the enter operation behaves. In the left side of the rule, a[X] corresponds to the
cta argument of the operation’s syntactic representation. Node b represents the container
that the cpb path expression points to.

Updates to the state of the world are represented by the labelled transition relation,

written
t
→. The label t on the transition symbol (→) denotes a side-effect of the operation

that we call a trigger. A trigger propagates up the affected containment from the point of
update to the tree root — direction opposite to the tree edge orientation. At each container
encountered on the path, the trigger can be matched by none or more operations — “trig-
gering” their execution. We leverage triggers in Section 4.5.3.

The leave operation reflects a container or a containment tree leaving a realm. The op-
eration is defined as:

syntax: leave(cpath cpa) rule: b[a[X] | Y]
t
→ b[Y]

The migrate operation reflects a change of containment for a container or a containment tree
within a single realm. It is defined as:

syntax: migrate(cpath cpa, cpath cpb) rule: c[a[X] | Z] | b[Y]
t
→ c[Z] | b[a[X] | Y]

The state update reflects the changes in attribute values of individual containers:

syntax: update(cpath cpa, attr list list) rule:

{

a[X]
t
→ a[X] single a;

a[X]
t
→ a[X] | a[X] multiple a;

The list argument represents a set of (attributename, value) pairs to be updated for a
container pointed to by cpα. The latter case occurs when the state update operation affects
only one of multiple real world entities represented by a single container a. It effectively leads
to the duplication of the containment tree rooted by the affected container — the tree copies
differ only by the attributes of the respective container.

We say that the model update operations “reflect” rather than “cause” containment
model state change. As such, they do not play an active role in authorising an actual update.
One of the consequences is that they do not guarantee the well-structuring of the model of
the world. They may, however, be used for indicating any inconsistencies for audit purposes.
Having said this, the model update operations can be used in a proactive fashion, prior to
the actual real world state change, to allow or deny the real world actions by analysing the
resulting model of the world.

68

3.5 Contextual Effect Propagation and its Consequences

3.5 Contextual Effect Propagation and its Consequences

3.5.1 Contextual Effect Propagation

Given an information exposure threat and its source container in a containment model,
the concept of container transparency in conjunction with the structure of the containment
model allow us to reason about severity of the threat as experienced by the leaf nodes — the
data items. We refer to this reasoning process as threat propagation. The process consists
of traversing the containment tree, starting with the threat source node, by following the
directed edges and, for each encountered container, applying the transparency function to
the threat as experienced by the container. The process stops either at the leaf nodes —
indicating data item exposure, or when the degree of the threat is reduced to an insignificant
value.

Let e be a contextual effect and {t1, . . . , tn} a set of corresponding transparency functions
associated with containers (enumerated as 1, . . . , n) on a single threat propagation path down
a containment tree. Overall transparency of the data item containment described by the
propagation path is simply the composition of the individual transparency functions. For
information exposure threat e the containment transparency is given by:

t(e) = tn ◦ tn−1 ◦ . . . ◦ t1(e)

Mobile Device

Storage

Device

Crypto
GUI

Window

Comms

Channel

size: 10"

GUI

Window

size: 5"

Display

size: 10"

alg: AES

key: 256

(a) Optical threat type.

Mobile Device

Storage

Device

Crypto
GUI

Window

Comms

Channel

size: 10"

GUI

Window

size: 5"

Display

size: 10"

alg: AES

key: 256

(b) Physical threat type.

Figure 3.7: Example threat propagation in a realm.

69

Figures/Chapter_III/model_propagation_optical.eps
Figures/Chapter_III/model_propagation_physical.eps

3. CONTAINERS AND CONTAINMENT — MODELLING THE WORLD

Figures 3.7(a) and 3.7(b) illustrate an example propagation of threats of types Optical
and Physical, respectively, in a realm representing a mobile computing device. In both
figures the threats are assumed to occur outside the container denoting the mobile device
itself — in its environment. For example, the threats inherent in a public place setting of the
motivating example from Section 3.3.1 and motivating scenarios of Section 1.1. The changing
solidity of the arrows denoting threat propagation reflect the impact of the transparency of
the encountered containers. Arrows coloured blue represent insignificant exposure degrees
which can safely be ignored.

In Figure 3.7(a) we can see that the threat of type Optical is fully blocked by the de-facto
transparency of Storage and Communications Channel containers. The figure also depicts
the difference in transparencies of the GUI window containers based on their size. Figure
3.7(b) shows that the experienced Physical exposure threat affects all data items except for
the one that is stored encrypted. The figure also illustrates how the concepts introduced
in the chapter so far contribute to the formalisation of the intuitive information exposure
threat reasoning process from the motivating example in Section 3.3.1.

Upward Threat Propagation

Contextual effect propagation, as presented, does not account for contextual effects occurring
within a container’s interior propagating to its exterior. This would be characterised as
“upward” threat propagation in a containment tree. In the real world, a contextual state
within a container may well give rise to information exposure threats affecting data items not
necessarily contained within the container — the neighbouring containers. Simple examples
would be Acoustic information exposure among adjacent offices. A slightly subtler example
are threats originating from a network interface. However, allowing for explicit upward
threat propagation would have considerable consequences on the complexity of the threat
mitigation approach presented in Section 4.5 and related mechanisms.

Therefore, we resort to indirect upward threat propagation through container contextual
state modelling. We reflect the relevant contextual states within a container’s interior in
the overall state of the container itself. This, in turn, influences contextual state within the
parent container. In this way, the actual context — threat correlation process is performed
at a level in the containment tree from which the standard threat propagation process can
cover all portions of the realm realistically affected by a threat. As the information on the
actual threat origin is thus lost, so is the ability to mitigate it at, or close, to the origin.
However, this is in-line with our approach of pushing protection toward threatened entities
(data items).

70

3.5 Contextual Effect Propagation and its Consequences

3.5.2 Controlling Threat Propagation - Threat Mitigation Oper-
ations

Not only does the containment based model of the world allow for continuous spatial and
temporal reasoning about information exposure threats data items are affected by, but it
also provides for reasoning about localised threat mitigation.

Definition. A threat mitigation operation is any operation whose execution causes, directly
or indirectly, reduction in information exposure degree as experienced by a piece of informa-
tion or otherwise decreases quality and/or quantity of exposed information experiencing a
threat.

We sometimes refer to threat mitigation operations as protective actions. Based on their
targets of execution and level of indirection in the threat mitigation process, we distinguish
between two broad categories of protective actions as container manipulations and informa-
tion manipulations :

• Container manipulation. The natural way to mitigate threats in the proposed model
is to exploit the relationship between container state and container transparency. In
order to reduce exposure degree as experienced at the data item level in a containment
tree to what can be safely ignored, the container manipulation operations affect state
of containers and/or containment configuration of a realm. Thus, they indirectly affect
one or both of the likelihood of threat materialisation and information exposure channel
width aspects of the exposure degree. We further distinguish between three classes of
container manipulation operations:

– Container modification actions modify state of a container that exists in the threat
propagation path to decrease its transparency for the threat type. The alteration
of a container state assumes modification to the values of its transparency relevant
attributes. An example of a container modification is GUI window resizing —
impacting on the likelihood of materialisation of a threat of type Optical through
decreasing visibility radius of the exposed information.

– Container insertion operations involve instantiation of a new container and its
placement somewhere on a threat propagation path toward one or more of the
exposed data items. The effect is akin adding a level of filtering for the exposure
threat. Example of a container insertion is data encryption — enclosing a data
item in a container of class Crypto.

– Containment migration operations are aimed at relocating threat exposed data
items, possibly with a portion of their containment, to a containment not affected
by the threat. Examples of containment migrations are: GUI window migration
among displays of different sizes, hand-offs among communications links of differ-
ent inherent relevant information security properties and use of alternative data
input devices.

71

3. CONTAINERS AND CONTAINMENT — MODELLING THE WORLD

• Information manipulation. Information manipulation actions, unlike the container
manipulation actions, do not come as a property of the presented model. They are
aimed at increasing information exposure “tolerance” of exposed pieces of information
through reductions in their representational quality or information content quantity.

– Information reduction actions are aimed at reducing information content of data
items. They encompass various types of content reduction, such as in [HL98],
or information obfuscation, e.g. [BPB+04], usually dependent on data type and
format. A simple example of information reduction operation is image quality
degradation.

– Information subsetting operations involve complete omission of threat affected
pieces of information. Example is map feature selection as in [CSD01] [Cha02],
albeit based on a set of criteria different to information sensitivity.

We will show, in Chapter 4, how the concept of information manipulation operations can
be subsumed in that of container manipulation actions.

Threat mitigation operations, in general, can be thought of as changes in data handling
and management procedures. As a lead into the next chapter, we wish to emphasise the fact,
by now intuitive, that by carefully choosing data management and handling procedures for
threatened pieces of data we can successfully mitigate information exposure threats. This is
implicit in the above examples and in the motivating scenarios of Section 1.1.

3.5.3 Information Exposure Threat Characterisation Revisited

In Section 3.2 we have defined primitive threat types and we have assumed them throughout
the chapter so far. Having presented the relevant material, we now finalise the definition
of information exposure threats by introducing compound threat types. The definition of
compound threat types rests on what we call common threat mitigation operations. For
a mitigation operation to be common for a number of threat types, its execution has to
always have an impact on all of them simultaneously. The impact itself can differ, as shall
be accounted for in Section 4.5. The definition of the compound threat type is recursive, as
follows:

Definition. Compound information exposure threats represent a level of abstraction over
the primitive information exposure threats. They are defined by existence of threat mitiga-
tion operations which affect two or more threat types, themselves primitive or compound,
simultaneously. Thus derived threat types form a hierarchical structure.

The requirement that the threat types form a hierarchy underpins the threat mitigation
approach, and the supported concepts, presented in Chapter 4. Figure 3.8 shows a provisional
threat “typification” as used for examples throughout the rest of the thesis. The typification
is considered provisional as in practise we expect it to be defined in an application specific

72

3.5 Contextual Effect Propagation and its Consequences

Direct
Access

EmmanationPhysical

Audio OtherOptical

Figure 3.8: Example threat “typification”.

manner. Note also that a hierarchy does not necessarily need to take a form of a tree as in
the figure. Below we provide explanation of the individual types from Figure 3.8.

• Direct Access represents the most general threat type. Mitigating operations associ-
ated with the Direct Access threat type affect one or more of the information content
quality, quantity or representational form of a threat exposed data item. As such, they
do not in any way impact on relevant properties of a specific information exposure
channel. Rather, they affect availability of information through information exposure
channels in general. Consequently, we can say that Direct Access threat type miti-
gating operations affect all other, information exposure channel bound, threat types.
Most notable examples of mitigating operations associated with the Direct Access com-
pound threat type, as used in this thesis, are information manipulation actions, data
item container manipulation actions and the insertion of a Crypto container (i.e. data
encryption).

• Information exposure threats of type Physical arise solely from the state of context
in the physical world. As stated previously, they denote likelihood of a physical or
intermediate container coming under physical command of an adversary. Rather than
being associated with a particular exposure channel, threats of this type are meant
to signify their irrelevance once a piece of information is physically in hands of an
adversary. Corresponding mitigation operations are targeted at entities in the physical
world. As an example, apart from the obvious threats of mobile and storage device ab-
ductions, wire-tapping can also be considered a Physical information exposure threat.
This is as it requires direct physical manipulation of a container representing a wired
communications link.

• Emanation threat types are associated with information exposure channels involving
free-space information propagation. Emanations may represent a primary information
flow channel or they may arise as its side-effect. An example of the latter are electro

73

Figures/Chapter_III/ttypification.eps

3. CONTAINERS AND CONTAINMENT — MODELLING THE WORLD

magnetic fields created around wired communications links, displays or other electronic
devices — giving rise to, so called, Tempest attacks [Age82]. In our model, they are
enabled by specific properties of entities that are represented as Physical and Interme-
diate containers (e.g. a display) and are expected to be mitigated at the corresponding
levels.

– Optical emanations occupy human visible portion of spectrum. They may involve
direct [TC03], line-of-sight, as well as indirect, Soft Tempest [KA98] [Kuh05],
information exposure.

– Audio emanations, in analogy, occupy the audible portion of the frequency spec-
trum.

– Other is a generic emanations threat type which subsumes various free space
communications technologies in use, e.g. IEEE 802.11x, Bluetooth, GPRS etc.
We expect this threat type to be replaced with individual primitive emanation
threat types grouping together channels of similar propagation characteristics,
thus addressable by the same set of mitigation operations.

Threat establishment and propagation processes are always expressed strictly in terms of
primitive threat types. The compound threat types play a role solely in the threat mitigation
reasoning process, as presented in Chapter 4.5.

3.5.4 The Join Algebra

In the general case, threat occurrences of different types are not mutually exclusive. Having
said this, they may be correlated. In other words, context-threat mapping is many-to-
many. To formally support reasoning about co-occurring threats we specify a simple threat
composition algebra. The algebra is specified around the join operator, written as ⊕, and
is thus named the join algebra. We make extensive use of the algebra for the threat model
analysis and mitigation processes detailed in Chapter 4. The following tables summarise the
algebra.

⊕ et1
1 et2

1

et1
2 max(et1

1 , et1
2) [et1

2 , et2
1]

et2
2 [et2

2 , et1
1] max(et2

2 , et2
1)

Table 3.1: Join operator & primitive threat types

Table 3.1 defines behaviour of the join operator (⊕) for threat types that do not exhibit
super- sub- threat type relationships as specified by threat typification. Each table element
of the form etx

n represents exposure degree of an individual instance n of a threat type tx.

74

3.6 Intensity Reduction Property

The square brackets, [], denote a vector. The table shows that exposures of different, non-
overlapping, threat types are not “composable” — the result of the join operation is a vector
consisting of the values of the individual exposure degrees. This preserves information on
types of occurring threats which is required in the threat mitigation and related processes
presented in Chapter 4. As for co-occurring threats of the same type, the algebra definition
reflects the fact that joint exposure is no more significant than the highest degree individual
exposure of the type.

⊕ et1 et2 [et1 , et2]

ec(et1 ,et2) max(ec(...), et1) max(ec(...), et2) max(ec(...), max(et1 , et2))

Table 3.2: Join operator & compound threat types

Table 3.2 defines behaviour of the join operator for threat types that exhibit sub- super-
type relationship. Table elements et1 , et2 and [et1 , et2] preserve their semantics from Table
3.1. ec(et1 ,et2) represents exposure degree of a compound threat type that is a super-type for
primitive threat types t1 and t2. What this table demonstrates is that compound threat types
are “forgetful” about the sub-types. Such behaviour stems from the fact that by mitigating
exposure of a compound threat type we simultaneously address exposures of all respective
sub-types.

3.6 Intensity Reduction Property

We use the term intensity to mean exposure degree in the context of information exposure
threats. Let c be an instance of any container class and e be an information exposure threat.
Then the Intensity Reduction Property (IRP) may be defined as:

degree(t(c, e)) ≤ degree(e)

where t denotes container transparency function. In other words, after crossing a container
boundary, information exposure threat can never gain on its intensity. This is implicit in
the way we introduced container transparency in Section 3.3.2. IRP is relied upon by the
approach that we propose for threat mitigation in the next chapter.

A corollary of the above is:

degree(tcn
◦ . . . ◦ tc1(e)) ≤ degree(tci

◦ . . . ◦ tc1(e))

where 1 ≤ i ≤ n and tc(e) ≡ t(c, e). In other words, the highest intensity an information
exposure threat can ever have is the intensity as determined at its source. Note that the
IRP does not judge the correctness of the container transparency definition, with respect to
the real world entities they model, or its precision. IRP solely formalises the property of

75

3. CONTAINERS AND CONTAINMENT — MODELLING THE WORLD

the proposed approach to modelling the world which states that degree of a threat cannot
increase passively as the threat propagates through a realm.

The following two sections outline a number of ways in which a resource deprived ubiq-
uitous computing platform can keep realm modelling complexity at bay. We also show that
the IRP holds universally, irrespective of the method used for, or the extent to which, a
model is simplified to match a platform’s capabilities.

3.6.1 IRP & the Modelling Granularity

As stated previously, Section 3.4.5, the containment model is intended to be established and
maintained in an independent fashion across ubiquitous computing platforms at a granularity
suiting individual platform’s resources and capabilities. The question that naturally arises
under such circumstances are the consequences of variable model granularity on information
exposure threat reasoning. We see the containment modelling granularity as having two
facets, vertical and horizontal, denoting respectively its:

• Level of abstraction, and

• Level of detail.

Level of Abstraction. The level of abstraction is determined with respect to container
classification, relative to the “is-a” relationship. The higher a container class is in a classi-
fication the more abstract we say it is. For example, if container of class Communications
Channel is used instead of that of class Wired, for a corresponding real-world entity, we say
that the realm is modelled at a higher level of abstraction.

We see the level of abstraction as a vertical component of containment modelling gran-
ularity. The consequence of increasing the level of abstraction is a potential decrease in the
specificness of relevant container transparency attributes and, consequently, coarser grained
transparency modelling. Therefore, we may say that increasing the level of abstraction of
a containment model is, in general, safe as it can result in exposure degree over-estimation
but not under-estimation.

The Level of Detail. Reducing the level of detail of a containment model implies omitting
containers, rather than substituting them for containers of more abstract classes. Thus we
see it as horizontal component of the containment modelling granularity. An example would
be modelling Data Item containers as contained directly within Storage Device and Display
containers without accounting for the existence of Crypto and GUI window container classes
respectively.

Let a and b represent any two containers such that containable(a,b) holds and let e
be a contextual effect. Then, from the IRP definition and the corollary, we have:

degree(t(a, t(b, e)) ≤ degree(t(a, e)) ≤ degree(e)

76

3.6 Intensity Reduction Property

In other words, should we omit any of the containers a or b from the containment model,
the subsequent threat analysis is guaranteed not to ever under-estimate the degree of threat
experienced. The potential threat overestimation, however, is considered safe.

In a nutshell, decreases in modelling granularity, both vertical and horizontal, can never
result in information exposure threat degree under-estimation. This, in turn, means that
no matter how resource (in)capable a ubiquitous computing platform is never shall it cause
information security under-provisioning with respect to the proposed approach.

3.6.2 Container Fusion

Lowering the level of container granularity, vertical as well as horizontal, at which a realm
is modelled results in lowering the respective model complexity in terms of the quantity
of containers to be represented and, consequently, in terms of computational complexity
involved in threat propagation as well as threat mitigation processes, presented in Section
4.5. The third method for addressing modelling complexity of a realm is container fusion.

Definition. Container fusion is approximation of a number of containers using a single
container with similar transparency characteristics.

While a single container represents one or more corresponding real world entities that are
in the same state, the result of a container fusion is a container that represents multiple real
world entities of different states and of, possibly, different container classes. An example of
container fusion would be using a single Display container to represent two LCD containers
of different sizes and viewing angles or a LCD and a CRT container. Container fusion may
involve model vertical granularity decrease. Container fusion is appropriate for longer-lived,
tightly coupled containers as otherwise it may incur significant realm maintenance costs for
the model authority.

For a container fusion to be “safe” the transparency for any of the threat types of a
container representing the fusion must at no point in time be less restrictive than the most
restrictive corresponding transparency of any of the fused containers:

degree(t(cfusion, e)) ≥ maxc∈cfusion
[degree(t(c, e))]

This defines the Information Reduction Property with respect to the container fusion process.

In summary, in this section we have shown the proposed model may be leveraged on ubiqui-
tous computing devices exhibiting highly variable degrees of resource poverty without ever
compromising security of information placed under its jurisdiction.

77

3. CONTAINERS AND CONTAINMENT — MODELLING THE WORLD

3.7 Summary

The contribution of the material presented in this chapter is three-fold. Firstly, we have
finalised the definition of information exposure threats, initiated in Chapter 1, through their
characterisation and, thus, systematisation. Secondly, we have introduced, in a semi-formal
manner, an original approach to modelling the world based on the notions of container, as
a protective enclosure, and containment as its higher level structuring. The concept of a
container, in a manner in which it is defined, allows for the containment based model of
the world to represent relevant entities in the physical as well as in the virtual worlds in
a uniform way. We have also set foundations for the development of a container ontology
through defining container classification and a couple of relationships. The model has been
conceived to form the basis for a third contribution of the chapter — a novel approach to
reasoning about information exposure threats. We have introduced transparency character-
istic of a container as a main instrument for fine-grained threat analysis. The estimation
of the transparency for various classes of containers as well as for different threat types has
been not been considered as it is out of the scope at this level of abstraction. Further, we
have shown how the model enables reasoning about localised threat mitigation and have
introduced two classes of threat mitigation operations. The manner in which the model is
defined caters fully for the autonomy and resource diversity of target ubiquitous comput-
ing devices through its structuring into fully independent management units referred to as
realms. A number of related formalisms that are made use of throughout next chapters have
also been introduced.

78

Chapter 4

Information Security vs. Utility:
Balancing the SeeSaw

4.1 Chapter Overview

In this chapter, we focus on the tools and techniques that enable dynamic balancing between
the level of information exposure protection provided and its adverse side-effects, with respect
to the information utility and wider system usability impact thus incurred — the process
that we refer to as balancing the information security vs. utility “seesaw”. The importance
of balancing the seesaw lies within user acceptance of the ubiquitous computing vision as
a technology that “waves itself into the fabric of everyday life” [Wei91]. We also present
a dynamic programming approach to balancing the seesaw and the supporting reasoning
structures, a major contribution of the chapter.

In Section 4.2, we introduce the concept of information utility, with reference to the
wider notion of utility as used in economics and philosophy, and present its facets and the
contributing factors. In Section 4.3, we contrast the notion of information exposure with
the familiar notion of risk. We show how reasoning about information exposure from the
risk perspective is utilised to categorise information exposure degree values into significance
levels — the basis for fine-grained reasoning about the threat severity. In Section 4.4 we
introduce the concept of a Level of Exposure (LoE) as a basic building block for the LoE
Model — the main instrument for matching the severity of experienced threats to the level
of protection provided by available threat mitigation operations. The Optimal Cover Deter-
mination (OCD) algorithm, Section 4.5, leverages the LoE model to arrive at the optimal,
information utility and system usability wise, threat mitigation strategy for a holistic realm
in the face of a set of information exposure threats. The computational characteristics of the
algorithm make it attractive for deployment on potentially resource challenged ubiquitous
computing platforms.

79

4. INFORMATION SECURITY VS. UTILITY: BALANCING THE SEESAW

4.2 Information Utility

Although it is not clear which field of study the concept of utility originates from it seems
that it has lately been most widely studied and, most certainly, exploited in the field of
economics and related sub-fields like micro- and macro-economics, behavioural economics,
market theory etc; and also, with shared semantics, in the field of game-theory [VMK04]. The
concept of utility also has deep roots in philosophy owing to the doctrine of Utilitarianism
brought about by Bentham and Mill [Mil63] — where utility is seen as a moral criterion for
the organisation of society.

The meaning of the term utility, common to all of its mentioned uses, can be phrased as:
utility is a measure of happiness and/or satisfaction gained from a good or service. In this
form, reflecting its use in economy, the definition does not specify the subject whose happiness
and/or satisfaction is measured — the service/good user(s) or its provider(s). Utilitarians
argue for the overall happiness of the community rather than any individual subject; the
economists take the individualist view. In economy, the concept is most often used to
characterise a set of commodities required for a certain level of happiness or satisfaction —
standardly modelled by utility functions and expected utility [MCWG04].

Cardinal vs. Ordinal Utility

The economic literature distinguishes two major kinds of utility measurements as cardinal
and ordinal utility.

The concept of cardinal utility is based on the assumption that utility can be seen as
a measurable quantity with globally uniform semantics. In other words, that it is possible
to measure the utility of each individual in the society toward each commodity, or a set of
commodities, and then sum these to obtain the total utility the commodities bring to the
society as a whole. The concept, consequently, facilitates decision making in a manner that
maximises the total utility across a society. We refer to the concept of cardinal utility as
objective utility for its impersonal nature which allows for the generalisation. Economists
usually measure cardinal utility in terms of monetary units.

A general critique to the concept of cardinal utility is in its inherent inability to reason
about subjective aspects of the “happiness” a good or service brings to an individual. For
this reason, certain economists abandoned the concept of cardinal utility for the theory of
preferences. In the preferences theory, individual is seen as simply preferring one commodity,
or choice, to another. There is no attempt to quantify individual choices beyond what is
sufficient for their ordering. No attempt is made to explain the choices either. Economists
usually describe the preferences using utility functions, an instrument that takes higher
values for choices an individual prefers. This approach to utility measurement is also known
as ordinal utility. The preference based view of utility, however, lacks the ability to compare
utilities between individuals or express the total utility a commodity brings to a society as
whole. We refer to it as the subjective utility.

80

4.2 Information Utility

4.2.1 What is Information Utility?

In analogy to the economics view on utility we express information utility as a measure of
happiness or satisfaction gained from a piece of information — substituting the term good
for the term piece of information.

We say that a gain from a piece of information is maximised when it is available where,
when, in the form and by the means required by a user for completion of a task. As such,
information utility can be seen as a measure of information omnipresence as referred to in
Chapter 1. The former two criteria refer to spatio-temporal aspects of information availabil-
ity respectively. The form in which information is available refers to its data representation.
The notion of the means through which information is available can be linked tightly to the
concept of usability as used by human-computer interaction researchers. For example, the
means may refer to the user interface or the physical display.

The latter two criteria cross the boundary between the objective and subjective utility
measure and make the concept of information utility inherently subjective. To illustrate this,
consider a piece of information as a prerequisite for accomplishing a task. Also assume that
user’s level of satisfaction is correlated with their productiveness and efficiency. Then, even if
the required piece of information is available through the means and in the form objectively
suitable for accomplishing the task a possible mismatch with user’s individual preferences
on the criteria may have an impact on their individual productiveness and efficiency — thus
lowering the utility. The preferences depend on both the physiological and psychological
factors characterising an individual user.

The System and User Behaviour Rationality Assumption

The initial economic utility theory relied on the assumption that the humankind was rational
in its behaviour. In other words, that humans always act to maximise their utility whenever
given an option. This has since been debated by behavioural economists and psychologists
on the grounds such as individual perception of personal loss, risk aversion, etc.

To frame a number of aspects of our work we make an analogous assumption specific to
the concept of information utility which we name the system and user behaviour rationality
assumption:

Assumption. Otherwise than with respect to information security decisions, users and sys-
tems behave in a manner which maximises the information utility whenever possible.

In other words, whenever a user or a software component encounters a set of alternatives
it always chooses the one that maximises information utility. For example, in case where
constraints on a mobile device’s display do not permit a full level of detail required for a
document to be presented, and where an adequate external display is present, we assume
a user chooses to display the information externally. Similarly, in cases where multiple
communications links are available we expect the system to use the one with maximum

81

4. INFORMATION SECURITY VS. UTILITY: BALANCING THE SEESAW

bandwidth and minimum cost given the traffic priority. We also refer to the assumption
simply as rationality assumption.

We do, however, recognise that the assumption is highly unrealistic considering the cur-
rent state of the art in the systems and application design — as testified to by a myriad
of issues raised and pursued by computer usability and human-computer interaction re-
searchers. On the other hand, neither is CASPEr aimed at what represents the current
state of the art nor does it fit the conventional system architectures (Chapter 5). We do see
the assumption as an inherent part of the ubiquitous computing vision [Wei91], especially
when married with the concept of autonomic computing [IBM01], — the target setting for
CASPEr.

4.2.2 The Aim - Balancing The SeeSaw

Information exposure threat mitigating operations, as presented in Section 3.5, affect all
aspects of information utility: the when, the where, the means and the form.

Container modification and container insertion actions affect one or more of: the when,
the means and the form. Containment migration affects one or more of: the when, the
where, the form and the means. Information manipulation operations impact either on the
form or on the overall information existence. How exactly is clarified in the next section.
As a consequence, information exposure threats can be seen as direct constraints for the
overall information utility maximisation as they necessitate application of information utility
affecting threat mitigation operations.

To mitigate a threat, container manipulation operations impact one or more of the threat
exposure degree components, as stated in Section 3.5. Container manipulation operations
accomplish this indirectly, through affecting the containment transparency. As information
exposure channels are, by definition, shared with or indivisible from legitimate information
flow and storage channels (Section 1.2), constraining them through reductions in containment
transparency has a direct impact on information utility.

To preserve the validity of the system and user behaviour rationality assumption in the
face of information exposure threats the application of mitigating operations has to be guided
by the maximisation of the information utility while providing adequate information exposure
protection. We refer to the process as balancing the information security vs. information
availability “seesaw”.

4.2.3 Information Utility Factors

We see the following four factors as fundamental, but not exhaustive and open to extension,
for characterising the information utility as affected by the information exposure threat
mitigating operations:

• Information content.

82

4.2 Information Utility

• Locality of information.

• Information accessibility.

• User Perceived Quality of Service.

Information Content. Information content represents the quantity of information con-
tained in a data item as available to a user. Information exposure mitigation operations may
affect information content either directly, through information manipulation, or indirectly,
through container manipulation. An example of the former is information sensitivity reduc-
tion through data obfuscation [BPB+04]. As for the latter, a simple example is reduction in
size of a GUI Window causing only a subset of previously shown information to be displayed.
Every threat mitigation operation can be associated with an attribute denoting the resulting
information content reduction.

Information content manipulation affects the where and the when information utility
facets — as a piece of information is either there where the user needs it, at a point in time
when they need it, or not.

Locality of Information. Locality of information is relevant when we consider container
migration operations. Following the rationality assumption, we expect containments in which
data items exist at a point in time to represent the data management and handling proce-
dures which maximise the respective information utility. Thus, any containment migration
operation may potentially incur information utility penalties.

We distinguish between six types of containment migrations, along two axes. With
respect to migration locality, containment migrations may be local, semi-local or remote.
Local migrations are within a single realm while remote imply crossing the realm boundary.
Semi-local migrations are remote migrations among realms associated with tightly bound
pervasive computing devices, such as in a Personal Area Network (PAN) [Zim96], that
exhibit longer-term temporal and spatial associations. An example of a semi-local migration
would be a GUI window migration from a laptop to a PDA within a PAN. Orthogonally,
containment migrations may be among containers of a same or different classes. As an
example of a semi-local migration among containers of a different class consider swapping
out contents of a GUI window to the permanent storage for later, post-threat, retrieval and
(re-)displaying.

Container migration operations may affect any of the information utility facets. The
above example hints at how the transcoding required for a containment migration impacts
on the form in which information exists in a system.

Information Accessibility. We define information accessibility to denote time delay and
cost, resource as well as monetary, of accessing a piece of information in a particular contain-
ment. All container manipulation actions may have significant consequences for information

83

4. INFORMATION SECURITY VS. UTILITY: BALANCING THE SEESAW

accessibility. For example, data encryption, i.e. insertion of a Crypto container, incurs both
an additional time delay and resource costs for subsequent information access. Furthermore,
changes in information locality usually have an associated information accessibility impact.

Shifts in information accessibility caused by threat mitigation operations have an effect
on the where and when aspect of information utility.

User Perceived Quality of Service. Information content, locality and accessibility con-
stitute objective aspects of information utility. However, they suffer from the similar lack of
subjective user happiness or satisfaction indication ability as the cardinal utility does. For
example, while one user would happily trade off a level of information obfuscation for re-
taining the information on a large screen, another may favour the opposite; while one would
opt for screen blurring the other may opt for GUI window shrinking, or its migration to a
more restrictive display within a PAN; a user may prefer a mobile phone’s keypad to PDA’s
touch screen interface.

In general, users may express preferences toward the form and the means in which
information is managed and handled, especially when being presented to them for direct
access. User Perceived Quality of Service (UPQoS) is introduced to reflect these preferences.
Introduction of UPQoS causes a transition from objectivity to subjectivity in the perception
of information utility.

where when means form
Information Content • • ◦ ◦
Information Locality • • • •
Information Accessibility • • ◦ ◦
UPQoS ◦ ◦ • •

Table 4.1: Information utility factor-aspect associations

The Table 4.1 summarises the scope of the impact each of the above information utility
factors in terms of the where, when, means and form information utility facets. The “•”
symbol indicates association while the “◦” indicates the absence of such. Otherwise than
implied by the four factors, there is no inherent interdependence between the four information
utility facets themselves. For example, information may be present when or in the form
needed but not where required should a remote, available, display be determined as the only
one not exposed; similarly, switching displays implies a shift in the means through which
information is available where, when and in the form required.

4.2.4 Information Utility Measure

To support the process of balancing the “seesaw” we introduce the notion of the information
utility measure. Drawing an analogy between the concept of preference in microeconomic

84

4.2 Information Utility

terms and preference in the context of the above information utility facets allows us to
leverage the notion of the utility function as used in microeconomics [MCWG04] to define
information utility function. The purpose of information utility function is to expresses the
information utility measure. The existence of the subjective side to the information utility,
as defined above, causes the obtained information utility measure to denote preferences
among the alternative threat mitigation operations. The information utility function can
thus be defined as associating the preference values to sequences of non-mutually exclusive
threat mitigation operations. The sequences consist of one or more operations and denote
their sequential execution — making the ordering of the elements of a sequence potentially
significant to the preference value assignment in the general case. The information utility
measure itself may be defined in terms of integers, labels or as taking values from any other
domain for which the suitable ordering relations are defined.

For illustration, consider a very simple set of threat mitigation operations given as
{blur, shrink} — the former denotes blurring of a whole display while the latter repre-
sents decreasing the size of an individual GUI window. Also, each execution of the threat
mitigation operations affects the respective container characteristics in a step-wise manner,
where the size of each step is pre-defined and constant. With respect only to user preferences,
the information utility function for the two threat mitigation operations could be defined as
follows:

blur ← 1

shrink ← 0

The above signifies that the user prefers display blurring to GUI window shrinking in
situations where the two operations represent threat mitigation alternatives. For situations
where more radical threat mitigation is required, due to a higher exposure degree experienced,
we could also have:

blur ◦ shrink ← 2

blur ◦ blur ← 1

shrink ◦ shrink ← 0

The ◦ symbol denotes operation composition. Note that in the above example the or-
dering of the operations in the sequences is insignificant. While the above focused on user
preferences, the following table gives an example of the information utility measures for dif-
ferent containment migration operation alternatives with respect to the information locality
criterion (as specified in the previous section):

Local Collaborative Remote
== cclass 6 5 4
!= cclass 3 2 1

85

4. INFORMATION SECURITY VS. UTILITY: BALANCING THE SEESAW

The table specifies that migrations within the same realm (Local) and to a destination
container which is of the same class (== cclass) as the source container are more preferred
to, for example, migrations to the destination containers of different classes (! = cclass).

The suggested approach to defining the information utility function is by no means the
sole possible alternative. In Section 5.5, for example, we show how a probabilistic prioritising
approach may work as the part of the suggested policy model. However, the analogy with
the utility functions as used in economics is interesting as the concept of information utility
is, thus, well-founded.

4.3 Information Exposure: The Risk Perspective

The insurance industry [AB00] and economists [Kni04] see risk as a form of uncertainty
where the odds are known but one is not certain of the outcome. In the field of computer
security and privacy [CSG+03] [Dim03] [Lev95], risk denotes a potential harm that may arise
from a present process or a future event and is defined in terms of the likelihood and severity
of an accident.

From the economic stance, the severity of information leakage, and consequently infor-
mation exposure in our terminology, is represented by the value the information under risk
has to an organisation or an individual. Information value, in the economic sense, is mea-
sured as a direct or indirect monetary loss that the information compromise would inflict on
the organisation or the individual. From a more general information security perspective,
information compromise may have wider repercussions than solely monetary — possibly as
extreme as compromise of national security or even endangering human lives.

Our view of risk is best expressed as: the combined likelihood and severity of an accident in
which data management and handling procedures are leveraged to leak sensitive information
otherwise in a legitimate custody. The term sensitive is used to refer to any information that
can not be freely distributed, i.e. non-public information.

4.3.1 Risk vs. Information Exposure Degree

In relation to the above outlined semantics of risk, information exposure threat degree (Sec-
tion 3.2) embeds the notion of an accident occurrence in the form of the threat materialisation
likelihood. With respect to the accident severity, information exposure threat degree incor-
porates what can be seen as only one of its components — the exposure channel width, i.e.
the relative proportion of information that is to leak should threat materialise. It does not,
however, capture the other component that characterises the severity of an accident — the
value of a piece of information under the threat. This represents a fundamental difference
between the concepts of risk and information exposure threat degree.

The rationale behind the separation of the two is the ability to reason about the threats
and the threat propagation in a manner independent of impact they may have on individual

86

4.3 Information Exposure: The Risk Perspective

pieces of information. Risk can, thus, be seen as the consequence of an information exposure
threat affecting a particular data item. Furthermore, owing to the manner in which threat
propagation is defined (Section 3.5), the information about any characteristics of potentially
threatened data items is not available to the process prior to encountering the leaf nodes
of a containment tree. Referring back to Section 3.2, explicit information exposure threat
modelling plays a crucial role in the separation of the two concepts.

We illustrate the argument by means of a simple example presented in Table 4.2, Table
4.3 and Figure 4.1.

p
w Low Medium High

Narrow Low Low Medium
Medium Medium Medium High
Wide High High High

Table 4.2: Exposure degree mapping.

Table 4.2 shows how exposure degree can be derived from threat materialisation likeli-
hood, denoted by p (column labels) in the table, and exposure channel width, denoted by w

(row labels). For clarity purposes we use a three level categorisation for both the dimensions
and for the exposure degree, as represented by the values in the table.

e
v Low Medium High

Confidential None Low High
Secret Low Medium High
Top Secret Medium High High

Table 4.3: Risk mapping.

Table 4.3 illustrates how exposure degree (e), as experienced by threatened assets of
different values (v), leads to different levels of risk. Levels of risk are categorised as None,
Low, Medium and High starting by the lowest respectively. We tie the notion of information
value to information sensitivity classes as determined by a wider information security classi-
fication policy. Throughout the thesis we use a simple four level, totally ordered, information
security classification policy for the purpose. The classes, given in the order of increasing
sensitivity, are: Public (non-sensitive), Confidential, Secret and Top Secret.

Finally, the graph in Figure 4.1 plots the relationship between information exposure
degree and risk for various values of information based on Table 4.3.

The levels of measurement and the quantification steps used in the example are solely for
purpose of the illustration. In practise, they would be determined by external mechanisms,

87

4. INFORMATION SECURITY VS. UTILITY: BALANCING THE SEESAW

Confidential

Secret

Top Secret

Low

Medium

High

exposure

r
i
s
k

Low Medium High(None, None)

Figure 4.1: Example discrete risk-exposure plot.

such as risk modelling tools (e.g. CORAS [FKG+02] or OCTAVE [oct]) and specific methods
employed for context-threat correlation.

4.3.2 Information Exposure Degree Significance Level

0 max(e.d)

S(r)

S(e)

exposure degree (e.d)

r
i
s
k

(
r
)

m
a
x
(
r
)

(a) Secret sensitivity class.

0

S(r)

S(e) max(e.d)

exposure degree (e.d)

r
i
s
k

(
r
)

m
a
x
(
r
)

(b) Top Secret sensitivity class.

Figure 4.2: Continuous risk-exposure mapping - significance levels.

Graphs in Figures 4.2(a) and 4.2(b) show two examples of continuous exposure degree -
risk mapping functions. They can be seen as rough approximations of the discrete mappings
for the Secret and Top Secret information sensitivity classes from the Table 4.3. Both the

88

Figures/Chapter_IV/risk-exposure_discrete.eps
Figures/Chapter_IV/significance_first.eps
Figures/Chapter_IV/significance_second.eps

4.4 Levels of Exposure

risk and the exposure degree scales are normalised to intervals [0, max(e.d)] and [0, max(r)]
respectively. In the rest of the chapter we assume the continuous exposure degree and risk
quantisation steps for the purpose of the generality of presented arguments. However, in
practise we expect coarse grained valuation of exposure degree as discussed in Section 6.2.

In general, we distinguish between two main levels of risk as insignificant and significant.
The former represents risk that may be safely ignored and for which no explicit risk mitigation
operations need to be performed. The latter denotes the opposite and can be further sub-
divided into levels according to risk mitigation strategies in place. We also refer to the two
levels as to acceptable and unacceptable risk respectively. Both of the graphs in the Figure
4.2 plot the delimiting point between the acceptable and unacceptable risk ranges as S(r).
Note that they have the same value in both graphs. The exact sizes and the values of the
delimiting points of the two ranges are risk model specific. The dotted arrows in the graphs
represent projections of S(r) onto the exposure degree scale according to the respective
mapping functions. Thus obtained exposure degree ranges, [0, S(e)] and (S(e), max(e.d)]
represent acceptable, i.e. insignificant, and unacceptable, i.e. significant, exposure degrees
respectively. The semantics of the two ranges are analogous to their risk counterparts.

The important point to note is that, unlike for risk, the sizes of the exposure the significant
and insignificant exposure degree ranges vary based on the perceived value of threatened
pieces of information. In other words, on their respective sensitivity class. This can be seen
in the two plots above. The consequences shall be presented and addressed in Section 4.4.5.
From now onward, our interest in the concept of risk goes only as far as the values of the
acceptable and unacceptable risk levels.

4.4 Levels of Exposure

In this section, we introduce the concept of a Level of Exposure (LoE) — the main instrument
for matching the level of protection to provide with the severity of experienced threats.
Consequently, the concept plays an important role in minimising the the overall information
utility, and wider system usability, impact incurred by the threat mitigation process, as shall
be clarified shortly. We organise individual LoEs into the Levels of Exposure Model — a
structure utilised in reasoning about alternative threat mitigation strategies, presented later
in this chapter.

Prior to defining the LoE, we introduce a helper concept of threat mitigation offset range
in the next section.

4.4.1 Threat Mitigation Offset Range

We say that a threat mitigation operation offsets an exposure degree if upon its execution the
exposure degree as experienced at a container reduces to within the respective insignificant
range. The absolute offset range of a threat mitigation operation is the exposure degree range

89

4. INFORMATION SECURITY VS. UTILITY: BALANCING THE SEESAW

(p, q] where p is the highest acceptable exposure degree value and q is the highest exposure
degree value that the operation offsets. The relative offset range of a threat mitigation
operation, with respect to the exposure degree q, is the exposure degree range (p, q] such
that p is the exposure degree obtained after the operation is applied for the exposure degree
q.

The joint absolute offset range of a set of threat mitigation operations, {op1, . . . , opn},
is the concatenation of the respective relative offset ranges of the individual mitigation
operations when applied in sequence:

(p, i1] + (i1, i2] + (i2, i3] + . . . + (in−1, q(= in)]

Where each of the intervals (ik−1, ik], 1 ≤ k ≤ n, is the relative offset range of operation
opk with respect to the exposure degree ik. Effectively, it is the offset range of a single
mitigation operation representing the composition of the individual mitigation operations:
op1 ◦ . . . ◦ opn. The order of the composition is unimportant. The joint relative offset range
for a set of threat mitigation operations is defined analogously.

In the case of multiplicative (Section 3.3.2) transparency functions, the relative offset
range of a single threat mitigation operation varies in size depending on exposure degree it
is relative to. For example, a 10% exposure degree impact implies the relative offset range of
length 0.1 with respect to exposure degree 1 but also, the relative offset range of length 0.05
with respect to exposure degree 0.5. Additive transparency functions, on the other hand,
exhibit the relative offset ranges of uniform length across the exposure degree scale. This has
important consequences on the threat mitigation process, as presented later in the chapter.

4.4.2 Level of Exposure - The Definition

Our interest in the concept of the exposure threat degree lies not in itself as a detached
phenomenon but in its relation to the threat mitigation operations. The relationship is
established through the concepts of the absolute and the relative offset ranges characterising
threat mitigation operations. Exposure degree represents a unified measure by which the
severity of a threat can be matched with the level of protection as provided by one, or more,
threat mitigation operations.

Informally, a Level of Exposure (LoE) is a semantic construct that binds a set of threat
mitigation operations to a range of exposure degrees that they offset, on their own or com-
posed. Conceptually, a LoE is fully independent from the state of a containment model of
the world, in general, and the states of individual containers, including data items, in par-
ticular. We name this characteristic the universal validity property and we say that LoEs
are universally valid.

Slightly more formally:

Definition. Let O be a set of all mitigating operations available for a single threat type,
primitive or compound, and let P(O) be the power set of O. A Level of Exposure (LoE)

90

4.4 Levels of Exposure

represents a (threat type specific) range in information exposure degree [p, q] together with a
set M ⊆ P(O) and a set A of auxiliary operations such that:

1. M 6= {∅}.

2. ∀m ∈M , ∀e p ≤ e ≤ q, m offsets e.

3. [¬∃m ∈M, m offsets e when q < e].

4. For any two distinct LoEs A and B, [pA, qA] ∩ [pB, qB] = {∅}.

We say that a LoE is defined by a set of mitigating operations (M) over an exposure
degree ([p, q]). A LoE is activated upon experiencing an exposure degree that falls within
the exposure degree range the LoE is defined over. No more than a single LoE corresponding
to a threat of any one type may be active at point in time.

The first point of the above definition establishes the binding between mitigation op-
erations and the exposure degree range. If the binding did not hold, it would be possible
to define LoEs over arbitrary exposure degree ranges independently of the threat mitiga-
tion operations available. As such, the LoEs would present little practical value for the
threat mitigation reasoning process, presented in Section 4.5. Depending on the exposure
degree quantisation granularity and the spectrum of available threat mitigation operations,
scenarios in which LoEs are defined on per single exposure degree value are feasible.

The second point states that any threat mitigation operation associated with a LoE has
to be able to offset all exposure degrees in the range the LoE is defined over and strictly no
less. Otherwise, situations could arise in which a piece of information remains inadvertently
at a significant exposure degree after the completion of the threat mitigation process (Section
4.5).

The third point specifies that any threat mitigation operation associated with a LoE
should not be able to offset an exposure degree greater than the upper limit of the expo-
sure degree range over which the LoE is defined. However, as no situations may arise in
which information security is compromised if this does not hold we regard it as an optional
requirement (enclosed within brackets). In cases of extensive resource poverty of ubiquitous
computing platforms we may benefit from increasing LoE granularity by relaxing this re-
quirement. On the other hand, the exact matching of the experienced threat degree and the
level of protection is desirable as it are likely to minimise the unnecessary information utility
impact incurred by the threat mitigation process.

The fourth point above states that LoEs do not overlap. It eliminates ambiguities that
would otherwise arise in the LoE activation process.

A LoE may also be associated with a set of auxiliary operations that are to be executed
upon LoE activation. Auxiliary operations do not, directly or indirectly, influence the ex-
perienced exposure degree. Examples of auxiliary operations are local and remote logging,
external event triggering or scheduling and other administrative tasks. The set of mitigating

91

4. INFORMATION SECURITY VS. UTILITY: BALANCING THE SEESAW

operations over which the LoE is defined, together with any auxiliary operations, form the
handling procedure for the LoE.

4.4.3 LoEs: Threat Specificness

According to the definition, LoEs are threat type specific. This is implicit in the requirement
that all threat mitigation operations as included in the set O, and consequently the derived
sets P(O) and M , apply to a threat of the same type. From this point of view, LoEs serve
the purpose of conveying information about the offending information exposure channel from
the threat propagation to the threat mitigation stage.

Unawareness of threat type behind LoE activation at the threat mitigation stage would
require threat mitigation operation selection process to be based solely on the criterion of
matching experienced exposure degree. Without the ability to identify the specific informa-
tion exposure channel to constrain the only operations to consider would be the ones that
affect them all. Otherwise, we would not be able to ensure, with sufficient certainty, the
threat mitigation. This would result in the ability to balance the level of information expo-
sure protection against the information utility impact thus incurred on the fine grained basis
being seriously diminished. Consequently, the threat typification itself would be rendered
useless.

Common LoEs

Introducing the compound threat types (Section 3.5) we stated that their sole role is in
the threat mitigation process while the LoE establishment is accomplished in terms of the
primitive threat types. We identify two cases in which there is no need for LoEs being
compound threat type specific. In other words, where no awareness of compound threat
types is beneficial.

The first case arises where, owing to a particular container classification: i) all containers
are de-facto opaque to all but a single primitive threat type; or ii) for any of the containers,
there exist no threat mitigation operations such that they impact on more than a single
primitive threat type the container is transparent for. The second case occurs if in ev-
ery well-structured containment tree all possible threat propagation paths cross containers
which exhibit one of the above properties prior to encountering any containers which do not.
This depends not only on the container classification but also on the specification of the
containable relationship.

In any of the above two cases, performing a mitigation operation associated with a com-
pound threat type cannot have an information utility impact greater than already inflicted
by the de-facto container transparency — in terms of the information flow channels affected
along the exposure channel itself. As a consequence, we can reason about what would
otherwise be compound threat type mitigation operations as being specific to the respec-
tive individual primitive threat types. LoEs associated with such mitigation operations are

92

4.4 Levels of Exposure

called common LoEs. The term common comes from the fact that the offset ranges of such
mitigation operations are equal for all respective primitive threat types they are applicable
to.

The NULL LoE

The LoE definition as given does not allow for a LoE to be defined over the insignificant
exposure degree range. This is inherent to the definition of the offset range, due to the lack
of necessity for the mitigation of the exposure degrees in the range.

However, for consistency reasons, we would like to be able to refer to the exposure degree
range as covered by a LoE. Thus, we introduce a dummy mitigation operation that we name
the null operation. With respect to exposure degree it behaves as an identity function. The
LoE induced by having M = {null} is called the NULL LoE. Defined in this manner, the
NULL LoE covers the insignificant exposure degree range.

4.4.4 An Example and a Note on Transparency Functions

distance
04

GUI
Window

1

3/4

2/4

1/4

Figure 4.3: Example intuitive representation of LoEs.

Figure 4.3 represents an intuitive illustration of the notion of a Level of Exposure. The
example implies a threat of type Optical. The thick red vertical bars denote viewing distances
giving rise to significant exposure degree as experienced by data items contained within the
respective GUI windows. The smaller the window the bigger the proximity at which the
information is considered exposed. The other way around, the figure hints at how the step-
wise GUI window shrinking can be leveraged to mitigate the threat. Additive transparency
function is assumed. The red circles delimit LoEs defined by the respective GUI window size
reduction operation.

93

Figures/Chapter_IV/loes_visual_intuitive.eps

4. INFORMATION SECURITY VS. UTILITY: BALANCING THE SEESAW

f
(
k
,
e
)

e

(a) Additive transparency function.

f
(
k
,
e
)

e

(b) Multiplicative transparency function.

Figure 4.4: Example LoEs.

Figures 4.4(a) and 4.4(b) illustrate LoE definition from the point of view of the two types
of transparency functions. Red circles on the x axes of the plots represent LoEs. The dashed
diagonal represents full transparency, i.e. the identity function. Each of the transparency
functions plotted in the graphs corresponds to a single successive unit decrement in GUI
window size. In case of the additive transparency functions, Figure 4.4(a), each decrement
in size corresponds to a reduction in transparency by a quarter in the absolute sense. For
multiplicative transparency functions, Figure 4.4(b), every unit decrement in the window
size results in a relative transparency reduction by a half.

LoEs are determined by projecting onto the x axis, with respect to each of the trans-
parency functions, exposure degree value delimiting the significant and insignificant exposure
degree regions from the y axis (S(e)). Note how, in the Figure 4.4(b), the relative offset
ranges corresponding to the single increase in the transparency affecting parameter vary
relative to the exposure degree value the operation is applied to.

4.4.5 LoEs: Information Sensitivity Classification Consequences

In the introduction to the LoE definition we have stated that LoEs are to be universally
valid. This implies that LoEs should be independent, among other things, of the state of the
data items exposed to a threat. However, as shown in the Figure 4.5, and previously in the
Figure 4.2, the exposure degree range over which the NULL LoE is defined does vary with
the information sensitivity class of the data items. And, consequently, so do the offset ranges
of the threat mitigation operations. This essentially makes LoEs information sensitivity class
dependant, violating the LoEs universal validity property.

For the representational and management complexity reasons we aim to preserve the

94

Figures/Chapter_IV/loes_additive_trans.eps
Figures/Chapter_IV/loes_multiplicative_trans.eps

4.4 Levels of Exposure

r
i
s
k

(
r
)

exposure (e)

S(r)

S.s(e)S.ts(e) S.c(e) 1

1

0

Confidential

Secret

Top Secret

Key:

Figure 4.5: The NULL LoE threat type dependence.

universal validity property. We accomplish that through a transformation that we call LoE
semantic mapping. The term semantic is used as LoEs are interpreted in terms of the
associated threat mitigation operations in the context of the threat mitigation process. The
semantic mapping process consists of re-mapping exposure degrees, associated with different
information sensitivity classes, to a common base relative to which LoEs can be defined in
a fashion which preserves their universal validity. In other words, so that the offset range of
each mitigation operation is the same irrespective of the sensitivity of the threatened data
item. The common base assumes the same insignificant exposure degree range. For the
common base we choose the exposure degree range corresponding to the highest information
sensitivity class. The rationale behind the choice shall be clarified shortly.

In the general case, the semantic mapping has to be done on per individual exposure
degree value basis and cannot be generalised across the whole exposure degree range. It
consists of solving the equations of the form:

f(v1, e1) = f(vi, ei)[= r]

for the value of e1, where e1 and ei are exposure degrees corresponding to risk r relative
to information values v1 and vi respectively. The mapping can then be given explicitly as
a set of coefficients or implicitly in a form of a mapping function. The ideal scenario, on

95

Figures/Chapter_IV/risk-exposure_cont_multival.eps

4. INFORMATION SECURITY VS. UTILITY: BALANCING THE SEESAW

the other hand, is where the semantic mapping coefficient, of the form k(v1, vi), is constant
across the whole exposure degree range, for every information sensitivity class. This, for
example, is not the case for the transparency functions in the Figure 4.5 but is the case for
the transparency functions in the Figure 4.4(a).

The mapping coefficients itself can be seen, in both the above cases, as additive or
multiplicative, i.e. e1 = ei − k(vi, v1) or e1 = ei × k(vi, v1) respectively. Unsurprisingly, this
corresponds to the form of additive and multiplicative transparency functions. Consequently,
we can effectively represent the LoE semantic mapping as the transparency of the Data Item
containers as determined by the sensitivity of the contained information. For this purpose,
the Data Item container class encapsulates the sensitivity attribute as presented in the Figure
3.4.

To validate the approach we need to check whether the information reduction property
(IRP) (Section 3.6) still holds. This is where the particular choice of the common base
for semantic mapping comes into play. For the IRP to be violated a case needs to exist
where exposure degree is increased in a threat propagation process due solely to container
transparency. However, given the particular semantic mapping common base, this can never
arise as for any value of risk it holds that:

g(v1, r) ≤ g(vi, r)

where g is essentially f−1 and maps risk r to the corresponding exposure degree relative to
the asset value v. The validity of the argument is also implicit in the Figure 4.5. Unless the
common base corresponded to the highest information sensitivity class, the above statement,
and thus the IRP, would not hold in the general case. In other words, exposure degree
would always increase when crossing the boundary of a data item containing information of
sensitivity higher than the that of the common LoE semantic mapping base.

Consequences of the exposure degree semantic mapping as presented are two-fold. Firstly,
it provides for the preservation of the LoEs universal validity property — impacting on the
complexity of LoE space representation and management. Secondly, it effectively collapses
the information manipulation category of threat mitigation operations (Section 3.5) into that
of container manipulation operations. In other words, operations that affect information
sensitivity through the reduction of the quality and/or the quantity of the exposed pieces of
information can, from now on, be seen as manipulating the information sensitivity attribute
of the Data Item containers. Thus, the information manipulation operations can be reasoned
about as container manipulation operations.

4.4.6 LoEs Model

Definition. A LoEs Model is a triple < L,≫,⊕ > where L is a set of Levels of Exposure,
≫⊆ L× L is a dominance relation and ⊕ is the join operator.

The dominance relation≫ states that for any two LoEs A and B, LoE A dominates LoE
B (written A≫ B) if and only if:

96

4.4 Levels of Exposure

1. A and B correspond to the same threat type or B corresponds to a threat sub-type of
the threat type A corresponds to.

2. qA ≥ qB where [pA, qA] and [pB, qB] are LoE defining exposure degree ranges for LoEs
A and B respectively.

As stated, LoEs corresponding to the threats of different types are comparable only if
they are of the same type or exhibit the super-, sub-type relationship in that particular order
and not the other way around. The join operator is as was introduced in Section 3.5.4.

LoE vector representation

To represent the state of the world we use LoE vectors of the form:

[l1, . . . , ln]

where n enumerates all primitive threat types. The dominance relationship is not defined
on LoE vectors, only on individual LoEs. A corollary is that never do we reason about any
aspect of threats using compound threat types. An exception to this, and the reason the
compound threat types were introduced, is during the mitigating operation discrimination
process, presented in the next section.

The join operator

The join (⊕) operator applied to LoEs of the same primitive threat type has the following
semantics:

A⊕B = LoE(qA ⊕ qB)

where A and B are LoEs defined over information exposure degree ranges [pA, qA] and [pB, qB]
respectively. The function LoE(e) maps exposure degree e to its corresponding LoE.

If A and B are not of the same threat type then the ⊕ operator is seen as applied to LoE
vectors. This is defined by:

[l1, . . . , ln]⊕ [m1, . . . , mn] = [l1 ⊕m1, . . . , ln ⊕mn]

i.e. the operator it “joins” the vectors threat type-wise.

LoEs Model Structure and its Properties

Statement. The LoEs Model < L,≫,⊕ > forms a finite lattice.

A lattice is a structure characterised by the existence of the least upper bound and the
greatest lower bound for any sub-set of its elements. In mathematical terminology a lattice
is usually described as a partially ordered set in which any two elements have a supremum
and infimum. In our case, the partial ordering is induced by the dominance relation.

97

4. INFORMATION SECURITY VS. UTILITY: BALANCING THE SEESAW

By placing one rational assumption we can intuitively prove that any LoEs model forms
a lattice. The assumption is the existence of the information destruction operation. An
information destruction operation mitigates threats of all types and its offset range is equiv-
alent to the full exposure degree range. As such it represents the lattice maximum — the
supremum for any two LoEs in the lattice. Similarly, the NULL LoE represents the lattice
minimum. As a consequence, not only does the LoEs model represent a lattice but, even
stronger, it represents a bounded lattice.

In [Den76], Denning stated four axioms that need to be satisfied for an information flow
policy to form a lattice. Applied to the LoE model < L,≫,⊕ > they could be formulated
as:

1. The set of LoEs L is finite.

2. The dominance relation ≫ is a partial order on L.

3. L has a lower bound with respect to ≫.

4. The join ⊕ operator is totally defined, least upper bound operator.

Although LoEs are by definition associated with a set of threat mitigation operations,
their availability may vary based on ubiquitous computing platform CASPEr is hosted on.
Given the LoEs model lattice structure, we can represent mitigating operations as directed
edges overlaid on the lattice. Each of the edges starts at the vertex representing the LoE
the mitigation operation is associated with and ends at the vertex representing the LoE
that subsumes the lower bound of the operation’s relative offset range. The edges effectively
point from dominating LoEs to dominated LoEs denoting the threat mitigation effect of the
corresponding operations. We discuss the axioms as they highlight additional properties of
the LoEs modelling approach.

The first axiom. The finiteness of the LoE space is the consequence of the finiteness of
the number of threat types and the number of LoEs per threat type. Note that the LoE
space finiteness does not depend on the finiteness of the number of contextual states causing
a LoE activation. An important implication is the ability to change the contextual state -
LoE mappings in a dynamic, run-time, fashion without necessitating alterations to the LoE
space specification. This further emphasises the importance of explicit threat reasoning for
the device autonomy.

The second axiom. Partial order is a relation which is reflexive, transitive and anti-
symmetric. The dominance relation is reflexive owing to the use of ≥ in the second point
of its definition above. Transitivity says that if A ≫ B and B ≫ C then A ≫ C. In
other words, if an exposure degree value in the range of LoE B can be mitigated by an
operation associated with A, and an exposure degree in the range of C can be mitigated

98

4.5 Threat Mitigation: The LoE Way

by an operation associated with B, then the exposure degree in the range of C may also
be mitigated by the operation associated with A. The anti-symmetry says that if A ≫ B
and B ≫ A then A = B. The anti-symmetry property of the dominance relation eliminates
redundant LoEs by implying that all mitigating operations of the same offset range define a
single LoE.

The third axiom. Existence of the lattice minimum, the NULL LoE, in L means that
∀LoE ∈ L, LoE ≫ NULL LoE. The axiom acknowledges the existence of a LoE defined
over the insignificant exposure degree range which is “reachable” from all other LoEs. In
other words, the axiom states that all LoEs are mitigatable.

The fourth axiom. This axiom has two parts. Firstly, the join operator is required to
be totally defined. Formally, for any two LoEs A and B, A ⊕ B is defined within L. This
holds for two separate reasons: i) composition of the operations associated with the LoEs A
and B shall define the new LoE; and, ultimately, ii) the existence of the LoEs model lattice
maximum. Secondly, the join operator is required to be the least upper bound. This means
that for A, B, C ∈ L the following properties hold:

1. A⊕B ≫ A and A⊕ B ≫ B.

2. C ≫ A and C ≫ B then C ≫ A⊕B.

This holds by definition. Both the properties are somewhat analogous to the transitivity
requirement of the second axiom above — but in relation to mitigating operations affecting
compound threat types. The first property states that mitigating a LoE of a least common
compound threat type affects the LoEs of the corresponding primitive threat sub-types
simultaneously. The second property extends this to LoEs of any compound threat type
common to the respective primitive threat types.

4.5 Threat Mitigation: The LoE Way

Given a set of threats and a containment configuration there are likely to be multiple alter-
native threat mitigation strategies. For example, in case of a threat of Optical information
exposure, the actions of resizing the GUI window, hiding it, blurring or blanking the display
or migrating the GUI window to a more restricted display are viable. In this section, we
explore the issue of choosing the optimal set of operations, i.e. threat mitigation strategy,
to mitigate a set of threats as experienced in a realm, according to a set of criteria — most
notably, information utility. The major contribution of this section, and this chapter as a
whole, is the dynamic programming algorithm that we develop to accomplish this.

99

4. INFORMATION SECURITY VS. UTILITY: BALANCING THE SEESAW

4.5.1 Action Impact as a Discrimination Criteria

In Section 4.2 we have introduced the notion of information utility impact as a side-effect
of threat mitigation process and sitting at one end of the seesaw that we aim to balance.
The other side being occupied by information exposure protection. Although the seesaw is
completely defined by identifying the two ends we point-out several other factors that may
contribute to its finer balance — and unify them in the notion of action impact.

Relevant Factors

The following are the further three factors that we see as relevant for balancing the seesaw:

• Operation reversibility.

• Operation cost.

• System usability impact.

As a consequence of the system and user behaviour rationality assumption (Section 4.2)
and the nature of information exposure channels, information utility of a piece of data
prior to the execution of a set of threat mitigation operation is always greater than its
information utility upon the execution. Thus, once a threat that triggered the adaptation
process disappears it is likely that, in order to maximise information utility (i.e. restore
it), the threat mitigation actions have to be undone. Reversibility of a threat mitigation
operation captures the degree to which the action is reversible and any cost, monetary
and/or resource, of the reversion process.

Threat mitigation operation’s cost captures general resource and/or monetary require-
ments for its execution. It is expected to be of particular relevance on highly constrained
ubiquitous computing devices.

Finally, threat mitigation operations may have an impact on the overall system usability.
System usability can be defined as the intrinsic ability of a system to meet the functionality
and performance expectations derived from its hardware and software platform specifica-
tion. While the information utility impact is focused solely on effects mitigation operations
have on individual pieces of information, the system usability impact takes a wider angle on
the overall system functionality. High system usability impact is tightly connected with the
notion of indiscriminateness of security mechanisms. Examples are: disabling communica-
tions interfaces, mandatory and holistic file system encryption and bans on use of removable
storage or mobile computing devices, external displays, “unknown” printers etc.

Action Impact

We introduce the notion of action impact as a function which combines information utility,
together with operation reversibility, its cost and overall system usability impact into a single
metric for discriminating between sets of alternative mitigation operations.

100

4.5 Threat Mitigation: The LoE Way

The single metric expression is only nominal, introduced for the clarity of the presen-
tation. It is not intended to enforce any particular way in which the contributing factors
should be reasoned about in practise. For example, in Section 5.5, we show how probabilistic
prioritising can be used, in conjunction with the proposed policy model, to implement action
impact based threat mitigation operation discrimination.

Let ι be the action impact function and let A be the set of all protective actions available
on a computing platform. Further, let A◦ ⊂ A be a set of alternative threat mitigation
operations available for a container with respect to the experienced exposure. We can now
define:

A◦◦ = {a | a ∈ A◦ ∧ ι(a, c) = minx∈A◦ [ι(x, c)]}

where c is containment path expression matching a container to which the threat mitigation
operations apply. We assume, without any loss of generality, that the lower the action impact
(ι) the more favourable an action is. Thus the minimisation (minx∈A◦). Then, the set A◦◦

represents the set of optimal alternative mitigation operations. Consequently, if | A◦◦ |> 1
then ∀a, a ∈ A◦◦ is an optimal choice. The definition is straightforward to generalise to the
case where a represents composition of threat mitigation operations.

In case where A◦ is an empty set, i.e. there are no available mitigation operations
matching experienced exposure, A◦◦ is assigned a single dummy element with associated
action impact of ∞. The particular value is chosen relative to the desired action impact
minimisation and plays a role in the realm-wide optimal threat mitigation strategy discovery
algorithm presented in the following sections. The essence to note is that by having an action
impact of∞, the dummy operation is always going to be more expensive than any alternative
— putting information security protection in place of the absolute priority over any other
threat mitigation operation discrimination criteria.

In the rest of the thesis, whenever we refer to the term optimal or any of its derivations
we assume optimality with respect to the action impact metric.

4.5.2 The Protective Cover

The concept of the protective cover of a containment tree is fundamental for reasoning about
optimal threat mitigation strategy for a threat-exposed realm. To define the protective cover
we firstly introduce a more general concept of the containment tree cover. We differentiate
between the simple and compound containment tree covers.

Definition. The simple cover of a containment tree is defined with respect to a node n of the
tree. A simple cover of the tree is a subset, Cs, of the tree nodes such that any path starting
at the node n and leading to all the leaf nodes in the subtree rooted by n has to cross at least
one node from the cover Cs.

The compound cover, Cc, of a containment tree is defined with respect to a set of nodes
N of the tree. A compound cover of the tree is the union of a single simple cover for every

101

4. INFORMATION SECURITY VS. UTILITY: BALANCING THE SEESAW

node m ∈ M , where M ⊂ N , such that ∀n ∈ N\M, ∀m ∈M the node n is not in the subtree
rooted by the node m.

The choice of the nodes in M ensures that there are no nodes in N at which a path may
start and reach the leaf nodes without crossing any of the nodes in the cover Cc.

We define protective cover of a containment tree by placing the concept of the containment
tree cover into the context of information exposure threats. We similarly distinguish between
the simple and the compound containment tree protective covers.

Definition. The simple protective cover of a containment tree is defined with respect to a
threat t originating at the node n of the tree. A simple protective cover then is a simple
cover, Cs, of the tree, together with a set of threat mitigation operations M , such that after
executing all operations in M on the respective nodes in Cs the data items below the node n
experience no more than NULL LoE due to the threat t.

The compound protective cover is defined for a set of threats T , of one or more primitive
types, and a set of the respective threat source nodes N . Compound threat cover extends the
concept of a simple protective cover in a manner analogous to that by which the compound
cover extends the concept of a simple cover of a containment tree.

In the rest of the thesis, when we refer to the cover of a containment tree we really mean
the protective cover of the tree unless we explicitly specify differently. Note the use of the
term at least in the definition of a simple cover of a containment tree. In the context of a
simple protective cover, the term effectively implies that a single threat may be mitigated
jointly at several levels in a containment tree. This is exploited in the design of the algorithms
for discovering the optimal cover of a containment tree as presented from Section 4.5.5
onward.

Which LoEs to Mitigate?

Given a set of threats and a containment tree, the threat propagation process gives us a
LoE vector describing LoEs active at each of the containers in the tree — data items and
otherwise. From the intensity reduction property it follows that LoEs as experienced at data
item level in the tree are always dominated by the corresponding LoEs active at the inner
nodes of the containment tree. Therefore, by mitigating a threat through offsetting a LoE
as experienced at an inner node of a tree an unnecessary information utility impact may
be incurred. Consequently, irrelevant of the positioning in a containment tree of a node
at which threat mitigation operations are applied they need not offset more than the LoEs
as experienced by data items in the subtree below the node. Slightly more formally, for a
container v, the vector of LoEs to mitigate is derived in a bottom-up fashion as:

[l1, . . . , ln]v =

{

⊕

i∈children(v)[l1, . . . , ln]i if !is leaf(v) ;

[l1, . . . , ln]v otherwise ;

102

4.5 Threat Mitigation: The LoE Way

The second case represents the base case, where v is a data item, at which point the set of
LoEs to mitigate is exactly the set of LoEs experienced.

Cover Complexity

Key:

Cover Node

Threat
Propagation

Figure 4.6: Realm covers example.

Figure 4.6 shows all possible covers for a rather simple containment tree such that every
threat propagation path crosses exactly a single node in a cover. We assume that the threat
originates outside the root node of the tree and that mitigation operations are available
for each of the containers. The purpose of the illustration is to hint at at the variety of
possibilities for forming a protective cover, even in a very small realm, subject to availability
of the adequate mitigation operations.

To gain a slightly more formal feel on the size of the protective cover space, in general,
we make two assumptions: i) containment tree structure regularity; and ii) availability of
mitigation operations at every node in a tree. The former is related to node branching factors
and the tree balance. The latter implies that every node in the tree can be a part in the
cover. We, however, do not envisage the assumptions to frequently hold in practise. In other
words, the following simple analysis expresses the worst case scenario complexity.

Let N be a node branching factor, uniform across a containment tree, and k be the tree
depth, where k = 0 denotes the root level. We can then express the number of possible
covers for a containment tree as:

(

(

(1N + 1)N + 1
)N

. . . + 1
)

103

Figures/Chapter_IV/covers.eps

4. INFORMATION SECURITY VS. UTILITY: BALANCING THE SEESAW

where the factor 1N represents the base case, i.e. the number of possible cover combinations
in a tree with only a single node. The exponent N , over each of the bracketed terms, accounts
for the number of possible covers for N disjoint containment trees, i.e. with no common root.
Addition of the common root node for N trees contributes by exactly one cover — the one
formed solely by the root node itself. This is accounted for by the term +1 in each of the
brackets above. The number of such terms is equal to k.

Using the big O notation, the size of such a cover space can be expressed in terms of N
and k as:

O
(

2N×k
)

The exponential complexity renders the brute force approaches to finding the optimal cover
of a containment tree unfeasible but for small realms.

However, we can observe that the optimal protective cover for a sub-tree of a containment
tree is independent of the optimal protective covers for any other, non-intersecting, sub-
tree. In other words, the problem of finding the optimal cover exhibits a clear optimal
sub-structure. Furthermore, the individual sub-problems recur in what would be a bottoms-
up, divide and conquer, approach to finding the optimal cover. This allows us to develop a
dynamic programming solution to the problem as presented next.

4.5.3 Information Utility and Containment Configuration

The definition of information utility impact, as used in the action impact metric above,
presented in Section 4.2, is implicitly relative to a single data item. In the general case, as
we have already seen through examples, mitigation operations may be available at any of
the nodes of a containment tree. By the definition of a tree, each non-leaf node has one or
more leaf nodes below itself. Consequently, invocation of a mitigation operation at a non
data item container may affect information utility of more than a single data item.

The corollary of the above argument is that information utility impact of a mitigation
operation is, in the general case, dependent on the particular containment tree configuration
at the time of the operation execution. To account for this, information utility impact of a
threat mitigation operation is defined as:

υ(a, c) =
∑

x∈data items(c)

ωxυ(a, x)

where the arguments to the information utility impact function (υ) are the mitigation opera-
tion id (a) and the path to the container at which the action is to be performed (c). The sum
goes through all data items contained in the containment sub-tree rooted by the container
referred to by c. The ωx factor leaves space for weighting information utility impact based
on properties of individual data items, e.g. contained information sensitivity — prioritising
information utility of the more sensitive pieces of information.

104

4.5 Threat Mitigation: The LoE Way

To synchronise the information utility impact values with the containment model updates
we use the triggers associated with the model update operations as presented previously in
Section 3.4.6. In the following sections, we assume that the information utility impacts
associated with the available mitigation operations reflect the corresponding realm configu-
ration.

4.5.4 The 0-1 Knapsack Problem

The algorithm we propose for finding the optimal cover for a containment tree in face of a
set of threats builds on the solution to the 0-1 Knapsack problem which is well known in
the literature1. For clarity purposes, we firstly briefly introduce the 0-1 Knapsack problem
and its solution, which we subsequently build upon.

The Problem

The 0-1 Knapsack problem can be stated as follows. A thief robbing a store has a knapsack
that can carry at most W kilogrammes. In the store, he finds n items, each with weight wi

and of value vi. The thief would, unsurprisingly, like to walk away with the most valuable
load. However, the weight he can take away is strictly limited by the capacity W of the
knapsack. Also, the items cannot be broken into smaller units — each has to be either
included in the load or left aside. Thus the name 0-1 Knapsack problem. The problem then
is: which items should the thief take?

The general Knapsack problem is the classical example of a NP hard problem. However,
when confined to “small” integers, in the number of items as well as the weights, and when
fractioning of items is disallowed it can be solved using a dynamic programming approach
[CSRL01], incurring pseudo-polynomial complexity. Dynamic programming, in general, ex-
ploits the optimal sub-structure of a problem together with the existence of overlapping sub-
problems to provide for tractable solutions to what would otherwise represent intractable
problems. The optimal substructure of the 0-1 Knapsack shows itself if we observe that by
excluding an item i, of weight wi, from a knapsack containing the optimal selection of items
for its weight w, what we obtain is the optimal load for the weight w − wi.

Sub-problem overlapping implies that a standard recursive solution to the problem would
repeatedly encounter the same set of sub-problems rather than solving new sub-problems
in every iteration. Dynamic programming exploits this by memorising solutions to sub-
problems for reuse. Furthermore, no backtracking is allowed. The memorisation step is
where the requirement for the problem confinement to small integers essentially comes into
play. Otherwise, the incurred overheads become prohibitive. The existence of the overlapping
sub-problems for the problem we attempt to solve is shown in the algorithm presentation,
below.

1The 0-1 Knapsack problem is a classical example of dynamic programming as found in textbooks on
algorithms and data structures, e.g. in [CSRL01].

105

4. INFORMATION SECURITY VS. UTILITY: BALANCING THE SEESAW

The Algorithm

Dynamic programming solution to the integer constrained 0-1 Knapsack problem is as fol-
lows. We enumerate all the items available as 1 . . . n, where n is the total number of items.
No particular ordering of items is required. Then, we let C be a matrix of size n×W where
C[i, w] represents the optimal solution for knapsack capacity w, 0 ≤ w ≤ W , considering
only the items 1 . . . i, 1 ≤ i ≤ n. The algorithm can then be given as:

C[i, w] =

0 if i = 0 or w = 0 ;

C[i− 1, w] if wi > w ;

max(vi + C[i− 1, w − wi], C[i− 1, w]) if i > 0 and w ≥ wi ;

The first case simply says that if there are no items available for inclusion in the knapsack,
or the capacity of the knapsack is 0, then its contents can never have a value of more than
0. The second case states that if the weight of an item being considered for inclusion into
the knapsack is bigger than the capacity of the knapsack itself we should drop it and look
for the solution considering the items 1 . . . i− 1 only. Finally, in the third case, the value of
the knapsack load is maximised either by including the item i and filling the remaining load
(w − wi) by choosing from not previously considered items (1 . . . i− 1), or by dropping the
item i and filling the weight w with the unexpended items only. We can now see, from the
third case, the role played by the memorisation of solutions to the intermediate problems.

The Complexity

The run-time complexity of the above algorithm is pseudo-polynomial in the order of the
number of items n and the knapsack weight W , i.e. O(nW). Thus the “small” integer
constraint on the algorithm. The term pseudo-polynomial denotes that the complexity is
not expressed in terms of the input length in bits — as usual in complexity theory, but
in terms of the size of the input values. The given complexity reflects that the algorithm
consists of performing only simple arithmetic operations for each of the n ×W cells of the
matrix.

4.5.5 A Single Container Optimal Cover Determination

For clarity purposes, we present the algorithm for finding the optimal cover for a containment
tree in two stages. The first stage, presented in this section, consists of finding the optimal
set of mitigating operations for a containment tree consisting of a single container. In the
second stage, presented in the next section, we generalise the algorithm to provide for the
optimal cover for multi-container containment trees.

106

4.5 Threat Mitigation: The LoE Way

Setting the Scene

To aid the simplicity of the algorithm presentation we, initially, make one assumption and
impose one more general constraint. The assumption and the constraint hold equally in this
as well as in the next section. They are subsequently relaxed, in Section 4.5.7.

Assumption. Owing to a particular container classification and containable relationship
definition, every data item can only ever be exposed to a single (primitive) threat type at any
one time.

The assumption allows us to leverage the notion of common LoEs. In other words, it
allows us to consider mitigation operations affecting a spectrum of primitive threat types as
specific to any of the types. This allows us to ignore the complexities involved in reasoning
about the information utility impact of mitigation operations associated with compound
threat types, in the initial version of the algorithm — aiding the clear presentation of its
core points.

Constraint. Transparency functions used in the system are of the additive type.

This constraint is fundamental for the validity of the form in which we state the optimal
cover discovery problem in the next sections. The particular form is used as it aids the clarity
of the presented solution through its resemblance to the 0-1 Knapsack problem. The more
general benefits of using additive transparency functions have been discussed to previously.

The Problem Statement

In this section we address the problem of finding a set of threat mitigation operations avail-
able at a single container such that, when executed, they offset at least the LoE active for the
container and, at the same time, incur the minimum action impact. In the rest of the chap-
ter we use the term cost to mean action impact — for its resemblance to the 0-1 Knapsack
problem statement.

The problem we are solving can be seen as the “backward” 0-1 Knapsack problem. In
the standard 0-1 Knapsack, a thief has broken into a shop and wants to maximise the value
of its load, possibly leaving some space in the knapsack empty. In our case, a person has
walked into a shop and they want to spend as little money as possible to fill their shopping
bag, and even over-fill it slightly, having to carry away goods in their pockets, if that is the
cheapest option.

The assumption and the constraint stated above shape the problem in the following
manner. As no container may experience exposure degree of more than a single type, the
dominance relationship imposes a total ordering on the LoEs comprising the LoEs model
as seen from the perspective of every individual container. The total LoE ordering, on per
threat type basis, can be seen as a path with the starting point represented by the NULL
LoE and its end being the LoE associated with the information destruction operation. We

107

4. INFORMATION SECURITY VS. UTILITY: BALANCING THE SEESAW

then define the unit of distance along the path to be the exposure degree quantisation step.
Thus, every LoE to mitigate can be seen as at a specific, integer, distance on the path.
Further, as a consequence of the above constraint we can reason about individual threat
mitigation operations as of sticks of fixed lengths. The length of a stick represents reduction
in exposure degree caused by the corresponding threat mitigation operation. The cost of a
stick corresponds to the mitigation operation’s action impact.

The problem of finding the set of threat mitigation operations that offset a given LoE
with minimum action impact can, now, be stated as:given a set of sticks, choose a subset
such that when all its sticks are laid end-to-end over the path, starting at its beginning, they
reach at least the point on the path representing the experienced LoE, at the minimum cost.

The Algorithm

In analogy to the 0-1 Knapsack problem, the general case of the above problem is also NP
complex. However, constrained to “small” integers, in terms of the number of sticks, i.e.
mitigating operations, and the path length, it can be solved using a dynamic programming
approach in pseudo-polynomial time. The optimal sub-structure of the problem is given by
the following. Let S be a set of sticks that covers a path distance l at the minimum cost and
let i, of length li, be in S. Then, by excluding stick i from S, we obtain the minimum cost
solution for the path distance l − li.

The algorithm is formally specified as:

f(i, lc, ltot) =

0 if ltot ≤ lc ;

∞ if i = 0 ;

min[f(i− 1, lc, ltot), ci + f(i− 1, lc + li, ltot)] otherwise ;

The use of function notation is analogous to the use of a simpler table index notation
in the previously presented solution to the 0-1 Knapsack problem. The argument i denotes
that sticks 1 . . . i are to be considered for building the solution. Parameter lc represents the
length of the path already covered, while the ltot specifies the total target path distance that
needs to be covered. Therefore, the difference ltot − lc denotes the distance that remains to
be covered at each stage, i.e. iteration, of the algorithm execution.

The first case says that if we have already covered the target length, or even gone past
it, then there is nothing else to do. The cost associated with doing nothing is 0. The second
case states that if we have no sticks to consider, then it is impossible to cover any path
distance. This is equivalent to saying that the cost of covering the distance is infinite (∞).
In the third case, we aim to choose the the cheapest (min[. . .]) alternative among: discarding
the stick i, currently under consideration, and covering the remaining distance, (ltot − lc),
using the sticks 1 . . . i− 1 only; or, including the stick i in the solution, at the cost of ci, and
covering thus remaining path distance, ltot− (lc + li), by a subset of sticks 1 . . . i− 1. As the
algorithm progresses, never is a decision to include a stick in the solution re-evaluated.

108

4.5 Threat Mitigation: The LoE Way

Figure 4.7: Container-local algorithm example.

Figure 4.7 gives an example of the algorithm execution. In the top right corner the figure
is the summary of the sticks available, presented both graphically and in a tabular format.
The available sticks are enumerated as 1, 2 and 3. The rest of the figure is occupied by a
table containing all the values of the algorithm’s lookup table upon its execution. The table
encodes two dimensions given by lc and ltot as a single dimension using pairs (lc, ltot). Each
of the cells in the table contains the minimum cost for a corresponding sub-problem. The
optimal solution is encircled in the red ellipse. The subscripts of the cell values identify threat
mitigation operations comprising the optimal solution. They demonstrate how the solution
can be recovered upon algorithm termination. Note that the optimal solution “overshoots”
the target path distance although an exact match is available — however, with a lower cost.

4.5.6 The Realm-Wide Optimal Cover Determination

In the previous section, we have presented a dynamic programming algorithm to find the
optimal set of mitigation operations to offset a LoE for a single container. In this section,
we extend the algorithm to find the optimal cover for a containment tree in the general case.
Note that the previously stated assumption and constraint still hold.

109

Figures/Chapter_IV/local_alg_test.eps

4. INFORMATION SECURITY VS. UTILITY: BALANCING THE SEESAW

The Problem Statement

In the stick-path terminology, we can state the problem of finding the optimal protective
cover for a containment tree as follows.

With each leaf node of a containment tree, there is a certain path distance to cover
associated. The distances correspond to the LoEs active for the respective data items. The
path distance to cover for each non-leaf node is equivalent to the maximum path to cover at
each of its children nodes. This was defined, in terms of LoEs, in Section 4.5.2. With each
of the nodes there may be none or more sticks associated — denoting the available threat
mitigation operations.

When a stick associated with a non-leaf node is used to contribute to the cover sought
for the node, it applies simultaneously to the path distance covers for all the containers
below the node. This reflects the fact that the application of a threat mitigation operation
on a container reduces the corresponding exposure degree experienced at all of its children
containers. This is owing to the manner in which the threat propagation is defined. The cost
of applying a stick associated with a node is constant whether the node is a tree leaf or not.
This would not hold unless information utility impact associated with a threat mitigation
operation reflected the containment tree configuration relative to the container the operation
is associated with — as specified in Section 4.5.3.

Let S be a set of sticks available for a containment tree — a union of the sticks available
for each of the containers in the tree. The problem, then, is to find the minimum cost subset
Sc ⊆ S such that, by using the all of the sticks in Sc, we cover the path distances as associated
with all of the leaf nodes of the tree. The cost of a set of sticks is simply the sum of costs
of individual sticks in the set. In other words, the goal is to offset all LoEs as experienced
at the data item containers of a containment tree, at the minimum cost, by leveraging the
threat mitigation operations available at all of the containers in the tree. Note that the
problem statement implies that a threat may be mitigated gradually as it propagates down
a containment tree — thus the subtlety in the protective cover definition of Section 4.5.2.

The Algorithm

The algorithm to find the optimal cover builds on the dynamic programming approach to
solving the single container problem, presented in the previous section. It is itself a dynamic
programming algorithm. The optimal sub-structure argument for the problem is analogous
to the argument presented in the previous section.

The formal specification of the algorithm is given by:

110

4.5 Threat Mitigation: The LoE Way

f(v, i, lc, ltot(v)) =

0 if ltot(v) ≤ lc ;
∑

k∈chld(v) f(k, nk, lc, ltot(k)) if i = 0 & !is leaf(v) ;

∞ if i = 0 & is leaf(v) ;

min[f(v, i− 1, lc, ltot(v)),

ci + f(v, i− 1, lc + li, ltot(v))] otherwise ;

Apart from the parameters described previously, the function takes an additional argu-
ment, v, that identifies the container under the current consideration by the algorithm. To
account for the slightly extended notation, nk denotes the number of sticks available at a
node k while ltot(k) represents the total target path distance to cover at the node k. The
parameter denoting the remaining sticks to consider, i, is relative to the node v.

The algorithm starts its execution either at the root of the containment tree, if the
threat is external to the tree, or at all first-hop children of the threat source container
simultaneously. If multiple threats of the same type originate at different containers, the
algorithm starts in parallel at all the first-hop children of the lowest level threat source
container for each of the containment subtrees of the tree. The initial call to the algorithm
is of the form:

f(v, nv, 0, ltot(v))

The first case of the above algorithm is identical to the respective case in the single-
container algorithm. The second case above applies if we have run out of sticks at the current
container (i = 0), without covering the target path distance (ltot(v)), and the container (v)
represents a non-leaf node in the containment tree. The rule states that we should then try
to cover the remainder of the path distance separately for each of the containment sub-trees
below the current node, starting by visiting each of its first-hop children. The overall cost of
the next step, thus, is given by the sum of costs of individual covers for each of the sub-trees
(
∑

k∈chld(v) . . .). As ltot(v) = maxk∈chld(v) ltot(k), at each of the first hop children we only need
to search for the cover for the path distance given by ltot(k) − lc rather than ltot(v) − lc. Note
that lc corresponds to a global variable, while ltot() is container local. Thus, it may happen
that as the algorithm progresses down the containment tree, the lc is already over the local
ltot(). The first case, then, ensures that the unnecessary path distance “overshooting” does
not occur. The third case states that if have run out of sticks (i = 0) at the bottom of a
containment tree and we still have not covered a target path distance than it must be that
we cannot cover it at all — yielding the cost of ∞. The semantics of the last case of the
above algorithm is fully analogous to the last case of the single container basic version of the
algorithm.

We baptise the above algorithm the constrained Optimal Cover Determination (OCD)
algorithm. The general, unconstrained, variant of the OCD algorithm is obtained when the
assumption and the constraint from the Section 4.5.5 are relaxed, as discussed in the next
sections.

111

4. INFORMATION SECURITY VS. UTILITY: BALANCING THE SEESAW

An Example

The algorithm is illustrated by the example in Figure 4.8. In the centre of the figure is
the containment tree on which the algorithm is executed. The realm consists of tree con-
tainers: u, v and w; where v and w are contained within u. Threat mitigation operations
are represented as blue-coloured line segments placed next to the nodes they are avail-
able at. Each stick has an id, denoted by a number to their left, and a cost, shown on
top of them. We can think of containers v and w as representing GUI windows and the
container u corresponding to a display. For the display, the example accounts for a two
level blurring, available through a couple of single level blur operations. As for the GUI
windows, they may be reduced in size, in a single step, to being observable from a safe
proximity only. The costs of the respective threat mitigation operations are worked out as:
1× [number of affected data items]+1, assuming that each GUI window contains solely one
data item (not represented in the figure). The left side of the + operator represents the
joint information utility impact while the right side denotes, in a much simplified way, other
factors contributing to the action impact. The target path distances to cover are 1, 2 and
2 for containers v, w and u respectively and are represented as red segmented lines next to
each of the containers in the figure.

The central point of the Figure 4.8 are the three tables illustrating all the values as
computed by the algorithm at every step of its execution. Encircled in red are the final
solutions to each of the sub-problems encountered. The sub-scripts represent the ids of the
contributing mitigating operations. The optimal cover, as given by the algorithm, consists of
a single-level blur at the container u and a resize at the container w. Note that the problem
really has four dimensions — one for each of the parameters of the function f . In the figure,
three dimensions are encoded in the tables themselves while the fourth is represented by the
structure of the containment tree.

To hint at the optimality of the algorithm we contrast it briefly to an alternative, two-
step, approach:

1. First, use the single-container variant of the algorithm from the previous section to
find a container-local optimal solution for the LoEs experienced by every container in
a containment tree.

2. Divide and Conquer bottoms-up and, for every container, compare the cost of its local
solution with the sum of the costs of the solutions at all of its first-hop children. Discard
whichever is more expensive.

The algorithm terminates at the root of the affected containment tree. For the example
in the Figure 4.8, this algorithm would come up with a solution clearly sub-optimal to the
OCD. As it would not find any possible local cover for the node w, it would suggest threat
mitigation through two level screen blurring at the container u as its final solution. The
cost associated with this solution is 6 instead of 5 as obtained from the constrained OCD

112

4.5 Threat Mitigation: The LoE Way

0 1

(0,0) 0 0

(0,1) 21

(1,0) 0 0

(1,1) 0 0

¥

(lc, ltot)
i

0 1

(0,0) 0 0

(0,1) 21

(0,2)

(1,0) 0 0

(1,1) 0 0

(1,2) 21

(2,0) 0 0

(2,1) 0 0

(2,2) 0 0

¥

¥ ¥

¥

(lc, ltot)
i

0 1 2

(0,0) 0 0 0

(0,1) 4v[1], w[1] min[4v[1], w[1], 3u[1] + 0] = 3u[1] min[3u[1], 3u[2] + 0] = 3u[1/2]

(0,2) 3u[1] + 2w[1] = 5u[1], w[1] min[5u[1], w[1], 3u[2] + 2w[1]] = 5u[1/2], w[1]

(1,0) 0 0 0

(1,1) 0 0 0

(1,2) 2w[1] min[2w[1], 3u[1]] = 2w[1] min[2w[1], 3u[2]] = 2w[1]

(2,0) 0 0 0

(2,1) 0 0 0

(2,2) 0 0 0

¥

(lc, ltot)
i

u

v w

1

2
3

3

1
2

1
2

Container v

Container w

Container u

Figure 4.8: Common Cheapest Path algorithm example.

113

Figures/Chapter_IV/ccp.eps

4. INFORMATION SECURITY VS. UTILITY: BALANCING THE SEESAW

algorithm. The excess cost comes from the unnecessary information utility impact caused
by the resulting target path distance “overshoot” for the node v.

4.5.7 Discussion

In this section, we discuss the relaxation of the assumption and the constraint made in
Section 4.5.5. The general form of the OCD algorithm, accounting for the relaxation of both
the constraint and the assumption at the same time, is not presented for the clarity purposes.
However, its derivation is straightforward based on the two algorithms presented below.

Generalisation to Multiple Threat Types

The relaxation of the assumption from Section 4.5.5 implies that a data item may, in gen-
eral, be exposed to threats of multiple primitive threat types simultaneously. Two distinct
scenarios may then arise. The first occurs if no compound threat types exist. In this case,
the optimal cover can be obtained by independent invocations of the constrained OCD al-
gorithm for each of the primitive threat types experienced within a realm. The other case
assumes the existence of threat mitigation operations that impact on multiple threat types
simultaneously. Owing to its generality, we focus on the latter scenario.

Following the stick-path analogy, any stick associated with a mitigation operation af-
fecting multiple primitive threat types applies simultaneously to all the individual paths
associated with each of the threat types. This is owing to the definition of the compound
threat type. The extension of the constrained OCD algorithm to account for the conse-
quences of the assumption relaxation, thus, consists of providing the ability to reason about
the exposure of multiple primitive threat types, instead of only one. With reference to the
constrained variant of the algorithm, the function f is now redefined to take the following
parameters:

f(v, i, {lc(1), ltot(v,1)}, . . . , {lc(n), ltot(v,n)})

where each of the {lc(x), ltot(v,x)} pairs represents the distance of the path already covered
and total distance of the path to cover, respectively, for the node v, as associated with the
primitive threat type enumerated as x. The roles of lc(x) and ltot(v,x) are analogous to the roles
of lc and ltot(v) in the constrained OCD variant. The increase in the number of dimensions
the algorithm operates over is 2×n, with n being the total number of primitive threat types.

We specify the algorithm as follows. The first and the third case of the constrained OCD
algorithm are adapted as:

f(. . .) =

0 if ∀x, ltot(x) ≤ lc(x) ;

. . .

∞ if i = 0 & is leaf(v) ;

. . .

114

4.5 Threat Mitigation: The LoE Way

In the first case, there is no more exposure of any threat type. In other words, the target
distances for all the paths have already been covered. The third case remains the same as in
the constrained OCD algorithm specification. The second case of the algorithm is specified
as:

f(. . .) =

. . .
∑

k∈chld(v) f(k, ik, {lc(1), ltot(k,1)}, . . . , {lc(n), ltot(k,n)}) if i = 0 & !is leaf(v) ;

. . .

. . .

This is a straightforward extension of the second case of the constrained OCD algorithm
specification. The condition remains the same — it says that if we run out of sticks associated
with the currently visited node v, and the node v is not a leaf-node, then we should look for
separate covers for each of the subtrees below v. The final case, where we decide whether to
use a stick under consideration (i) or not in the optimal solution, is expanded to:

min[f(v, i− 1, {lc(1), ltot(1)}, . . . , {lc(n), ltot(n)}),

ci + f(v, i− 1, {lc(1) + li, ltot(1)}, . . . , {lc(j) + li, ltot(j)},

{lc(k), ltot(k)}, . . . , {lc(n), ltot(n)})]

The condition associated with the rule remains the same as in the constrained OCD algorithm
specification. The main point of the above rule is that the length of the stick i, given by
li, is added solely to the partial solutions corresponding to primitive threat types the stick
applies to. Stick i may contribute to the cover of a single path distance, if i represents a
mitigation operation affecting threats of a single primitive type, or to the covers of multiple
path distances, if the mitigation operations impacts on threats of a compound threat type.
The above rule illustrates the latter case, in its second line. The choice of the particular
threat types the stick i applies to, in the above rule specification, is arbitrary. Note, also,
that we have implied that each threat mitigation operation that affects multiple threat types
does so to the same degree. In other words, the li is constant across the threat types. This
may not hold in the general case. To account for this, we only need to see li as a vector
of threat type specific stick lengths. The algorithm is then adapted in a straightforward
manner.

Non-Additive Transparency Functions

The main consequence of the relaxation of the constraint set in Section 4.5.5 is that threat
mitigation operations cannot, in the general case, be represented as fixed length sticks.
In other words, the stick-path analogy cannot be used for the problem statement and the
algorithm specification as was done in the previous sections. The reason for this is the
variability of the threat mitigation operations’ relative offset range across the exposure degree
scale, as discussed in Section 4.4.

115

4. INFORMATION SECURITY VS. UTILITY: BALANCING THE SEESAW

As the first step in generalising the constrained OCD algorithm, we associate, with every
threat mitigation operation, a set of pairs of LoEs of the form (lh(igh), ll(ow)), where lh ≫ ll.
This is instead of associating the mitigation operations with fixed exposure degree impacts.
The semantics of each of the pairs states that the respective mitigation operation reduces
the LoE lh to the LoE ll, with respect to a single primitive threat type. This effectively
defines a relationship on M × T ×L2, where M is a set of threat mitigation operations, T is
a set of threat types and L is a set of LoEs. Secondly, we define the offsets mapping as:

offsets : M × T × L −→ L

Given a threat mitigation operation m, a threat type t and a LoE ll, the function returns the
corresponding LoE lh. The returned value, lh, may be the same as, or dominant to, ll. The
former is the case when there is no such lh that the operation reduces to ll. Finally, we alter
the interpretation of some of the previously used notation. We redefine lc of the constrained
OCD to represent LoE that is mitigated by the current selection of mitigation operations.
Also, ltot(v) of the constrained OCD is now taken to denote the LoE active at a container v.

The extension of the constrained OCD algorithm to account for the constraint relaxation
can, now, be defined as:

f(v, i, lc, ltot(v)) =

0 if lc ≫ ltot(v) ;
∑

k∈chld(v) f(k, ik, lc, , ltot(k)) if i = 0 & !is leaf(v) ;

∞ if i = 0 & is leaf(v) ;

min[f(v, i− 1, lc, ltot(v)),

ci + f(v, i− 1, offsets(m, lc), ltot(v))] otherwise ;

The interpretation of the four cases of the above algorithm follows from that presented
previously for the constrained OCD algorithm and its generalisation for the relaxation of
the assumption. The algorithm can be extended to account for simultaneous exposure of
multiple primitive threat types in a straightforward manner, analogously to the way in which
the same has been done, in the previous section, for the constrained OCD algorithm. This
is aided by the definition of the offsets mapping which takes explicit account of the threat
typification. Thus obtained algorithm would represent the most general variant of the OCD
algorithm.

4.6 Summary

In this chapter we have introduced the notion of information security vs. information utility
seesaw and its balancing as the goal for the overall information exposure threat mitigation
process. We have defined information utility with reference to a wider notion of utility as
used in economics and philosophy and outlined a corresponding metric. The importance

116

4.6 Summary

of information utility maximisation, in general, and its balance with the level of exposure
protection provided, in particular, has been emphasised as one of the key factors for the
user acceptance of the vision of pervasive computing. Contrasting the notions of risk and
exposure degree we have introduced the threat significance level as a first step toward con-
ceptualisation of structured reasoning about threat severity and mitigation. The next step
was the definition of a LoE, and its corresponding modelling approach, as the instrument
for matching the threat severity with the level of protection provided by mitigation oper-
ations. Based on the above concepts and inspired by the dynamic programming solution
to the 0-1 Knapsack problem, we developed an algorithm that discovers the optimal, with
respect to information utility and system usability impacts, threat mitigation strategy for a
holistic realm in the face of a set of threats. Further generalisation of the algorithm is left to
Chapter 6. The overall computational characteristics, resource requirements as well as the
flexibility of the presented approach to threat mitigation, make it suitable for deployment in
pervasive computing environments.

117

4. INFORMATION SECURITY VS. UTILITY: BALANCING THE SEESAW

118

Chapter 5

From CASPEr to µCASPEr:
Architecture & Policy Model

5.1 Chapter Overview

The focus of this chapter is on the presentation of µCASPEr, a policy-based specialisation of
CASPEr and an adaptation of its architecture targeted at resource constrained devices. We
set off with a high-level overview of the generalised CASPEr architecture, in Section 5.2, out-
lining its structure and describing the roles of its main components. Based on this, in Section
5.3, we introduce the “split” architecture of µCASPEr in which computationally intensive
tasks are off-loaded from resource poor to more powerful devices, without hampering the
operational independence or autonomy of the µCASPEr hosting platforms. µCASPEr, and
its architecture, are founded on a policy model based on a variant of finite state automata
called Finite State Transducers with Tautness Functions and Identities (TFFST) [BS04] —
detailed in Section 5.4. The focus of the section is on the application of the TFFST policy
model, in terms of its policy structure, to the CASPEr setting. We also show how a high-
level, Deontic, policy language is used for µCASPEr policy specification. Having presented
the µCASPEr architecture and the policy model, we follow on to describe in detail, in Section
5.5, the operation of µCASPEr. Specific attention is paid to the per-Client policy formation,
including policy translation and conflict resolution, policy deployment, policy evaluation and
policy enforcement stages. We round off the chapter by outlining the requirements and a
high-level architecture of a data management model for CASPEr.

5.2 CASPEr Architecture Overview

CASPEr architecture is divided into four distinct layers: the Threat Estimation Layer, the
Information Exposure Threat Adaptation Layer, the Adaptation Enforcement Layer and the
Realm Containment Modelling Layer. Each of the layers relies on a number of components

119

5. FROM CASPER TO µCASPER: ARCHITECTURE & POLICY MODEL

to provide for their functionality. Figure 5.1 shows a high-level view of the CASPEr archi-
tecture, components of each of the layers and inter- and intra- layer interactions. The figure
also illustrates how CASPEr relates to the Application and System spaces of the traditional
computer architecture. We use the term space instead of the standard term layer for se-
mantic distinction with the notion of layer as used in the context of CASPEr. For clarity
purposes, the figure does not show the interactions between the application space and the
CASPEr layers related to CASPEr administrative tasks. The relative size of the individual
layers, and their components, as represented in the figure, is not meant to be indicative of
their internal complexity or resource requirements.

Threat Estimation
Manager

Optimal Cover
Determination

Protective Cover
Choice AlgorithmsAdaptation

Critera

Adaptation
Manager

Threat
Specification

Enforcement Manager

Local Enforcers

System
Enforcers

Application
Enforcers

Information Exposure Threat Estimation Layer

Information Exposure Threat Adaptation Layer

Adaptation Enforcement Layer

Realm Containment Modeling Layer

Containment
Model Manager

Model
Representation

Containment Model
Specification

Application
Space

System
Space

Context Modeler

Context
Predictor

Figure 5.1: High-level representation of the CASPEr architecture.

5.2.1 CASPEr Components

Threat Estimation Layer. The role of the Threat Estimation Layer is to establish,
through its Threat Estimation Manager component, the presence of information exposure
threats based on the context sensed by the Context Model component. The correlation be-
tween contextual states and information exposure threats and their characteristics is specified

120

Figures/Chapter_V/casper_architecture.eps

5.2 CASPEr Architecture Overview

by the Threat Specification component. Thus established threat state is fed to the Informa-
tion Exposure Threat Adaptation Layer. The Threat Estimation Layer supports proactive
CASPEr operation through its optional Context Predictor component. The role of the Con-
text Predictor is to “foresee” contextual states that will arise in the near future based on
current state of context, as captured by the Context Model, or on the higher level data such
as e.g. mobility profiles, diaries and schedules, explicit user input etc.

Realm Containment Modelling Layer. The main responsibility of the layer’s Contain-
ment Model Manager component is to maintain an accurate state of the containment-based
model of the realm, referred to as the Model Representation in the figure. The Containment
Model Manager handles model update operations coming from the Application and System
space components as well as from the Information Exposure Threat Adaptation Layer. The
containment model is built and managed abiding by the Model Specification. The Realm
Containment Modelling Layer also plays an important role in providing the Information Ex-
posure Threat Adaptation Layer with the information and the functionality necessary for
the threat propagation and mitigation processes.

Information Exposure Threat Adaptation Layer. For simplicity purposes, we refer to
this layer as to the Adaptation Layer. The main responsibilities of the Adaptation Layer are
the establishment of the LoEs experienced by data items in a realm, choice of the adequate
threat mitigation strategy as well as the coordination of the threat mitigation process. The
majority of tasks are accomplished by the Adaptation Manager component. A number of
algorithms for the optimal threat mitigation strategy, such as the OCD presented in Section
4.5, can be supported through the Protective Cover Choice Algorithms component. Their
operation is guided by the Adaptation Criteria — consisting of any information required
to support the threat adaptation process, other than that provided by the Realm Contain-
ment Modelling Layer. The Adaptation Manager initiates and monitors the actual threat
mitigation process carried out by the components of the Adaptation Enforcement Layer.

Adaptation Enforcement Layer. The sole role of the Adaptation Enforcement Layer is
to realise the adaptation strategy decided upon by the Adaptation Layer. The Enforcement
Manager coordinates the various Enforcers in accomplishment of the task. Every Enforcer
implements a single adaptation functionality, i.e. a class of information exposure mitigation
operations. As containers may originate from both the Application and System spaces, the
Adaptation Enforcement Layer encompasses relevant Enforcers from the two spaces as well
as its internal, Local, Enforcers.

The diagram in the Figure 5.2 shows an example relationship among traditional system ar-
chitecture components at the application and operating system levels and the corresponding
containment-based model of the world. It also demonstrates the role of the CASPEr aware-

121

5. FROM CASPER TO µCASPER: ARCHITECTURE & POLICY MODEL

Containment

Model

System

Architecture

Comms

Channel

Storage

Device
Display

GUI

Window

GUI

Window

Crypto

type: Store

Mobile Device

Device Drivers
...

...

System Space

Application Space

Networking

Sub-System

IPSEC

Data Repository

Display

D.Driver

SSHWindowing System

Window

Manager

Crypto

type: IPSEC

Crypto

type: SSL

IDE
WWW

Browser

Figure 5.2: Example component authority - container mapping.

ness at both the levels. The lower part of the figure (below the dashed horizontal line) shows a
simplistic diagram of a system architecture, while the upper part depicts containment-based
representation of the realm. The coloured arrows link individual application and system
level components with the containers they represent the component authorities for.

5.3 µCASPEr Architecture

In the previous section we have outlined the generic CASPEr architecture and its most im-
portant components. Recognising the likelihood of high degrees of resource poverty among
ubiquitous computing devices — ranging from mobile phones and PDAs to tiny sensor plat-

122

Figures/Chapter_V/application_model_mapping.eps

5.3 µCASPEr Architecture

forms, we developed µCASPEr — a policy-based specialisation of CASPEr suitable for de-
ployment on resource constrained devices. In this section we provide a high-level outline
of the µCASPEr architecture. The specific roles of the individual components at various
layers in the architecture are specific to the policy model we employ. Thus, their detailed
description is postponed until section 5.5, after we have introduced the TFFST policy model.

Policy Manager

Policy Deployment Module

Policy
Repository

TFFST
Repository

Policy Translator

Conflict Resolver

Model-Threat
Simulator

TFFST Module

Client Connectivity Layer

Model Spec.
Repository

Policy Specification Interface Model Specification Interface

... ...
Policy
Specification
Applications

Model
Specification
Applications

(a) Management side.

TFFST
Repository

Policy Evaluation
Master

Policy
Updater

TFFST Loader

Model
Representation

Containment Model
Manager

Context Modeling Layer

Enforcement Manager

Application
Enforcers

System
EnforcersLocal

Enforcers Policy Enforcement Layer

Containment Modeling Layer

Policy Evaluation Layer

A
p
p
l
i
c
a
t
i
o
n

S
p
a
c
e

S
y
s
t
e
m

S
p
a
c
e

(b) Client side.

Figure 5.3: µCASPEr architecture.

Figure 5.3 depicts a high-level view of the “split” system architecture consisting of the
Management side, Figure 5.3(a), and the Client side, Figure 5.3(b). The goal behind the
separation was to off-load computationally and resource intensive policy model related tasks
from the resource constrained Clients onto the resource powerful Management side. The main
challenge in accomplishing this was retaining the independence and operational autonomy
of individual Clients — crucial for continuous and efficient information exposure protection
in pervasive computing environments. The fundamental role in meeting the challenge was
the particular choice of the policy model — based on Finite State Transducers with Tautness
Functions and Identities (TFFST), and the manner in which it is deployed in µCASPEr.
In the TFFST model, it is the policy pre-processing stage that incurs the highest, and
possibly prohibitive, computational complexity and resource consumption. Consequently,
these tasks are assigned to the unconstrained Management side where they are accomplished
a priori to the actual policy deployment on the Client side. Not only does this save on
the resources consumed at the Clients but it also fully honors their operational autonomy.

123

Figures/Chapter_V/ucasper_management_side.eps
Figures/Chapter_V/ucasper_client_side.eps

5. FROM CASPER TO µCASPER: ARCHITECTURE & POLICY MODEL

Namely, the Client side is where the policy decision making and enforcement take place while
the role of the Management side components begins with policy specification in a high-level
language and ends with the delivery to the Client of a deterministic, conflict-free TFFST
representation of the policy.

5.3.1 The Management Side

Components of the Management side, Figure 5.3(a), handle policy management tasks that
are detached from runtime policy evaluation and enforcement and would otherwise, due to
the associated resource requirements, seriously hamper Client operation.

Policy Editor and Policy Specification Interface. To explicitly specify policy rules in
a high-level policy language — Ponder [DDLS01] in our case, the policy administrator1 uses a
policy editor application. The Ponder distribution itself [Pon] provides for both a dedicated
editor as well as a policy compiler into Java [Micb]. We envisage other high level applications
would be developed to support policy specification in a user-friendly manner acceptable to
an average user (e.g. graphical). The obtained high-level policy rule specifications are stored
in the Policy Repository via the Policy Specification Interface (PSI).

Policy Manager (PM). The role of the Policy Manager (PM) is to formulate a specific
policy for every µCASPEr Client in an on-demand fashion. The per-Client policy consists
of a set of policy rules applicable to the containment configuration as supported by the
Client’s software and hardware platform. The individual policy rules are either obtained
from the policy repository, having been explicitly specified by the policy administrator, or
are generated in an automatic fashion by the Model-Threat Simulator component based on
the containment model specification and the Client’s profile. The latter process consists of
simulating the threats which can affect the Client (based on its profile) and generating the
corresponding policy rules accordingly. The related components are depicted dash-lined as
they are considered optional.

TFFST Module. The components of the TFFST module2 are responsible for producing a
conflict-free, deterministic TFFST policy representation of the per-Client policy. The Policy
Translator transforms the high-level policy rules specification into their TFFST form while
the Conflict Resolver (CR) ensures that they are deterministic. Thus obtained TFFSTs are
archived in the TFFST Policy Repository for reference (e.g. audit, reuse, etc.). Inherent in
the process of building a TFFST and its determinization is conflict resolution (Section 5.5.3)

1Generic term to refer to a person in charge of the policy specification and maintenance.
2The components of the TFFST module are shared with the work presented in [VBS+05] due to the

common policy model deployment. This is acknowledged in the declaration accompanying this thesis and
also in [DBVC06] which represents the result of the collaborative work on the topic.

124

5.3 µCASPEr Architecture

— thus the name of the CR component. The algorithms involved in the conflict resolution
process are of high complexity and incur considerable computational costs — thus their off-
loading onto the Management side. TFFST evaluation by the Clients, on the other hand, is
particularly lightweight, as shown later in the chapter and further discussed in Chapter 6.

Policy Deployment Module (PDM). PDM serves as the interface component between
the Management and the Client sides. It accomplishes the tasks of mutual authentication
of the two sides, initiation of the policy formation process at the PM and download of the
TFFST per-Client policy to the Client.

5.3.2 The Client Side

The main role of the Client side (Figure 5.3(b)) is the policy evaluation and enforcement.
In other words, the information exposure threat evaluation and adaptation processes. The
layering in the µCASPEr Client side architecture follows the generic CASPEr architecture
(Figure 5.1). However, each of the layers offers a scaled down functionality, in terms of
components’ roles and responsibilities, due to the envisaged Clients’ resource constraints
and adapted to the µCASPEr policy model.

Context Modelling Layer (CML). The role of the CML is to establish the presence
of contextual states relevant for the threat model analysis and provide this information
to the Policy Evaluation Layer. For the purpose, the CML may leverage any adequate,
trusted services available in the environment. Unlike the corresponding layer in the CASPEr
architecture, CML lacks the explicit threat estimation process — in fact, the process does
not occur at all on the Client side. The mapping of contextual states to the threats is implicit
in the per-Client policy itself.

Policy Evaluation Layer. Components of the Policy Evaluation Layer are responsible
for the evaluation and enforcement of policies driving the information exposure adaptation
process of a ubiquitous computing device. The Policy Evaluation Master (PEM) serves
the role of the Policy Decision Point (PDP) as defined by the Policy Core Information
Model (PCIM) [MESW01]. It receives events denoting information exposure threat relevant
contextual states from the CML, both synchronously and asynchronously, and evaluates the
relevant TFFSTs to decide on threat mitigation operations to be executed by the Policy
Enforcement Layer. The TFFST Repository stores the per-Client policy, obtained from the
Management side by the Policy Updater. The role of the TFFST Loader is explained in
Section 5.5.

Policy Enforcement Layer. The Policy Enforcement Layer acts as the Policy Enforce-
ment Point in the PCIM. The functionality provided by the layer and roles of the En-

125

5. FROM CASPER TO µCASPER: ARCHITECTURE & POLICY MODEL

forcement Manager (EM), as well as individual Executors, are analogous to their CASPEr
counterparts.

Containment Modelling Layer. The Containment Modelling Layer consists of the Con-
tainment Model Representation data structure and the Containment Model Manager (CMM)
active component. As the policy evaluation is fully TFFST driven, the model representation
itself is rudimentary, consisting of containment path-like expressions, supporting only event
triggering at PEM on the model state updates. The events initiate threat model reevaluation
by PEM as well as the TFFST policy management operations detailed in Section 5.5. The
overall role of the layer is analogous to the corresponding one in the full CASPEr architecture
but tailored to the poorer containment model representation.

5.4 The Policy Model

To be feasible, a policy model intended for ubiquitous computing systems has to take into
account constraints imposed by enforcement platform heterogeneity in terms of the variability
in its resources and capabilities. Thus, the policy model needs to provide for:

• Deployment of policies tailored to the resources, capabilities and usage patterns of the
policy enforcement ubiquitous device.

• Formulation of a policy in a way that leads to unambiguous decisions in the shortest
possible time and with the least computational complexity.

• Specification of a policy in compact and portable manner.

The policy model presented in this section is specific to the µCASPEr and the require-
ments posed by its target deployment environment. Its expressive power is thus confined
to the concept of obligation, as detailed below. Consequently, the policy model is not di-
rectly generalizable to the wider CASPEr setting where substantially greater expressiveness
is needed.

5.4.1 Ponder as a Deontic Policy Language

The policy model we propose uses Ponder [DDLS01] as a high level language for security and
management policy specification. Ponder is a declarative, object oriented, policy language
based on Deontic concepts. Deontic logic is a modal logic used to describe and reason about
the concepts of obligation and permission. Although other languages founded on Deontic
concepts have been developed, such as e.g. Rei [KFJ03], we opted for Ponder owing to
the wide availability of open source tools for policy management, syntactic and semantic
policy analysis and checking and direct policy transformations into XML and translations

126

5.4 The Policy Model

into Java. The source code availability was required as we needed to adapt Ponder slightly
to the target application, as described in Section 5.5.

Following the Deontic concepts, the two fundamental policy types provided by Ponder are
authorisation and obligation policies. In this work we make use of the latter only. Obligation
policies specify events and actions that must be performed on the events occurrence. The
syntax of obligation policies in Ponder is shown in Figure 5.4.

inst oblig policyName "{"
 on event-specification ;
 subject [<type>] domain-scope-expression ;
 [target [<type>] domain-scope-expression ;]
 do obligation-action-list ;
 [catch exception-specification ;]
 [when constraint-expression;] "}"

Figure 5.4: Ponder obligation syntax.

Language keywords are in bold. Optional elements are enclosed in [] and repetition
is specified within {}. The policy specifies actions, denoted by the do statement, that a
subject in a domain must do, specifying the target domain unless actions are internal,
on an event occurrence. Constraints, specified by the when keyword, are optional and may
be used to limit the applicability of a policy. Policies are not element order sensitive. The
optional catch clause specifies exceptions to be thrown in case the specified actions fail to
execute. Concurrency operators may be used in action specification in cases multiple actions
are to be performed sequentially (→) or in parallel (||). Composite events may also be
specified using event composition operators. Examples are to be presented shortly.

5.4.2 Policy Specification

Our policy specification model follows the Event–Condition–Action (ECA) paradigm in
which an overall policy is broken into multiple fragments. Each fragment represents a rule
specifying an action to be taken in response to a predefined set of conditions, triggered by
an event or a set of events. We refer to the policy fragments as the policy rules. We use
Ponder [DDLS01] obligation policies to represent individual rules. The following is a sample
policy.

Rule 1:

inst oblig PolicyRuleNo001 {
on context.OwnerAway;

subject s = PolicyEvaluationMaster;

target t = ContainmentModelManager;

do s.activateLoE(LoE.Physical.3, */storage/data item:sclass=S);

when t.isActive(*/storage/data item:sclass=S);

}

127

Figures/Chapter_V/ponder_obligation.eps

5. FROM CASPER TO µCASPER: ARCHITECTURE & POLICY MODEL

Rule 1 specifies that on occurrence of the contextual state denoted as OwnerAway, the
PolicyEvaluationMaster (the PEM µCASPEr component) is to activate the particular
Level of Exposure (LoE.Physical.3) for all data items of the particular security classification
(sclass=S — Secret) contained on every storage device within the realm. In practise, a realm
represents a single ubiquitous computing device. Note that a single contextual effect may
imply multiple threat types and also multiple LoEs for each of the threat types as experienced
by data items in different containments. Each of these may be specified in a separate policy
rule analogous to the Rule 1. The condition (when) specifies that the rule should be executed
only for the matching containments that are instantiated, i.e. are active, in a realm at a point
in time — as determined by the policy target, the ContainmentModelManager (CMM in the
µCASPEr architecture). Notice the use of containment path expression to match multiple
actual data items and their respective containments. Effectively, the above policy rule serves
the role of initiating the adaptation process on the target containment (see Rule 2 as an
example follow-up policy rule).

Rule 1 is a representative of the rules conditioned on the occurrence of a threat. The
other category of policy rules as deployed in CASPEr is the ones conditioned on the activa-
tion of a LoE, as triggered by the CMM. Examples are shown in Rule 2 and Rule 3 below:

Rule 2:

inst oblig PolicyRuleNo002 {
on LoE.Physical.3;

subject s = EnforcementModule.Storage;

do s.destroy(*/storage/data item:sclass=S);

}

Rule 2 specifies that on the activation of the LoE LoE.Physcal.3 all data items of se-
curity class S contained within any storage device in the realm must be destroyed. This is
to be accomplished by the Storage EM component registered as the provider of the respec-
tive threat mitigation operation for the particular containment. Note that the destruction
operation for different storage devices may be provided by different Enforcers. Rule 2 is the
followup of the Rule 1, should it result in the actual activation of the LoE.

Rule 3:

inst oblig PolicyRuleNo003 {
on LoE.Optical.2;

subject s = EnforcementModule.WindowManager;

target t = Container(*/display/gui window:size=MEDIUM);

do t.shrink(SMALL);

when t.contains(data item:sclass=S); }

128

5.4 The Policy Model

Rule 3, as a further example, demonstrates the use of the target clause. It specifies that
on LoE denoted as LoE.Optical.2 the EM is to, via its WindowManager component, shrink
all GUI Window containers of size MEDIUM that contain a data item of security class S.

5.4.3 An Evaluation Model Based on Finite State Transducers

Finite State Automata (FSA) are classical computational devices used in a variety of large-
scale applications. A Finite State Transducer (FST) is a FSA whose transitions are labelled
with both an input and an output label. FSTs are exploited for efficient, time critical, deci-
sion making in a wide range of fields — especially where the expressed rules exhibit inherent
ambiguities, for their conflict resolution properties. Perhaps the most notable example is in
the area of speech processing, where they are typically used to reason about highly ambigu-
ous grammatical rules in a timely manner. Furthermore, FSM based solutions are typically
lightweight, representationally as well as computationally: they can be implemented as ar-
rays of states, transitions and pointers among them without requiring heavy management
structures.

To represent policies we are using the FST-based model presented in [BS04] called Finite
State Transducer with Tautness Functions and Identities (TFFST). In particular, we leverage
Deterministic Transducers (DT), a category of transducers free from ambiguities. For a given
class of symbols and a state those transducers have only one outgoing edge with a matching
label. DTs are computationally interesting as their evaluation time does not depend on the
size of a transducer, but on the length of the input. This is as the evaluation process consists
solely of following the only possible path corresponding to the input and writing consecutive
output labels as encountered along the path [RS97].

The TFFST model is further based on a modification of predicate augmented FSTs
[vNG01], replacing predicates by a metric representing the distance between a policy and
a given event. A policy condition defines a delimiting region specifying where a complying
event can lie. When an event happens to be inside two or more such overlapping regions a
modality conflict arises. To resolve modality conflicts, rather than reasoning how far from a
region’s border the event lies, the concern is how tautly the region’s defining condition fits
to an event. The result of the conflict resolution process, thus, is the policy defining the
condition that is the most taut around the event.

To quantitatively represent the aforementioned tautness, a metric called Tautness Func-
tion (TF) is used. TF is a real number in the interval [−1, 1]. The more taut a condition is
around an event the closer its TF is to zero.

Definition. A Tautness Function associated with a condition c, denoted τc, establishes a
mapping from E × C to the real interval [−1, 1] where:

• E is the set of possible events or attempted actions,

• C is the set of policy conditions,

129

5. FROM CASPER TO µCASPER: ARCHITECTURE & POLICY MODEL

• τc(e) ∈ [−1, 0)⇔ e does not satisfy c,

• τc(e) ∈ (0, 1]⇔ e satisfies c,

• τc(e) = 1⇔ ∀f ∈ E, f satisfies c,

When the TF is modelling the condition part of the rule, the subject or any other property
of the condition, such as temporal constraints, are included in the condition c. In the same
manner, when the TF is modelling the action part of a rule, the condition c includes the
target or any property of the action.

Even though the tautness in the range of [−1, 0) denotes that event does not satisfy the
condition, its fine-grained expression is required for certain FST manipulation operations,
such as complementation. The TF of 1 denotes all possible events. As an example, consider
two policy rules: the first is applicable, as defined by its condition, to all containers of class
Storage while the second applies to removable storage devices only. The LoE specified in the
rules is activated only for the removable storage devices when, given a set of events, the TF
evaluation for the second rule yields a positive value closer to 0 than the value obtained for
the first rule.

The concept of tautness functions represents a sort of abstraction layer over the appli-
cation specific issues that actually determine how TFs are implemented and how they map
events and conditions to real numbers. The most significant advantage of using TFs in
µCASPEr is the ability to define a different way to model each decision making attribute,
such as containment configuration or information utility measure, and combine them using
the algebra for TFs. The algebra defines basic logic operators: disjunction, conjunction and
negation; plus two new operators called tauter-than (→τ) and as-taut-as (⇄τ) specially for-
mulated to express the concept of distance as used in TFs. Due to the space constraints for
detailed presentation of the above concepts please refer to [BS04].

130

5.4 The Policy Model

The main idea of the TFFST policy model is to replace the classic input and output
symbol labels on FSTs with TF labels expressed in the form of the TF algebra expressions.
Thus, instead of matching an incoming symbol with a label on a transition, a transducer
will evaluate the corresponding TF. Furthermore, following a transition it will produce an
event with a positive (or zero) value for the TF in the outgoing label. TFFSTs are formally
defined as:

Definition. A Finite State Transducer with Tautness Functions and Identities (TFFST) is
a tuple (Q, E, T, Π, S, F) where:

• Q is a finite set of states,

• E is a set of symbols,

• T is a set of tautness functions over E.

• Π is a finite set of transitions Q× (T ∪ {ǫ})× (T ∪ {ǫ})×Q× {−1, 0, 1}3.

• S ⊆ Q is a set of start states.

• F ⊆ Q is a set of final states.

• For all transitions (p, d, r, q, 1) it must be the case that d = r 6= ǫ.

In the implementation, we use an extension of the above definition to let the transducer
deal with strings of events and actions in each transition. µCASPEr policy rules are modeled
using TFFSTs, in which the incoming label represents the condition and the outgoing label
the action (see Figure 5.5).

5.4.4 Modelling Policies with TFFSTs

To clarify the use of previously introduced concepts for policy modelling we show how obli-
gations and constraints are expressed. TFFSTs may also be used to model authorisations,
prohibitions and dispensations [DDLS01], however, these policy rule types are beyond the
current CASPEr requirements.

Obligations

An obligation is a rule expressing that when an event matches a particular condition, a
specified action must be executed. Typically, the input will report occurrence of an event,
or a set of events, while the output denotes the execution of an action or set of actions

3The final component of a transition is an “identity flag” used to indicate when an incoming event must
be replicated in the output.

131

5. FROM CASPER TO µCASPER: ARCHITECTURE & POLICY MODEL

Figure 5.5: Policy translation process example.

specified by a policy rule. However, other combinations are also possible, for instance, to be
unobtrusive (as defined by [CLN03]), the input can be replicated in the output.

A clear view of the links between objects in a Ponder policy rule specification and the
elements of a TFFST is shown in the Figure 5.5. As shown in the figure, the obligation is
represented by a transducer that consumes events and produces actions. The transducer has
two states and a single transition between them. The label on the transitions is divided into
the left and the right part by the delimiter /. The former represents the condition of the
obligation (on and when clauses) while the latter corresponds to the action to be executed
(target and do clauses).

Rule 4 is an example of a µCASPEr policy rule in which an action is conditioned on the
occurrence of more than a single event.

Rule 4:

inst oblig PolicyRuleNo004 {
on context.OwnerAway → TimerOver(delay);

subject s = PolicyEvaluationMaster;

target t = ContainmentManager;

do s.activateLoE(LoE.Physical.3, */storage/data item:sclass=S)

when t.isActive(*/storage/data item:sclass=S)

}

132

Figures/Chapter_V/translation.eps

5.4 The Policy Model

0 1
<oa>/<oa>

2
<to>/<to>al

<?-to>/<?-to>

Figure 5.6: Rule 4 TFFST representation.

The rule specifies that the LoE (LoE.Physical.3) is to be activated only after the con-
textual state — the device owner not within a pre-defined proximity, remains valid for the
specific time period (delay). Figure 5.6 shows a TFFST representation of the Rule 4. As
the policy rule effectively postpones the threat mitigation, the delay has to be chosen so
that it does not provide for a credible window-of-opportunity for information exposure with
respect to the particular threat type.

The TFFST notation as used in the figures throughout this chapter is as follows. The
symbol “?” substitutes any event while the term epsilon stands for the null event — a
dummy event executed instantaneously. The symbol “−” represents set substitution oper-
ator. Symbols “<” and “>”, enclosing the labels, denote input-output TF identity. The
labels typically represent event and action names in an abbreviated, two-letter, form. For
example, the context.OwnerAway event is denoted by the label “oa”, the TimerOver is ab-
breviated “to” while the “al” label corresponds to the activateLoE action. By convention,
the state enumerated as “0” is the initial, i.e. starting, state while the double circled states
are final, i.e. FSA termination, states.

Constraints

Constraints are built into a TFFST policy model using the FST composition operation, as
defined in [BS04]. TFFST composition is an analogue operation to the standard function
composition. A constrained TFFST policy is obtained by composing the single TFFST
representing all obligation policy rules with the TFFSTs corresponding to the constraint
policy rules.

To demonstrate how the constraints work consider the Rule 5 below. In cases of frequent
interleaved occurrences of events that lead to mutually exclusive states, denoting a fluctu-
ating presence and a variable degree of a threat, the system may suffer from a “ping-pong”
effect. For example, referring back to the Rule 4, the ping-pong effect would be caused by
a mobile device’s owner repeatedly walking away from and coming back into the vicinity of
the device. The ping-pong effect has undesirable consequences for resource availability as
well as for the µCASPEr threat mitigation efficiency. One possibility for avoiding the effect
is through specifying a constraint on the “opposing” events, as shown in Rule 5:

Rule 5:

inst oblig PingPongConstraint{

133

Figures/Chapter_V/new_rule4.ps

5. FROM CASPER TO µCASPER: ARCHITECTURE & POLICY MODEL

0 <?-net>/<?-net>

1

<net>/<net>

2

to/epsilon

3

<?-to>/<?-to>

5

<net>/<net>

6

<?-net>/<?-net>

<?-net>/<?-net>

4

<net>/<net>

<?-to>/<?-to>

<net>/<net>

<?-to>/<?-to>

to/epsilon

<?-net>/<?-net>

7

<?-to>/<?-to> <net>/<net>

to/epsilon

<?-net>/<?-net>

<net>/<net>

to/epsilon

<?-to>/<?-to>

Figure 5.7: Rule 5 (Constraint) TFFST.

on context.NoExplicitThreat;

subject s = PolicyEvaluationMaster;

do s.ignoreEvent(context.NoExplicitThreat);

when s.pingPongPeriod(time);

}

The NoExplicitThreat event denotes absence of any information exposure threat. The

134

Figures/Chapter_V/rule5b.ps

5.4 The Policy Model

1

0

2

<oa>/<oa>

<to>/<to>al

<?-net-to>/<?-net-to>

3

<net>/<net>

to/al

4

<net>/<net>

6

<?-net-to>/<?-net-to> 5

<?-to>/<?-to>

to/al

<?-to>/<?-to>

to/al

<?-net-to>/<?-net-to>

7

<net>/<net>

<net>/<net>

<?-to>/<?-to>

to/al

Figure 5.8: Rule 4 and Rule 5 composition TFFST.

effect of the event is lowering the LoEs to their “default” values as set by a policy model. For
an example specification of a complete µCASPEr policy and a set of corresponding TFFSTs
please refer to Appendix A. If the default is not defined, all LoEs for all data items in the
realm are reduced to the NULL LoE. The TFFST in Figure 5.7 represents the above (Rule
5) constraint while the Figure 5.8 shows the result of its composition with the TFFST from
Figure 5.6.

135

Figures/Chapter_V/composition.eps

5. FROM CASPER TO µCASPER: ARCHITECTURE & POLICY MODEL

5.4.5 Per-Client Policy Structure

In the above section we provided a general description of the TFFST policy model. Going
one step further, here we present the specific structure in which the policy model is deployed
on per µCASPEr Client basis.

The particular µCASPEr per-Client policy structure is influenced mainly by the follow-
ing two factors: i) the developed protection model is fully information-centric — i.e. the
threat adaptation process is driven by the LoEs as experienced by the individual data items
on the matching granularity; and ii) the LoEs as experienced by the individual data items
due to the same set of exposure threats may differ subject to their respective containment
configurations. Considering these two factors, we model the per-Client policy as a set of
independent sub-policies specified on per data item containment basis. A data item contain-
ment is a sequence of nested containers starting at a containment tree root and ending at
a container of class Data Item. In other words, every data item containment supported by
Client’s software and hardware platform has a single TFFST associated with it. The overall
policy for a Client is a collection of all such TFFSTs. Individual TFFSTs can be charac-
terized as stand-alone for they allow a fully independent threat reasoning and adaptation of
the data item containments they are associated with.

The set of TFFSTs corresponding to the data item containments instantiated in a realm
at a point in time is referred to as the active policy set. It is only the TFFSTs from the
active policy set that get evaluated by PEM as detailed in Section 5.5. The maintenance of
the active policy set is accomplished by the TFFST Loader component of the Client’s Policy
Evaluation Layer as a response to the containment model state update events generated by
the CMM.

Figure 5.9 depicts an example active policy structure for a ubiquitous computing device.
The symbols representing the individual TFFST policies are positioned below the data items
whose containments they correspond to. Furthermore, the TFFSTs are labeled by the path
expressions matching the data item containments they are associated with.

The adopted approach of per-Client policy structuring has a number of advantages over
the alternative of expressing the per-Client policy as a single TFFST. Firstly, it represents
a clear tradeoff between the number of TFFSTs required to express the per-Client policy
and the individual TFFST complexity. As discussed in Section 6, the simplification to the
structure of individual TFFSTs in the adopted approach by far outweighs any overheads
brought about by their increased quantity (in terms of size and evaluation complexity).
Secondly, the adopted approach is far more flexible as the support for new container classes
can be added in a modular fashion solely by obtaining the corresponding TFFSTs.

Appendix A presents an example of how a per data item containment policy is derived
from an overall µCASPEr policy specification. A selection of corresponding TFFSTs is also
shown.

136

5.5 µCASPEr Operation

Mobile Device

Comms

Channel

mdev/display/

gui_window:SIZE=5;

mdev/display/

gui_window:SIZE=10;

mdev/storage/

data_item

mdev/storage/crypto:

alg=AES,key=256;

Crypto

alg: AES

key: 256

Storage

Device

Display

size: 10"

GUI

Window

size: 10"

GUI

Window

size: 5"

mdev/comms/

data_item

Figure 5.9: Example active Client TFFST policy structure.

5.5 µCASPEr Operation

In this section we describe the processes related to the µCASPEr operation. They accom-
plish the tasks required to generate, deploy, manage and evaluate the TFFSTs comprising
the µCASPEr per-Client policy. The processes are divided between the Management and
the Client side (Figure 5.3). The latter provides for the policy specification and generation
(Section 5.5.1), policy translation (Section 5.5.2) and conflict detection and resolution (Sec-
tion 5.5.3) which precede the client policy deployment (Section 5.5.4). The latter caters for
the runtime policy evaluation (Section 5.5.5), including relevant TFs computation (Section
5.5.6) and policy enforcement (Section 5.5.7).

5.5.1 Policy Specification and Generation

µCASPEr provides for two types of per Client policy definition: explicit policy specification
and automatic policy generation through simulation.

Explicit Policy specification assumes user input of individual policy rules forming a pol-
icy. The specification process may be direct or indirect. The former assumes explicit policy

137

Figures/Chapter_V/policy_structure.eps

5. FROM CASPER TO µCASPER: ARCHITECTURE & POLICY MODEL

rule specification in Ponder high-level policy specification language. Although the explicit
policy specification approach offers increased flexibility and expressiveness the disadvantage
is the requirement of familiarity with Ponder and the related technical issues. We envisage
dedicated applications to be developed on top of the µCASPEr Policy Specification Interface
to provide for intuitive ways of policy specification trading off flexibility for user friendliness.
This would allow for µCASPEr policies to be specified and administered by the “average”
user of the target deployment platforms. Figure 5.3 depicts where in the µCASPEr archi-
tecture these policy specification applications fit. Both approaches leverage the PSI to store
specified Ponder policies in the Policy Repository.

Per Client policy may also be obtained through simulation by the PM Simulator com-
ponent (Figure 5.3). Leveraging individual container and threat specifications, as defined
in Chapter 3, PM can simulate effects of all contextual states that a Client is capable of
modelling for all supported containments. The relevant Client’s capabilities are provided
in the form of a profile in the policy deployment phase, as explained in Section 5.5.4. The
result of the simulation process is a set of Ponder policy rules forming a Client’s policy.
The µCASPEr architecture provides for the containment model and threat model specifica-
tion through a dedicated interface — the Model Specification Interface. Both the interface
and the related policy generation components in the Figure 5.3 are depicted using dashed
lines. This is to denote that the components are optional. We expect that in the majority
of µCASPEr deployments direct policy specification will be used exclusively, for simplicity
reasons.

Explicit policy specification and policy generation through simulation, however, are not
mutually exclusive processes. Most notable example of the symbiosis is when the former is
is used for specifying a policy default while the latter is used to define behaviour relative
to the default. The symbiosis gives rise to a type of static policy conflicts easily resolvable
by the PM. The conflict occurs when an explicitly specified policy rule matches with a
simulation generated policy rule on the containment they apply to. The resolution is based
on a simple rule stating that explicitly specified policy rules always have precedence over
the automatically generated ones. Explicit user arbitration may be considered in cases of
exceptional ambiguity or for error elimination. This type of conflict is resolved prior to the
TFFST policy model conflict resolution stage, described in Section 5.5.3.

5.5.2 Policy Translation

Policy translation from high-level languages into internal policy evaluation models, in our
case from Ponder specifications into TFFSTs, can be a complex task that needs to be kept
simple and ad-hoc. The translation process follows the principles outlined in Section 5.4.
Example of the mapping between objects of a Ponder policy and corresponding TFFST
components has been shown in Figure 5.5.

One of the challenges of the design was the association of TFs to Ponder policies. To
accomplish this, and support the translation process, the Ponder distribution [Pon] had to

138

5.5 µCASPEr Operation

be altered slightly. Abiding by the object oriented methodology used by Ponder we leverage
the methods specified in the do clause, associated with subject and target objects of
policy rules, as hooks for TFs. Thus, when subject or target methods are invoked to
check the when clause, a corresponding method is executed at the same time to assign a
TF value instead of the boolean value that Ponder assigns to the condition. The result of
the TF computation is assigned to the policy rule instead of the boolean value that Ponder
originally evaluates the condition to. For conditions represented by logic combinations of
simple conditions the TF algebra remains valid.

One of the advantages of the above approach is that the methods implementing TFs
can be developed explicitly and provided to the PEM externally. This effectively enables
PEM behaviour to be customised in a flexible and lightweight manner. For example, TF
computation based on different parameters may be used to provide for different policy rule
prioritisings on per realm basis.

5.5.3 Conflict Resolution

An advantage of using transducers to model policies is the rich set of operations available.
Transducers can be joined, intersected, complemented, composed and determinised under
certain conditions. To build a TFFST that models a set of positive obligation policy rules the
union operation is used to join together individual TFFSTs encoding each of the policy rules
separately. However, the union of TFFSTs maintains policy ambiguities and contradictions.
To resolve these determinisation and composition operations are performed [BS04] in a
stage following the translation of the policy rules into their TFFST representation. Note
that these conflicts arise at a different level from the conflicts between the pre-defined and
generated policy rules (Section 5.5.1) which are resolved by the Management side’s PM prior
to engaging in the policy translation process.

Determinisation. Determinisation operation transforms a TFFST into its deterministic
and unambiguous version. In the process it also eliminates static conflicts between individual
policy rules. Static policy conflicts are policy conflicts that can be detected at compile-time
through static policy analysis — they are obvious from the policy specification, without the
need to execute the policy rules.

A TFFST M is said to be deterministic if:

• M has a single starting state.

• There are no states p, q ∈ Q such that (p, ǫ, x, q, i) ∈ Π.

• For every state p and event e there is at most one transition (p, τd, x, q, i) such that
τd(e) is positive.

139

5. FROM CASPER TO µCASPER: ARCHITECTURE & POLICY MODEL

Given a deterministic TFFST the complexity of computing the output for a given input
string ω is linear in ω and independent of the overall size of the TFFST. The linearity is owing
to the fact that to compute the output we need a single path through the TFFST matching
the particular input. As a direct consequence, determinism of a TFFST is a guarantee that
policy evaluation can be implemented in an efficient way.

Static policy conflicts in µCASPEr arise due to multiple policy rules matching the
same containment. These conflicts may arise in two distinct forms: i) where the contain-
ments in the conflicting rules are of different “specificness”, e.g. pda/802.11/data item,
pda/wireless/data item and pda/comms channel/*; and ii) where the containments in
the conflicting rules are of the same “specificness”. In the former case, the rule with the
most specific containment match wins while, in the letter case, the most dominant LoE is
the conflict resolution criteria.

Composition. Composition operation eliminates semantic contradictions in a policy. Se-
mantic policy contradictions are also referred to as dynamic conflicts and represent conflicts
between “actions” in a policy. Dynamic conflicts, as opposed to the static conflicts, are
not obvious from the policy specification. Although they can be predicted, their actual
occurrence cannot be detected using the static policy analysis. Dynamic conflicts arise at
runtime, due to individual policy rule interactions caused by occurrence of a particular set
of contextual states in a specific realm configuration.

Dynamic policy conflicts in µCASPEr arise when multiple policy rules applicable to
the same containment specify different actions to be performed on the occurrence of the
same LoE. The conflict is a µCASPEr incarnation of the more general protective cover
choice problem from Section 4.5. Dynamic policy conflicts also arise when multiple LoEs
corresponding to the same threat type are activated simultaneously, due to a single set of
contextual states, for the same data item. Dynamic policy conflicts are resolved runtime, as
a result of the TF evaluation process, described in Section 5.5.6.

TFFST composition is equivalent to the binary relation composition: R1 ◦R2 = {(x, z) |
(x, y) ∈ R1, (y, z) ∈ R2}. The process can be seen as “chaining” TFFSTs so that the output
of an input of a transducer in a chain is the output of the preceding container, except for
the first TFFST in the sequence.

As shown above, TFFST determinisation and composition operations not only build a trans-
ducer that models a policy but also eliminate ambiguities and contradictions within and
among the policy rules. In other words, conflict resolution is intrinsic to the policy mod-
elling approach. This is one of the fundamental advantages for leveraging TFFSTs for policy
modelling in µCASPEr. Performing the policy conflict detection and resolution process at
the Management side has clear advantages with respect to resource constraints at the Client
side. This is particularly true for the resolution of the dynamic policy conflicts for which all
contextual states that may possibly occur and be modelled by a Client have to be accounted

140

5.5 µCASPEr Operation

for.

5.5.4 Policy Deployment

TFFST
Loader

Policy Manager

TFFST Policy Deployment

TFFST Composition &
Determinization

Device
 Profile

Policy
Repository

TFFST
Repository

TFFST
RepositoryClient Side

Management Side

Connectivity Layer Device
 Profile

Policy
Updater

Policy Translator

(a) Policy deployment scheme.

STOPSTART

Client &

Profile

Authentic?
Policy Deployment

TFFSTs Retrieval

TFFST Generation

Generate

Policy?

TFFSTs

Reuse?
Policy Generation &

Conflict Resolution

Retrieve Ponder

Policy

PM

PDM

TFFST

Module

YES

YES

NO

NO

YES

NO

(b) Policy deployment steps.

Figure 5.10: Policy deployment process.

The policy deployment process subsumes policy translation, conflict resolution, TFFST
generation and, optionally, policy generation processes. In other words, it represents a union
of the processes involved in the production of a Client specific, TFFST-based, µCASPEr
policy. The overall policy deployment process is coordinated by the Policy Deployment
Module component of the Management side. The Figure 5.10 illustrates the process. The
Figure 5.10(a) represents µCASPEr architecture (Management side) components involved
in the process as well as the symbolic representation of their inputs and outputs. Figure
5.10(b) depicts, in an algorithmic fashion, steps of the deployment process as performed by
the Management side’s components.

To initiate the policy deployment process a Client connects to the Management side’s
PDM through the Client Connectivity Layer (CCL) and passes it the Device Profile. Device

141

Figures/Chapter_V/deployment_arch.eps
Figures/Chapter_V/deployment_algorithm.eps

5. FROM CASPER TO µCASPER: ARCHITECTURE & POLICY MODEL

profile specifies policy relevant resources and capabilities of the Client. These consist of a
mandatory and an optional part. The former specifies:

1. Context, i.e. threat, modelling capabilities of the Client.

2. Container classes and their instances supported by the Client’s platform.

3. Threat mitigating operations as well as the Client’s components providing them.

We envisage cases in which the Client suffers from resource poverty to the extent at which
the runtime computation of TFs to resolve dynamic policy conflicts is unfeasible. Thus, the
device profile allows for the specification of TF computation relevant parameters, such as user
preferences (Section 4.2) and mitigating operation action impact values, in order to carry out
the dynamic policy conflict detection and resolution at the Management side. In this case, a
fully static policy is loaded into the Client at the end of the policy deployment process. We
also envisage cases in which Clients’ platforms are standardised across an organisation and
in which the profile may consist only of an identifier — serving solely as a reference for the
Management side. Device profiles need to use a standardised, flexible and portable format.
The two standards most widely exploited for hardware and software resource description are
the CC/PP [w3c04] and the UAProf [oma03].

Once the profile is passed to PM by PDM, PM carries out checks with the TFFST
module on whether a policy for the same or a device of same profile has already been
generated. If so, and if it has not been made outdated, e.g. by a more recent explicit
policy rule specification, it can be immediately retrieved and handed over to the Client
where the deployment process ends. Otherwise, PM retrieves, from the Policy Repository,
applicable Ponder policy rules and checks their completeness as required for the Client. If
incomplete, the simulation process is carried out and the conflicts between pre-defined and
generated policies are resolved. The remaining generated policy rules are saved into the
separate compartment of the policy repository for possible audit, and reuse, purposes. If
policy generation process is not supported, and the existing policy rules are incomplete,
either a partial per-Client TFFST policy is produced (for a subset of the supported set of
data-item containments) or the input from the policy administrator is solicited. PM then
passes the policy rules to the TFFST module for translation and conflict resolution in per
data item containment sets. The TFFST policies are optionally saved in the repository
for reuse purposes. In the final step, the PDM installs the policies into the Client’s Policy
Module through the CCL using the Policy Update Interface. The policy is thus deployed
and ready to be used at the Client.

5.5.5 Policy Evaluation

Policy evaluation in µCASPEr, as previously stated, follows the Event-Condition-Action
paradigm. Two main classes of events are the threat occurrences and subsequent LoE ac-
tivations, as shown in previously presented (Section 5.4) policy Rules 1,2 and 3. Note that

142

5.5 µCASPEr Operation

during the TFFST generation process the two types of policy rules we distinguished between
in Section 5.4 are collapsed. TFFST evaluation is performed by the PEM. At any point in
time PEM operates on a set of TFFSTs consisting of a single TFFST per active data item
containment. To restate, a data item containment is active if it is actually instantiated in a
realm. Each active containment may correspond to multiple matching actual containments
on the Client’s host platform. For the set of active TFFSTs operated on by PEM to reflect
the true state of the realm, i.e. its data item containment configuration, each update op-
eration at CMM generates an event that triggers relevant TFFST load/unload to/from the
PEM’s active policy set by the TFFST Loader.

A fundamental characteristic of the policy evaluation process, supported by the respective
TFFST structure, is that at each evaluation of a TFFST, PEM starts at the single starting
state and always ends at a termination state of the TFFST. In other words, PEM is fully
stateless across TFFST evaluations — it never stops the evaluation in a non-terminating
state of a TFFST. The rationale is outlined below.

Policy evaluation process is initiated by the PEM’s reception of information exposure
threat relevant contextual state description from the Context Modelling Layer. The con-
textual state description consists of a list of all threat relevant contextual fragments4. It
is provided to PEM upon occurrence, or ceasing to exist, of a relevant contextual fragment
or on explicit request by PEM. The latter is prompted by loading of a TFFST at PEM to
adjust the protection level for a newly instantiated data item containment appropriately.

Rather than providing PEM solely with information about single contextual fragments
as they occur, CML reports the list of all contextual fragments that hold at the point in
time. This is required as all threats essentially map to the same LoE space and to determine
the appropriate LoE to activate for each of the threat types the complete contextual state
needs to be considered. Otherwise, threat underestimation may occur due to incomplete
information about the state of context determining the overall threat model at a point in
time.

Alternatively, PEM and TFFSTs would have to support state preservation across TFFST
evaluations. In addition, CML events denoting absence of a contextual fragment would have
to be supported as well. The main disadvantage of this approach is the explosion in the
individual TFFST complexity that it would cause. Thus, this alternative is considered to be
beyond feasibility taking into account the resource poverty expected in the µCASPEr target
setting. For analysis of TFFST complexity please refer to Section 6.3.

The suggested stateless PEM design keeps the overall µCASPEr complexity at bay. An
exception to the design principle of not accounting for the “absence of contextual fragment”
events is the NoExplicitThreat contextual state referred to throughout the Section 5.4. The
exception is made to enable support for the default µCASPEr policy which is conditioned
on the absence of all threats.

4A contextual state is determined by a set of contextual fragments. An example of a relevant contextual
fragment is the OwnerAway as used in Rule 1, Section 5.4.2.

143

5. FROM CASPER TO µCASPER: ARCHITECTURE & POLICY MODEL

Every threat occurrence, in general, may cause LoE triggering for multiple data item
containments. This means that PEM needs to evaluate a number of TFFSTs. In general,
the overall per-Client policy evaluation process consists of multiple TFFST evaluations.
Although, in theory, we can say that the evaluation happens in parallel, PEM actually needs
to impose an ordering among the TFFSTs. The ordering may be considered important in
cases where the evaluation delay is seen as increasing the likelihood of information exposure.
Thus, PEM supports ordering by data item sensitivity level and container class containment
structure. For example, we can specify that data items of higher sensitivity are always first
to be addressed starting with the ones contained within Display containers. The output
of both the evaluations of individual TFFSTs and the overall evaluation process is a set of
none or more alternative threat mitigation operations that need to be performed to adapt to
the experienced threat levels. To discriminate between the alternatives the TF Computation
process (next section) is leveraged.

For situations in which frequent contextual state changes, and thus the corresponding
CML raised events, are envisaged we define the notion of epoch. An epoch is a time frame
by which the events indicating threat model changes are delayed, at the CML, to reduce the
number of policy evaluations through the event grouping. Care has to be taken that the
delay does not result in a credible “window-of-opportunity” for information exposure.

5.5.6 Dynamic Policy Conflict Resolution - TF Computation

The output of each transition of a TFFST traversed by the PM consists of a TF algebra
expression (Section 5.4). For examples please refer to the Appendix A. The expressions
are in the form of strings of symbols linked together by the TF algebra’s logic and tautness
operators (Section 5.4). The symbols represent either LoEs to be activated or threat miti-
gation operations to be performed. The expressions themselves describe the dynamic policy
conflicts. To resolve the conflicts, and disambiguate a TFFST policy, the TF expressions are
evaluated by TFs. The TF computation results in a single symbol, unambiguous, TFFST
output that guides the subsequent policy enforcement.

Probabilistic Prioritising

One of the possible criteria for TF implementation is probabilistic prioritising. In this ap-
proach, TFs ponder each conditioning expression, specified by the Ponder when clause of the
conflicting policy rules, in terms of the probability that they evaluate to true. The lower
the probability the stronger the condition is considered to be. The stronger the condition
is the higher priority it is assigned, should it evaluate to true. As an example, consider the
following policy rule:

Rule 6:

inst oblig PolicyRuleNo006 {

144

5.5 µCASPEr Operation

on LoE.Emanations.3;

subject s = EnforcementModule.NetworkHandOffManager;

do s.handOff(*/802.11:nic=A;)

when s.isAvailable(*/802.11:nic=A;) &&

s.signalStrength(*/802.11:nic=A;) <

s.signalStrength(*/bluetooth:nic=F);

}

To illustrate the probabilistic prioritising we focus on the condition expression, given in
the italic typeface above:

...

when ...

s.signalStrength(*/802.11:nic=A;) <

s.signalStrength(*/bluetooth:nic=F);

...

The setting of the Rule 6 is sensitive data transmission over a link whose signal permeates
the physical container which it originates from, e.g. an office, into an area outside the secure
perimeter. We assume that the sensitivity class of the transmitted data implies the data is
exposed outside the secure perimeter even if encrypted. To mitigate the threat the connection
needs to be handed off to a non-exposed link. In other words, to a communications technology
whose signal is, or can be, confined within the secure perimeter. Thus, the main criteria
for choosing the target containment for the connection migration, in this case, is the signal
strength.

Considering the inherent characteristics of the 802.11 and Bluetooth technologies the
probability that the former will offer a lower signal strength in realistic conditions is low.
Thus, the policy manager must have had an important reason5 to explicitly specify the
condition. On these grounds the condition is considered as very strong and the policy rule
is given high priority. Nevertheless, each TF value can be additionally pondered, accord-
ing to additional criteria, such as user preferences — UPQoS, as presented in Section 4.2,
communications link QoS etc.

Inter-TFFST Dynamic Policy Conflicts

The above outlines how the dynamic policy conflicts are resolved during the evaluation of
a single TFFST. However, the PM is likely to evaluate multiple TFFSTs as a response to
a single contextual state change. Inter-TFFST dynamic policy conflicts arise if the evalu-
ation of multiple TFFSTs results in different threat mitigation operations to be applied to
containers in the intersection of the respective data item containments. This may be due

5Discounting for the erroneous policy specification.

145

5. FROM CASPER TO µCASPER: ARCHITECTURE & POLICY MODEL

to different LoEs, associated with overlapping threat types, being experienced by the data
items or due to the criteria involved in the alternative mitigation operation discrimination.
This problem has been already identified, albeit in a more general context, as the protective
cover choice problem (Section 4.5). The OCD algorithm has been presented as the solution.
We identify two main alternative approaches to resolving the inter-TFFST dynamic policy
conflicts in the context of µCASPEr.

The first approach, suitable for resource poor Clients, is to eliminate any potential con-
flicts at the policy specification phase. The easiest way to accomplish this is not to allow the
policy rules to specify mitigation operations on containers, or portions of a containment tree,
which may be in the intersection of multiple data item containments — as determined by a
particular container classification and the containment relation definition. This essentially
implies providing for mitigation operations only at containers that may not, by definition,
contain more than a single data item. For example, considering containments matched by
the path expression */display/gui window/data item, mitigation operations would only
be available for GUI Window and Data Item containers. This is assuming that the former
may contain solely one data item. The second approach, suitable for sufficiently resource
capable Clients, requires a TF that implements the OCD algorithm of Section 4.5. The TF
is used to process a TF algebra expression derived from the outputs of all TFFSTs evaluated
by the PM as a response to a single threat model change. Note that this approach implies
effective delay in the individual TFFST policy enforcement until all relevant TFFSTs have
been processed.

5.5.7 Policy Enforcement

Policy enforcement in µCASPEr, as in CASPEr, is carried out by the Enforcer components
of its Policy Enforcement layer. The policy enforcement process is coordinated by the En-
forcement Manager as instructed by the PEM upon the policy evaluation. As the containers
themselves represent entities that may originate from, and the management responsibility
for which is located within, both the application and the operating system layer components,
the corresponding Enforcer components are expected to be provided by the individual com-
ponent authorities (Section 3.4)themselves. In addition to this, we envisage purpose-specific,
dedicated Enforcer modules to be developed as part of the µCASPEr. The various origins of
the Enforcer components are depicted in Figure 5.3 — illustrating the manner in which the
Policy Enforcement Layer spans the traditional application and system levels. Therefore,
the full awareness at both the application and operating system levels is not required only
for notifying CMM of updates to the state of the world but also for threat mitigation oper-
ation provisioning. The absence of such impacts on the level of granularity at which threat
analysis and mitigation may be provided.

Upon a notification by the PEM, the Enforcement Manager invokes the required En-
forcers through an asynchronous call-back mechanism. The call-backs are defined in terms
of threat mitigation operation classes. The classes signify the pre-estimated impact that

146

5.6 CASPEr Data Model: An Outline

the corresponding threat mitigation operations have on the respective threats in terms of
LoEs. Applications and operating system components register the call-backs (to their own
implementation of the mitigation operation classes) with the Enforcement Manager prior to
or upon a corresponding container comes under their authority, by creation or otherwise.

Due to the fixed nature of the TFFST policies, the availability of threat mitigation
operations at a Client, in terms of classes, has to be known in the per-Client policy formation
phase at the Management side. This implies that, unlike in CASPEr, support for novel
threat mitigation operation classes cannot be added to a Client without recourse to the
Management side. This represents a clear tradeoff between the degree of flexibility and
the level of Clients’ autonomy provided by µCASPEr versus the associated computational
complexity and resource overheads. This is further discussed in Section 6.3.

5.6 CASPEr Data Model: An Outline

In this section we briefly outline a data storage model design in accordance with CASPEr
requirements. The design provides for data type specific information manipulation opera-
tions (Section 3.5) and the relevant meta data association. Information manipulation actions
are performed on per data item basis. They have a generic description (threat mitigation
operation class) and data item type specific implementation. To avoid imposing otherwise
unnecessary overheads and functionality requirements on the application space and burden-
ing application designers with additional complexity we propose offloading the support for
information manipulation actions into the data storage system.

5.6.1 Requirements and Implications

The above suggested approach causes a shift in roles and responsibilities of both the appli-
cations and the data repository:

• Data Repository. For a data repository to support the information manipulation
actions it needs to be able to recognise, at a fine-grained level, application specific
data types and respective internal data layouts. By internal data layout we assume
the data item substructure of data objects used in the data model, such as files. Un-
derstanding of the data layouts also ensures the compatibility of the transformed, i.e.
manipulated, data. Means of associating individual data items with sensitivity lev-
els, with respect to a security policy, need to exist. Identification of data items for
information manipulation purposes is done on information sensitivity level basis. The
data repository, further, has to support a mechanism for provision of data type specific
implementations of threat mitigation operation classes and their respective mappings.

• Applications. Upon a shift in the threat model, applications should simply be able to
retrieve, from the data repository, an “updated” version of any of the threat affected

147

5. FROM CASPER TO µCASPER: ARCHITECTURE & POLICY MODEL

data they are operating on. An event-based system to accomplish this is, however,
outside the scope of this thesis. Each application-specific data type should include
enough information to enable the correct operation of the data repository with respect
to the policy enforcement. For this, application awareness is required. An exception
is applications that do not alter data in a way which violates its layout, e.g. data
viewers such as browsers, PDF readers etc. These can remain utterly unaware of the
underlying data model.

B

A

C
D E F G

Before threat mitigation. After threat mitigation.

B

A

D E

Figure 5.11: A data transformation scenario.

Figure 5.11 illustrates an example information manipulation process at the data repository
level. It represents the data item structure of a document prior to and post a set of infor-
mation manipulation actions, depicted on the left and on the right of the arrow respectively.
To address a particular information exposure, as instructed by the EM, the data repository
adapts the document by: fully omitting data entity labelled C, including data items F and
G, and reducing the information content of data items labelled D and E.

5.6.2 Data Layout Specification

To address the issue of data layout specification we leverage the capabilities of XML [XML04]
data representation. XML allows for applications and standards bodies to produce data lay-
out descriptions which can be interpreted by the data repository in a systematic fashion.
XML data representations are seen as matching our requirements for several reasons. Firstly,
they facilitate efficient inspection and identification of data content, both automatic and
manual, aiding the choice and design of applicable information manipulation actions. Sec-
ondly, the XML approach enables easy protective actions validation through XML schema
to ensure application specific format compliance of the transformed data. Thirdly, the XML
file format being built upon a set of standards implies the ability to reuse data type specific
information manipulation actions for all application data that uses the standardised data
types. Finally, we have at hand a number of standard XML tools that greatly facilitate
generic data access.

148

Figures/Chapter_V/dataTrans.eps

5.6 CASPEr Data Model: An Outline

5.6.3 Storage Subsystem Architecture

Figure 5.12 shows the component structure of the storage subsystem. It is comprised of a
Generic Interface, Data Analyser, pluggable Type Wardens and the Data Store. The En-
forcement Module (EM) CASPEr component initiates the information exposure adaptation
process by interacting with the storage subsystem through invoking the generic calls. The
generic calls correspond to the threat mitigation operation classes, as mentioned previously.
They are internally mapped to data-type specific implementations that obey the pre-defined
data structuring rules. These are provided by pluggable modules known as Type Wardens.
The Data Analyser coordinates the execution of information manipulation operations per-
formed by the Type Wardens.

Generic Interface

Data Store

Warden 1

Warden 2

Warden 3

Warden N

Data Analyser

Type Wardens

EM Calls

Figure 5.12: Storage enforcement system architecture.

Generic Interface. Generic interface provides for a set of generic calls, representing infor-
mation manipulation operation classes, as invoked by the PEM. An example of the interface
is a family of calls of the form:

degrade levelX(cpath target data items)

where target data items is a containment path expression that matches a set of data items
stored at the repository. The levelX component of a generic function call name denotes the
Information Loss Factor (Section 4.2) associated with the operation. As the target data
items are identified based on their sensitivity, the path expression has to be of the form:

expression /data item:sclass=Y[,...];

149

Figures/Chapter_V/dataArch.eps

5. FROM CASPER TO µCASPER: ARCHITECTURE & POLICY MODEL

Data Analyser. The role of the Data Analyser is coordination of the information manip-
ulation process. Firstly, the Data Analyser identifies target data items and retrieves them
from the Data Store. This assumes that the data items are actually stored in the local data
repository. Data Analyser also supports explicit provision of data items to undergo informa-
tion manipulation through a separate set of generic calls. Secondly, it identifies and invokes
the appropriate operations for each of the data items based on their type. Note that, as the
information manipulation service provided by the Data Repository is pre-registered with the
EM, it is invoked only for data items of the type supported by the repository through the
Type Wardens. Finally, it either: i) stores the data back into the Data Store; or ii) passes
the data to the EM for explicit application update.

Type Wardens. The role of Type Wardens is to provide data-type specific implementa-
tions of the generic information manipulation operations. The data type specific actions can
be either provided along the type definition by standards’ bodies, or application designers,
or they may be custom-made by security administrators. The latter is facilitated by the
existence of standard XML tools (i.e. DOM, SAX, XPath) that can be used as data manip-
ulation interface to application-specific data types. The ability to provide for type wardens
in an “on-demand” fashion significantly facilitates the deployment of the storage system on
resource constrained ubiquitous devices.

Data Store. For the purposes of the proposed system the data store is used solely as a
persistent data repository.

5.7 Summary

The core of this Chapter has focused on the presentation of µCASPEr, a policy based in-
stantiation of CASPEr. The architecture of µCASPEr was developed as a specialisation
of a more general CASPEr architecture to the policy model. Apart from being comprised
of dedicated components, we have illustrated how the CASPEr, and thus µCASPEr, ar-
chitecture spans application and system components of a target platform — hinting at the
importance of wider CASPEr awareness. The policy model chosen for µCASPEr was the
Finite State Transducer with Tautness Functions and Identities (TFFST) model, based on
a variant of Finite State Automata [BS04]. The key advantage of the model is that it is
characterised by lightweight policy evaluation while the inherently resource intensive tasks
can be off-loaded to computationally capable devices and accomplished a priori to the actual
policy deployment. Furthermore, tautness functions facilitate autonomy of target platforms.
We have shown how Ponder policy specification language, as a representative of Deontic
policy languages, can be utilised for high-level expression of obligation and constraint policy
rules. The high-level policy rules are subsequently translated into TFFST forms and deter-
minised into their unambiguous forms. We have defined a specific policy structure which,

150

5.7 Summary

as shall be seen in the next chapter, greatly facilitates the overall policy model flexibility,
operational independence of target platforms and also decreases the policy evaluation com-
plexities. We have detailed the operation of µCASPEr in terms of the policy model related
processes specifying the roles of individual architectural components. Although policy based
systems exhibit, in general, considerable degrees of rigidness, the specific way in which the
TFFST model is applied in µCASPEr offers high degrees of flexibility with respect to the
constraints imposed by the target deployment platforms themselves. Furthermore, it retains
all the fundamental CASPEr principles seen as the contribution of our work. Finally, we
have outlined a high-level architecture of CASPEr-aware data model.

151

5. FROM CASPER TO µCASPER: ARCHITECTURE & POLICY MODEL

152

Chapter 6

Discussion and Evaluation

6.1 Chapter Overview

In this chapter we argue for the general feasibility of CASPEr and µCASPEr deployment in
the target environment and their completeness with respect to information exposure threat
analysis, mitigation and the coverage of the envisaged use cases and scenarios. This is
accomplished through a discussion of the concepts and mechanisms presented in the previous
chapters and their theoretical and empirical, example driven, evaluation, as suitable. The
chapter also aims at clarifying the contribution of the thesis through the delineation, by
means of a qualitative comparison, of the role CASPEr concepts play in the information
security big picture painted by the related work overviewed in Chapter 2.

Section 6.2 focuses on CASPEr as a theoretical framework and the high-level concepts
it rests on. Firstly, we discuss the LoE modelling granularity — a quality that influences a
number of aspects determining the efficiency and effectiveness of CASPEr, and identify the
contributing factors. We proceed to argue for CASPEr feasibility through a discussion and
analysis of the resource overheads involved in containment modelling and CASPEr operation,
supported by a realistic example. Finally, we demonstrate how communications channels,
naturally spanning multiple containers, fit the single containment paradigm and describe
the role of modelling input devices as containers. In Section 6.3 we evaluate µCASPEr
with respect to the TFFST policy model overheads incurred at the Client side. Per-Client
TFFST policy size as well as its evaluation overheads are analysed in detail, both theoret-
ically and through an example. The policy model scalability is also discussed. In Section
6.4 we generalise the OCD algorithm by showing how it can be extended to account for
non-composability of information security mechanisms. We then present the algorithm’s
termination and complexity analysis. The final section of the chapter (Section 6.5) focuses
on the delineation of CASPEr from the related work and crystallisation of its place within
the information security big picture. We present a qualitative analysis of CASPEr and its
qualitative comparison to the related work of Chapter 2 based on 19 criteria. Subsequently,
we attempt at visualisation of CASPEr within the big picture through detailed, conceptual,

153

6. DISCUSSION AND EVALUATION

identification of its distinguishing characteristics from the point of view of information flow
control, dissemination control and access control.

We conclude that CASPEr (and µCASPEr) deployment in the envisaged target settings
is feasible and that it plays a unique role, with respect to several aspects, in information
security.

6.2 CASPEr Discussion

6.2.1 A Comment on LoE Modelling Granularity

The granularity of a Levels of Exposure model has a two-fold impact on CASPEr:

• The coarser grained the LoE model the less accuracy in matching a threat mitigation
operation to an experienced exposure degree. Consequently, the less ability to balance
the information security vs. utility seesaw.

• The finer grained the LoE model the higher the frequency of the adaptation process
— encompassing protective cover discrimination and its enforcement, and thus higher
the related resource overheads1.

While the former depicts the impact LoE model granularity has on CASPEr effectiveness
the latter hints at the related operational resource overheads.

LoE model granularity, as shown in Chapter 4, depends on context capturing and mod-
elling capabilities, context-threat correlation certainty and confidence, and availability of
matching threat mitigation operations provided by a CASPEr deployment platform. Re-
search in context awareness has, so far, resulted in availability of high precision, high con-
fidence contextual information in instrumented environments. This is especially so with
respect to location sensing [HSK04].

What we see as the fundamental factor influencing LoE model granularity is the estima-
tion how likely a threat is to materialise in a context and also to what extent individual threat
mitigation operations impact on the likelihood. At the very core of the problem lies the ne-
cessity of profiling, with a certain confidence, human “attackers” as potentially present in the
encountered contexts. Fine grained attacker profiling is especially difficult for its subjective
side, involving a number of psychological and physiological factors, as well as the necessity
to estimate the motivation, skills, knowledge and resources of the attacker. Further blow to
the LoE modelling granularity is delivered by the fact that the defence has to be aligned with
the most severe threat that may arise in a context. For context-threat correlation, thus, we
have little alternative than to rely on instruments such as expert opinion, historical evidence
or, due to the sensitive nature of information exposure, highly constrained experiments, such
as in [TC03].

1Note that this is true for environments with dynamically changing context.

154

6.2 CASPEr Discussion

Consequently, we expect the LoE modelling granularity to be dominated by the above,
threat estimation, issues rather than context capturing and modelling capabilities or the
availability of threat mitigation operations. Although the decrease in the LoE modelling
granularity has a direct negative effect on the efforts to maximise information utility, even
in cases where a LoE model collapses to binary (exposed/not-exposed) a number of benefits
provided by CASPEr remain unaffected, such as context-adaptive, pro-active, temporally
and spatially continuous information exposure protection.

6.2.2 Containment Modelling Size Overheads

A question that naturally arises in the context of the containment-based approach to mod-
elling the world is the potential size overhead of the model representation. An upper bound
on the size of a realm representation can be expressed in terms of the maximum representa-
tional size of a single container and the maximum number of containers in a single realm.

Nominally, every container has to encapsulate at least a set of attributes required for
threat estimation, as determined by container classification, and methods, or references to
methods, implementing relevant transparency functions and threat mitigation operations.
Representational size of such a container is highly implementation specific. Different pro-
gramming paradigms, target CASPEr deployment software and hardware platforms and
implementation design decisions will yield different overall container sizes.

To provide a “feel” for a realm size in terms of the number of containers we consider
software and hardware platform configuration of a typical general purpose laptop computer
in conjunction with the moderately detailed container classification presented previously
in the Figure 3.4, Section 3.3.3. Figure 6.1 shows a graph depicting example definition
of the containable relationship for the classification. Observe that we abstract away data
type specific classes and consider individual cryptographic algorithms as of a same relevant
strength.

The maximum possible number of containers in a realm corresponds to a containment
tree where every container from the classification is instantiated, for each combination of
its attribute values and for every container it may be contained within, according to the
containable relationship definition. For the example in Figure 6.1, this gives the maximum
containment tree depth of 4 levels and the maximum number of containers to be represented
as 73. Note that any externally attachable devices, e.g. displays, storage or audio, are not
accounted for in the example.

For example, with respect to Storage Device container class, in a single containment tree
we can have at most two instances of the class corresponding to removable and non-removable
storage devices respectively. Each of the instances can further contain an instance of Data
Item container for each of the three sensitivity classes in both unencrypted and encrypted
form. According to this, every instance of a Storage Device accounts for at most 8 containers.

In short, the above back-of-the-envelope model size estimation gives us confidence that
memory capacity overheads incurred by a containment model representation would not be

155

6. DISCUSSION AND EVALUATION

: Mobile Device

sensitivity : int = LOW

: Data Item

sensitivity : int = MEDIUM

: Data Item

sensitivity : int = HIGH

: Data Item

type : int

algorithm : int

keylen : int

: Crypto

height : int = BIG

width : int = BIG

: GUI Window

height : int = SMALL

width : int = SMALL

: GUI Window

height : int = MEDIUM

width : int = MEDIUM

: GUI Window

removable : bool = TRUE

: Storage

removable : bool = FALSE

: Storage

volume : int

type : int = SPEAKER

: Audio

size : int = 15"

brightness : int

view_angle : int

: LCD

type : int = STANDARD

: Keyboard

type : int = Ether

: Wired

type : int = 802.11

: Wireless

type : int = Bluetooth

: Wireless

volume : int

type : int = HPHONES

: Audio

: Touch Screen

Figure 6.1: Example containable relationship specification.

substantial irrespective of the actual implementation approach and at any realistic modelling
granularity. The favourable result is owing to the fact that every container in a containment
model realm representation corresponds to all instantiated real world entities of the respective
class that are in the same state.

156

Figures/Chapter_VI/containable.eps

6.2 CASPEr Discussion

6.2.3 Computational Overheads

CASPEr processes that we can identify as contributing to CASPEr computational overheads,
at the architectural level of abstraction, are:

• Context sensing and modelling.

• Contextual state - information exposure threat correlation.

• Threat propagation — LoE establishment.

• Protective cover discrimination — OCD algorithm.

• Threat mitigation operations execution.

• Containment model update.

Threat Estimation Threat Adaptation Enforcement

new_context

threats(T)

Containment Model

get_status()

apply_ops(O)

update(U)

(a) Threat model change scenario.

Containment Model Threat Adaptation Threat Estimation Enforcement

update

get_status()

threats(T)

get_status()

apply_ops(O)

update(U)

update(U)

(b) Model update scenario.

Figure 6.2: Main CASPEr operation scenarios.

Figures 6.2(a) and 6.2(b) show UML sequence diagrams representing two main CASPEr
operation scenarios at a high level of abstraction. The former depicts a sequence of actions
following a shift in threat model. The latter scenario occurs upon execution of a containment
model update operation. The entities in the sequence diagrams correspond to the layers of
the CASPEr architecture as described, together with their roles, in Chapter 5.

157

Figures/Chapter_VI/seqdiag1.eps
Figures/Chapter_VI/seqdiag2.eps

6. DISCUSSION AND EVALUATION

Context and Threat Modelling

Resource overheads involved in context sensing and modelling, as well as in the threat
correlation processes, are highly implementation and platform specific and their assessment is
beyond the scope of CASPEr. We expect them to be tailored to the capabilities of the target
platform. Observe, however, that the expressiveness of a context model directly influences
information exposure threat correlation granularity.

Threat Analysis and Mitigation

Threat propagation involves computation of dedicated transparency functions at each con-
tainer as encountered during threat propagation down a containment tree. In the worst
case, the number of individual transparency function invocations is equal to the number of
containers in a containment tree affected by a threat — should the threat propagate from
the tree root to all the leaf nodes. We expect transparency functions to be implemented as
low-cost, mainly arithmetic, operations.

Threat mitigation operations are implementation and enforcement platform specific.
Their complexity may range from negligible, such as display blanking or file erasure, to
considerable, such as network data migration or resource intensive cryptographic operations.
We expect availability of mitigation operations to be tailored to target platform capabilities.

Containment Model Update

Containment model update operations (Section 3.4.6) consist of simple alterations to the
corresponding data structures. The order of their execution can be expressed as O(1) in
terms of comparisons required to locate individual target containers and containments. This
is owing to the utilisation of the containment path expressions. After the target containment
has been located, the realm update consists of low-cost data structure (n-ary tree) updates
[CSRL01]. Each of the update operations may cause, as a side-effect, trigger (Section 3.4.6)
propagation up the containment tree and the execution of the relevant trigger-matching
operations at each of the encountered nodes. The upper bound on the number of thus
triggered operations is in the order of containment model tree depth.

The OCD Algorithm

The OCD algorithm may potentially be executed following every containment update op-
eration and every contextual state change event, i.e. it has a role in both of the above
scenarios. The complexity of the algorithm is pseudo-polynomial as shown in Section 4.5.6
and revisited in Section 6.4 below — and thus not seen as a significant resource overhead
contributing factor.

158

6.2 CASPEr Discussion

Apart from resource overheads caused by any of the individual processes we are also in-
terested in potential frequency of their executions. In other words, in the frequency at which
scenarios in the Figures 6.2(a) and 6.2(b) may occur.

The occurrence frequency of the scenario in the Figure 6.2(a) is given by the threat model
change frequency. This depends on the context modelling and information exposure threat
correlation granularity as well as context dynamism. The former is reflected in the LoE
modelling granularity. For the reasons discussed in Section 6.2.1 we do not see the scenario
as of prohibitively high frequency. However, where threat model changes are frequent, the
notion of epoch can be leveraged to reduce the overall number of executions of the respective
processes through introducing a delay in the corresponding event reporting, as specified for
µCASPEr in Section 5.5.5.

The frequency of containment update operations, triggering scenario in the Figure 6.2(b),
depends on the level of detail and the level of abstraction at which a realm is modelled. Most
of the update operations as presented throughout this thesis are direct or indirect results of
explicit user actions — hinting at their low frequency from the computational point of view.
Otherwise, the notion of epoch can, again, be leveraged to keep resource consumption at bay.

In summary, we do not expect any aspect of the CASPEr operation to impose prohibitive
computational overheads. This is partly due to the CASPEr design and partly due to the
ability to tailor the individual mechanisms supporting the CASPEr operation to the capa-
bilities of the target deployment platforms.

6.2.4 Modelling Communications Channels

The tree structure of the containment based model of the world presented in Section 3.4
rests on the assumption that containers are always nested fully within each other. And so
do the presented approaches to information exposure threat mitigation. We call this single,
as opposed to multiple containment. Single containment does not apply straightforwardly to
containers of Communications Channel class. The very purpose of a communications channel
is to span physical containers — at least the ones representing devices interfacing to it. Thus,
in the general case, they cannot be assumed to be confined within physical boundaries of
a container nor even a realm — seemingly breaking the single containment concept. The
more so as we already model the Emanation threat type based on this characteristic of
communications channels.

On one hand, representing a communications channel within a single containment is
correct from the point of the role and responsibility of the realm’s authority — such as
threat mitigation for the data items within the channel. On the other hand, as a data
item propagates between source and destination realms, along a communications channel it
is contained within, it is likely to be exposed to information exposure threats different to
the threats experienced by the local, source, realm. This means that the standard threat
propagation process cannot be utilised to establish threat model for data items contained

159

6. DISCUSSION AND EVALUATION

within a channel. However, the local authority still has to fully account for threat mitigation
for data items contained, i.e. to be transmitted, within a communications channel.

Key:

Threat(s)
Projection

Threat(s)

Comms
Channel

Figure 6.3: Communications channels modelling example.

Figure 6.3 depicts three simplistic realms interconnected by communications channels.
The “clouds” along the communications channels represent environments they span that are
characterised by different information exposure threat models.

Introducing the concept of a container (Section 3.3), we stated that context can be either
internal or external to a container. To be able to account for all information exposure
threats encountered by data item on its propagation across a communications channel, and
still retain the single containment paradigm, we define the internal context of containers of
class Communications Channel to be the union of all threat relevant contextual states as
present along the channel. The arched arrows in the Figure 6.3 depict this. In this manner,
the local authority is able to protect outgoing data adequately in the standard fashion.

We use the same approach to provide protection for data items contained within hot-
pluggable devices that may leave a realm without prior notice or are immutable. Examples
are USB sticks, memory cards, CDs and DVDs etc. We model these by asserting a constantly
high-level of information exposure threats for their contents originating in their interior.

6.2.5 Modelling Input Devices

In the example container taxonomic hierarchy of Section 3.3 we have specified Input Device
as one of the container classes. Referring back to the container classification criteria two
questions naturally pose themselves:

• How do input devices, such as keyboards, touch-pads etc. represent data item contain-
ers?

160

Figures/Chapter_VI/comms_chnls.eps

6.2 CASPEr Discussion

• How can a piece of information be exposed by being contained “within” an input
device?

To answer the first question, we say that a data item representing a piece of information
is being contained within an input device during the process of data input. As soon as
the data representing a single data item, e.g. a Personal Identification Number (PIN) or a
password, has been input it is no longer considered to be contained within the input device.
Thus, input devices, akin communications channels, represent transient data item contain-
ers. To actually be able to model data item containment within an input device container
applications initiating user input need to acknowledge the process by updating the contain-
ment model accordingly — through requesting the creation of a data item of appropriate
sensitivity within the appropriate input device container. This implies application awareness
not only of CASPEr but also of the information security classification, implying the ability
to parse the relevant meta-data.

To address the second question above we focus on Optical and Acoustic information ex-
posure threat types. A recent work by Zhuang et al. [ZZT05] has shown that by analysing
solely the sounds of keyboard keystrokes it is possible to recover, with staggeringly high con-
fidence, the data being input. Unlike some of the previous research, Zhuang et al. obtained
the results in non-constrained environments, with no prior knowledge on the “typist” or any
training data, for random as well as non-random input character sequences and even for
“silent” keyboards. They also suggest that similar results may be obtained from outside the
room by using parabolic microphones.

Depending on their physical size and layout and the method of data input supported, in-
put devices may facilitate variable degree of input data recovery through analysis of observed,
or recorded, data input process. In other words, through Optical information exposure threat
type. In a recent experiment [Zal05], Zalewski has been able to recover short sequences of
keystrokes using thermal imaging — making safes and Automatic Teller Machines (ATMs)
particularly vulnerable. Although we were unable to find any published study on the direct
observation of data input sequences we believe that results of an experiment like [TC03]
would clearly point at existence of the threat and its severity.

The inherent transparency of input devices for the threats of Optical information exposure
may be accounted for by careful design of software data input interfaces. For example, an
interface that randomises physical key to input symbol mappings may be a venue to explore
for highly sensitive data. A commercial vendor, Pointsec2, offers a related product called
PicturePIN. To be able to model the impact of data input interfaces on information exposure
threats, we introduced the Input Interface virtual container class in Figure 3.4 of Section
3.3.

In the example µCASPEr policy in Appendix A we account for the information exposure
threats associated with input devices. Through modelling input devices and controlling input

2www.pointsec.com

161

6. DISCUSSION AND EVALUATION

of sensitive data, CASPEr allows for limited information integrity protection. For example,
we could effectively protect the integrity of a mobile phone’s PIN by specifying that the data
of the respective sensitivity is under threat if input in the device owner’s absence.

6.3 µCASPEr Evaluation

To transform the generic CASPEr architecture, where all processes are executed on a single
host, to a “split” architecture as proposed for the µCASPEr represents a clear trade-off
between the level of flexibility and autonomy in the information exposure threat adaptation
process at the Client side and the complexities and resource requirements of supporting and
enabling the adaptation process itself.

Two aspects inherent in the TFFST model itself [BS04] pose a possible disadvantage with
respect to the feasibility of the policy deployment process at the resource deprived Client
side. Those are the high complexity of the algorithms involved in TFFST generation and
the size of resulting TFFST. Apart from having possibly prohibitive storage requirements,
the latter also impacts on policy evaluation computational overheads.

In order to deploy a policy based solution in an environment likely to exhibit severe
levels of resource poverty it is essential to shift processes with high overheads away from the
constrained target devices. The fundamental role in accomplishing this was played by the
choice of the TFFST model for the policy representation in µCASPEr. The most resource
and computationally intensive tasks related to the TFFST policy modelling turn out to
be, at the same time, not the tasks required to be performed runtime for policy evaluation
or enforcement at the resource poor Client side. Consequently, they lend themselves to
straightforward offloading to resource unconstrained Management side. There, they are
accomplished a priori to the actual policy deployment at the Client side. These tasks
include, most notably, the process of generating TFFST policy model representation and
the related conflict resolution. The detailed overview of the processes taking place at the
Management side was given in Chapter 5.

In this section we focus on evaluating µCASPEr through analysing the complexities and
resource overheads incurred by the TFFST policy model related processes carried out at
the Client side. At this stage of µCASPEr development we assume the Management side to
possess ample resources to carry out the tasks assigned to it. Furthermore, it is the processes
taking place at the Client side that are critical for adequate and timely information exposure
mitigation — i.e. for the µCASPEr efficiency and effectiveness.

6.3.1 µCASPEr Client Side Overheads: An Overview

Considering their impact on µCASPEr effectiveness and efficiency, we distinguish between
tasks that are on the threat mitigation critical path and all other, supporting tasks. The
former, namely, are policy evaluation, performed by the PEM, and policy enforcement, co-

162

6.3 µCASPEr Evaluation

ordinated by the EM and accomplished by the Policy Enforcers 5.3. The latter are context
modelling, including the relevant event generation and delivery, containment model manage-
ment, and management of the active TFFSTs set.

In the context of µCASPEr, unlike for CASPEr, we do not see the containment model
representation as a considerable factor. We expect it to be of a rudimentary form using
only containment path-expression like strings with a sole function of supporting the TFFST
Loader. The resource overheads of maintaining an active policy set, consisting of simple
TFFST load/unload operations, are seen as negligible and dominated by the storage and
memory space requirements of the respective transducers. As in the case of CASPEr, the
context modelling and related overheads are outside the current scope of our work.

One of the inherent “features” of TFFSTs, trading off against their low cost of evaluation,
is their potentially prohibitive space complexity, i.e. their physical size. This is widely
recognised in the relevant areas of research [BS04]. We leverage a number of heuristics in
µCASPEr, drawing back to per-Client policy structure design (Section 5.4), to keep the
internal TFFST policy model complexity and size at bay. In the following two sections we
focus in detail on the space complexity of the µCASPEr TFFST policy model and related
computational overheads, processing time in particular, incurred by the policy evaluation
and enforcement processes. We also point out how certain µCASPEr design decisions enable
lowering the complexities.

6.3.2 Policy Size as a Inhibiting Factor

In Natural Language Processing and other fields where FSTs are leveraged for making
time critical decisions they are frequently characterised as “lightweight”. This refers to
the favourable evaluation processing time overheads rather than to their physical size. For
deployment in µCASPEr the potential physical size of a per-Client TFFST policy represents
an equally inhibiting factor as does the policy evaluation complexity for the efficiency and
effectiveness of information exposure threat mitigation.

We firstly discuss the size of each individual, per data item containment (Section 5.4.5),
TFFST and then, based on the findings, proceed to comment on the potential size of the
overall, per-Client, TFFST policy.

Comments on TFFST size

A standard way to express size of a FST, and thus TFFST, is in terms of the number of tran-
sitions. This is as the transitions embed all the necessary information for TFFST evaluation.
The states usually represent only nominal entities, associated with no functionality.

The main factors contributing to a TFFST size are:

1. The number of symbols in the alphabet used for expressing TFFST input.

2. Allowed degree of repetition of the symbols in the input string.

163

6. DISCUSSION AND EVALUATION

3. Significance of the order in which the symbols appear in the input string.

The alphabet symbols in the FST terminology correspond to distinct events denoting infor-
mation exposure threat relevant contextual states in µCASPEr. Any repetition of symbols
in the input string does not, thus, carry any more information about information exposure
threat presence than a single symbol occurrence does. Consequently, we discount for the
second factor above and define that no input symbol repetitions are allowed, as a first step
to constraining the potential TFFST size.

In cases where the ordering of the symbols in TFFST input string is seen as important
the maximum number of possible strings can be expressed as:

m
∑

i=1

P m
i

where m is the number of symbols in the alphabet and P denotes permutations without
repetitions. As without any symbol repetitions the maximum input string length is m, the
upper bound on the number of transitions in a TFFST is given by:

m×
m
∑

i=1

P m
i

Should the symbol repetitions be accounted for, both the m and P would escalate resulting
in a significant, effectively unbounded, increase in the potential TFFST size.

However, in µCASPEr the order in which threat estimation relevant contextual states
arise does not in any way influence the mitigation process — ultimately, all of the threats
need to be mitigated. In other words, the ordering of input symbols is seen as unimportant.
Consequently, the maximum number of strings generated from an alphabet of m symbols is
given by:

m
∑

i=1

Cm
i

where C denotes combinations without repetitions. Compared to the permutations, each
iteration of the above summation lowers the maximum number of possible input strings by
a factor of i!. This is by the definition of permutations (P m

i = m!
(m−i)!

) and combinations

(Cm
i = m!

(m−i)!×i!)
). In analogy to the previous case, the upper bound on the number of

transitions in a TFFST is now given by:

m×
m
∑

i=1

Cm
i

The fact that the ordering of the symbols in the input string is not important means
that we can impose an explicit ordering, prior to the TFFST evaluation stage, with no

164

6.3 µCASPEr Evaluation

consequences for the efficiency and effectiveness of µCASPEr threat mitigation process as
such. The ordering results in further tightening of the upper bound on the TFFST size, as
given by:

m
∑

i=1

Cm
i × i

As a proof-of-concept we implemented TFFSTs as simple Java data structures resulting
in each of the individual transitions accounting for approximately 40 bytes. In Appendix A
we specify a moderately simple, but effective, example CASPEr policy and present a selection
of TFFSTs. Figure A.11 shows the most complex of the policy TFFSTs — comprised 87
transitions among 31 states. Judging by the above size of the individual transitions, the size
of the TFFST can be estimated at less than 3.5 kilobytes. Note that the other TFFSTs of
the example policy are significantly smaller. It should also be taken into account that the
exact size of a transition depends on the programming language, implementation paradigm
and data structures used for the actual TFFST realisation. Thus, the numbers stated here
should interpreted as a realistic approximation, rather than an exact estimator or a bound.

Comments on TFFST per-Client Policy Model Size

A per-Client TFFST policy model is comprised of multiple TFFSTs. Each of the TFFSTs
corresponds to a single data item containment as supported by Client’s software and hard-
ware platforms (Section 5.4.5). Similarly, the maximum number of input events, i.e. the
symbols in the alphabet as accepted by each of the TFFSTs, depends on Client’s context
modelling and threat estimation capabilities.

To demonstrate that it is highly unlikely that the overall TFFST policy size for a Client
will become the inhibiting factor for the policy deployment we provide for an example es-
timation. The estimation is based on the container classification in the Figure 3.4, Section
3.3.3, the definition of the containable relationship from the Figure 6.1 and the approxima-
tion of individual TFFST size presented above. As derived from the Figure 6.1, the total
number of data item containments, in this case, is 51. For illustration, there are 6 data item
containments involving each of the Storage Device containers — a single one per Data Item
container of different sensitivity, in encrypted and unencrypted form alike. The size of the
overall TFFST policy for the example can be estimated at, approximately, 3.5× 51 = 178.5
kilobytes. From another point of view, this means that a typical mobile phone, as sold on
the market nowadays, with 32MB of memory could easily store approximately 90 distinct
TFFSTs within only a 1% fraction of its storage capacity. This demonstrates that, despite
the variability in a number of contributing factors, the size of the per-Client µCASPEr policy
is unlikely to inhibit µCASPEr deployment in its target setting.

Scalability-wise, adding support for a single container increases the overall TFFST policy
size by the size of a set of TFFSTs corresponding to the new data item containments thus
introduced. The number of additional TFFSTs is equivalent to the number of leaf nodes

165

6. DISCUSSION AND EVALUATION

1

2
3

4 5 6 7 8 9 10

1

4

9
16

25
36

49
64

81 100

1

8

27

64

125
216

343
512

729
1000

1

16

81

256

625

1296

2401
4096

6561
10000

1

32

243

1024

3125

7776

16807

32768
59049

100000

1

10

100

1000

10000

100000

1 2 3 4 5 6 7 8 9 10

Number of Childern Containers per Node

T
o

ta
l

T
F

F
S

T
s

depth = 1 depth = 2 depth = 3 depth = 4 depth = 5

Figure 6.4: Per-Client TFFST policy scalability.

below all instances of the newly introduced container in the containment tree of the maximum
size for the particular container classification and containable relationship definition. An
exception are leaf nodes themselves, whose contribution is one TFFST per instance. Note
that the number of data item containments in a realm is strictly less than the number
of containers as each containment is comprised of one or more containers. The graph in
Figure 6.4 shows how, in the worst case, the number of TFFSTs in a per-Client policy grows
with the increase in the number of distinct containers to be represented at each level in a
containment tree, for tree depths ranging from 1 to 5 (with the root node at the depth 0).
Each of the five plots in the graph corresponds to a single tree depth. The X axis represents
the number of first-hop children for each of the nodes in the tree, except for the leaf nodes,
rather than the absolute number of nodes in the tree. This implies the general uniformity
of containment trees, as was the case in Section 4.5.2, which is highly unlikely to arise in
practise, both in terms of the nodes’ out-degree and the balance of the tree. Thus the worst
case characterisation of the plots.

In summary, considering that the trends in memory capacity of mobile devices exceed
tens, hundreds and even thousands of megabytes, we do not expect the potential TFFST
policy size to be an obstacle for µCASPEr applicability to the target setting.

166

Figures/Chapter_VI/tffst_scale.eps

6.3 µCASPEr Evaluation

6.3.3 Policy Evaluation Complexities

Computational complexity, and thus the processing delay, incurred by a FST evaluation does
not depend directly on transducer’s overall size but on the length of the input. This is owing
to the fact that in every deterministic transducer there is, at most, a single path that matches
a particular input. The transducer is processed by following the single path and evaluating
the respective TFs along the way (Section 5.4.3). For the correct path to be followed, a
transition matching the relevant input symbol has to be selected, through label comparison,
at every state of a DT encountered in the evaluation. The number of comparisons to be
made impacts on the processing delay. Therefore, the out-degree of transducer’s states
is seen as the most important factor in characterising the computational complexity of a
TFFST evaluation.

An upper bound on the evaluation order for a TFFST, given a set of distinct events E
as the input, is given by:

|E| ×Maxi(Oi)×Maxt(Tt)

where |E| is the number of events in the input, Oi is out-degree of a state i and Tt is time to
evaluate a TF associated with transition t. Maxi(Oi) represents the maximum out-degree
among the states in a TFFST while Maxi(Oi) is the evaluation time for the most complex
TF. In practise, TFs are assumed to be chosen to match Client’s capabilities. The overall,
per-Client, policy evaluation time is linear in the number of TFFSTs to be evaluated.

0

5000

10000

15000

20000

25000

30000

35000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of conditions

M
ax

im
um

 o
ut

-d
eg

re
e

Figure 6.5: Number of conditions vs. TFFST out-degree.

Out-degree of a TFFST3 is directly affected by the number of conditions in a policy

3Out-degree of TFFST is equal to the maximum out-degree among its states.

167

Figures/Chapter_VI/out-degree.eps

6. DISCUSSION AND EVALUATION

[BS04]. This is as after applying the determinisation algorithm every combination of mutu-
ally exclusive conditions has to be accounted for. Policy conditions in Ponder are given by
the when clauses (for examples please refer to policy rules in Section 5.4). Figure 6.5 shows
how the number of conditions in a policy affects the TFFST out-degree. More formally, the
upper-bound on out-degree of a single TFFST state is given by:

O

(

n
∑

i=1

Cn
i

)

where n is the number of conditions fulfilled by a single event. The lower bound is linear in
the number of conditions:

O (n)

In µCASPEr, the number of policy conditions was significantly reduced by embracing the
per data item containment, rather than a per-Client, TFFST policy modelling approach.
Other than any static conflicts, we expect TFFSTs to be inherently highly deterministic.
Consequently, out-degrees of TFFSTs representing µCASPEr policies are brought close to
O (n) in the average case.

3

20

53

181

0

20

40

60

80

100

120

140

160

180

200

10 100 1000 10000

TFFST out-degree

A
v
e
ra

g
e

E
v
a
lu

a
ti

o
n

T
im

e
(m

s
)

Figure 6.6: Average TFFFST evaluation time.

The graph in Figure 6.6 plots average evaluation time for four TFFSTs with out-degree
values 10, 100, 1000 and 10000 respectively. Figure 6.7 depicts the general form of the
TFFSTs that were evaluated. The number of states implies the input string of 10 symbols
— equivalent to 10 co-occurring information exposure threats of different types. Transitions
were labelled sequentially, from 0 to n − 1 with n being the out-degree, as shown in the

168

Figures/Chapter_VI/eval_time.eps

6.3 µCASPEr Evaluation

10 10

0/0

1/1

2/2

n-2/
n-2

n-1/
n-1

.

.

.

0/0

1/1

2/2

n-2/
n-2

n-1/
n-1

.

.

.

0/0

1/1

2/2

n-2/
n-2

n-1/
n-1

.

.

.
. . .

Figure 6.7: General form of the evaluated TFFSTs.

figure. To obtain the average evaluation time the input strings were always formed to target
the middle transition among the states. Each experiment was repeated 100 times and the
mean was calculated. Standard deviation was below the timing granularity, i.e. equal to
0, except for the out-degrees of 1000 and 10000 where the results deviated by 1 and 2 ms
respectively. The evaluation platform was a Toshiba Tecra 9100 laptop with Intel Mobile
Pentium 4 clocked at 1.7GHz and 512MB RAM, under an average load. To put the obtained
results into perspective of a real world policy, consider that the most complex TFFST of
the example policy presented in Appendix A, shown in the Figure A.11, has the maximum
out-degree of only 6 (for the state 0).

As for the policy enforcement, the resource overheads incurred by specific threat miti-
gation operations are application and Client’s platform specific and we have no grounds to
assess them in this thesis. The operations may incur next to no cost at all, e.g. screen blank-
ing, but may also exhibit significant costs, e.g. public key cryptography related operations
(assessed in [GG01] [AVTO03]). We envisage availability of threat mitigation operations at
the target platforms to be tailored to their resource capabilities.

6.3.4 Summary

Two most important factors affecting µCASPEr applicability in the target environment are
identified as the number of transitions in a TFFST and its out-degree. The µCASPEr design
goal was keep the two as low as possible. This was largely accomplished by opting for the
per data item containment, rather than for the per-Client, TFFST policy model approach.
Policy definition on per data item containment basis allowed for more specific policy rules,
substantially lowering the number of conditions and thus impacting on both of the resource
overhead critical TFFST characteristics. For devices with split storage space and operating

169

Figures/Chapter_VI/eval_tffst.eps

6. DISCUSSION AND EVALUATION

memory, the approach allows for optimisation of the memory capacity used by the active
policy set. On-demand loading and unloading TFFSTs from the active TFFST policy set
can be seen as Client hot-programming.

With respect to scalability, we are not concerned about the number of ubiquitous com-
puting devices supporting µCASPEr as they act fully independently. Focusing on a single
device, the model may scale by adding support for new containers and by enhancing ability to
recognise new events. The impact of the former is in the overall policy size, as determined by
respective container classification and containable relationship definition. The latter causes
a potential increase in TFFST input strings length and thus contributes to the TFFST eval-
uation time. Based on the presented evaluation results we are confident that scalability in
any of the directions will not represent an inhibiting factor for µCASPEr applicability.

In conclusion, we consider µCASPEr deployment as feasible on highly resource con-
strained ubiquitous computing devices.

6.4 OCD Algorithm Generalisation and Evaluation

6.4.1 Constraints on Threat Mitigation Operation Composition

A well known problem in the area of theoretical computer security research is composition
of security mechanisms [And01]. The essence of the problem is that if we compose two or
more security mechanisms the strength4 of the obtained composition is not in general equal
to the sum of strengths of the individual security mechanisms, but less. Furthermore, the
composition process itself may lead to sensitive information leakage. Strong evidence of
this has been provided for ciphers, security protocols and secure components composition
[And01].

The information exposure threat mitigation approach proposed for CASPEr relies heavily
on composition, i.e. “stacking”, of relevant security mechanisms represented as the trans-
parency of individual containers. This is due to the structure of the containment-based
model of the world and the way in which threat propagation is modelled. Thus, the con-
cern is whether it is safe to say, in general, that transparency of a containment is equal to
the “sum” of individual transparencies of the containers that comprise it. So far, in the
exposition of the OCD algorithm (Section 4.5) we have assumed so.

Potential constraints on threat mitigation operations composition can be modelled in two
manners:

1. By embedding any constraints in the container classification and containable relation-
ship specification.

4The extent to which the mechanism is able to withstand the specific attack in was designed to protect
against.

170

6.4 OCD Algorithm Generalisation and Evaluation

2. By explicitly defining non-composable mitigation operation groups globally or on per
container class basis.

The former approach effectively ensures that in all well-structured containment trees no
offending mitigation operations can ever be composed, through container stacking. Effec-
tively, this means isolating non-composable transparency characteristics into separate con-
tainers and ensuring they may never contain each other in an offending manner. An example
would be defining the containable relationship so that a container of class Crypto may never,
directly or indirectly, contain another container of class Crypto. The advantage of the ap-
proach is that no explicit checks, apart from ensuring that a realm is well structured, need
to be carried out at the run-time. The main problem with this approach, however, is that it
may not be possible, in practise, to classify containers in such manner while abiding by the
container classification criteria and retaining container semantics (Section 3.3).

The latter approach implies the resolution of the non-composability problem at the threat
mitigation stage — run-time at the Client side. More precisely, in the OCD algorithm
execution phase. To accomplish this, we assign each group of non-composable operations a
single colour in what we call threat mitigation operation colouring process. The semantics of
the colouring is that operations of different colours are mutually exclusive. The colouring may
be uniform across all of the containers in a container classification or it may be container
class specific. The former implies that within a single containment tree no operations of
different colours can be performed irrespective of the container they are applied to. The
latter signifies that operations of differing colours may be performed if and only if they are
not applied to the same container instance.

The two approaches are complementary. To account for either the OCD algorithm needs
to be adjusted, as presented next.

Colouring Aware OCD

For clarity purposes we present only the extension of the constrained version of the OCD
algorithm (Section 4.5.6). All changes are analogously applicable to the OCD extensions
presented in Section 4.5.7.

Firstly, we consider the case of globally uniform container colouring. The OCD extension
is specified straightforwardly as:

g(v, C, ltot) = MINc∈C f(v, c, nv, 0, ltot)

where the original OCD definition of the function f has been extended by a single argument,
c, denoting the colour of sticks, i.e. operations, to consider. Otherwise, the definition of the
function f remains as presented in Section 4.5.6. Note that the above represents the initial
call to the algorithm. Thus modified OCD, given by the function g above, effectively finds
optimal solutions for all the colours and then chooses the one of the minimum cost among
them.

171

6. DISCUSSION AND EVALUATION

In the case where the colourings are container class specific the required adjustment of
OCD algorithm is slightly more complex. We define the function g in a manner analogous
to the above, however being specific about which node’s colouring scheme we are referring
to each time around:

g(v, Cv, lc, ltot) = MINc∈Cv
f(v, c, nv, lc, ltot)

In addition to this we also need to alter the definition of the function f slightly to account
for the actual independence of colouring schemes among containers:

f(v, i, c, lc, ltot(v)) =

0 if ltot(v) ≤ lc ;
∑

k∈chld(v) g(k, Ck, nk, lc, ltot(k)) if i = 0 & !is leaf(v) ;

∞ if i = 0 & is leaf(v) ;

min[f(v, i− 1, lc, ltot(v)),

ci + f(v, i− 1, lc + li, ltot(v))] otherwise ;

The difference to the constrained OCD is in the call to the function g rather than a direct
recursive call to f in the second case above.

The OCD algorithm awareness of the colouring scheme, in both the above cases, results
in addition of another dimension to the OCD supporting, dynamic programming, data struc-
ture used for sub-problem results memorisation. The complexity, however, remains pseudo
polynomial.

6.4.2 Termination Analysis

On a number of previous occasions we have stated that the OCD algorithm operates over
multiple dimensions. The dimensions correspond to each of the parameters of the function
f , and g above, that get iterated/recursed over.

Figure 6.8 depicts dimensions relevant for the termination analysis of the fully extended
variant of the OCD algorithm. The (lc, ltot) pairs are depicted as one dimension with the red
dot denoting ltot and the axis denoting the progress toward it (lc).

The recursive definition of the OCD algorithm, the constrained version as well as the
extensions, is strictly monotonic with respect to the dimensions. Firstly, the algorithm
always proceeds down a containment tree, starting with the initial node, never revisiting a
container. This is given by the second base case of the constrained OCD definition. Secondly,
the algorithm always decreases the number of sticks, i.e. threat mitigation operations, under
consideration, starting with the full set. Thirdly, never does the algorithm backtrack on a
stick that it made a decision about. In other words, it makes monotonic progress toward the
ltot. Finally, where a colouring scheme exists never is the same colour re-considered, relative
to its scope.

Each of the dimensions is inherently finite and has a clearly defined minimum and max-
imum. The monotonicity of the algorithm in conjunction with the dimensions finiteness

172

6.4 OCD Algorithm Generalisation and Evaluation

...

Nodes

Visited

Path Len

Covered per

Threat Type# Sticks

Available

Color
Key:

Direction of

the Algorithm

Execution

Figure 6.8: OCD operating dimensions.

implies that either the minimum or the maximum in each of the dimensions is reached after
a finite number of steps. An exception is the path length dimension whose maximum does
not have to be reached for the algorithm to terminate. The algorithm terminates when the
available sticks dimension reaches the minimum and the tree depth dimension reaches its
maximum (for every colour, if a mitigation operation colouring scheme is in place).

For the above reasons we are able to state that all of the presented variants of the OCD
algorithm are guaranteed to terminate.

6.4.3 Comments on Complexity: Theory and Practise

In analogy to the complexity of the dynamic programming approach to solving the integer
constrained 0-1 Knapsack problem (Section 4.5.4) the complexity of all presented variants
of the OCD algorithm is pseudo polynomial. The order of the constrained OCD algorithm
is given by:

O(I ×N × L2)

where I is the number of sticks, N is number of nodes in a containment tree and L is the
length of the longest path to cover.

Once extended to account for the simultaneous exposures of multiple threat types, in
conjunction to the existence of compound threat types (Section 4.5.7), the OCD algorithm
exhibits complexity in the order of:

O(I ×N × L2
1 × . . .× L2

n)

where L1, . . . , Ln represent lengths of the longest paths to cover for each of the co-occurring
threat types enumerated as 1, . . . , n.

173

Figures/Chapter_VI/termination.eps

6. DISCUSSION AND EVALUATION

Further, the constrained OCD variant extended to account for threat mitigation operation
non-composability, as presented above, exhibits complexity characterised by:

O(I × V × L2 × C)

where C represents the number of different colours. The order applies to the case where
colouring is uniform across a containment tree. Container specific colouring would contribute
factors representing the number of colours to the above complexity.

The dynamic programming approach provided us with a pseudo polynomial solution to
a constrained problem of what is in the general case an NP hard problem. In theory, this
means that the algorithm is feasible — a result of significant importance. In practical terms,
the resource overheads of the OCD algorithm come from:

• The exact size of the data structure supporting the memorisation of the solutions to
sub-problems encountered during algorithm execution.

• The processing delays incurred by simple arithmetic operations and comparisons car-
ried out for each of the cells of the data structure.

• Impact of the potential recursion in the algorithm implementation on the stack capacity
— depending on the containment tree depth.

The dimensions of the supporting data structure are exactly the above orders of the
algorithm variants. In Section 6.2 we have seen that for a reasonable grained container clas-
sification a realm corresponding to a general purpose laptop computer would be represented
by a containment tree with the maximum number of containers of 73 and the maximum
depth of 4. Further, we would be optimistic to envisage more than a one digit number of
mitigating operations available on per container basis, including container insertion and mi-
gration operations. For the reasons presented in Section 6.2, the same applies to the total
number of LoEs on per information exposure threat type.

Consequently, we do not envisage any of the above factors to cause any significant, or
even non-negligible, resource overheads for general purpose computing platforms or mobile
computing devices available on the market nowadays. For highly constrained platforms we
propose the specialised µCASPEr specialisation of CASPEr, presented in Chapter 5.

6.5 Qualitative Analysis and Comparison

In Chapter 2, we provided an outline of the related research in the area of information secu-
rity, focusing on information confidentiality protection. The current state-of-art in pervasive
computing information security consists mainly of adaptations, and enhancements, of the
paradigms presented in Chapter 2, developed for traditional computing environments, to the
specific characteristics and usage scenarios envisaged for the novel setting. To best delin-
eate the concepts comprising CASPEr, introduced in the previous chapters, and clarify the

174

6.5 Qualitative Analysis and Comparison

contribution, in this section we present a qualitative analysis of CASPEr and its comparison
to the related work outlined in Chapter 2. The criteria used has been selected to best de-
pict conceptual and functional gaps in information security, with an emphasis on pervasive
computing environments, filled by CASPEr.

Although the connotation of a qualitative comparison is usually along the lines of mutual
exclusivity of the compared solutions, with the intention of emphasising the contrast between
them for the purpose of choosing one instead of another, in the case of CASPEr it is not
so. Toward the end of the section we show how CASPEr complements, and is orthogonal
to, most major information security paradigms. This is as CASPEr addresses a specific
set of information confidentiality issues, brought into foreground by the vision of pervasive
computing, rather than extending the existing mechanisms and paradigms developed for
traditional computing environments.

Prior to delving into the core of the section we briefly discuss how an implementation
may be seen from the industry perspective. For this purpose, we found it interesting to refer
to the Common Criteria.

6.5.1 Common Criteria and CASPEr

The Common Criteria for Information Technology Security Evaluation [cc:b] [cc:a], or Com-
mon Criteria (CC) for short, aims at being a world-wide de-facto standard for evaluation
of Information Technology (IT) products security. CC originates from three distinct crite-
ria: European Information Technology Security Evaluation Criteria (ITSEC), United States
Trusted Computer System Evaluation Criteria (TCSEC) — widely recognised as the “Orange
Book” and Canadian Trusted Computer Product Evaluation Criteria (CTCPEC). Behind CC
stand relevant EU, US and Canadian governing and sponsoring bodies.

The CC specifies requirements for the IT security of a product through a number of func-
tional requirements [cc:05b] and assurance requirements [cc:05a]. Individual requirements of
both kinds are grouped into distinct categories, and further into families. While the CC func-
tional requirements specify security relevant behaviour of a product, assurance requirements
serve as the basis for ensuring that the claimed security functionality is effective within a
product.

Prospective consumers or developers can specify their security needs in terms of security
requirements and objectives, leveraging CC functionality requirements, in the form of a
CC Protection Profile (PP). A PP is intended to be reusable and to define requirements
which are known to be effective and efficient with respect to a set of objectives, much
like design patterns in software engineering. Thus, a PP describes a category of products or
systems which have similar security relevant behaviour. Products are subsequently evaluated
and certified against PPs. PPs have been developed for firewalls, databases, access control
devices, smart cards etc.

175

6. DISCUSSION AND EVALUATION

Among all PPs registered at the CC portal [cc:b] only5 the Discretionary Information
Flow Control (MU) PP [LNSV02] specifies functionality that would partially describe a
CASPEr implementation. The common grounds between CASPEr and the PP is in that
it describes a product that protects information flows in a friendly user setting, can be
considered as an add-on to well-established security concepts and can be integrated with a
host system in a variety of ways. Although not an exact match for the CASPEr functionality,
the PP shows how a system-wide information flow control security functionality can be
described in the CC terminology.

Analysing the PP and the CC functionality requirements document [cc:05b] we have iden-
tified the CC functionality requirement categories that would be applicable to a CASPEr
implementation as User Data Protection (FDP), Security Management (FMT), Resource
Utilisation (FRU) and Cryptographic Support (FCS). However, we were unable to iden-
tify a straightforward way to leverage the CC functional requirements to express any form
of context-aware or context-adaptive, proactive as well as reactive, security functionality.
Moreover, we failed to describe, in CC terminology, any of the concepts novel to CASPEr
as presented throughout the thesis and summarised in the quantitative comparison below.

The CC groups evaluated and certified products into categories according mainly to
their Target of Protection. Among them is the Data Protection category. Several products
in the category are targeted at data protection on mobile computing environments. Thus,
they are best specimens from the commercial world comparable, to an extent, with CASPEr.
However, all of them provide solely for indiscriminate, mandatory and inflexible storage level
data protection. Nonetheless, for completeness reasons, we include them in the qualitative
comparison under the collective name of Static Data Protection mechanisms. Examples6

[cc:b] are Pointsec PC Version 4.3, Encryption Plus Hard Disk 7.0, Protect Drive V7.0.3,
etc.

6.5.2 Qualitative Comparison

Comparison Criteria

As stated above, the criteria chosen for the CASPEr qualitative analysis and comparison
were not meant to characterise the related work exhaustively but to best delineate CASPEr
concepts. The comparison is based on 19 individual criteria grouped into 7 categories — as
represented by the columns in the Figure 6.9. Grouped by the categories the criteria are as
follows:

• Protection Goal. Protection goal of an information security mechanism can be one
or more of the well-known Confidentiality, Integrity or Availability information security
facets.

5Correct at the time of writing of this thesis.
6A number of non-CC certified products exist on the market that provide for the same or closely related

functionality.

176

6.5 Qualitative Analysis and Comparison

• User Profile. User profile characterises the envisaged attitude of information cus-
todian, i.e. a person in a direct possession of information, toward preservation of
information security. A custodian is said to be hostile if they are envisaged to make
an active effort to violate information security and/or not make an active effort to
protect information when aware of a potential compromise. Otherwise, a custodian is
considered friendly.

• Decision Criteria. Decision criteria describes factors considered by individual mech-
anisms in their respective information security relevant decision making process.

– Subject Attributes capture any information associated with a subject initiating
an operation on, or being in command of, a piece of data. For example, subject
attributes may incorporate subject’s role(s) as in RBAC [FK92] [SCFY96], trust
assigned to a subject as in [DBE+04] and organisation [CM03] or a team [TS97]
the corresponding user belongs to.

– Object Attributes consist of any relevant meta-data associated with a piece of
data, or information deducible from the data itself.

– Context assumes reference to any information relating to the notion of context
strictly as interpreted in this thesis (Section 2.2). Some researchers [BEM03] also
refer to this as the state of dynamic environment.

– Side-Effects criterion denotes explicit consideration of any non-information secu-
rity related impact each particular decision may have. This criterion is targeted
especially at characterising CASPEr with respect to its information utility (Sec-
tion 4.2) maximisation.

– Sys/Apps State criterion is introduced to disambiguate between the interpretation
of the term context as used in this thesis and where it denotes internal state of
an application, a system or where it names and identifies any of their sections as
in [BEM03] [TS97] [BMY02].

– Other criterion accounts for criteria not assumed by any of the above. For exam-
ple, conditions and obligations in UCON (Section 2.8).

– Static criterion characterises information security protection mechanisms with no
support for dynamic, run-time, decision making based on any of the above criteria.
Static decision making process characterises mandatory, indiscriminate, inflexible
and unadaptable systems. This criterion is mutually exclusive to any of the above
decision making criteria.

• Binary Decision Model. Binary decision model denotes a strictly two state result,
e.g. on/off or allow/deny, of the respective decision making process.

• Temporal Continuity. Temporal continuity captures the temporal nature of the
decision process and, more importantly, decision enforcement:

177

6. DISCUSSION AND EVALUATION

– Point-of-Request denotes decision making and enforcement processes that occur,
and are triggered by, explicit operational request on an object on behalf of a
subject. They can be also described as one-off and on-demand. A typical ex-
ample is traditional access control (Section 2.7), triggered by any form of access
request. Point-of-Request is typical for passive7 information security mechanisms
overviewed in Chapter 2.

– Usage Bound. We say that an active security mechanism is temporally usage
bound if the relevant information security decisions are re-evaluated continuously
during the period a piece of information is being used and enforced promptly. As
opposed to Point-of-Request, the decision making process and subsequent decision
enforcement are triggered by shifts in the state of the relevant decision criteria,
such as e.g. context in the case of CASPEr.

– Life Long. A mechanism provides life long information security if it re-evaluates its
decisions and enforces them promptly throughout information life-time. In other
words, from the point in time at which a piece of information enters a system
under jurisdiction of the mechanism, by creation or otherwise, to the point at
which it exits the system — not being bound to the usage period of the target
piece of information.

• Spatial Continuity. Spatial continuity represents an analogy to the temporal conti-
nuity with respect to a particular whereabouts of a piece of information, e.g. storage
device, display, communications channel etc. We say that an information security
mechanism fulfils this criterion if: i) it is aware of and distinguishes between where-
abouts of a piece of information throughout its life-time in a system; and ii) if its
decision making process takes explicit account of the information whereabouts.

• Platform Support. By Applications support we mean that a mechanism requires,
fully or partially, awareness from applications not related to the mechanism itself in
order to provide for its functionality. If a mechanism requires Hardware support it
means that it cannot function without a set of dedicated hardware components or
functions thereof.

The Taxonomy

The Table in Figure 6.9 shows the quantitative comparison of CASPEr and the related
work according to the above criteria. The columns of the table represent individual criteria
while the rows are associated with the related work as outlined in Chapter 2. Rather than
representing every individual piece of related work separately, we group them into higher-
level paradigms, where applicable, with no loss of specificness with respect to the comparison

7The terms passive and active security mechanism originate from [TS97] and were outlined in Section
2.7.

178

6.5 Qualitative Analysis and Comparison

Protection

Goal

User

Profile

Decision

Criteria

Temporal

Continuity

Platform

Support

C
o

n
fi

d
en

ti
a
li

ty

In
te

g
ri

ty

A
v
ai

la
b

il
it

y

H
o

st
il

e
C

u
st

o
d

ia
n

F
ri

en
d

ly
C

u
st

o
d

ia
n

S
u
b

je
ct

A
tt

rr
.

O
b

je
ct

A
tt

r.

C
o

n
te

x
t

S
id

e-
e
ff

ec
ts

S
y
s/

A
p

p
S

ta
te

O
th

er

S
ta

ti
c

B
in

ar
y

D
ec

is
io

n

P
o

in
t-

o
f-

R
eq

u
es

t

U
sa

g
e

B
o

u
n
d

L
if

e
-L

o
n
g

S
p

at
ia

l
C

o
n
ti

n
u
it

y

A
p

p
li

ca
ti

o
n

s

H
ar

d
w

ar
e

Flow Control Y N N Y Y N Y N N N N N Y Y N N N Y Y

Dissemination Control (& DRM) Y Y N Y N Y Y N N Y Y Y
*

Y N Y Y
*

N Y Y

DAC, MAC & RBAC0,1 Y Y N Y N Y Y N N N N N Y Y N N N N N

Context-Aware AC Y Y N Y N Y Y Y N Y N N Y Y N N N N N

A
cc

es
s

C
o

n
tr

o
l

Active Access Management Y Y N Y N Y Y N N Y N N Y Y Y
*

N N N N

Access Flow [Sto81] Y Y N Y N N Y Y N N N N Y N N Y N N Y

Usage Control [PS02b, SP03] Y Y N Y N Y Y Y N Y Y Y
*

Y N Y Y
*

N N N

Extended ZIA [CN03] Y Y N Y N Y Y N N N N N Y Y N N N N N

Static Data Protection Y Y N Y N N N N N N N Y Y Y Y N N N N

CASPEr Y Y
*

Y N Y N Y Y Y Y
*

N N N N N Y Y Y
*

N

Figure 6.9: CASPEr qualitative analysis and comparison.

criteria. The categorisation obtained follows the general layout of the Chapter 2. The table
rows corresponding to the higher-level paradigms are labelled in italic. The rows labelled in
non-italic specify individual contributions, together with the appropriate references.

The only category of related work not self-explanatory from the Chapter 2 is labelled
as Static Data Protection. The category represents mechanisms whose decision process can
be characterised as static. In other words, the category encompasses mechanisms that are
indiscriminate with respect to the data they are applied to and, in general, lack any dynam-
ically adaptive behaviour according to the criteria from the Figure 6.9. Although the most
notable examples are the data storage encryption solutions referred to in Sections 2.9 and
6.5.1, other data-wise indiscriminate solutions, such as network firewalls or mobile device
functionality constraining policies (Section 2.9), fall under this category as well.

Every cell of the table contains either Y(es) or N(o) denoting whether a particular mech-
anism marking the corresponding row fulfils the criterion referred to by the column or not
respectively. The symbol Y in a cell associated with a higher-level information security
paradigm denotes that there exist realisations of the paradigm which fulfil the particular
criterion. The Y⋆ symbol is used where the fulfilment of a criterion is ambiguous, i.e. open
to interpretation. In the Figure 6.9 this is true in several cases:

• Dissemination Control and Usage Control. In Chapter 2 we have stated that both
DCON and UCON rely on the concept of a digital container, a cryptographic envelope,
which contains the data to be subjected to controls according to the associated control
set. While the dissemination and usage control, in DCON and UCON respectively, are

179

Figures/Chapter_VI/qualitative.eps

6. DISCUSSION AND EVALUATION

essentially usage bound, the cryptographic mechanisms forming the digital container
ensure the protection of data while it is not being actively accessed. Thus, we say
that both DCON and UCON provide static data protection part of the information
lifetime in the system. This, in turn, means that information is effectively protected
throughout its lifetime in both DCON and UCON.

• Active Access Management. The ambiguity concerning active access management arises
due to the level of abstraction at which the core models are specified in the literature.
The main characteristic of the active access management paradigm, as originally de-
fined in [TS97] and referred to in the subsequent work (Section 2.7), is the continuity
of the actual decision making process — i.e. decision re-evaluation as the relevant
conditions change, during the period of time in which the data is being actively used.
However, what all the relevant literature referred to in Section 2.7 remains silent about
is when the actual decision enforcement happens — leaving the issue to the implemen-
tation. For example, in both [TS97] and [BMY02] permission revocation occurs in-
stantly while the enforcement happens on the subsequent authorisation decision point.
In Figure 6.9, however, we acknowledge the possibility of the actual decision enforce-
ment, alike decision evaluation, being usage bound as opposed to occurring only at the
point-of-request.

• CASPEr. Qualitative analysis of CASPEr has resulted in three ambiguities. Firstly,
although CASPEr focuses on information confidentiality protection, its features may
be utilised to provide for information integrity in a limited number of cases. This is
outlined in Section 6.2.5 and exploited in the example µCASPEr policy in Appendix
A. Secondly, CASPEr can be considered as being Sys/Apps State aware in cases where
the state is reflected on the respective containment configuration, e.g. size of a GUI
window, deployment of cryptographic mechanisms etc. Finally, despite CASPEr having
been designed to operate with variable degrees of application awareness, the lack of
such does incur substantial impact on its effectiveness through the inability to model
application-level containments. This impacts on the granularity at which both threat
effects are modelled and mitigation strategies are devised. Furthermore, no application
awareness would cause CASPEr to suffer from a problem analogous to the well known
issue of the tendency of information security labels to accumulate over time in MLS
systems in which fine-grained application awareness does not exist [And01].

With respect to the last point above, as CASPEr represents a framework, application
support can be built into the host system in an incremental fashion, trading off information
exposure protection granularity, the ability to maximise information utility and the spatial
and temporal continuity against the effort and the time required to provide for the necessary
levels of application awareness. We see the common starting point as protection of data
on storage devices or otherwise when not in use by an application — where no application
awareness is required.

180

6.5 Qualitative Analysis and Comparison

6.5.3 Visualising CASPEr in the Big Picture

Further to the CASPEr qualitative analysis and the comparison presented in Figure 6.9, in
this section we try to illustrate visually CASPEr placement within the big picture created
by the major paradigms as included in the qualitative comparison. We do so from three
distinct points of view — effectively dissecting the overall qualitative comparison from three
different angles.

"System"
Subject

"Context"
Subject

Data
Object

Access
Control

Information
Dissemination
Control

Information
Flow
Control

CASPEr

Key:

Figure 6.10: CASPEr in the information security big picture.

We start by visualising the CASPEr relation to the general concepts of information flow
control, information dissemination control and access control as shown in Figure 6.10. The
large circle in the centre of the figure represents a single operating platform or a system
in its most abstract sense. It can be an isolated system but it can also be a distributed
system of any kind, such as e.g. a peer-to-peer system or a specialised content distribution
infrastructure. We use the term system subjects to refer to active entities within such a
system which manipulate or otherwise make use of the data objects. For example, system
subjects in an operating system denote the processes while in a content distribution system
they may denote the individual computing platforms as a whole. The latter occurs, for
example, in DRM systems in which a digital container is bound to the identity of the target
hardware/software platform configuration. Data objects can be interpreted as data items in
the CASPEr terminology.

Dash-lined triangles represent distinct, information exposure threat model relevant, con-
texts that affect the individual objects existing within them. The triangles effectively com-

181

Figures/Chapter_VI/comparison_3d.eps

6. DISCUSSION AND EVALUATION

prise a different, intersecting, dimension to the rest of the diagram. Subjects existing in the
contexts represent active entities that give rise to information exposure threats — thus they
are of fundamentally different nature to the subjects within the system, in spite of the same
symbol used in the figure. We refer to them as context subjects. Ultimately, the context
subjects may be thought of simply as human “attackers”.

The arrows in the figure denote data flows, among the respective entities, that are
points of focus of, i.e. are regulated and/or mediated by, the individual information se-
curity paradigms as included in the qualitative comparison in Figure 6.9. The arrows are
colour coded as given in the figure key. Note that, for clarity reasons, the diagram does
not depict all possible arrows of the same kind among the entities. Furthermore, although
we do realise that from the point of view of information flow control system subjects can
be regarded as objects we include no arrows that denote so, with no consequences for the
argument. The diagram clearly delineates CASPEr functionality as laying in a different di-
mension to the one hosting information flow control, information dissemination control and
access control — filling in a previously unoccupied place in the big picture.

Data Object
Access

CASPEr

MACRBAC

DACData Object
Access

Data Object
Access

Data Object
Access

Figure 6.11: CASPEr in relation to DAC, MAC and RBAC.

Focusing solely on the access control paradigm, the diagram in the Figure 6.11 shows how
CASPEr relates to the concepts of DAC, MAC and RBAC, including their decision-criteria
enhanced variants (Section 2.7), such as e.g. context-aware access control. The diagram
depicts, in a data object centric fashion, four different ways in which DAC, MAC and RBAC
can be layered in a single system. We leave out the uncommon case in which all three
access control models coexist in a system, although it has been suggested in the literature
[SCFY96]. CASPEr itself is positioned the closest to the data objects, forming a wrapper

182

Figures/Chapter_VI/AC-CASPEr.eps

6.5 Qualitative Analysis and Comparison

that illustrates the containment paradigm. For each of the four layerings, the figure plots the
data object access authorisation process, represented by the solid arrows. The corresponding
access requests originate at higher levels. The manner in which CASPEr is represented also
signifies its continuous role, not in the authorisation process itself, but in determining data
information handling and management procedures employed and the form in which data is
available pre-, in- and post- access. CASPEr plays no role whatsoever in determining rights
of a subject to access an object but can be considered, in the context of the Figure 6.11, as
a monitor mediating the manner in which information is accessed.

Subject

Object Device

Context
 & Threats

CASPEr

e.g. Access
Control

Figure 6.12: The Subject-Object-Device triangle.

Figure 6.12 shows, what we call, a Subject-Object-Device triangle. The term subject de-
notes a system, rather than context, subject while the notion of object refers to data objects.
In the context of the figure, we refer to a device not as a ubiquitous computing platform,
as throughout the thesis, but to denote the spatial whereabouts of a piece of information.
In CASPEr terminology this corresponds to the notion of data item containment, including
any relevant data management and handling procedures. More straightforwardly, the notion
of a device can also be thought of as a single component of a computing platform, such as a
display, a storage device or a communications channel.

A device itself is always embedded in a context which determines the threat model af-
fecting a piece of information contained within the device at any point of time — as depicted
by a cloud and the arrows in the figure respectively. Note that we refer to a threat model as
describing information exposure threats. The arrows forming the triangle denote the relation-
ships between the entities to which information security paradigms can apply. For example,
as indicated on the diagram, access control mediates access requests made by subjects to
both data objects and devices. CASPEr, on the other hand, influences the relationship be-
tween data objects and the devices they are contained within. The point that we would like
to emphasise in particular is that, to the best of our knowledge again, no other information
security paradigm applies to the object - device link as shown in the figure. The level of

183

Figures/Chapter_VI/subject_object_device.eps

6. DISCUSSION AND EVALUATION

indirection created by linking object and device nodes via the subject node results in the
failure to capture, and realise, one of the core concepts of CASPEr — information security
protection at the data item granularity based solely on threats as present in the data item’s
environment.

6.5.4 Summary - Comments on CASPEr Uniqueness

Comparing CASPEr qualitatively to the related work, as given in the Figure 6.9, we can
conclude that CASPEr is unique, to the best of our knowledge, from several points of view.

Firstly, CASPEr represents the only work in which contextual information is used for
explicit threat modelling as presented in the thesis. Although other work in the area, as
referred to in the Figure 6.9, does account for various aspects of contextual information we
are not aware of any attempts at explicit threat modelling, reasoning and mitigation in a
manner as accomplished by CASPEr for information exposure threats. The contribution
is further reinforced by the definition of the information exposure threats themselves —
representing a consequence of the data handling and management procedures as employed
in a particular context.

Secondly, CASPEr is unique with respect to explicit consideration, in the decision making
process, of the side-effects each alternative decision has. The more so as the side-effects
taken into account are related to issues traditionally not considered security relevant, such
as information utility or system usability. We consider the ability to provide “good-enough”
security [San03], with respect to information utility and system usability criteria, as one of
the most important factors for potential CASPEr acceptance and, more generally, for the
realisation of the information omnipresence aspect of the ubiquitous computing vision.

Thirdly, one of the enabling factors of the above contributions is the departure from the
binary decision model. We are not aware of any other work that offers similar degree of
flexibility and adaptability in the decision making process in a similar fashion like proposed
for CASPEr. This is in part owing to seeing a number of standard data management and
handling procedures as potentially contributing to information exposure threat mitigation,
as a side-effect of their primary functionality.

Referring back to the previous section, how CASPEr complements information flow con-
trol, information dissemination control and access control paradigms by filling in an infor-
mation security gap brought into the spotlight by the ubiquitous computing vision and not
previously analysed and addressed in a systematic and holistic manner. The place CASPEr
occupies within the big picture represents an advance toward in-depth information security
in highly dynamic environments — such as ubiquitous computing.

184

Chapter 7

Conclusions

In this dissertation we have introduced CASPEr, a theoretical framework for context-adaptive,
data item centric, temporally and spatially continuous information exposure protection
targeted at, but not confined to, pervasive computing environments. The motivation for
CASPEr was the identification of information exposure threats, a sub-class of information
leakage threats which gain substantial importance in ubiquitous computing environments.
Through addressing information exposure, CASPEr fills a gap in the information security
big picture not previously addressed in a systematic manner by traditional mechanisms and
paradigms as well as their adaptations and extensions to the requirements of the novel envi-
ronment. The manner in which we designed CASPEr caters for the platform heterogeneity
envisaged for pervasive computing settings and facilitates complete operational autonomy of
the target deployment devices. In this dissertation we have not aimed at introducing novel
mechanisms to address specific instances of information security and privacy threats but
have rather developed an original approach, the CASPEr framework, which enables leverag-
ing of the existing ones, in conjunction with standard information handling and management
procedures, for mitigation of the newly systematised class of information security threats.

In this chapter we summarise thesis contributions and comment on the potential avenues
for future research. Overall, we consider the two main contributions of this thesis to be: i)
identification and systematisation of the particular class of threats to information security;
and ii) the approach, CASPEr, proposed for addressing the threats. The latter contribution
is in itself comprised of further three major and several smaller contributions as presented
in Chapters 3, 4 and 5 and summarised below.

7.1 Thesis Summary

In Chapter 1 we presented the motivation for this work. We described a set of scenarios
that provide an intuitive feel for the nature of information exposure threats, their potential
severity as well as the intended CASPEr behaviour in the face of the threats. We proceeded to

185

7. CONCLUSIONS

formally introduce the concept of information exposure and the notion information exposure
threats — the founding contribution of this dissertation. Data from real world security
incident surveys in the mobile computing arena was used to reinforce the suggested severity
magnitude and importance of the newly identified class of threats. We highlighted the
challenges for information security posed by the vision of ubiquitous computing relevant to
the thesis and pointed at the shortcomings of the current approaches in addressing them,
further motivating our work.

The material presented in Chapter 2 served a two-fold purpose. Firstly, we outlined the
general deployment setting for CASPEr and the constraints implied by it. Secondly, we
portrayed the information security big picture to which this thesis contributes. The latter
was accomplished by outlining four major information security paradigms and defining their
scope in terms of the type of threats they address as well as the key actors and entities
involved — the criteria that best delineates the contribution of this thesis. To complete the
picture, we also highlighted efforts specific to mobile device information security — still im-
mature in addressing the shift in threat models from the traditional computing environments
appropriately. The detailed delineation of CASPEr with the related work was postponed
until Chapter 6.

In Chapter 3 we present a major (sub-)contribution of this dissertation: a fine-grained,
spatially and temporally continuous information exposure threat analysis method. The
method rests on the containment based, data item centric approach to modelling the world,
utilising the concept of a container, a protective enclosure, as its main building block —
in themselves integral contributions of this chapter. Apart from providing for the threat
analysis, we have shown how the model facilitates deployment in heterogeneous ubiquitous
computing environment in a highly flexible and distributed fashion without requiring com-
promises on information security. Furthermore, we have described how the model inherently
supports reasoning about strictly localised, focused and confined threat mitigation strategies.
We introduced a number of formalisms, used throughout the dissertation, both to support
the containment based model of the world and the threat analysis process itself. The threat
analysis method was conceived to fully honour the autonomy of the target deployment plat-
forms.

In Chapter 4 we focused on another major contribution of this dissertation: a fine-grained,
localised, information exposure threat mitigation that maximises information omnipresence.
We introduced information utility as a measure of information omnipresence and specified
striking the balance of the information utility vs. level of protection seesaw as one of the
main objectives for the threat mitigation. The concept of a Level of Exposure and the
corresponding formal model served as the main instruments in achieving this goal. An
important contribution of the chapter is the utilisation of standard information management
and handling procedures for threat mitigation — enabled by the nature of threats themselves
and the fine-grained threat analysis method. Marrying the concepts introduced in this and
the previous chapter, we developed a dynamic programming algorithm for discovering the
optimal mitigation strategy for a realm in the face of a set of information exposure threats

186

7.1 Thesis Summary

— one of the key contributions. The overall threat mitigation approach was conceived to
fully honour the autonomy of the target deployment platforms.

In Chapter 5 we presented an instantiation of CASPEr concepts in a policy based system,
referred to as µCASPEr — a further major contribution of the dissertation. The main
contribution of the chapter lies within the CASPEr and µCASPEr architectures and the
specific manner in which the TFFST policy model has been applied, including the policy
structure and the related processes that we detailed. The inherent characteristics of the
TFFST policy model allowed us to create the “split” system architecture in which resource
intensive tasks are off-loaded to resource capable entities and accomplished a priori to the
actual policy deployment. Furthermore, we have shown how the policy structure that we
defined contributes to the flexibility of the overall model and the autonomy of the target
platforms. As we showed in Chapter 6, the specific policy structure also had important
consequences on the reduction of complexity at the Client side. Finally, we outlined a
requirements and an architecture for a compliant data model.

In Chapter 6 we presented a discussion and (mostly) theoretical evaluation of the dis-
sertation contributions. Firstly, we argued for the general feasibility of CASPEr through
identifying, outlining and analysing factors contributing to its complexity and resource over-
heads at the conceptual level of abstraction. We addressed the issue of CASPEr generality
through demonstrating its application to two scenarios which do not obviously fit the pro-
posed threat analysis approach. Secondly, we provided a theoretical and practical, example
driven, evaluation of µCASPEr in terms of the TFFST policy model related overheads. We
identified the number of transitions in a TFFST and the out-degree of a TFFST as the
main factors influencing the policy storage and evaluation overheads at the Client side. The
evaluation suggested the general feasibility of µCASPEr deployment in the target setting.
An accent was placed on showing the importance of the devised policy structure in min-
imising the overheads. Thirdly, we focused on the OCD algorithm — generalising it further,
analysing its termination characteristics and showing its favourable, theoretical and practi-
cal, computational complexity. Finally, we presented a qualitative comparison that contrasts
CASPEr with the related work overviewed in Chapter 2 — crystallising the distinct, con-
tributing, position that CASPEr occupies within the information security big picture.

In conclusion, in this thesis we aimed at addressing the gap in the information security
big picture corresponding to the information exposure threats and brought into the spot-
light with the advent of the vision of ubiquitous computing. To accomplish this we de-
veloped CASPEr — a theoretical framework for fine-grained, information-centric, spatially
and temporally continuous information exposure threat protection in an autonomic fashion
for pervasive computing environments. We have shown CASPEr to be feasible at the com-
mensurate, conceptual, level of abstraction and to represent a contribution to the field of
information security — especially in the area of ubiquitous computing. Under the umbrella
of the overall contribution we have presented a number of sub-contributions some of which
may also be exploited independently of CASPEr and beyond the information security field.

187

7. CONCLUSIONS

These are, most notably, related to explicit contextual effect modelling and the containment
based approach to modelling the world, presented in Chapter 3.

7.2 Comments on the Future Research

The ideas presented in this dissertation can be extended and built upon in a number of ways.
Moreover, for the introduced, or similar, concepts and ideas to be captured fully in the form
of a real-world system and evaluated in practise a large body of work, spanning a number of
research areas, still remains to be done. We, thus, recognise that the dissertation gives rise
to many more questions than it provides answers for. However, we also believe that this is
inherent for any research that identifies a problem rooted as broadly and deeply as the one
we attempted to address is. The above consideration is captured by acknowledging CASPEr
as a theoretical framework rather than a ready-to-be-deployed solution.

In the light of the above, the research we intend to conduct in the near future is within
the following three domains:

• Threat Modelling and Reasoning. Before we can benefit fully from the threat analysis
approach introduced in Chapter 3, methods for context-threat correlation as well as
container transparency modelling have to be investigated. We envisage these to draw
from risk modelling (such as e.g. CORAS [FKG+02] or OCTAVE [oct]), probabilistic
estimation, history (experience) based techniques, etc. The feasibility and scope of con-
trolled experimentation is also to be investigated. Another important and interesting
aspect to determine is how the non-technical factors outlined in Section 6.2 influence
LoE modelling granularity for different threat types in different environments. With-
out delving into the intricacies of contextual awareness, a further venue for exploration
is the manner in which fusion of information from various levels of abstraction (from
sensors to diaries and mobility models) and sources can be accomplished for threat
model prediction and pro-active threat mitigation.

• Systems Research. The manner in which CASPEr is defined opens up a myriad of
challenges to be resolved at the systems and architecture levels. We have just barely
hinted at these in Chapter 5. One of the most notable, for example, is the issue
of containment awareness within application level and operating system level compo-
nents. This implies the ability to track at the run-time the flows of data both within
the components and across their boundaries, system-wide, maintaining the association
with relevant meta-data. Another challenge is within the threat mitigation and encom-
passes the registration, referencing to and the cross-layer, cross-component invocation
of the relevant operations. Further, an event-based system is required for the threat
notification. These example challenges only hint at the tip of the iceberg that will have
to be explored to provide an overall implementation of the concepts proposed in the
dissertation.

188

7.2 Comments on the Future Research

• Usability Research. At several points in this dissertation we have stressed the impor-
tance of usability — particularly emphasised in the context of ubiquitous computing.
The usability challenge within CASPEr is, roughly speaking, two-fold: the first relates
to administration of various parameters and policy definition while the second is con-
cerned with the end-user experience. Both need to be addressed adequately. For the
former we envisage a range of solutions: more complex ones requiring specific technical
knowledge but providing for finer granularity and increased flexibility — deployable
in larger organisations with dedicated staff; and intuitive ones, with user interfaces
based on intuitive graphical analogies — for cases in which the role of administrator
intersects that of the average user. Adequate models, methods and languages will have
to be developed. With respect to the user experience, the challenge is to strike the
right balance between seamlessness and seamfulness (i.e. behavioural transparency)
to justify the effects of the adaptation decisions, in order to increase confidence in the
system through clarifying its behaviour in ambiguous situations.

One of the benefits of the manner in which CASPEr was introduced, and the structure
of the contributions, is that its practical deployment can proceed gradually — with each
increment providing additional, stand-alone, functionality — working towards the holistic,
unified, vision. For example, without any research on fine-grained context threat modelling,
assuming solely a binary coarse-grained approach, and ignoring the information utility trade-
off, an implementation of the other concepts, most notably the containment based model
of the world, would still enable spatially and temporally continuous information exposure
threat protection; provision of containment-awareness only at the operating system level,
with no application support, would have a substantial effect on the granularity at which the
protection could be provided, but would similarly retain the benefits of continuous protec-
tion; limiting the container awareness and modelling to solely a single container class, e.g.
storage device — in fact, fully avoiding containment modelling, and providing solely for a sin-
gle protection alternative, e.g. encryption, would still retain the benefits of context-adaptive,
pro-active, behaviour. The last example effectively shows how CASPEr encompasses some
of the current efforts in mobile device storage protection, such as e.g. [CN03].

We are committed to pursuing the presented line of work in the future as outlined above.
At the time of writing of this text there exists an active collaboration among the authors
of [DBVC06] in building and evaluating µCASPEr and, more notably, merging it with the
system for autonomic mobility support in 4G systems [VBS+05] — providing for an inte-
grated, autonomic, solution for secure mobile device operation and communication in 4G
environments.

189

7. CONCLUSIONS

190

Appendix A

µCASPER Policy Example

The purpose of this appendix is to present a simple µCASPEr policy in order to illustrate
the concepts presented throughout the thesis, especially in Chapter 5, and complement the
covered material. Furthermore, the example policy hints at complexities, or lack thereof,
involved in specifying a complete, functional, µCASPEr policy for a ubiquitous computing
device. For clarity reasons and space limitations we do not present individual policy rules in
Ponder policy specification language. The description of the policy that we provide instead is
straightforward to translate to Ponder following the analogy with the examples from Chapter
5. Having defined the policy, we provide three sets of TFFSTs corresponding to a selection of
data item containments as supported by the hardware and software platform of the example
device. The TFFSTs have been obtained by translation from Ponder as explained in Section
5.5.

A.1 Example Policy — Threat Model View

We present the example policy from two points of view: the threat model view — this
section, and the containment view — the following section. The threat model view of the
example policy is specified in the form of a table, split between the Figures A.1 and A.2. The
first column of the table contains description of contextual state leading to a information
exposure threat while the second specifies, for each of the threats, LoEs that should be
activated for any potentially exposed data item containment. To preserve space, policy for
each of the threats is specified relative to the policy as indicated by the third column — NET

in the majority of cases. The example device for which the policy is specified corresponds
to the containable relationship definition from Figure 6.1 (Section 6.2) and can be thought
of as a PDA.

In the example policy we account for 7 distinct threats, as follows:

• Outside Secure Perimeter (OSP): the device is outside the physically secure perimeter.

191

A. µCASPER POLICY EXAMPLE

Threat LoE(containment) Relative to

No Explicit Threat (NET) *.Max(*/data_item:sclass=S) N/A

.Max(/data_item:sclass=R)

Phy.Medium(*/storage/data_item:sclass=S)

Phy.Medium(*/wired:net=147.91.0.0/data_item:sclass=S)

Phy.Null(*/storage/crypto/data_item:sclass=S)

Phy.Null(*/wired:net=147.91.0.0/crypto/data_item:sclass=S)

Phy.Medium(*/storage:removable=TRUE/data_item:sclass=R)

Phy.Medium(*/comms/data_item:sclass=R)

Phy.Null(*/storage/crypto/data_item:sclass=R)

Phy.Null(*/storage:removable=FALSE/data_item:sclass=R)

Phy.Null(*/comms/crypto/data_item:sclass=R)

Phy.Null(*/wired:net=147.91.0.0/data_item:sclass=R)

Ema.Medium(*/comms/data_item:sclass=R)

Ema.Null(*/comms/crypto/data_item:sclass=R)

Visual.Null(*/display/*)

Visual.Null(*/input/*)

Audio.Null(*/input/*)

Audio.Null(*/audio/*)

Outside Secure Perimeter (OSP) *.Max(*/data_item:sclass=S) NET

Phy.Max(*/comms/data_item:sclass=R)

Phy.Medium(*/storage/data_item:sclass=R)

Phy.Null(*/comms/crypto:alg=AES,key=256/data_item:sclass=R)

Ema.Max(*/comms/data_item:sclass=R)

Ema.Null(*/comms/crypto:alg=AES,key=256/data_item:sclass=R)

Visual.Max(*/keyboard:typ=FULL/data_item:sclass=R)

Visual.Medium(*/display/gui_window:size=LARGE/data_item:sclass=R)

Audio.Max(*/keyboard:typ=FULL/data_item:sclass=R)

Audio.Max(*/audio:typ=SPEAKER/data_item:sclass=R)

Audio.Medium(*/audio:typ=HEADPHONE,vol=HIGH/data_item:sclass=R)

Owner Away (OA) Visual.Max(*/input/*/data_item:sclass=S) NET

Visual.Max(*/display/data_item:sclass=S)

Audio.Max(*/input/*/data_item:sclass=S)

Audio.Max(*/audio/data_item:sclass=S)

Phy.Medium(*/storage/data_item:sclass=R)

Visual.Max(*/input/*/data_item:sclass=R)

Visual.Max(*/display/data_item:sclass=R)

Audio.Max(*/input/*/data_item:sclass=R)

Audio.Max(*/audio/data_item:sclass=R)

UnAuthorized:Secure (UAS) Visual.Max(*/display/gui_window:size=LARGE/data_item:sclass=S) NET

Visual.Max(*/keyboard:typ=FULL/data_item:sclass=S)

Visual.Medium(*/display/gui_window:size=MEDIUM/data_item:sclass=S)

Audio.Max(*/audio:typ=SPEAKER/data_item:sclass=S)

Audio.Max(*/keyboard/data_item:sclass=S)

Audio.Medium(*/audio:typ=HEADPHONE,vol=HIGH/data_item:sclass=R)

Figure A.1: Example policy: threat model view, part 1.

192

Figures/AppendixA/Tables/per_threat_p1.eps

A.1 Example Policy — Threat Model View

UnAuthorized:Restricted(UAR) Visual.Max(*/keyboard:typ=FULL/data_item:sclass=R) UAR

Visual.High(*/display/gui_window:size=LARGE/data_item:sclass=R)

Visual.Medium(*/display/gui_window:size=MEDIUM/data_item:sclass=R)

Audio.Max(*/audio:typ=SPEAKER/data_item:sclass=R)

Audio.Max(*/keyboard.typ=FULL/data_item:sclass=R)

Audio.Medium(*/audio:typ=HEADPHONE,vol=HIGH/data_item:sclass=R)

OSP + OA *.Max(*/data_item:sclass=S) OSP

.Max(/data_item:sclass=R)

Phy.Null(*/storage/crypto:alg=AES,key=256/data_item:sclass=R)

OSP + UnAuthorized:Unknown (UAU) Visual.High(*/display/gui_window:size=LARGE/data_item:sclass=R) OSP

Visual.Medium(*/display/gui_window:size=MEDIUM/data_item:sclass=R)

Audio.Max(*/audio:typ=HEADPHONE,vol=HIGH/data_item:sclass=R)

Audio.Medium(*/audio:typ=HEADPHONE,vol=MEDIUM/data_item:sclass=R)

OSP + OA + UAU *.Max(*/data_item:sclass=S) NET

.Max(/data_item:sclass=R)

Figure A.2: Example policy: threat model view, part 2.

• Owner Away (OA): the physical proximity, or binary presence state, of the device’s
owner, or custodian, is below a threshold.

• UnAuthorized:Secure (UAS): an identifiable third party with a security clearance below
Secure is in the vicinity of the device.

• UnAuthorized:Restricted (UAR): in analogy to the UAS, for the Restricted security
class.

• OSP + OA: the device is outside the physically secure perimeter and the proximity of
the device’s owner is below the threshold.

• OSP + UnAutorized:Unknown (OSP + UAU): the device is outside the physically
secure perimeter and a third party is present.

• OSP + OA + UAU : the device is outside the physically secure perimeter, the owner
is away and presence of a third party is sensed.

Note that we assume that every person present within the secure perimeter can be identified.
If a person is not identifiable the threat associated with UAR contextual state applies —
assuming Restricted is the lowest information sensitivity class.

The entries in the second column are of the general form given by LoE(containment)

and denote the LoE to be activated for a particular data item containment. The LoE iden-
tifier is of the form ThreatType.Quantifier. The quantifier ranges between Null, Medium
and Max, where the Null value represents no significant exposure and Max denotes max-
imum exposure. The ⋆ character replacing the threat type in the LoE identifier replaces

193

Figures/AppendixA/Tables/per_threat_p2.eps

A. µCASPER POLICY EXAMPLE

all supported threat types — Phy (Physical), Audio, Ema (Emanation) and Visual. Data
item containments for which a LoE should be activated given a threat are defined using the
containment path expressions, as defined in Section 3.4. We use container attribute sclass

to denote security class of a target data item (S for Secret and R for Restricted). For ex-
ample, the containment expression mdev/storage:removable=FALSE/data item:sclass=S

matches data items of security class Secret (sclass=S), stored on non-removable storage
devices (removable=FALSE) of any mobile computing unit (mdev).

Note that the policy specified for the three contextual states in Figure A.2 is different from
concatenation of individual policies as specified for their contextual sub-states individually.
This is as, in general, more complex states imply more extensive threats — i.e. the sum is
more than its parts.

A.2 Example Policy — Containment View

While the figures A.1 and A.2 show threat model view of the complete example policy,
Figure A.3 illustrates a subset of the policy from the point of view of a selection of data
item containments. For each of the data item containments the table specifies the LoEs that
should be activated (the third row) for each of the known threats (the second row) as well
as a set of applicable alternative threat mitigation operations (the fourth row). The format
of the first three columns is as specified above. The mitigation operations applicable to each
of the threats, at the corresponding containments, are specified in terms of identifiers which
were chosen solely for illustration and are self-describing.

A.3 Example Policy — TFFST View

Having shown the high-level policy specification from two points of view, in this section
we present a selection of corresponding TFFSTs as obtained from the process of policy
translation (Section 5.5).

Figures A.4, A.5, A.6 and A.7 correspond to the first data item containment from the
Figure A.3 (mdev/storage:removable=FALSE/data item:sclass=S). Figure A.4 shows the
intermediate FST representation of contextual state to LoE mappings for the data item
containment. Figure A.5 shows the corresponding LoE to mitigation operation mapping.
The labels on the transitions are specified in terms of TF algebra 5.4: ata stands for “as
taut as” operator while tt stands for “touter than” operator. The composition of the two
intermediate TFFSTs is depicted in Figure A.6. In a real world application we expect that
a policy would include a TimeOver delay, as specified in Rule 4 of Section 5.4, and would
further be composed with the PingPoingConstraint policy rule specified as a constraint
Rule 5 in Section 5.4. For this case, the fully composed TFFST for the containment is given
in the Figure A.7.

194

A.3 Example Policy — TFFST View

Moving on to the sixth data item containment of the Figure A.3
(mdev/audio:typ=HEADPHONE,vol=HIGH/data item:scalss=R), Figures A.8, A.9 and A.10
represent the intermediate and the complete TFFSTs for the containment in an analogous
fashion as presented for the first data item containment above. The composition of the
final TFFST (Figure A.10) with the PingPongConstraint is not presented for simplicity
purposes.

Finally, Figure A.11 shows a complete TFFST, including the composition with the
TimeOver and PingPongConstraint policy rules, for the third data item containment from
Figure A.3. The intermediate stages to obtaining the complete TFFST are analogous to the
ones presented above. With respect to the example policy, the TFFST shown in the Figure
A.11 is the most complex one. As such we use it for the policy model overheads evaluation
in Section 6.3, Chapter 6.

195

A. µCASPER POLICY EXAMPLE

Containment Threat LoE Action

mdev/storage:removable=FALSE/data_item:sclass=S NET Phy.Medium {encrypt, destroy}

OSP Phy.Max {destroy}

OA Phy.Medium {encrypt, destroy}

UAS Phy.Medium {encrypt, destroy}

UAR Phy.Medium {encrypt, destroy}

OSP + UAU Phy.Max {destroy}

OSP + OA + UAU Phy.Max {destroy}

mdev/storage:removable=FALSE/data_item:sclass=R NET Phy.Null {}

OSP Phy.Medium {encrypt, destroy}

OA Phy.Medium {encrypt, destroy}

UAS Phy.Null {}

UAR Phy.Null {}

OSP + UAU Phy.Medium {encrypt, destroy}

OSP + OA + UAU Phy.Max {destroy}

mdev/display/gui_window:size=LARGE/data_item:sclass=R NET Visual.Null {}

OSP Visual.Medium {sshrink, hide, blank}

OA Visual.Max {hide, blank}

UAS Visual.Null {}

UAR Visual.High {dblshrink, hide, blank}

OSP + UAU Visual.High {dblshrink, hide, blank}

OSP + OA + UAU Visual.Max {hide, blank}

mdev/keyboard:typ=THUMB/data_item:sclass=R NET Visual.Null, Audio.Null {}

OSP Visual.Null, Audio.Null {}

OA Visual.Max, Audio.Max {block}

UAS Visual.Null, Audio.Null {}

UAR Visual.Null, Audio.Null {}

OSP + UAU Visual.Null, Audio.Null {}

OSP + OA + UAU Visual.Max, Audio.Max {block}

mdev/keyboard:typ=FULL/data_item:sclass=R NET Visual.Null, Audio.Null {}

OSP Visual.Max, Audio.Max {alternative, block}

OA Visual.Max, Audio.Max {alternative, block}

UAS Visual.Null, Audio.Null {}

UAR Visual.Max, Audio.Max {alternative, block}

OSP + UAU Visual.Max, Audio.Max {alternative, block}

OSP + OA + UAU Visual.Max, Audio.Max {alternative, block}

mdev/audio:typ=HEADPHONE,vol=HIGH/data_item:sclass=R NET Audio.Null {}

OSP Audio.Medium {vol_down}

OA Audio.Max {block}

UAS Audio.Null {}

UAR Audio.Medium {vol_down}

OSP + UAU Audio.Medium {vol_down}

OSP + OA + UAU Audio.Max {block}

mdev/audio:typ=SPEAKER,vol=MEDIUM/data_item:sclass=S NET Audio.Null {}

OSP Audio.Max {headphone, block}

OA Audio.Max {headphone, block}

UAS Audio.Max {headphone, block}

UAR Audio.Max {headphone, block}

OSP + UAU Audio.Max {headphone, block}

OSP + OA + UAU Audio.Max {headphone, block}

Figure A.3: Example policy: partial data item containment view.

196

Figures/AppendixA/Tables/per_containment.eps

A.3 Example Policy — TFFST View

0

1

net/pmed

oa/pmed

uas/pmed

uar/pmed

2

osp/pmax
3

uau/epsilon
4

oa/epsilon

Figure A.4: Containment 1: contextual state - LoE mapping TFFST.

10

pmed and not pmax/encrypt ata destroy

pmax and not pmed/destroy

pmed tt pmax/(encrypt ata destroy) tt destroy

pmax tt pmed/destroy tt (encrypt ata destroy)

pmax ata pmed/encrypt ata destroy

Figure A.5: Containment 1: LoE - mitigation operation mapping TFFST.

197

Figures/AppendixA/Containment1/containment1_CS-LoE.ps
Figures/AppendixA/Containment1/containment1_LoE-act.ps

A. µCASPER POLICY EXAMPLE

0

1

net/encrypt ata destroy

oa/encrypt ata destroy

uas/encrypt ata destroy

uar/encrypt ata destroy

2
osp/destroy

3
uau/epsilon

4
oa/epsilon

Figure A.6: Containment 1: contextual state - mitigation operation TFFST.

0

4

<net>/<net> 9

<oa>/<oa> <uar>/<uar> <uas>/<uas>

10

<osp>/<osp>

1

2

epsilon/encrypt ata destroy

3

epsilon/destroy

to/epsilon

5

<net>/<net>

6

<?-to>/<?-to>

7

<?-to-net>/<?-to-net>

to/epsilon

<?-to-net>/<?-to-net>

8

<net>/<net> <?-to>/<?-to>

<?-to>/<?-to>

<net>/<net>

to/epsilon

<?-to-net>/<?-to-net>

<net>/<net>

to/epsilon

<?-to>/<?-to>

<to>/<to>

<net>/<net>

<?-to-net>/<?-to-net>

17

<uau>/<uau>

11

to/epsilon

12

<net>/<net>

13

<?-to>/<?-to>

14

<?-to-net>/<?-to-net>

to/epsilon

<?-to-net>/<?-to-net>

15

<net>/<net> <?-to>/<?-to>

<?-to>/<?-to>

<net>/<net>

to/epsilon

<?-to-net>/<?-to-net>

<net>/<net>

to/epsilon

<?-to>/<?-to>

16

<to>/<to>

<net>/<net>

<?-to-net>/<?-to-net>

<oa>/<oa>

Figure A.7: Containment 1: full policy TFFST.

198

Figures/AppendixA/Containment1/containment1_composition.ps
Figures/AppendixA/Containment1/containment1_full_to+pp.ps

A.3 Example Policy — TFFST View

0

1

net/anull

oa/amax

uas/anull

uar/amed

2

osp/epsilon 3

5

epsilon/amed

uau/amed

4

oa/amax uau/epsilon

Figure A.8: Containment 6: contextual state - LoE mapping TFFST.

10

anull/epsilon

amed/vdown

amax/block

Figure A.9: Containment 6: LoE - mitigation operation mapping TFFST.

199

Figures/AppendixA/Containment6/containment6_CS-LoE.ps
Figures/AppendixA/Containment6/containment6_LoE-act.ps

A. µCASPER POLICY EXAMPLE

0

1

net/epsilon

oa/block

uas/epsilon

uar/vdown

2

osp/epsilon 3

5

epsilon/vdown

uau/vdown

4

oa/block uau/epsilon

Figure A.10: Containment 6: contextual state - mitigation operation TFFST.

200

Figures/AppendixA/Containment6/containment6_composition.ps

A
.3

E
x
a
m

p
le

P
o
lic

y
—

T
F
F
S
T

V
ie

w

Figure A.11: Containment 3: full policy TFFST.

201

Figures/AppendixA/Containment3/containment3_full_to+pp.eps

A. µCASPER POLICY EXAMPLE

202

References

[AB00] J. F. Anderson and R. L. Brown. Risk and insurrance. Study Notes, Society
of Actuaries, (1-21-00), 2000. (Ref: p. 86.)

[ABC+98] R. Anderson, F. Bergadano, B. Crispo, J.-H. Lee, C. Manifavas, and R. Need-
ham. A new family of authentication protocols. SIGOPS Operating Systems
Review , 32(4):9–20, 1998. (Ref: p. 22.)

[ADB+99] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, and P. Steggles.
Towards a better understanding of context and context-awareness. In Proceed-
ings of the 1st International Symposium on Handheld and Ubiquitous Com-
putig (HUC), volume 1707 of Lecture Notes in Computer Science, pp. 304–307.
September 1999. (Ref: p. 15, 16.)

[AF03] M. Abadi and C. Fournet. Access control based on execution history. In
Proceedings of the Network and Distributed System Security Symposium, pp.
107–121. 2003. (Ref: p. 33.)

[Age82] N. S. Agency. Tempest fundamentals. Technical Report NACSIM 5000, Na-
tional Security Agency, 1982. (Ref: p. 74.)

[AHK+91] M. Abrams, J. Heaney, O. King, L. LaPadula, M. Lazear, and I. Olson. Gener-
alized framework for access control: Toward prototyping the ORGCON policy.
In Proceedings of the 14th NIST-NCSC National Computer Security Confer-
ence, pp. 257–266. 1991. (Ref: p. 28.)

[Amo94] E. G. Amoroso. Fundamentals of Computer Security Technology . Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1994. (Ref: p. 26.)

[AMRCM03] J. Al-Muhtadi, A. Ranganathan, R. Campbell, and M. D. Mickunas. Cerberus:
A context-aware security scheme for smart spaces. In Proceedings of the 1st
IEEE International Conference on Pervasive Computing and Communications
(PERCOM), p. 489. 2003. (Ref: p. 39.)

203

REFERENCES

[And72] J. Anderson. Computer security technology planning study. Technical Report
ESD-TR-73-51, Electronic System Division/AFSC, Hanscom AFB, Bedford,
MA 01731, October 1972. [NTIS AD-758 206]. (Ref: p. 29, 31, 40.)

[And93] R. Anderson. Why cryptosystems fail. In Proceedings of the 1st ACM Confer-
ence on Computer and Communications Security (CCS), pp. 215–227. 1993.
(Ref: p. 7.)

[And01] R. Anderson. Security Engineering: A Guide to Building Dependable Dis-
tributed Systems. John Wiley & Sons, Inc., 2001. (Ref: p. 4, 22, 23, 24, 25,
26, 31, 33, 170, 180.)

[AS99] A. Adams and M. A. Sasse. Users are not the enemy. Communications of the
ACM , 42(12):40–46, 1999. (Ref: p. 4.)

[Ass] D. C. C. Association. DVD-CCS. Website at http://www.dvdcca.org. (Ref:
p. 29.)

[AVTO03] P. G. Argyroudis, R. Verma, H. Tewari, and D. O’Mahony. Performance anal-
ysis of cryptographic protocols on handheld devices. Technical Report TCD-
CS-2003-46, Trinity College Dublin Computer Science Department, November
2003. (Ref: p. 22, 169.)

[Bar97] J. Barkley. Comparing simple role based access control models and access
control lists. In Proceedings of the 2nd ACM Workshop on Role-Based Access
Control , pp. 127–132. ACM Press, New York, NY, USA, 1997. (Ref: p. 37.)

[BB94] T. Benkart and D. Bitzer. Bfe applicabilityto lan environments. In Proceed-
ings of the 17th National Computer Security Conference, pp. 227–236. NIST,
October 1994. (Ref: p. 26.)

[BBF01] E. Bertino, P. A. Bonatti, and E. Ferrari. Trbac: A temporal role-based ac-
cess control model. ACM Transactions on Information and Systems Security ,
4(3):191–233, 2001. (Ref: p. 38.)

[BCDP05] E. Bertino, B. Catania, M. L. Damiani, and P. Perlasca. GEO-RBAC: a
spatially aware rbac. In Proceedings of the 10th ACM Symposium on Access
Control Models and Technologies (SACMAT), pp. 29–37. ACM Press, New
York, NY, USA, 2005. (Ref: p. 39.)

[BDGS04] D. Balfanz, G. Durfee, R. E. Grinter, and D. Smetters. In search of usable
security: Five lessons from the field. IEEE Security & Privacy , 2(5):19–24,
2004. (Ref: p. 7.)

204

REFERENCES

[BEM03] A. Belokosztolszki, D. M. Eyers, and K. Moody. Policy contexts: Controlling
information flow in parameterised rbac. In Proceedings of the 4th International
Workshop on Policies for Distributed Systems and Networks (POLICY), pp.
99–110. 2003. (Ref: p. 38, 177.)

[BF85] W. E. Boebert and C. T. Ferguson. A partial solution to the discretionary
trojan horse problem. In Proceedings of the 8th National Computer Security
Conference, pp. 141–144. 1985. (Ref: p. 35.)

[Bib77] K. J. Biba. Integrity considerations for secure computer systems. Technical
Report TR-3153, MITRE Corporation, Bedford, Mass., 1977. (Ref: p. 34.)

[BL73] D. E. Bell and L. LaPadula. Secure computer systems: Mathematical founda-
tions. Technical Report Mitre Report ESD-TR-73-278, MITRE Corporation,
April 1973. (Ref: p. 24, 34.)

[Bla93] M. Blaze. A cryptographic file system for unix. In Proceedings of the 1st
ACM Conference on Computer and Communications Security (CCS), pp. 9–
16. ACM Press, New York, NY, USA, 1993. (Ref: p. 41.)

[BMY02] J. Bacon, K. Moody, and W. Yao. A model of OASIS role-based access control
and its support for active security. ACM Transactions on Information and
System Security , 5(4):492–540, November 2002. (Ref: p. 38, 39, 177, 180.)

[BN89] D. F. C. Brewer and M. J. Nash. The chinese wall security policy. In Pro-
ceedings of the IEEE Symposium on Security and Privacy , pp. 206–214. 1989.
(Ref: p. 35.)

[BPB+04] D. E. Bakken, R. Parameswaran, D. M. Blough, A. A. Franz, and T. J. Palmer.
Data obfuscation: Anonymity and desensitization of usable data sets. IEEE
Security and Privacy , 2(6):34–41, November/December 2004. (Ref: p. 72, 83.)

[BPWC90] J. L. Berger, J. Picciotto, J. P. L. Woodward, and P. T. Cummings. Com-
partmented mode workstation: Prototype highlights. IEEE Transactions on
Software Engineering , 16(6):608–618, 1990. (Ref: p. 26.)

[BS04] J. Baliosian and J. Serrat. Finite state transducers for policy evaluation and
conflict resolution. In Proceedings of the 5th IEEE International Workshop on
Policies for Distributed Systems and Networks (POLICY), pp. 250–260. 2004.
(Ref: p. v, 119, 129, 130, 133, 139, 150, 162, 163, 168.)

[BVFS98] E. Bertino, S. C. Vimercati, E. Ferrari, and P. Samarati. Exception-based
information flow control in object-oriented systems. ACM Transactions on
Information and System Secururity , 1(1):26–65, 1998. (Ref: p. 35.)

205

REFERENCES

[Car99] L. Cardelli. Semistructured computation. In Proceedings of the 7th Inter-
national Workshop on Database Programming Languages: Research Issues in
Structured and Semistructured Database Programming , pp. 1–16. September
1999. (Ref: p. 63.)

[cc:a] Common criteria: An introduction. Available at
http://www.commoncriteriaportal.org/public/files/ccintroduction.pdf. (Ref:
p. 175.)

[cc:b] Common criteria portal. Website at http://www.commoncriteriaportal.org.
(Ref: p. 41, 175, 176.)

[cc:05a] The common criteria for information technology security evaluation:
Security assurance requirements, August 2005. Available online at
http://www.commoncriteriaportal.org/public/files/ccpart3v2.3.pdf. (Ref: p.
175.)

[cc:05b] The common criteria for information technology security evaluation:
Security functional requirements, August 2005. Available online at
http://www.commoncriteriaportal.org/public/files/ccpart2v2.3.pdf. (Ref: p.
175, 176.)

[CFG+87] P. Cummings, D. Fullan, M. Goldstien, M. Gosse, J. Woodward, and J. Wynn.
Compartmented model workstation: Results through prototyping. In Proceed-
ings of the 1987 IEEE Symposium of Security and Privacy , pp. 27–29. April
1987. (Ref: p. 26.)

[CFMS94] S. Castano, M. G. Fugini, G. Martella, and P. Samarati. Database Security .
ACM Press and Addison-Wesley Publishing Co., New York, NY, USA, 1994.
(Ref: p. 32.)

[CFZA02] M. J. Covington, P. Fogla, Z. Zhan, and M. Ahamad. A context-aware security
architecture for emerging applications. In Proceedings of the 18th Annual Com-
puter Security Applications Conference (ACSAC), pp. 249–260. 2002. (Ref: p.
39.)

[CG98] L. Cardelli and A. D. Gordon. Mobile ambients. In Proceedings of the Proceed-
ings of the First International Conference on Foundations of Software Science
and Computation Structure, pp. 140–155. 1998. (Ref: p. 42, 60, 63.)

[CG00] L. Cardelli and A. D. Gordon. Anytime, anywhere modal logics for mobile
ambients. In Proceedings of the 27th ACM Symposium on Principles of Pro-
gramming Languages (POPL), pp. 365–377. 2000. (Ref: p. 42, 43, 60.)

206

REFERENCES

[Cha02] D. Chalmers. Contextual Mediation to Support Ubiquitous Computing . Ph.D.
thesis, Department of Computing, Imperial College London, 2002. (Ref: p. 17,
72.)

[Cha03] M. Chalmers. Seamful design and ubicomp infrastructure. In Proceedings of
the UbiComp 2003 At the Crossroads Workshop: The Interaction of HCI and
Systems Issues in UbiComp. 2003. (Ref: p. 17, 21.)

[CK00] G. Chen and D. Kotz. A survey of context-aware mobile computing research.
Technical Report TR2000-381, Dept. of Computer Science, Dartmouth Col-
lege, November 2000. (Ref: p. 15, 16, 17.)

[CLN03] J. Chomicki, J. Lobo, and S. Naqvi. Conflict resolution using logic program-
ming. IEEE Transactions on Knowledge and Data Engineering , 15(1):245 –
250, Jan/Feb 2003. (Ref: p. 132.)

[CLS+01] M. J. Covington, W. Long, S. Srinivasan, A. K. Dev, M. Ahmad, and
G. Abowd. Securing context-aware applications using environmental roles.
In Proceedings of the 6th ACM Symposium on Access Controls Models and
Technologies (SACMAT), pp. 10–20. 2001. (Ref: p. 39.)

[CM03] F. Cuppens and A. Miege. Modelling contexts in the or-bac model. In Proceed-
ings of the 19th Annual Computer Security Applications Conference (ACSAC),
p. 416. IEEE Computer Society, Washington, DC, USA, 2003. (Ref: p. 39,
177.)

[CMA00] M. J. Covington, M. J. Moyer, and M. Ahamad. Generalized role-based ac-
cess control for securing future applications. In Proceedings of the National
Information Systems Security Conference (NISSC). October 2000. (Ref: p.
39.)

[CN02] M. Corner and B. D. Noble. Zero-interaction authentication. In Proceedings of
the 8th ACM Conference on Mobile Computing and Networking (MobiCom),
pp. 1–11. 2002. (Ref: p. 41.)

[CN03] M. Corner and B. D. Noble. Protecting applications with transient authenti-
cation. In Proceedings of the 2st Inernational Conference on Mobile Systems,
Applications, and Services (MobiSys), pp. 57–70. 2003. (Ref: p. 41, 189.)

[CSD01] D. Chalmers, M. Sloman, and N. Dulay. Map adaptation for users of mobile
systems. In Proceedings of the 10th International World Wide Web Conference
(WWW). 2001. (Ref: p. 72.)

207

REFERENCES

[CSG+03] V. Cahill, B. Shand, E. Gray, C. Bryce, N. Dimmock, A. Twigg, J. Bacon,
C. English, W. Wagealla, S. Terzis, P. Nicon, G. di Marzo Serugendo, J.-
M. Seigneur, M. Carbone, K. Krukow, C. Jensen, Y. Chen, and M. Nielsen.
Using trust for secure collaboration in uncertain environments. IEEE Pervasive
Computing , 2(3):52–61, August 2003. (Ref: p. 86.)

[CSRL01] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction to
Algorithms. McGraw-Hill Higher Education, 2001. (Ref: p. 105, 158.)

[CVN05] G. Castagna, J. Vitek, and F. Z. Nardelli. The seal calculus. Information and
Compuation, 201(1):1 – 54, August 2005. (Ref: p. 42.)

[DA00] A. K. Dey and G. D. Abowd. Cybreminder: A context-aware system for
supporting reminders. In Proceedings of the 2nd international symposium on
Handheld and Ubiquitous Computing (HUC), pp. 172–186. Springer-Verlag,
London, UK, 2000. (Ref: p. 47.)

[Dat03] C. J. Date. An Introduction to Database Systems. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2003. 8th Edition. (Ref: p. 33.)

[DBE+04] N. Dimmock, A. Belokosztolszki, D. Eyers, J. Bacon, and K. Moody. Using
trust and risk in role-based access control policies. In The ninth ACM sym-
posium on Access control models and technologies, pp. 156–162. ACM Press,
New York, NY, USA, 2004. (Ref: p. 177.)

[DBVC06] B. Dragovic, J. Baliosian, P. Vidales, and J. Crowcroft. Autonomic system for
context-adaptive information security in ubiquitous computing environments,
April 2006. Submitted for publication in Elsevier Journal on Pervasive and
Mobile Computing. (Ref: p. v, 124, 189.)

[DC04] B. Dragovic and J. Crowcroft. Information exposure control through data
manipulation for ubiquitous computing. In Proceedings of the New Security
Paradigms Workshop (NSPW), pp. 57–67. September 2004. (Ref: p. 2.)

[DD77] D. E. Denning and P. J. Denning. Certification of programs for secure infor-
mation flow. Communications of ACM , 20(7):504–513, 1977. (Ref: p. 5, 23,
26.)

[DDLS01] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The Ponder policy speci-
fication language. In Proceedings of the 2nd IEEE Workshop on Policies for
Distributed Systems and Networks, pp. 18–39. January 2001. (Ref: p. 124, 126,
127, 131.)

208

REFERENCES

[Den76] D. E. Denning. A lattice model of secure information flow. In Communications
of the ACM , pp. 236–243. May 1976. (Ref: p. 26, 31, 35, 98.)

[Dey01] A. K. Dey. Understanding and using context. Personal and Ubiquitous Com-
puting , 5(1):4–7, 2001. (Ref: p. 15.)

[Dim03] N. Dimmock. How much is ’enough’? Risk in trust-based access control. In
IEEE Intl Workshop on Enabling Technologies: Infrastructure for Collabora-
tive Enterprises: Enterprise Security . 2003. (Ref: p. 86.)

[EAC98] G. Edjlali, A. Acharya, and V. Chaudhary. History-based access control for
mobile code. In Proceedings of the 5th ACM Conference on Computer and
Communications Security (CCS), pp. 38–48. ACM Press, New York, NY, USA,
1998. (Ref: p. 33.)

[EMO+94] J. Epstein, J. McHugh, H. Orman, R. Pascale, A. Marmor-Squires, B. Danner,
C. Martin, M. Branstad, G. Denson, and D. Rothnie. A high assurance window
system prototype. Journal of Computer Security , 2(2):159–190, 1994. (Ref: p.
26.)

[ER99] M. Egenhofer and A. Rodriguez. Relation algebras over containers and sur-
faces: An ontological study of a room space. Spatial Cognition and Computa-
tion, 1(2):155–180, 1999. (Ref: p. 42.)

[FG96] C. Fournet and G. Gonthier. The reflexive chemical abstract machine and
the join-calculus. In 23rd ACM Symposium on Principles of Programming
Languages . 1996. (Ref: p. 42.)

[FK92] D. Ferraiolo and R. Kuhn. Role-based access control. In Proceedings of the
15th NIST-NCSC National Computer Security Conference, pp. 13–16. 1992.
(Ref: p. 35, 36, 37, 177.)

[FKG+02] R. Fredriksen, M. Kristiansen, B. A. Gran, K. Stølen, T. A. Opperud, and
T. Dimitrakos. The coras framework for a model-based risk management pro-
cess. In Proceedings of the 21st Intlernational Conference on Computer Safety,
Reliability and Security , volume 2434 of Lecture Notes in Computer Science,
pp. 94–105. 2002. (Ref: p. 88, 188.)

[FMSS03] G. Ferrari, C. Montagnero, L. Semini, and S. Semprini. The MOBadtl model
and method to design network aware applications. Technical Report TR0308,
Computer Science Dept., University of Pisa, 2003. (Ref: p. 42.)

[Fra83] L. J. Fraim. SCOMP: A solution to the multilevel security problem. IEEE
Computer , 16(7):26–34, July 1983. (Ref: p. 25.)

209

REFERENCES

[FSG+01] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chandramouli.
Proposed nist standard for role-based access control. ACM Transactions on
Information and Systems Security , 4(3):224–274, 2001. (Ref: p. 36.)

[GG01] V. Gupta and S. Gupta. Securing the wireless internet. IEEE Communications
Magazine, 39(12):68–74, 2001. (Ref: p. 169.)

[Gli83] V. D. Gligor. A note on the denial-of-service problem. In Proceedings of IEEE
Symposium on Security and Privacy , pp. 5101–5111. 1983. (Ref: p. 23.)

[GMPT01] C. K. Georgiadis, I. Mavridis, G. Pangalos, and R. K. Thomas. Flexible team-
based access control using contexts. In Proceedings of the 6th ACM Sympo-
sium on Access Control Models and Technologies (SACMAT), pp. 21–27. ACM
Press, New York, NY, USA, 2001. (Ref: p. 38, 39.)

[Gro] T. C. Group. Trusted computing group. Website at
https://www.trustedcomputinggroup.org/home. (Ref: p. 25, 28, 29.)

[Gro05] T. C. Group. Whitepaper: Embedded systems and trusted computing security,
September 2005. Available from https://www.trustedcomputinggroup.org/.
(Ref: p. 29.)

[HHS+99] A. Harter, A. Hopper, P. Steggles, A. Ward, and P. Webster. The anatomy
of a context-aware application. In Proceedings of the 5th annual ACM/IEEE
Conference on Mobile Computing and Networking , pp. 59–68. 1999. (Ref: p.
15, 51.)

[HI04] K. Henricksen and J. Indulska. A software engineering framework for context-
aware pervasive computing. In Proceedings of the Second IEEE International
Conference on Pervasive Computing and Communications (PerCom), pp. 77–
86. IEEE Computer Society, Washington, DC, USA, 2004. (Ref: p. 16, 47.)

[HIR02] K. Henricksen, J. Indulska, and A. Rakotonirainy. Modeling context informa-
tion in pervasive computing systems. In Proceedings or the 1st International
Conference on Pervasive Computing (PerCom), pp. 167–180. Springer-Verlag,
2002. (Ref: p. 16.)

[HL98] A. Heuer and A. Lubinski. Data reduction - an adaptation technique for mo-
bile environments. In Interactive Apllications of Mobile Computing (IMC’98).
1998. (Ref: p. 72.)

[HO03a] F. Hansen and V. Oleshchuk. Spatial role-based access control model for wire-
less networks. In Proceedings of the IEEE Vehicular Technology Conference.
Orlando, USA, October 2003. (Ref: p. 39.)

210

REFERENCES

[HO03b] F. Hansen and V. Oleshchuk. SRBAC: A spatial role-based access control
model for mobile systems. In Proceedings of the Nordic Workshop on Secure
IT Systems (NORDSEC), pp. 129–141. Gjvik, Norway, October 2003. (Ref:
p. 39.)

[HRU75] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman. On protection in operat-
ing systems. In Proceedings of the ACM Symposium on Operating Systems
Principles (SOSP), pp. 14–24. 1975. (Ref: p. 25, 32.)

[HRU76] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman. Protection in operating
systems. Communications of the ACM , 19(8):461–471, 1976. (Ref: p. 25, 32.)

[HSK04] M. Hazas, J. Scott, and J. Krumm. Location-aware computing comes of age.
IEEE Computer , 37(2):95–97, February 2004. (Ref: p. 15, 154.)

[Hub94] G. Huber. CMW introduction. ACM Special Interest Group on Security, Audit
and Control (SIGSAC) Review , 12(4):6–10, October 1994. (Ref: p. 26.)

[HZ04] A. Hohl and A. Zugenmaier. Safeguarding personal data with DRM in perva-
sive computing. In Proceedings of the 1st Workshop on Security and Privacy
at the Conference on Pervasive Computing , volume 780 of The International
Series in Engineering and Computer Science. Springer, April 2004. (Ref: p.
28.)

[IBM01] IBM Research. Autonomic Computing: IBM’s Perspective on the State of
Information Technology, October 2001. (Ref: p. 14, 47, 82.)

[JBLG05] J. Joshi, E. Bertino, U. Latif, and A. Ghafoor. A generalized temporal role-
based access control model. IEEE Transactions on Knowledge and Data En-
gineering , 17(1):4–23, 2005. (Ref: p. 38.)

[KA98] M. G. Kuhn and R. J. Anderson. Soft tempest: Hidden data transmission
using electromagnetic emanations. In Proceedings of the 2nd International
Workshop on Information Hiding , pp. 124–142. 1998. (Ref: p. 5, 74.)

[Kar87] P. A. Karger. Limiting the damage potential of discretionary trojan horses. In
Proceedings of the 1987 IEEE Symposium on Security and Privacy , pp. 32–37.
1987. (Ref: p. 35.)

[KC03] J. O. Kephart and D. M. Chess. The vision of autonomic computing. Com-
puter , 36(1):41–50, 2003. (Ref: p. 14.)

211

REFERENCES

[KFJ03] L. Kagal, T. Finin, and A. Joshi. A policy language for a pervasive computing
environment. In Proceedings of the 4th International IEEE Workshop on Poli-
cies for Distributed Systems and Networks (POLICY), pp. 63–76. 2003. (Ref:
p. 41, 126.)

[KK02] L. Korba and S. Kenny. Towards meeting the privacy challenge: Adapting
DRM. In Proceedings of the Digital Rights Management Workshop, pp. 118–
136. 2002. (Ref: p. 28.)

[KM93] M. H. Kang and I. S. Moskowitz. A pump for rapid, reliable, secure com-
munication. In Proceedings of the 1st ACM Conference on Computer and
Communications Security (CCS), pp. 119–129. ACM Press, New York, NY,
USA, 1993. (Ref: p. 26.)

[Kni04] F. H. Knight. Risk, Uncertainty and Profit . Houghton Mifflin Company,
September 2004. (Ref: p. 86.)

[Kuh05] M. G. Kuhn. Security limits for compromising emanations. In Workshop on
Cryptographic Hardware and Embedded Systems (CHES), pp. 265–279. 2005.
(Ref: p. 5, 74.)

[Lam74] B. W. Lampson. Protection. ACM SIGOPS Operating Systems Review ,
8(1):18–24, 1974. (Ref: p. 32.)

[Lan02] M. Langheinrich. A privacy awareness system for ubiquitous computing envi-
ronments. In In Proceedings of the 4th International Conference on Ubiquitous
Computing (UbiComp), pp. 237–245. 2002. (Ref: p. 28.)

[LCC+75] R. Levin, E. Cohen, W. Corwin, F. Pollack, and W. Wulf. Policy/mechanism
separation in hydra. In Proceedings of the 5th ACM Symposium on Operating
Systems Principles (SOSP), pp. 132–140. ACM Press, New York, NY, USA,
1975. (Ref: p. 47.)

[Lev95] N. G. Leveson. Software: System Safety and Computers, chapter 9. Addison-
Wesley, 1995. (Ref: p. 86.)

[LNSV02] S. Lange, A. Nonnengart, C. Stuble, and R. Vogt. Discretionary information
flow control (mu) protection profile, September 2002. Available online at
http://www.commoncriteriaportal.org/public/files/ppfiles/pp0008be.pdf.
(Ref: p. 176.)

[LY02] K. Lyytinen and Y. Yoo. Issues and challenges in ubiquitous computing. Com-
munications of the ACM , 45(12):62–65, December 2002. (Ref: p. 14.)

212

REFERENCES

[MCWG04] A. Mas-Colell, M. D. Whinston, and J. R. Green. Microeconomic Theory .
Oxford University Press Inc, USA, 2004. ISBN: 0195102681. (Ref: p. 80, 85.)

[MESW01] B. Moore, E. Ellesson, J. Strassner, and A. Westerinen. Policy core information
model. RFC(3060), IETF, February 2001. (Ref: p. 125.)

[MG04] M.Chalmers and A. Galani. Seamful interweaving: heterogeneity in the theory
and design of interactive systems. In Proceedings of the 2004 conference on
Designing interactive systems (DIS), pp. 243–252. ACM Press, New York, NY,
USA, 2004. (Ref: p. 17, 21.)

[Mica] S. Microsystems. J2se 1.5.0 security. Website at
http://java.sun.com/j2se/1.5.0/docs/guide/security/index.html. (Ref: p.
33.)

[Micb] S. Microsystems. Java. Website at http://java.sun.com. (Ref: p. 124.)

[Mil63] J. S. Mill. Utilitarianism. History of Economic Thought Books. McMaster
University Archive for the History of Economic Thought, 1863. Available at
http://ideas.repec.org/b/hay/hetboo/mill1863.html. (Ref: p. 80.)

[Mil99] R. Milner. Communicating and Mobile Systems: The Pi Calculus.. Cambridge
University Press, 1999. (Ref: p. 42.)

[ML97] A. C. Myers and B. Liskov. A decentralized model for information flow control.
In Proceedings of the 16th ACM Symposium on Operating Systems Principles
(SOSP), pp. 129–142. ACM Press, New York, NY, USA, 1997. (Ref: p. 26.)

[MMN90] C. D. McCollum, J. R. Messing, and L. Notargiacomo. Beyond the pale of
MAC and DAC-defining new forms of access control. In Proceedings of the
1990 IEEE Symposium on Security and Privacy , pp. 190–200. 1990. (Ref: p.
28.)

[Mos04] G. K. Mostefaoui. Towards a Conceptual and Software Framework for In-
tegrating Context-Based Security in Pervasive Environments . Ph.D. thesis,
Department of Informatics University of Fribourg and Lip 6 University Pierre
et Marie Curie (Paris VI), 2004. (Ref: p. 15.)

[MPB03] M. Mont, S. Pearson, and P. Bramhall. Towards accountable management of
identity and privacy: Sticky policies and enforceable tracing services. Technical
Report HPL-2003-49, HP Laboratories, 2003. (Ref: p. 28.)

213

REFERENCES

[MPR04] G. K. Mostefaoui and J. Pasquier-Rocha. Context-aware computing: A guide
for the pervasive compting community. In Proceedings of the IEEE/ACS In-
ternational Conference on Pervasive Services (ICPS), pp. 39–48. July 2004.
(Ref: p. 16.)

[Mye99] A. C. Myers. Jflow: practical mostly-static information flow control. In Pro-
ceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL), pp. 228–241. ACM Press, New York, NY,
USA, 1999. (Ref: p. 26.)

[NWET04] P. Nixon, W. Wagealla, C. English, and S. Terzis. Privacy, Security, and
Trust Issues in Smart Environments, chapter Smart Environments: Technol-
ogy, Protocols and Applications, pp. 220–240. Wiley, October 2004. (Ref: p.
19, 22.)

[oct] The operationally critical threat, asset and vulnerability evaluation (oc-
tave), carnegie mellon software engineering institute. Web site at
http://www.cert.org/octave. (Ref: p. 88, 188.)

[oD85] U. S. D. of Defense. Trusted computer system evaluation criteria. Technical
Report 5200.28, US Department of Defense, 1985. (Ref: p. 26.)

[oma03] OMA user agent profile (UAProf), May 2003. Website at
http://www.openmobilealliance.org/. (Ref: p. 142.)

[OSM00] S. Osborn, R. Sandhu, and Q. Munawer. Configuring role-based access control
to enforce mandatory and discretionary access control policies. ACM Trans-
actions on Information and Systems Security , 3(2):85–106, 2000. (Ref: p.
37.)

[Pas98] J. Pascoe. Adding generic contextual capabilities to wearable computers. In
ISWC ’98: Proceedings of the 2nd IEEE International Symposium on Wearable
Computers, p. 92. IEEE Computer Society, Washington, DC, USA, 1998. (Ref:
p. 15, 16, 17.)

[PKKJ04] A. Patwardhan, V. Korolev, L. Kagal, and A. Joshi. Enforcing policies in
pervasive environments. In Proceedings of the International Conference on
Mobile and Ubiquitous Systems: Networking and Services (Mobiquitous), pp.
299–308. 2004. (Ref: p. 41.)

[Poi] Pointsec. Company web site. Available at http://www.pointsec.com. (Ref: p.
41.)

214

REFERENCES

[Pon] Ponder. Policy research group. Website at http://www-
dse.doc.ic.ac.uk/Research/policies/ponder.shtml. (Ref: p. 124, 138.)

[Pro00] N. Provos. Encrypting virtual memory. In Proceedings of the USENIX Security
Symposium, pp. 35–44. 2000. (Ref: p. 41.)

[PS02a] J. Park and R. Sandhu. Originator control in usage control. In Proceedings
of the 3rd International Workshop on Policies for Distributed Systems and
Networks (POLICY), p. 60. IEEE Computer Society, Washington, DC, USA,
2002. (Ref: p. 28, 40.)

[PS02b] J. Park and R. Sandhu. Towards usage control models: beyond traditional
access control. In Proceedings of the 7th ACM Symposium on Access Control
Models and Technologies (SACMAT), pp. 57–64. ACM Press, New York, NY,
USA, 2002. (Ref: p. 39, 40.)

[PSS00] J. Park, R. S. Sandhu, and J. Schifalacqua. Security architectures for controlled
digital information dissemination. In Proceedings of the 16th Annual Computer
Security Applications Conference (ACSAC), p. 224. 2000. (Ref: p. 23, 27, 28,
30.)

[PW98] B. Pomeroy and S. Wiseman. Private desktops and shared store. In Proceedings
of the 14th Annual Computer Security Applications Conference (ACSAC), p.
190. December 1998. (Ref: p. 26.)

[RBKW91] F. Rabitti, E. Bertino, W. Kim, and D. Woelk. A model of authorization for
next-generation database systems. ACM Transactions on Database Systems,
16(1):88–131, 1991. (Ref: p. 33.)

[RE00] A. Rodriguez and M. Egenhofer. A comparison of inferences about containers
and surfaces in small-scale and large-scale spaces. Journal of Visual Languages
and Computing , 11(6):639–662, 2000. (Ref: p. 42.)

[RHR+01] M. Roman, C. K. Hess, A. Ranganathan, P. Madhavarapu, B. Borthakur,
P. Viswanathan, R. Cerqueira, R. H. Campbell, and M. D. Mickunas. GaiaOS:
An infrastructure for active spaces. Technical Report UIUCDCS-R-2001-2224,
University of Illinois at Urbana-Champaign, Champaign, IL, USA, 2001. (Ref:
p. 39.)

[RS97] E. Roche and Y. Schabes. Finite-state language processing. Technical report,
MIT Press, Cambridge, Massachusetts., 1997. (Ref: p. 129.)

[RSC92] J. Richardson, P. Schwarz, and L.-F. Cabrera. CACL: efficient fine-grained
protection for objects. In Proceedings of the Conference on Object-Oriented

215

REFERENCES

Programming Systems, Languages, and Applications (OOPSLA), pp. 263–275.
ACM Press, New York, NY, USA, 1992. (Ref: p. 33.)

[San92] R. S. Sandhu. The typed access matrix model. In Proceedings of the 1992 IEEE
Symposium on Security and Privacy , pp. 122–136. IEEE Computer Society,
Washington, DC, USA, 1992. (Ref: p. 32.)

[San93] R. S. Sandhu. Lattice-based access control models. IEEE Computer , 26(11):9–
19, November 1993. (Ref: p. 31, 34, 35.)

[San03] R. Sandhu. Good-enough security: Toward a pragmatic business-driven disci-
pline. IEEE Internet Computing , 7(1):66–68, 2003. (Ref: p. 7, 184.)

[Sas03] M. A. Sasse. Computer security: Anatomy of a usability disaster, and a plan
for recovery. In Proceedings of the 2003 Workshop on Human-Computer In-
teraction and Security Systems (CHI), pp. 40–46. 2003. (Ref: p. 7.)

[Sat02] M. Satynarayanan. A catalyst for mobile and ubiquitous computing. IEEE
Pervasive Computing Magazine, 1(1):2–5, January 2002. (Ref: p. 14.)

[SAW94] B. Schilit, N. Adams, and R. Want. Context-aware computing applications. In
Proceedings of the IEEE Workshop on Mobile Computing Systems and Appli-
cations (WMCSA), pp. 85–90. IEEE Computer Society Press, December 1994.
(Ref: p. 15, 16.)

[SBG99] A. Schmidt, M. Beigl, and H.-W. Gellersen. There is more to context than
location. Computers and Graphics, 23(6):893–901, 1999. (Ref: p. 15.)

[SBW95] O. Sibert, D. Bernstein, and D. V. Wie. The digibox: A self-protecting con-
tainer for information commerce. In Proceedings of the 1st USENIX Workshop
on Electronic Commerce, pp. 171–183. 1995. (Ref: p. 30, 40.)

[SC03] F. Stajano and J. Crowcroft. The butt of the iceberg: hidden security problems
of ubiquitous systems. pp. 91–101, 2003. (Ref: p. 2, 19, 21.)

[SCFY96] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based
access control models. IEEE Computer Magazine, 29(2):38–47, 1996. (Ref: p.
35, 36, 37, 177, 182.)

[Sch95a] W. N. Schilit. A System Architecture for Context Aware Mobile Computing .
Ph.D. thesis, Columbia University, 1995. (Ref: p. 15.)

[Sch95b] B. Schneier. Applied cryptography (2nd ed.): protocols, algorithms, and source
code in C . John Wiley & Sons, Inc., New York, NY, USA, 1995. (Ref: p. 22.)

216

REFERENCES

[SCR+99] S. Shekhar, S. Chawla, S. Ravada, S. Fetterer, and C. Liu. Spatial databases:
Accomplishments and research needs. IEEE Trans on Knowledge and Data
Engineering , 11(1):45–55, 1999. (Ref: p. 42.)

[SD92] H. Shen and P. Dewan. Access control for collaborative environments. In
Proceedings of the 1992 ACM Conference on Computer-Supported Cooperative
Work , pp. 51–58. ACM Press, New York, NY, USA, 1992. (Ref: p. 33.)

[SLP04] T. Strang and C. Linnhoff-Popien. A context modeling survey. In Proceedings
of the UbiComp Workshop on Advanced Context Modelling, Reasoning and
Management . 2004. (Ref: p. 16, 17.)

[SNC02] G. Sampemane, P. Naldurg, and R. H. Campbell. Access control for active
spaces. In Proceedings of the 18th Annual Computer Security Applications
Conference (ACSAC), p. 343. IEEE Computer Society, Washington, DC, USA,
2002. (Ref: p. 39.)

[SP03] R. Sandhu and J. Park. Usage control: A vision for next generation access
control. In Proceedings of the 2nd International Workshop on Mathematical
Methods, Models and Architectures for Computer Networks Security , pp. 17–
31. 2003. (Ref: p. 39, 40.)

[SSF99] J. S. Shapiro, J. M. Smith, and D. J. Farber. EROS: a fast capability system.
In Proceedings of the 17th ACM Symposium on Operating Systems Principles
(SOSP), pp. 170–185. ACM Press, New York, NY, USA, 1999. (Ref: p. 33.)

[ST94] R. S. Sandhu and R. K. Thomas. Conceptual foundations for a model of
task-based authorizations. In Proceedings of the 7th IEEE Computer Security
Foundations Workshop, pp. 66–79. 1994. (Ref: p. 38.)

[Sta02] F. Stajano. Security for Ubiquitous Computing . John Wiley and Sons, Febru-
ary 2002. (Ref: p. 19, 22, 23.)

[Sto81] A. Stoughton. Access flow: A protection model which integrates access control
and information flow. In Proceedings of the IEEE Symposium on Security and
Privacy , pp. 9–18. 1981. (Ref: p. 31, 35.)

[TC03] D. S. Tan and M. Czerwinski. Information voyeurism: Social impact of phys-
ically large displays on information privacy. In Proceedings of the 2003 Con-
ference on Human Factors in Computing Systems (CHI), pp. 748–749. April
2003. (Ref: p. 5, 74, 154, 161.)

[Ten00] D. Tennenhouse. Proactive computing. Communications of ACM , 43(5):43–
50, 2000. (Ref: p. 14.)

217

REFERENCES

[Tho97] R. K. Thomas. Team-based access control (TMAC): a primitive for applying
role-based access controls in collaborative environments. In Proceedings of the
2nd ACM Workshop on Role-Based Access Control , pp. 13–19. ACM Press,
New York, NY, USA, 1997. (Ref: p. 38.)

[TS93] R. K. Thomas and R. S. Sandhu. Towards a task-based paradigm for flexible
and adaptable access control in distributed applications. In Proceedings on
the 1992-1993 Workshop on New Security Paradigms (NSPW), pp. 138–142.
ACM Press, New York, NY, USA, 1993. (Ref: p. 38.)

[TS97] R. K. Thomas and R. S. Sandhu. Task-based authorization controls (TBAC): A
family of models for active and enterprise-oriented autorization management.
In DBSec, pp. 166–181. 1997. (Ref: p. 38, 177, 178, 180.)

[TS04a] R. K. Thomas and R. Sandhu. Models, protocols and architectures for se-
cure pervasive computing: Challenges and research directions. In 2nd IEEE
Annual Conference on Pervasive Computing and Communications Workshops
(PerCom), pp. 164–170. 2004. (Ref: p. 19, 20.)

[TS04b] R. K. Thomas and R. S. Sandhu. Towards a multi-dimensional characterization
of dissemination control. pp. 197–200. 2004. (Ref: p. 27.)

[VBS+05] P. Vidales, J. Baliosian, J. Serrat, G. Mapp, F. Stajano, and A. Hopper.
Autonomic system for mobility support in 4g networks. IEEE Journal on
Special Areas in Communications, 23(12):2288–2304, December 2005. (Ref: p.
v, 124, 189.)

[VGC01] P. Viswanathan, B. Gill, and R. Campbell. Security architecture in Gaia.
Technical Report UIUCDCS-R-2001-2215, University of Illinois at Urbana-
Champaign, Champaign, IL, USA, 2001. (Ref: p. 39.)

[VMK04] J. Von Neumann, O. Morgenstern, and H. W. Kuhn. Theory of Games and
Economic Behavior . Princeton University Press, 2004. ISBN: 0691119937.
(Ref: p. 80.)

[vNG01] G. van Noord and D. Gerdemann. Finite state transducers with predicates
and identities. Grammars, 4(3):263 – 286, December 2001. (Ref: p. 129.)

[w3c04] Composite capability/preference profiles (cc/pp): Structure and vocabularies
1.0, January 2004. Website at http://www.w3.org/TR/CCPP-struct-vocab/.
(Ref: p. 142.)

[Wei91] M. Weiser. The computer for the 21st century. Scientific American, 265(3):94–
104, September 1991. (Ref: p. 1, 14, 79, 82.)

218

REFERENCES

[WOR+74] K. G. Walter, W. Ogden, W. C. Rounds, F. T. Bradshaw, S. R. Ames, and
D. G. Sumaway. Primitive models for computer security. Technical Report
ESD-TR-4-117, Case Western Reserve University, 1974. (Ref: p. 35.)

[XML04] XML. eXtensible Markup Language, 2004. Website at
http://www.w3.org/XML. (Ref: p. 148.)

[YBAG00] J. Yan, A. Blackwell, R. Anderson, and A. Grant. The memorability and
security of passwords – some empirical results. Technical Report UCAM-CL-
TR-500, The Computer Laboratory, University of Cambridge, September 2000.
(Ref: p. 4.)

[YBAG04] J. Yan, A. Blackwell, R. Anderson, and A. Grant. Password memorability
and security: Empirical results. IEEE Security and Privacy , 2(5):25–31, 2004.
(Ref: p. 4.)

[Yee04] K.-P. Yee. Aligning security and usability. IEEE Security and Privacy , 2(5):48–
55, 2004. (Ref: p. 7.)

[Zal05] M. Zalewski. Cracking safes with thermal imaging. Online, 2005. Available
online at http://lcamtuf.coredump.cx/tsafe. (Ref: p. 6, 161.)

[Zim96] T. G. Zimmerman. Personal area networks: near-field intrabody communica-
tion. IBM Systems Journal , 35(3-4):609–617, 1996. (Ref: p. 66, 83.)

[ZP04] G. Zhang and M. Parashar. Context-aware dynamic access control for pervasive
applications. In Communication Networks and Distributed Systems Modeling
and Simulation Conference (CNDS), pp. 219–225. 2004. (Ref: p. 39.)

[ZZT05] L. Zhuang, F. Zhou, and J. Tygar. Keyboard acoustic emanations revisited. In
Proceedings of the 12th ACM Conference on Computer and Communications
Security (CCS). ACM, 2005. (Ref: p. 6, 161.)

219

	Acknowledgements
	Summary
	Declaration
	List of Publications
	Glossary
	1 Introduction
	1.1 Motivating Scenarios
	1.2 Information Exposure --- What to Watch Out for
	1.3 The Challenges
	1.4 Thesis Contribution
	1.5 Thesis Outline

	2 Background
	2.1 Chapter Overview
	2.2 Context and Context-Aware Computing
	2.2.1 Defining Context
	2.2.2 Context-Aware Computing

	2.3 Autonomic Computing
	2.4 Ubiquitous Computing and Security
	2.4.1 The Challenges
	2.4.2 The Security Properties

	2.5 Information Flow Control
	2.5.1 Classifications, Clearances and Security Labels
	2.5.2 The Foundations: Bell-LaPadula
	2.5.3 MLS System Examples
	2.5.4 The Lattice Model Formalisation and Extensions

	2.6 Information Dissemination Control
	2.6.1 Shapes of DCON
	2.6.2 DCON Architectures

	2.7 Access Control
	2.7.1 Discretionary Access Control
	2.7.2 Mandatory Access Control
	2.7.3 Role-Based Access Control
	2.7.4 Active Access Management
	2.7.5 Context-Aware Access Control and Architectures

	2.8 Information Usage Control
	2.9 Mobile Device Data Protection
	2.10 Modeling the World
	2.11 Summary

	3 Containers and Containment --- Modelling the World
	3.1 Chapter Overview
	3.2 Information Exposure: from Context to Contextual Effect Awareness
	3.2.1 What is a Contextual Effect?
	3.2.2 Why Explicit Contextual Effects Modelling?
	3.2.3 Contextual Effects Characterisation
	3.2.4 Information Exposure Threats as Contextual Effects
	3.2.5 Information Exposure Threats: The Probabilistic Nature
	3.2.6 Information Exposure Threat Characterisation

	3.3 Container - the Basic Building Block
	3.3.1 Motivating Example
	3.3.2 Container: The Definition
	3.3.3 Toward a Container Ontology

	3.4 Containment - the Model of the World
	3.4.1 The Model of the World: Containment Trees
	3.4.2 Containment Expressions
	3.4.3 State of the World
	3.4.4 Containment Path Expressions
	3.4.5 Model Maintenance - Realms and Authorities
	3.4.6 Model Update Operations

	3.5 Contextual Effect Propagation and its Consequences
	3.5.1 Contextual Effect Propagation
	3.5.2 Controlling Threat Propagation - Threat Mitigation Operations
	3.5.3 Information Exposure Threat Characterisation Revisited
	3.5.4 The Join Algebra

	3.6 Intensity Reduction Property
	3.6.1 IRP & the Modelling Granularity
	3.6.2 Container Fusion

	3.7 Summary

	4 Information Security vs. Utility: Balancing the SeeSaw
	4.1 Chapter Overview
	4.2 Information Utility
	4.2.1 What is Information Utility?
	4.2.2 The Aim - Balancing The SeeSaw
	4.2.3 Information Utility Factors
	4.2.4 Information Utility Measure

	4.3 Information Exposure: The Risk Perspective
	4.3.1 Risk vs. Information Exposure Degree
	4.3.2 Information Exposure Degree Significance Level

	4.4 Levels of Exposure
	4.4.1 Threat Mitigation Offset Range
	4.4.2 Level of Exposure - The Definition
	4.4.3 LoEs: Threat Specificness
	4.4.4 An Example and a Note on Transparency Functions
	4.4.5 LoEs: Information Sensitivity Classification Consequences
	4.4.6 LoEs Model

	4.5 Threat Mitigation: The LoE Way
	4.5.1 Action Impact as a Discrimination Criteria
	4.5.2 The Protective Cover
	4.5.3 Information Utility and Containment Configuration
	4.5.4 The 0-1 Knapsack Problem
	4.5.5 A Single Container Optimal Cover Determination
	4.5.6 The Realm-Wide Optimal Cover Determination
	4.5.7 Discussion

	4.6 Summary

	5 From CASPEr to CASPEr: Architecture & Policy Model
	5.1 Chapter Overview
	5.2 CASPEr Architecture Overview
	5.2.1 CASPEr Components

	5.3 CASPEr Architecture
	5.3.1 The Management Side
	5.3.2 The Client Side

	5.4 The Policy Model
	5.4.1 Ponder as a Deontic Policy Language
	5.4.2 Policy Specification
	5.4.3 An Evaluation Model Based on Finite State Transducers
	5.4.4 Modelling Policies with TFFSTs
	5.4.5 Per-Client Policy Structure

	5.5 CASPEr Operation
	5.5.1 Policy Specification and Generation
	5.5.2 Policy Translation
	5.5.3 Conflict Resolution
	5.5.4 Policy Deployment
	5.5.5 Policy Evaluation
	5.5.6 Dynamic Policy Conflict Resolution - TF Computation
	5.5.7 Policy Enforcement

	5.6 CASPEr Data Model: An Outline
	5.6.1 Requirements and Implications
	5.6.2 Data Layout Specification
	5.6.3 Storage Subsystem Architecture

	5.7 Summary

	6 Discussion and Evaluation
	6.1 Chapter Overview
	6.2 CASPEr Discussion
	6.2.1 A Comment on LoE Modelling Granularity
	6.2.2 Containment Modelling Size Overheads
	6.2.3 Computational Overheads
	6.2.4 Modelling Communications Channels
	6.2.5 Modelling Input Devices

	6.3 CASPEr Evaluation
	6.3.1 CASPEr Client Side Overheads: An Overview
	6.3.2 Policy Size as a Inhibiting Factor
	6.3.3 Policy Evaluation Complexities
	6.3.4 Summary

	6.4 OCD Algorithm Generalisation and Evaluation
	6.4.1 Constraints on Threat Mitigation Operation Composition
	6.4.2 Termination Analysis
	6.4.3 Comments on Complexity: Theory and Practise

	6.5 Qualitative Analysis and Comparison
	6.5.1 Common Criteria and CASPEr
	6.5.2 Qualitative Comparison
	6.5.3 Visualising CASPEr in the Big Picture
	6.5.4 Summary - Comments on CASPEr Uniqueness

	7 Conclusions
	7.1 Thesis Summary
	7.2 Comments on the Future Research

	A CASPER Policy Example
	A.1 Example Policy --- Threat Model View
	A.2 Example Policy --- Containment View
	A.3 Example Policy --- TFFST View

	References

