Relations in Concurrency
Invited talk (corrected version)

Glynn Winskel, University of Cambridge Computer Laboratory, England

Abstract lations” between categories of models for concurrency; for
instance, both the inclusion of the category of synchroni-
The theme of this paper is profunctors, and their cen- sation trees in the category of event structures and the op-
trality and ubiquity in understanding concurrent computa- eration serializing an event structure to a tree are given by
tion. Profunctors (a.k.a. distributors, or bimodules) are a profunctors. They stand for higher-order processes in a do-
generalisation of relations to categories. Here they are first main theory for concurrency.
presented and motivated via spans of event structures, and We start with the model of event structures and their
the semantics of nondeterministic dataflow. Profunctors are use in the semantics of nondeterministic dataflow. There
shown to play a key role in relating models for concurrency are well-known difficulties in giving a compositional se-
and to support an interpretation as higher-order processes mantics to nondeterministic dataflow using standard rela-
(where input and output may be processes). Two recent di-tions between input and output. The problem is that stan-
rections of research are described. One is concerned with adard relations take inadequate account of the causal rela-
language and computational interpretation for profunctors. tion between input and output. A compositional semantics
This addresses the duality between input and output in pro-can however be given with the nonstandard relations of pro-
functors. The other is to investigate general spans of eventfunctors. The profunctors are explained in termspéns
structures (the spans can be viewed as special profunctors)of event structures, representing the process of computation
to give causal semantics to higher-order processes. For thisfrom input to output. We'll be led to the view of a nonde-
it is useful to generalise event structures to allow events terministic process as a presheaf, a form of characteristic
which “persist” function for categories, where sets are taken as truth values.
From there we’ll see profunctors as “relations” between do-
mains of processes.
1. Introduction The unity provided by profunctors suggests new lan-
guages and methods. I'll take advantage of this being an in-
. _ vited talk to present some recent, incomplete lines of work.
Standard relations between sétsand @ specify for & one jine is that of a process language based on profunctors.
pair (p, ¢) in the productP x @ whether or not the pairis | outiine a particular language developed with Patrick
included in the relation. We can generalise the idea, and in-gajjiot. Another line, in joint work with Lucy Saunders-
stead for each pair assignsatof ways in which the pair gyans; concerns spans of event structures in the semantics

are related; assigning the empty set would mean not relateqyt higher-order processes. This leads to a generalisation of
at all. Profunctorsarise by taking this idea one step fur- oy ent structures.

ther. Assume the sets have the structure of categBréesl I've tried to be light and gradual in my use of category

Q (perhaps very special categories such as partial ordershyeqry (occasional reference to the early parts of MacLane’s
To respect the arrows, a profunctor assigns sets to pairs of,ook [16] may be helpful).

objects(p, q) so that the assignment determines a covari-

ant functor inp and a contravariant functor i (A con-

crete motivation and definition of profunctors is given in 2- Event structures
Section 3.)

Profunctors are ‘“relations” between categories. (Pro- Eventstructures [18, 23, 25, 26] are a model of computa-
functors are also known as distributors or bimodules [1, 15, tional processes. They represent a process as a set of event
3].) As we'll see, profunctors recur in concurrency. They occurrences with relations to express how events causally
appear as appropriate “relations” for giving compositional depend on others, or exclude other events from occurring.
semantics to nondeterministic dataflow. They express “re-In one of their simpler forms they consist of a set of events

on which there is a consistency relation expressing whenThe map expresses how the occurrence of an eventy
events can occur together in a history and a partial order ofinduces the coincident occurrence of the evgft) when-

causal dependency—uwriting < e if the occurrence oé ever it is defined. The partial functiofi respects the in-
depends on the previous occurrence’of stantaneous nature of events: two distinct event occurrences
In detail, anevent structureompriseg £, Con, <), con- which are consistent with each other cannot both coincide

sisting of a seft, of eventswhich are partially ordered by with the occurrence of a common event in the image. Maps
<, thecausal dependency relatipand aconsistency rela- of event structures compose as partial functions.
tion Con consisting of finite subsets @, which satisfy We'll say the map igotal iff the function f is total, and
o rigid iff it is total and for all configurations: of E andy of
{e'| € < e}isfiniteforalle € E, B
{e} e Conforalle € E,
Y CXeCon=Y € Con, and
XeCm&e<e e X = XU{e}e Con. (The configuratior is necessarily unique.)
A rigid map of event structures preserves the causal de-
Our understanding of the consistency predicate and thependency relation “rigidly,” so that the causal dependency
enabling relation are expressed in the notion of configu- relation on the imaggz is a copy of that on a configura-
ration (or state) we adopt for event structures. The eventstion x of E; this is not so for general maps wherenay be
are to be thought of as event occurrences; in any history anaugmented with extra causal dependency over thataon
event is to appear at most once. A configuration is a set of(Recently with Lucy Saunders-Evans we have come to re-
events which have occurred by some stage in a process. Acalize the primary nature of rigid maps in the sense that the

cording to our understanding of the consistency predicateother kinds of maps of event structures may be derived from
and causal dependency relations a configuration should bghem by a Kleisli construction—see Section 6.)

consistent and such that if an event appears in a configura-

tion then so do all the events on which it causally depends.s_ Nondeterministic dataflow

Here we restrict attention to finite configurations.
The(finite) configurationsC(E), of an event structurg

consist of those finite subsetsC F which are

yC f(z)=3z€C(E).zCrxandfz=y.

For dataflow networks built from onlydeterministic
nodes, Kahn [14] observed that their behaviour can be cap-

Consistentz € Con and tureddenotationallyas the least fixed point of a set of equa-
. , tions describing the components. Brock and Ackerman [4]
Down-closedve, ¢’. ¢! <e €= ¢ €. were the first to point out that forondeterministiciataflow
The configurations of an event structure are ordered by in-2chieving a compositional semantics was far from easy. In
clusion, wherer C #/, i.e. = is a sub-configuration af’ particular,input-outputrelations between sequences of val-

means that: is a sub-history ofe’. Note that an individ- ~ U€s on input and output channels carry too little information
ual configuration inherits an order of causal dependency on@Pout the behaviour of networks to support a compositional
its events from the event structure so that the history of aSémantics. _
process is captured through a partial order of events. Foran Ve present two simple examples of automaiaandAs,,
evente the set{e’ € E | ¢’ < ¢} is a configuration describ- wh|ch haV(_a the same input-output relation, and yet pehave
ing the whole causal history of the event differently in common contex€|[—]. The context consists
When the consistency relation is determined by the pair- Of @ fork process” (a process that copies every input to two
wise consistency of events we can replace it by a binary re-OUtputs), through which the output of the automatas fed
lation or, as is more usual, by a complementary binary con-Pack to the input channel, as shown in Fig. 1. Automaton
flict relation on events. It can be awkward to describe oper- 41 has a choice between two behaviours: Either it outputs
ations such as certain parallel compositions directly on the token and stopsy it outputs a token, waits for a token on
simple event structures here, because an event determindg§Put and then outputs another token. Automatrhas a
its whole causal history. One closely related and more ver-Similar nonde_term_lnlstlc behawour: Either it outputs a token
satile model is that of stable families, described in the ad- @nd Stopser it waits for an input token, then outputs two

dendum. tokens. For both automata, the input-output relation relates
Let £ and E’ be event structures. fapof event struc- ~ €MPty input to the eventual output of one token, and non-

turesf : E — E'is a partial function on events: E — E’ empty input to one or two output tokens. BGfA;] can

such that for all configurationsof E its direct imagefzis ~ ©utput two tokens, where&s[A,] can only output a single

a configuration ofz’ for which token, choosing the first behaviour 4.

So there is no denotational semantics of nondeterministic
if e1,e0 € zandf(e1) = f(ez2) € E’, thene; = es. dataflow in terms of traditional input-output relations. Any

A, r [also support the feedback loops of the problematic kind
ClAil = C > we've just seen.
Given a span
Figure 1. A context distinguishing A, and A, E
dem out
compositional semantics must take better account of the AlcC B|C

subtle causal dependency between input and output. There)
are several ways to do this, though they all fall outside the "€Présenting a process

methods otlassicaldomain theory, using powerdomains to A B
adjoin nondeterminism. (Dataflow has a rich history which
can’'t be done justice here—see [11] for a discussion and < ¢

references.)
One solution is to give a semantics in termsspansof there is a span, itsace
event structures. Such a span comprises
trace

(E)
E =N
dy w
A B
A B

where A, B and E are event structuresut : £ — Bis a representing the process with a feedback loop:

rigid map, andlem : £ — C(A) satisfies A B

Em—

e <€ = dem(e) C dem(e’) , and

X € Con = U dem(e) € C(A) . C—]

ecX

The construction of the trace involves an intermediate con-
The idea is that the occurrence of an eveiit E'demands struction on stable families, described in the addendum. (If
the minimum inputlem(e) and is visible as the output event - the original span consists of event structures in which con-
out(e). sistency/conflict is determined in a binary fashion, the feed-
Such spans can be composed one after the other (esselback construction yields an event structure in which this is
tially by a pullback construction, as both the demand and g|so the case.)
output maps extend to functions between configurations). The central point here is that we can view spans of event
They also have a nondeterministic sum, and compose in parstryctures as a form afeneralisedrelation between input

allel. For example, spans and output. Consider a span:
E1 E2 FE
VNN v\
Al Bl A2 BQ A B
compose in parallel to give the span Let p be a configuration ofl andq a configuration ofB—
sop is some particular input anglsome particular output.
Ey || Eo Define the set
fillf2 g1llg2 B
E(p,q) ={x €C(F)|demz Cp&outz =q}.
Ay || Ag By H By

The setE(p, q) consists of all the ways that inpyt can
where the parallel compositidi,; || E, of event structures, Yield outputg. Instead of simply specifying whether or not
and maps, is given by their disjoint juxtaposition. With re- an input-output pairp, ¢) obtains, as in a usual relation,
spect to|| there is even a function space, discovered in joint E(p, q) gives the set of ways thé&p, ¢) can be realized. In
work with Mikkel Nygaard [19]. And importantly spans this sense the usual truth values, which apply in specifying

standard mathematical relations, have been replaced by &. Processes as presheaves
sets.
In fact E(p, q) is functorial in configurationg € C(A) As motivation, consider a special span of event structures
andq € C(B). It respects the inclusion order on configura- of the form
tions (though, as we’'ll see, covariantly for input and con- E
travarlantly for output). Suppose C p’ in C(A). Then, dem out
E(p, q) C E(p q)—simply because any configuratian / \
of E with demanddem z C p will makedemz C p’. So,

an inclusion; : p C p’ determines an inclusion map
where(is the unigue event structure with no events and

E(i,q) . E(p7 q) — E(p/’q)) the demand function is such thé¢m(e) = 0, the empty
input configuration, for all eventsof £. No inputis needed
Suppose C ¢ in C(B). This time the inclusion : ¢ C ¢’ in producing output. Such a degenerate span determines a
determines a map functor ~
X =E(,-):C(B)°® — Set .
E(p,j): E(p.d') — E(p,q) - Such a functorX is called apresheafover the order
. . C(B). The presheafX represents a nondeterministic pro-
It takes z’, for which outz’ = ¢/, to the unique sub- cess whose computation paths have the shape of configu-

configurationz C = of E for whichout = = ¢; this exists rations of B (with causal order inherited fron). Given
becauseut is a rigid map of event structures. It is easy to g configuration; of B, the setX (¢) describes all the dif-
see that these associations of maps with inclusions respedferent computation paths of of shapeg. BecauseX is
identities and composition, so th&(p, q) is functorial, co- contravariant functor the ordgr: ¢ C ¢’ determines a

variantly inp and contravariantly in. function X (j) : X(¢') — X(q) saying how computation
In summary, we have a functor paths of shap@’ restrict to computation paths of shape
The presheak is a form ofcharacteristic functionwhere
E :C(A) x C(B)°® — Set the truth values are sets.

We can broaden our understanding of shapes of compu-
from the product of the ordet(A) with C(B)°P, the oppo- tation paths to be objects in a small categQryThe cate-
site order, to the category of sets. We have seen that it is &g0ry Q is thought of as consisting of shapes of paths, where
kind of generalised relation, where truth values are taken tod map;j : ¢ — ¢’ in Q expresses how thgextends to;". A

be sets. presheafX : Q°? — Set specifies forg in Q the setX (q)
We can regard orders as categories, so more generally wéf computat|on paths of shageThe presheak” acts on a
can consider a “relation” between small categofesdQ map;j : ¢ — ¢' in Q to give a functionX (j) saying how
to be a functor ¢'-paths inX restrict tog-paths inX—several paths may
restrict to the same path. In this way a presheaf can model
F:Px Q% — Set, the nondeterministic branching of a process.

A presheafX over Q models a nondeterministic pro-
cess of which the computation paths have shape®.in
The categoryQ represents dype of the process. We can
gather all the processes of tygetogether. The category
of presheaves ove®, written Q, is the functor category
[Q°P, Set], with objects the functors fror@°? to the cate-
gory of sets, and maps the natural transformations between
hem.

a functor from a product of categori®sand the opposite
categoryQ°P. Such a functor is called profunctorfrom PP
to Q and is written as

F:P+—Q.

The significance of profunctors was first highlighted by t
Bénabou and Lawvere [1, 15]. As is to be expected we can
compose profunctorg” : P—+—Q andG : Q—R, be-
tween small categori€B, Q andR, to obtain a profunctor

G o F : P—+—R. We postpone the definition of composi- -t))
tion to Section 4.2. With sucheneralisectelations we are to the category of synchronisation trees, with arc labels in
able to give a compositional semantics of nondeterministic £+ the maps are simulatiorisg. functions on nodes respect-
dataflow [11]. The work can alternatively be carried out 'Nd r00ts, arcs and labels.

with spans of event structures.

Example 4.1 Consider the order of nonempty stringg
over a set of actiond,, ordered by extension, so for in-

stanceadb < abbce. The presheaf categori?+ is isomorphic

Example 4.2 This example shows how categories of event Open maps also support a general theory of weak bisimula-
structures arise as presheaf categoriepofset22] is a tion [9].

labelled event structure in which all finite subsets of events

are consistent. The category of finite pomdeis;, can be 4.2. Relating presheaf categories

presented as a subcategory of the category of event struc-

tures where events are labelled fin with total maps that Intuitively a presheaf over a small categdfyconsists
respect labels. The categdiym,, consists of path shapes of a collection of paths with shapes Ihglued together at

in the form partial orders of labelled events. The category of sub- paths—so a presheaf resembles a Computation tree but
labelled event structures embeds fully and faithfully in pre- jn which the branches have shapesPinTechnically this
sheaf categorj?’omL, which in this sense consists of gen- amounts to a presheaf being expressible as a colimit of its

eralised event structures [13]. paths.
o _ A presheaf category has all limits and colimits given
4.1. Bisimulation pointwise, at a particular object, by the corresponding limits

and colimits of sets. In particular, a presheaf category has all

Presheaves are being thought of as nondeterministic prosums (coproducts) of presheaves. In process terms, a sum of
cesses on which equivalences such as bisimulation are impresheaves represents a nondeterministic sum of processes.
portant in abstracting away from inessential differences of A category of presheaveB, is characterized as the free
behaviour. A sweeping definition of bisimulation between colimit completion ofP. The Yoneda embedding : P —
presheaves is derived from the notion of open map [13]. P satisfies the universal property that for any functor:

The category of presheaves is accompanied by theP — C, whereC is a category with all colimits, there is a
Yoneda embedding functoryg : Q — Q, which fully colimit-preserving functo€ : P — C, determined to within
and faithfully embedsq) in the category of presheaves. For natural isomorphism, such that= G o yp:
every objecy of Q, the Yoneda embedding yielgs (¢) =

Q(_7 Q) . P L @
Amaph : X — Y, between presheaves andY, is -
openiff for all mapsj : ¢ — ¢ in Q, any commuting P JG
square c
volg) ——— X
vo (i) N Any presheaf categor§ has all colimits. So, in particu-
lar, for any functor” : P — Q, there is a colimit-preserving
vol¢) ———Y functorG : P — Q, determined to within natural isomor-

N i) phism, such thaf’ = G o yp:
can be split into two commuting triangles

yo(q) x—} X P —N> P
y@(j)l _ e - Jh F § lG
yold) —5—— V. Q
That the square commutes means that the pathin Y can By this universal property, colimit-preserving functors

be extended vig to a pathy in Y. That the two triangles G @ P — Q correspond to within natural isomorphism

commute means that the patican be extended viatoa 0 functors - P — Q, and such functors are in 1-1

pathz in X which matchesg. correspondence with profunctofs : P——Q. A functor
Open maps are a generalisation of functional bisimula- F: P — Qis a functor

tions, known from transition systems. Presheave® iare

bisimilar iff there is a span of surjective open maps between

them. Open-map bisimulation often coincides with known

definitions of bisi/rrlulation. Open-map bisimulation in the

presheaf categorf~ of Example 4.1 is strong bisimulation F:PxQ° — Set,

of Milner and Park. An operational understanding of open-

map bisimulation on profunctors frofhto Q (regarded as viz.a profunctorF’ : P——Q.

presheaves ové’? x Q) is something of an enigma (it re- So profunctors arise in relating presheaf categories. We

spects the input-output duality of profunctaz Section 5). can now describe how to compose them. Given profunctors

F:P— [Q°,Set],

so by “uncurrying” in correspondence with a functor

F: P—-QandG : Q—R, by “currying” we obtain func- typeP are represented by objects in the presheaf category

tors R R P. Processes of different types, sByand Q, are related
F:P—-QandG:Q —R. by profunctorsF’ : P——Q, or equivalently by the colimit-

preserving functorg : P — Q they correspond to. With

this broader picture we have a form of domain theory for

concurrency [21] and we can ask how to construct types,

GloF PSR, and what terms denote profunctors. Our answers are guided
by linear logic [10].

This functor corresponds to a profunctor, which we take to A tensor product of? and Q is given by the product

be the composition of profunctors of categorie®® x Q. There is an associated function space

P — Q given byP°P x Q—it is easy to see that profunc-

From the universal property we obtain a colimit-preserving
functorGT : Q — R so now we can form the composition
of functors

F:P R.
Go - tors fromP to Q are exactly presheaves ot x Q. The
Presheaves ovép correspond to special profunctors involution of linear negation is represented by the opera-
tion which takes a profunctdr' : P——Q to the profunctor
X :1-+Q Ft : QP ——P°?, given by
from the categoryl comprising just a single object and F(q,p) = F(p,q),

its identity map. Profunctor composition specializes to the o _
application of a profunctor to a presheaf. A profunctor got by switching around the roles of input and output. A

G : Q—+—R applied toX is given byGT(X), whereGT : family of objectsP,,, for o € A, has sumsife. coproducts)
Q — R is the colimit-preserving functor determined 6y ~ @nd products given in the same way on objects by their dis-
Application preserves open-map bisimulation because: oIt juxtapositionXqc 4P, . As for the exponentidlof lin-

ear logic, there are many possible choices—see [20, 6].
Theorem 4.3 [6] Let H : Q — R be a colimit-preserving We pause to consider the meaning of linearity. For a pro-
functor between presheaf categories. ThEpreserves sur- functor ¥ : P—-Q the functor(F)" : P — Q is deter-
jective open maps and open-map bisimulation. mined by its action on single computation paths of the input

process. Consequently application of a profunctor satisfies
Example 4.4 We refer to Examples 4.1 and 4.2. Recall that a linear property: a computation path of the output results
L+ is the category of synchronisation trees and that from a single computation path of the input process. Be-
consists of generalised labelled event structures. There is agause application of a profunctor preserves colimits, it pre-
obvious functor! : Lt — Pomj, which regards a string ~ Serves nondeterministic sums, and the empty sum represent-
over actionsL as a pomset. By composition we obtain a ing the nil process. The linear property only holds for very
functor ypom, o I : Lt — Pom;, which extends by the special operations on processes, and for example would fail

L * 1 . o
universal property of,+ to a colimit-preserving functor to h_ol_d for most operations of_ parallel composition, or of
I I P/()m\L_ The functorl: coincides with the inclu- prefixing a process by an action. If we are to addres_s the
sion of synchronisation trees in event structures. For generaFonCerns of_concurrgncy we must go beyond purely. I_mear
reasons, the functds has a right adjoinf* Pom s L+ maps, and linear logic provides the means. The facility to
1 . : L -

, . — copy or ignore an input process is introduced by an expo-
given by I*(E) = Pomp(ypom, © I(—), E). The functor hantia|1 and nonlinear maps are obtained as linear maps
I* coincides with the operation of serializing or interleav- m a type!P. In fact, a lot can be achieved by just al-

ing an event structure to a tree. The functbrand” relate |ying the input process to be ignored, without having the
an interleaving model and a noninterleaving model of con- 5 ility to copy—the nonlinear maps that result are called
currency. Both functors are colimit-preserving and so cor- 4ine We allow input to be ignored througliting of the
respond to profunctors. Consequently bétrand I* pre- iyt type. The operation difting, P |, introduces a new

serve bisimulation—inL* it is strong bisimulation, while jnitial object L, which can be thought of as the empty path,

_—

in Pom;, open-map bisimulation turns out to be hereditary below a small categorfy.

history-preserving bisimulation of Bednarczyk. This illus- The constructions of tensé x Q, sumX,c4P,, types

trates how profunctors play a fundamental role in relating P°P and lifting P, are used in forming the types of a lan-

categories of models for concurrency. guage for profunctors developed with Patrick Baillot. To fa-
cilitate the duality that exists between input an output on

5. A language for profunctors profunctors, its typing judgements of termtake the form

1 P,y Pt Ay QoY ,
We now take a broader view. We regard small categories, ' e v yn : Qn
P,Q,R,..., astypes of processes. Processes of a particulawhere all the variables are distinct, interpreted as a profunc-

tor fromP; x --- x P, toQq x - -+ x Q,,. We can think of
the termt as a box with input and output wires for the typed
variables:

Py Q@
Pm : : Qn

The duality of input and output is caught by the rules:

Nx:PHtHA F'ttdz:PA
Ttz :PP A Lz:PPHtHA

Composition of profunctors is described in the rule

T'Ft4A AFu-H
'F3A. txu-4H

which joins the input wires of one process to output of the

other. (The “existential quantifier” can be interpreted di-
rectly as a coend and as the product of sets.)

We can form the nondeterministic sum of processes of

the same type:
'k, HA diel

TEY o ti 1A

wherelP iszy : P{P, -+ x,, : PSP. For the typeP, , there
are path term§ standing for the path., and!p, wherep is
a path term of typeéP. For a sumX, 4P, there are path
termsBp where3 € A andp is a path term of typePs.
Other instances of path term typings are P,y : Q +
rxy:PxQandz:PxQF z: P x Q fromwhich via
the hom-set rule we obtain

z:Py:QF z2<pygrxy 12:PxQ,

which joins two inputs to a common output of tensor type.

A great deal is achieved through basic manipulation of the
input and output “wiring” afforded by the hom-set rules and

input-output duality.

A pathis a path term with no free variables. The notation
for paths enables a further useful construction on types. For
its description we take advantage of the fact that for this
language types will always be orders.plfis a path ofP,
then theresumptiontype, P/p, is the order obtained from
those paths strictly aboyg it is the type a process of type
P arrives at after having done the path

This describes the core of the language. Once extended
by recursive terms and recursive types, it becomes highly

The sum denotes the coproduct of profunctors; we can re-expressive, and, for example, can straightforwardly encode
gard profunctors as presheaves and form their coproduct inthe higher-order process language affine-HOPLA in away

a pointwise fashion, using the disjoint union of sets.
The rule for lifting
FrFt4Ay:R
Lk liftytoy int 1Ay Ry

is associated with the operation extending a profunctor
F:Pix- - xP,—+—Q x---xQ, xR
to a profunctor
F' P x- xPp—+Qy x---xQ, xR,

which on the additional arguments acts so that

F'(p1, -, Pm,q1, -, qn, L) = {x}, asingleton.
The hom-set rule
Ty :P AkFp:P
T'kEp<pp 4A

introduces a term standing for the hom-Bép, p’). It relies
on path terms, notation for paths involving free variables,
and their typings; a typing judgement for a path term

denotes a functor fron#; x ---
such judgements is

331:1[»1,"'

x P, to Q. One rule for

I'Fp:Q
I°PFp:QeP

that is faithful to its presheaf semantics [20, 21]. A deriva-
tion in affine-HOPLA of a judgement

1P,y P M Q
is translated into a derivation of
:171:(@’Pq)l,...,xn:(ﬁ)LF]\Aj4y:@.

The affine function space of affine-HOPLA is translated by
the operatior(P;)°? x Q on typesP and@Q, and its affine
tensor by(P; x Q_)/('x!). Prefixing by an action makes
use of lifting and sum. Of course the language for profunc-
tors has restrictions that moving frofh, to a full expo-
nential P should address. The language does not yet have
an operational semantics, which would likely throw light on
open-map bisimulation for higher-order processes.

6. General spans of event structures

In Section 3 we saw that a span of event structures

E
dV \I:t
A B

determines a profunctaf : C(A)——C(B). Not all pro-

functors from the ordef (A) to the ordeC(B) are obtained

in this way however. In particular the corresponding functor distinguished subset of persistent eveRtgConfigurations
from C(A) to C(B) preserves pullbacks. This is why com- are defined just as before. Mags: (E,P) — (E',P')
position of the associated profunctors can be described by f event structures with persistence are partial functions on
simple pullback construction on spans. Maps between spangventsf : £ — E’ such thatf P C P’ and for all config-

are reasonab|y taken to be r|g|d m@pas shown urationsz of E its direct |magef.L isa Configuration of’
for which now

. ? if e1,e2 € zandf(er) = f(e2) € (E'\ P’), thene; = es.
em out
I f . .
/ 3 The maps compose as partial functions. A map on event
A AFy— E’ — B structures with persistence iigid iff it comprises a total

function which preserves the order of causal dependency.
where both triangles commute as maps on configurations.This amounts to the same definition as before when no
They inducecartesiannatural transformations.¢. where ~ €vents are persistent.
the naturality squares are pullbacks) between the corre- L€t & be the category of event structures with persis-
sponding functors. The spans are akin to stable functionsténce and rigid maps. It has all pullbacks and a terminal ob-
in stable domain theory [2]. ject (and so products). We can form the bicategory of spans
Such spans of event structures can be used to give apang. Its objects are event structures with persistence. Its
semantics to affine-HOPLA, as explained in Mikkel Ny- MapsSpang (A, B), from A to B, are spans
gaard’s thesis [19]. In fact the spans were discovered in de- E
riving an operational semantics from the presheaf seman- f g
tics of affine-HOPLA. The guiding principle in designing / \
the operational semantics was that derivations of transitions A B
of a closed term should correspond to elements (realizers)
in its presheaf denotation, at least at first order [20]. We dis- composed using pullbacks:
covered that the profunctors definable in affine-HOPLA at
first-order can be represented by spans of event structures. L G o,
This shed light on the affine tensor—at first-order it is the Ao e
simple parallel compositiofi of Section 3—and explained o T
a form of entanglement as due to consistency/conflict of E F
events. The event-structure semantics extends to all types, 7 Y 7 Y
though diverges from the presheaf semantics at higher types
(just as the function space of stable domain theory differs A B C
from the pointwise function space of classical domain the- (Its 2-cells, maps iSpang (A, B), are the maps between

ory). TIhe vertices of two spans making the obvious triangles com-

Despite event structures appearing out of the preshea . :
semantics of affine-HOPLA that language can be proved to g]rgtdelj)c?po??g has a tensor and function space given by the

Zgéilégfcorlt. :.T(i tgi;jg'?:sal ?\(/a‘er\n:é?téug#r?esin;:t;;];) f'\FIJCV)(rJ' Other bicategories of spans are obtained by Kleisli con-
do th Uil f Seci 3g|v ¢ Xb b ff'l) t’Th' " structions orBpang,—see [5]. A monad o that respects
0 the Spans of Section > appear 1o be sutticient. 1his 1S Onepullbacks induces both a (pseudo) monad and (pseudo)

motivation for very recent.work with Lucy Saunders-Evans comonad orSpan,. In particular the demand-output spans
where we have been looking to more general spans of event s coction 3 arise as spans

structures.
The exploration has been helped by the gradual realiza- E
tion that all the maps on event structures seen here, whether ¥ g
they be total, partial, or even the demand maps on the left of / \
spans of event structures, can be obtained in a uniform way T(A) B.
from rigid maps. For example, total maps of event struc-
tures can be obtained as rigid maps fréto T'(E’) for in a Kleisli construction on spans, stemming frdf the

a monadl’ on the category of event structures with rigid monad ong associated with demand maps. But there are
maps. A similar Kleisli construction yields, the other kinds other largely unexplored variations in which one or both

of maps too, though at a slight cost. Event structures must bdegs of the span are modified by monads. Several yield
extended to allow a “persistent” events. An event structure both function spaces and interesting parallel compositions
with persistencéE, P) is an event structur® pairedwitha of event structures.

7. Concluding remarks Whene € z define

Profunctors and presheaves have much wider applica- [ele =({veFlyCa&ecy}.
tions beyond concurrency, in logic [17], in combinatorics
via species [12] and generalised species [8] (where lan-Then<, is a partial order ande], is a configuration such
guages for profunctors again appear naturally and have ghat
process reading), in algebraic topology [7], as well as in the [ele ={€ €ex|e <, e}
broader world of mathematics. Here I've glossed over the o\ o configurationg C are exactly the down-
details of bicategories and pseudo monads and comonadsCIOSed subsets of
Work with Marcelo Fiore, Nicola Gambino and Martin Hy- =
land, is designed to make these notions more precise amli-’roposition Let (E,F) be a stable family. Then
workable. Name generation has been ignored here. Adding(P Con, <) is an eve;1t structure where: ' '
name generation to the domain theory arising from profunc- **’ = '

tors raises the i;sue of the existence of.functior) spaces. The P={lel.|eca&aecF},
paper [28], of this volume, addresses this question for a sim- _
plification of profunctors where the role of sets as truth val- Z € Coniff ZC P& U ZeF and

ues is replaced by < 1. p<piffppeP&pCyp .
Acknowledgements This proposition furnishes a way to construct an event
structure with events the prime configurations of a stable
family. In fact we can equip the class of stable families with
maps (the definitions are the same as those for event struc-
tures). The configurations of an event structure form a sta-
. ble family, so in this sense event structures are included in
Addendum: Stable families and trace stable families. With respect to any of the maps (rigid, to-
tal or partial), the “inclusion” functor from the category of
The use of stable families facilitates definitions on event event structures to the category of stable families has a right
structures. Here we’ll use stable families to define the traceadjoint, which on objects is the construction we have just

| am grateful for discussions with Patrick Baillot, Marcelo
Fiore, Thomas Hildebrandt, Martin Hyland, Mikkel Ny-
gaard and Lucy Saunders-Evans.

operation of Section 3. given, producing an event structure from a stable family.
The product w.r.t. partial maps is particularly useful in giv-
Definition A stable familycompriseq E,) whereFE is a ing semantics to the parallel composition of synchronising
set ofeventsaand F is a family of finite subsets o, called processes, as in CCS and CSP. The product is hard to define
configurations satisfying: directly on the event structures of this article. It is however
CompletenessZ C F& Z1=UZ € F; straightforward to define the product of stable families [24].
Coincidence-freenesfor allz € F, e, e’ € xz with e # €/, Right adjoints preserve limits, and so products in particular.

Consequently we obtain the product of event structures by
first regarding them as stable families, and then producing
Stability:VZ C F. Z #0& Z1=>Z € F. the event structure from the product of the stable families.
We construct the trace of a span of event structures

(FyeFyCa&k(ecy < ¢ ¢y));

For Z C F, we write Z T to mean compatibilityi.e. 5

dre FNzeZ. z2Czx. (V out

Configurations of stable families each have their own
: . Al C B|C
local order of causal dependency, so their own prime
sub-configurations generated by their events. We can build :
. of Section 3.
an event structure by taking the events of the event structure . o
) . . ; Letx € C(E). Saye is secured in iff
to comprise the set of all prime sub-configurations of the
stable family. The details follow. Jey,- - en €T 0n =€ &
Definition and Proposition Let = be a configuration of a Vi<n{er, e} €C(E) &
stable familyF. Fore, ¢’ € x define dem(e;) N C C out{er,---,e;—1} .

e <peiff we FyCa&kecy=¢€ cy. Sayz is secureiff all its events are secured in

It can be shown thatE, F), in which F consists of
all the secure configurations @f, is a stable family. De-
fine trace(F) to be the event structurge’, Con’, <’) with
eventsE’ consisting of the prime configurations], of F
for whichout(e) € B, where consistencgon’ is given by
compatibility in 7 and causal dependency is given by inclu-
sion. The original demand functietem induces a function
dem’ from E’ to C(A): takedem'(e’) = |, .., dem(e)N A.
The original output functiorout induces a functiorout’
from E’ to B: takeout’(e’) = out(e) whene’ has the form
[e].. Together these determine a span of maps

trace

(E)
N
A B

—the trace of Section 3, and a representation of the trace or19j
profunctors used in [11].

[13]

[14]

[15]
[16]
[17]

[18]

[20]
References
[1] Bénabou, J., Les distributeurs. Rappeott33. Seminaires de
Mathematiques Pure, Institut de M&matiques, Universst
Catholique de Louvain, 1973.

Berry, G., Modeles commitement aélquats et stable des
lambda-calculus tygs PhD thesis, L'universi Paris VII,
1979.

Borceux, F.,Handbook of categorical logizolume 1. Cam-
bridge University Press, 1994.

Brock, J. and Ackerman, W., Scenarios: A model of non-
determinate computation. In Diaz, J. and Ramos, I., edi-
tors, Formalization of Programming Conceptglume 107

of LNCS Springer, 1981.

Burroni, A., T-caggories.Cahiers de topologie egpnetrie
differentielle, XII 3, 1971.

Cattani, G.L., and Winskel, G., Profunctors, open maps and [26]
bisimulation. In press, MSCS, 2005.

Fahrenberg, U., Bisimulation for higher-dimensional au-
tomata. A geometric interpretation. Aalborg Univ Dept of
Mathematical Sciences, Research Report R-2005-01, 2005.

Fiore, M., Mathematical models of computational and com-
binatorial structures. Invited address, FOSSACS’05, 2005.

Fiore, M., Cattani, G.L., and Winskel, G., Weak bisimulation
and open maps. Proc. of LICS'99. 1999.

Girard, J.-Y., Linear logic.Theoretical Computer Science
50(1):1-102, 1987.

Hildebrandt, T., Panangaden, P., and Winskel, G. A rela-
tional model of non-deterministic dataflowMathematical
Structures in Computer Scien@d04.

Joyal, A., Foncteurs analytiques et especes de structures.
In Proceedings of a Colloquium on Enumerative Combi-
natorics, Springer Lecture Notes in Mathematiesl|.1234,
1985.

[21]

22
2] [22]
[23]

(3]
[24]

(4]
[25]
(5]
(6]

(7]
[27]

(8]
(28]

9]
(10]

(11]

(12]

Joyal, A., Nielsen, M., and Winskel, G., Bisimulation from
open mapsLICS '93 special issue of Information and Com-
putation 127(2):164—-185, 1996. Available as BRICS report,
RS-94-7.

Kahn, G., The semantics of a simple language for parallel
programming. Innformation Processingvolume 74, pages
471-475, 1974.

Lawvere, F.W., Metric spaces, generalized logic and closed
categoriesRend. Sem. Mat. Fis. Miland3:135-166, 1973.

Mac Lane, S. Categories for the Working Mathematician
Springer, 1971.

Mac Lane, S. and Moerdijk, I. Sheaves in Geometry and
Logic: A First Introduction to Topos Theargpringer, 1992.

Nielsen, M., Plotkin, G.D., and Winskel, G., Petri nets,
event structures and domainsCheoretical Computer Sci-
ence 13(1):85-108, 1981.

Nygaard, M., Domain theory for concurrency. PhD Thesis,
University of Aarhus, 2003.

Nygaard, M., and Winskel, G., Linearity in Process Lan-
guages. In Proceedings of 17th Annual IEEE Symposium on
Logic in Computer Science (LICS’02), 2002.

Nygaard, M., and Winskel, G., Domain theory for concur-
rency. Theoretical Computer Scien846: 153—190, 2004.

Pratt, V., Modelling concurrency with partial ordersiter-
national Journal of Parallel Programmind.5,1, 1986.

Winskel, G.,Events in ComputatiorPhD thesis, University
of Edinburgh, available as a Comp. Sc. report, 1980.

Winskel, G., Event structure semantics of CCS and related
languages. Springer—Verlag Lecture Notes in Comp. Sc. 140
ICALP 82, 1982. An extended version is available from
http://www.cl.cam.ac.uk/ gw104.

Winskel, G., Event structures. Invited lectures for the Ad-
vanced Course on Petri nets, September 1986. Springer Lec-
ture Notes in C.S., vol.255, 1987.

Winskel, G., An introduction to event structures. In the lec-
ture notes for the REX summerschool in temporal logic, May
88, in Springer Lecture Notes in C.S., vol.354, 1988.

Winskel, G. and Nielsen, M.Handbook of Logic in Com-
puter Sciencevolume IV, chapter Models for concurrency,
pages 1-148. OUP, 1995.

Winskel, G., Name generation and linearity. In Proceedings
of 20th Annual IEEE Symposium on Logic in Computer Sci-
ence (LICS’05), this volume, 2005.

