
c© The Author 2008. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
For Permissions, please email: journals.permissions@oupjournals.org

doi:10.1093/comjnl/bxh052

Events, Causality and Symmetry

Glynn Winskel

University of Cambridge Computer Laboratory, England

Email: Glynn.Winskel@cl.cam.ac.uk

The article discusses causal models, such as Petri nets and event structures, how
they have been rediscovered in a wide variety of recent applications, and why they
are fundamental to computer science. A discussion of their present limitations
leads to their extension with symmetry. The consequences, actual and potential,

are discussed.

Received 31 October 2008; revised 28 April 2009

1. INTRODUCTION

We are witnessing a rebirth of interest in causal
models. Causal models are alternatively described
in a variety of ways, as: causal-dependence models;
independence models; non-interleaving models; true-
concurrency models; and partial-order models. They
include Petri nets, event structures, Mazurkiewicz
trace languages, transition systems with independence,
multiset rewriting, and many more. Fortunately this
diversity is to a large extent only apparent. The models
share the central feature that they represent processes
in terms of the events they can perform, and that
they make explicit the causal dependency and conflicts
between events. Although this might be done through
different mechanisms, e.g. the effect events have on local
states (as is the case for Petri nets) or more abstractly
through relations which directly express the causal
dependency and the conflict/consistency of events (in
event structures), the different models can be formally
related—see Section 2.2.

Causal models have arisen, and have sometimes been
rediscovered as the natural model, in many diverse and
often unexpected areas of application:
• Security protocols: for example, strand spaces are

a form of event structure which support reasoning
about secrecy and authentication through causal
relations [19, 23, 92];

• Systems biology: biologists rediscovered Petri
nets in the analysis of chemical pathways (with
conditions standing for molecular species and
events for reactions). Ideas from Petri nets
and event structures are exploited in recent
descriptive and analysis tools in tracking chemical
pathways [28, 82];

• Physics: as causal sets in theories of quantum
gravity [90];

• Hardware: in the design and analysis of asyn-
chronous circuits [59];

• Types and proof: as representations of propositions
as types, and of proofs [4, 25, 41];

• Nondeterministic dataflow: where numerous
researchers have used or rediscovered causal mod-
els in providing a compositional semantics—see [76]
and its references;

• Network diagnostics: in the monitoring and fault
diagnosis of communication networks [10];

• Logic of programs: in concurrent separation logic
where some artificialities in Brookes’ pioneering
soundness proof are obviated through a Petri-net
model [49];

• Partial order model checking: following the seminal
work of McMillan [64] the unfolding of nets is
exploited in the automated analysis of systems [32];

• Distributed computation: event structures appear
both classically [60] and recently in the Bayesian
analysis of trust [71].

To illustrate the close relationship between Petri nets
(based on the changes events incur on local states)
and the ‘partial-order models’ of occurrence nets and
event structures (possessing a global partial order of
causal dependency on events), we consider how a Petri
net can be unfolded first to a net of occurrences and
from there to an event structure [72]. The unfolding
construction is analogous to the well-known method
of unfolding a transition system to a tree, and is
central to several analysis tools in the applications
above. In the figure, the net on top has loops. It
is an example of a (1-safe) Petri net. Its conditions
drawn as circles stand for local states. An event,
a rectangle, when it occurs ends the holding of its
preconditions (those conditions with arcs into the event)
and begins the holding of its postconditions (those
conditions with arcs from the event). Initially the
two conditions at the bottom are imagined to hold,
shown by their being marked. Initially any of the three
events with marked preconditions can occur, ending the

The Computer Journal Vol. 00 No. 0, 2008

2 Glynn Winskel

�' $�

6� � �6g g
g g
c cZZ} ���

��� ZZ}

6

6

��
��*

Q
QQk

g
gg

g g
ZZ} ��� 6

6

Q
QQk

6 6

�
��

�
��>

PP
PP

PPi

g
gg

g g
ZZ} ��� 6

6

Q
QQk

6 6

�
��

�
��>

PP
PP

PPi g
gg

g g
ZZ} ��� 6

6

Q
QQk

6 6

�
��

�
��>

PP
PP

PPi

PP
PP

PPi

�
��

�
��
���

���
��:

XXXy ��� �����
�1

PPPi ��� ������1

A Petri net and its unfolding

holding of its respective precondition and beginning
the holding of its postcondition. Though of them,
the two events on the left are in conflict, in the sense
that only one of them can occur—they compete to end
the holding of their common precondition. Either of
those two events can occur concurrently with the third
event to the right, in the sense that the third event
shares no pre- or postconditions with them and so can
occur independently. Once one of the two conflicting
events and the event to the right have occurred all the
preconditions of the top event will hold and it can occur,
restoring the marking of conditions to its original state.

The net below it is its occurrence-net unfolding.
It consists of all the occurrences of conditions and
events of the original net, and is infinite because of
the original repetitive behaviour. The occurrences keep
track of what enabled them. Notice how the shared
postcondition of the conflicting events on left splits
into two occurrences according to which of the two
conflicting events gave rise to it. Similarly the top event
splits into occurrences according to the nature of the
occurrence of its left precondition.

The conditions in the occurrence net play two
roles. They provide links of causal dependency
between event occurrences. They also show when
event occurrences are in conflict through sharing a
common precondition. The simplest form of event
structure arises by abstracting away the conditions in
the occurrence net and capturing their two roles in
relations of causal dependency and conflict on event
occurrences.

Another way in which causal models can arise is
through making explicit the independence of actions.
A Mazurkiewicz trace language consists of a set of
sequences of actions (corresponding to a sequence of
actions one might observe) together with a relation
on actions, saying when one action is independent of
another. If an action a is independent of an action b,
then a sequence of actions of the form s a b t, where
s and t are sequences of actions, is equivalent to the
sequence s b a t. The occurrence of a is seen not to
depend on the occurrence of b. In this way one reveals
a relation of causal dependency between occurrences
of actions. In fact, a Mazurkiewicz trace language
determines an event structure where the events are
associated with occurrences of actions [99]. A more
involved construction shows that when a transition
system is equipped with a suitable independence
relation on its actions (technically, so that it forms an
asynchronous transition system [7, 88]), it determines a
Petri net [99].

The relations between the different forms of causal
models are well understood. Despite this and their often
very successful, specialized applications, causal models
lack a comprehensive theory which would support:
• Their systematic use in giving structured opera-

tional semantics to a broad range of programming
and process languages; while many examples exist
of Petri-net semantics of processes and languages
there are presently no generally-accepted standard
techniques for describing operational semantics
using Petri nets on similar lines to Plotkin’s ‘Struc-
tural Operational Semantics’ [81].

• An expressive ‘domain theory’ with rich higher-
order type constructions needed by mathematical
semantics. It should for example cover the stan-
dard event-structure semantics of CCS [99], extend
to higher-order CCS, and support the formaliza-
tion and analysis of distributed algorithms. Such a
domain theory would go beyond traditional domain
theory, in which types are represented as partial
orders of information, in that causal models (per-
haps enriched, e.g. with probability) would feature
as denotations. (The very concreteness of causal
models appears to belie this possibility.)

This paper argues for a research programme towards
such a comprehensive theory, its potential benefits,
and why a comprehensive theory, including a ‘domain
theory,’ of causal models is within reach. A remedy
to the overly-concrete nature of causal models is
presented: a formal treatment of symmetry in causal
models reveals connections between causal models
with symmetry and the rich and expressive world of
higher-dimensional algebra, in which theories of types,
homotopy, geometry and combinatorics also find a
mathematical home [35]. In fact much of the work
reported here started in the search for an operational
reading of specific semantics using higher-dimensional

The Computer Journal Vol. 00 No. 0, 2008

Events, Causality and Symmetry 3

algebra [18, 74, 76] and the realization that denotations
(as presheaves and profunctors) could sometimes be
represented by event structures [73, 85].

2. HISTORY

As we experience the ever-broader uses of computers
so must we adapt our understanding of what a
computational process is.

In the earliest days of computer science it became
accepted that a computation was essentially an
(effective) partial function

f : N→ N

between the natural numbers. This view underpins
the Church-Turing thesis on the universality of
computability.

As computer science matured it demanded increas-
ingly sophisticated mathematical representations of
processes. The pioneering work of Strachey and Scott
in the denotational semantics of programs assumed a
view of a process still as a function

f : D → D′ ,

but now acting in a continuous fashion between
datatypes represented as special topological spaces,
‘domains’ D and D′; reflecting the fact that
computers can act on complicated, conceptually-
infinite objects, but only by virtue of their finite
approximations. Denotational semantics and domain
theory set the standard for semantics of computation.
The theory provided a global mathematical setting
for sequential computation, and thereby placed
programming languages in connection with each
other; connected with the mathematical worlds of
algebra, topology and logic; and inspired programming
languages, type disciplines and methods of reasoning.

In the 1960’s, around the time that Strachey started
the programme of denotational semantics [91], Petri
advocated his radical view of a process, expressed in
terms of its events and their effect on local states [79]—
a model which addressed directly the potentially
distributed nature of computation, but which, in
common with many other current models, ignored
the distinction between data and process implicit in
regarding a process as a function. Here it is argued that
today an adequately-broad notion of process requires a
marriage of Petri’s view of a process and the vision of
Scott and Strachey.

2.1. Classical domain theory

It is helpful to recall the basics of traditional domain
theory, the mathematical foundations of denotational
semantics. A domain is a partial order (D,v) with,
at the very least, the completeness property that any

infinite chain

d0 v d1 v · · · v dn v · · ·

has a least upper bound
⊔
n dn. The order v can be

mysterious to a beginner and is quite abstract. It stands
for an order of increasing computational information,
information which can be presented as a limit (the
least upper bound) of a chain of approximations.
Accordingly, a function between domains f : D → E
should be continuous in that f should preserve limits,
i.e. it should preserve the information order and least
upper bounds of chains.

If a domain D has a least element ⊥ and a function
f : D → D is continuous, then f has a least fixed
point given by

⊔
n f

n(⊥). This is a central tool in
giving meaning to recursive programs. By pushing this
technique for solving recursive definitions up to the
level of domains (treating the category of domains with
continuous functions as analogous to a domain itself),
Scott achieved the breakthrough in the late sixties of
producing a nontrivial solution to D ∼= [D → D] (a
recursively defined domain), so providing a model of the
λ-calculus, and, by the same techniques, the semantics
of recursive types [87].

2.1.1. Representations of domains
What is the information order? Can any sense be made
of its ‘units’ of information? There are essentially two
answers in the literature, the ‘topological,’ the most well-
known from Scott’s work, and the ‘temporal,’ arising
from the work of Berry [11]:
• Topological: the basic units of information are

propositions describing finite properties; more
information corresponds to more propositions
being true. Functions are ordered pointwise.
Domains are represented by logical theories in the
form of ‘information systems’ or ‘logic of domains.’

• Temporal: the basic units of information are
events; more information corresponds to more
events having occurred over time. Functions are
restricted to ‘stable’ functions and ordered by
the intensional ‘stable order,’ in which common
output has to be produced for the same minimal
input. Berry’s specialized domains ‘dI-domains’
are represented by event structures.

In truth, Berry developed ‘stable domain theory’ by
a careful study of how to obtain a suitable category
of domains with stable rather than all continuous
functions. He arrived at the axioms for his ‘dI-domains’
because he wanted function spaces (so a cartesian-
closed category). The realization that dI-domains were
precisely those domains which could be represented by
event structures, a fact explained now, came a little
later [101, 105].

The Computer Journal Vol. 00 No. 0, 2008

4 Glynn Winskel

2.1.2. Event structures
An event structure comprises (E,≤,Con), consisting of
a set E, of events (event occurrences), partially ordered
by ≤ , the causal dependency relation which satisfies
{e′ | e′ ≤ e} is finite for all e ∈ E, and a family Con
of finite subsets of E, the consistency relation, which
satisfy

{e} ∈ Con for all e ∈ E,
Y ⊆ X ∈ Con =⇒ Y ∈ Con, and
X ∈ Con & e ≤ e′ ∈ X =⇒ X ∪ {e} ∈ Con.

The relation e′ ≤ e expresses that the event e can only
occur after the event e′. The consistency relation picks
out those events which can occur together.

Consider a record of the events that have occurred.
If an event e has occurred then so must all events
e′ on which e depends have occurred previously, and
any finite set of events that have occurred should be
consistent. Accordingly, the configurations, C(E), of an
event structure E consist of those subsets x ⊆ E which
are

Down-closed: ∀e, e′. e′ ≤ e ∈ x =⇒ e′ ∈ x and
Consistent: ∀X ⊆fin x. X ∈ Con .

Configurations stand for histories, given in terms
of the events that have occurred; the events inherit
an order from the event structure. In particular,
for an event e the set [e] =def {e′ ∈ E | e′ ≤ e} is
a configuration including the whole causal history of
the event e. The inclusion relation x ⊆ x′ means
that x is a sub-history of x′. Ordered by inclusion
the configurations form a domain (C(E),⊆)—in fact,
when E is countable, a dI-domain as discovered by
Berry, and all such are so obtained. In this way event
structures can represent a rich variety of types, even for
polymorphism [21, 105].

2.1.3. Anomalies in domain theory
Nondeterminism: For traditional (‘topological’)
domain theory the problem of adjoining nondetermin-
ism was solved by Plotkin through the introduction of
powerdomains [80]. Powerdomains can be seen as con-
cerned with information about the possible and even-
tual properties of a nondeterministic process [102]. But
for stable domain theory the information order of all
but the simplest powerdomain fail to be temporal.
Section 2.3 will provide an alternative way to adjoin
nondeterminism.
Concurrency/interaction: The intricacy of models for
distributed computation such as Petri nets and event
structures (modelling both processes and types), means
that they don’t fit comfortably within a partial order of
information. Rather their intricacy suggests that they
belong more rightfully to an extended notion of domain
as a category—see Section 2.2. Only rarely do the
wanted equivalences on processes arise from traditional
domain theory.

Probability and nondeterminism: There are powerdo-
mains both for nondeterminism and probability. Some-
times one needs both. Combining probability and non-
determinism is problematic because the two forms of
powerdomain together do not satisfy a distributive law
(their combination forces extra laws to be imposed [67]).
However, if one works with the indexed probabilistic
powerdomain where the probability distribution is car-
ried by the ways in which values are computed, one
recovers a distributive law [95, 96].
Nondeterministic dataflow: While, as Kahn was early
to show [57], deterministic dataflow is a shining
application of simple domain theory, nondeterministic
dataflow is beyond its scope. The compositional
semantics of nondeterministic dataflow needs a form
of generalized relation which specifies the ways input-
output pairs are realized—see Section 2.3.

Traditional denotational semantics and domain
theory appear to have abstracted away from operational
concerns too early and the problems point towards a
more intensional ‘domain theory’ which expresses the
set of ways of computing. Early suggestions along
these lines were made by Lehmann with a definition
of a categorical powerdomain [62], Benson in ‘counting
paths’ of nondeterministic processes [9] and by Girard
in his ‘quantitative’ domain theory [40]. Lehmann
and Girard’s work fit within the broader view of
domains as presheaf categories [18]. Causal models
have reappeared in providing an operational reading of
the ways computations are realized, for example as the
finite configurations of an event structure [73].

2.2. An abundance of models

Partly in reaction to the difficulties of traditional
denotational semantics and domain theory, today we
find a range of ways to model a process in computer
science, for example as: a transition system; an
equivalence class of transition systems w.r.t. some
equivalence such as bisimulation; a coalgebra; a
resumption in a powerdomain; an IO-automaton; a
Petri net; a game; a (generalized) relation; . . .

Fortunately many models can be formally related
by adjunctions whose adjoints give translations of one
model into another. The adjunctions make explicit how
to translate from one kind of model (say Petri nets)
to another (say occurrence nets, or event structures);
this relies on regarding a kind of model (say Petri
nets) as a category (a category of Petri nets) with
suitable ‘simulation’ maps (we define the maps on event
structures below). For example the unfolding of a
Petri net illustrated in the Introduction is the right
adjoint to the inclusion functor from the category of
occurrence nets to the category of (1-safe) Petri nets.
There is an intuitively obvious map f : U(N) → N
from the occurrence net U(N) back to the original net
N ; it takes occurrences of conditions and events back to
those conditions and events in the original net of which

The Computer Journal Vol. 00 No. 0, 2008

Events, Causality and Symmetry 5

they are occurrences. A way to express the adjunction
is through the following universal characterization of
the unfolding. Given any map g : O → N from an
occurrence net O to the original net, there is a unique
map h : O → U(N) such that f ◦ h = g:

U(N)
f
// N

O

g

<<yyyyyyyyy
h

OO

[For a definition of the maps of Petri nets, see [99, 103].]
As a right adjoint, unfolding automatically preserves

limits, for example products and pullbacks, in the
category, and this can be useful in relating parallel
compositions in one model to those in another [33].
There is a further adjunction between event structures
and occurrence nets; its right adjoint ‘strips’ away the
conditions of an occurrence net to reveal its underlying
event structure, while its left adjoint ‘saturates’ an
event structure with conditions to make an occurrence
net. Adjunctions compose so we obtain an adjunction
between event structures and safe nets—its right adjoint
acts as the operation from Petri nets to event structures
sketched in the Introduction.

The use of categories exposes a uniformity across
different models. Semantics of synchronising pro-
cesses [52, 65], whether they be in transition systems,
Petri nets, event structures or many other models, are
given in precisely the same way in terms of the cat-
egorical constructions used. Presented as categories,
models support a general, diagrammatic definition of
an important equivalence, strong bisimulation and its
extension beyond transition systems, via open maps—
see Section 3.2.

The categories depend on a choice of simulation
map which we illustrate for event structures. The
maps arise in relating compound constructions to
their components, for example, as projections from
a parallel composition of event structures to one of
its components. Earlier we saw event structures as
representations of domains, so types. Now we are
seeing them in the role of processes (in the sense of the
synchronising processes of Hoare and Milner in CSP and
CCS). Let E and E′ be event structures. A partial map
of event structures f : E ⇀ E′ is a partial function on
events f : E ⇀ E′ such that for all x ∈ C(E)

fx ∈ C(E′) and
if e1, e2 ∈ x and f(e1) = f(e2) , both being defined,

then e1 = e2.

The idea is that the occurrence of an event e in E
induces the coincident occurrence of the event f(e)
in E′, whenever it is defined. Because events are
thought of as essentially without duration, two distinct
events which occur in a history of the input cannot

be coincident with a common event in the image—the
reason for the ‘local injectivity’ condition.

Despite the abundance of categories of pre-existing
models, they form a rather patchy landscape and
are, for example, insufficient to represent higher-order
processes (which might take a process itself as input and
deliver another process as output). Presheaf categories
fill out the landscape of models to provide a versatile
range of models for processes [18]. The idea is to build
models for processes directly out of computation paths,
regarding a nondeterministic process as a presheaf on a
category of paths; essentially, a presheaf is a glueing
together of computation paths. Presheaf categories
are as versatile as the notion of computation path.
With suitable choices of paths, presheaf categories
subsume existing models such as event structures, while
supporting a range of type constructions, also for
higher-order processes and name generation [17, 18, 73,
107]. Presheaf categories and the relations between
them, expressed as profunctors, connect with the rich
world of higher-dimensional algebra. In particular, the
little-explored representation of processes as ‘bundles’ is
crucial in the general treatment of weak bisimulation,
and its extension to causal models [14, 34]. But the
mathematical advantages come at a cost, that of finding
an operational reading.

2.3. Relations rediscovered

From a historical perspective it is remarkable that so
many of the models of processes listed in Section 2.2
are not associated with input and output types;
while the structure of models has become much more
sophisticated the explicit connections with input an
output data have often been lost.

A central exception is that of generalized relations in
the form of profunctors (or distributors, or bimodules).
Profunctors are relations between categories in which
the category of sets takes over the role of truth values;
instead of simply saying whether or not an object of
input is related to an object of output, a profunctor
provides a set of ways in which that particular input-
output instance is realized. Technically, a profunctor F
from a category A to a category B, written F : A + //B,
is a functor F : A×Bop → Set, covariant in input and
contravariant in output. When A is the trivial category
1 with just a single object and the single identity
map, the profunctor amounts to just a contravariant
functor from B to Set, in other words a presheaf on B.
(See [108] for more intuition.)

Profunctors have arisen independently in a range
of areas: in logic and types, e.g. Girard’s normal
functors [40] and ‘container types’ [3]; combinatorics
through Joyal’s theory of species [55] and its
extensions [35]; nondeterministic dataflow [76]; higher-
order programming languages and processes [18];
categories of models for concurrent computation [18];
as a starting point for the theory of operads [24]; . . .

The Computer Journal Vol. 00 No. 0, 2008

6 Glynn Winskel

The ‘relations’ arising from computation can often
be represented, in a more computationally informative
way, in terms of event structures, with event structures
playing both the role of input and output types, as
well as the process of computation between them. A
compelling example comes from the early work of
Brock and Ackerman who were the first to emphasize
the difficulties in giving a compositional semantics to
nondeterministic dataflow [13], though our example is
based on simplifications in the later work of Rabinovich
and Trakhtenbrot, and Russell.

Nondeterministic dataflow—Brock-Ackerman anomaly

�
�-�

-
-

FAiC[Ai] =

There are two simple nondeterministic processes A1 and
A2, which have the same input-output relation, and
yet behave differently in the common feedback context
C[−], illustrated above. The context consists of a fork
process F (a process that copies every input to two
outputs), through which the output of the automata Ai
is fed back to the input channel, as shown in the figure.
Process A1 has a choice between two behaviours: either
it outputs a token and stops, or it outputs a token,
waits for a token on input and then outputs another
token. Process A2 has a similar nondeterministic
behaviour: either it outputs a token and stops, or it
waits for an input token, then outputs two tokens. For
both automata, the input-output relation relates empty
input to the eventual output of one token, and non-
empty input to one or two output tokens. But C[A1]
can output two tokens, whereas C[A2] can only output
a single token. Notice that A1 has two ways to realize
the output of a single token from empty input, while
A2 only has one. It is this extra way, not caught in a
simple input-output relation, that gives A1 the richer
behaviour in the feedback context.

Over the years there have been many solutions to
giving a compositional semantics to nondeterministic
dataflow (see [76] for fuller references). But they
all hinge on some form of generalized relation, to
distinguish the different ways in which output is
produced from input. A compositional semantics
can be given using stable spans of event structures,
an extension of Berry’s stable functions to include
nondeterminism [85, 86]. A process of nondeterministic
dataflow, with input type given by an event structure
A and output by an event structure B, is captured by
a pair of maps (a span)

E
dem

��~~~~~~~
out

@@@@@@@

A B

where E is also an event structure. The map out :
E → B is a rigid map, i.e. a total map of event
structures as in Section 2.2 which preserves the relation
of causal dependency, or equivalently, a total map with
the property that for a configuration x of E if y is a
subconfiguration of out x then there is a (necessarily
unique) subconfiguration x′ of x such that out x′ = y:

x′ ⊆_

��

x_

��

y′ ⊆ out x

The map dem : E → A, associated to input, is of a
different character. It is a demand map, i.e. a function
from C(E) to C(A) which preserves finite configurations
and unions; dem x is the minimum input for x to occur
and is the union of the demands of its events. The
occurrence of an event e in E demands minimum input
dem [e] and is observed as the output event out(e).
Deterministic stable spans, where consistent demands
in A lead to consistent behaviour in E, correspond to
Berry’s stable functions.

The stable span determines a profunctor Ẽ from the
finite configurations p of A to the finite configurations
q of B:

Ẽ(p, q) = {x ∈ C(E) | dem x ⊆ p & out x = q} ,

the set of ways the input-output pair (p, q) is realized.
Stable spans can be composed one after the

other (essentially by a pullback construction, as
rigid maps extend to special demand maps between
configurations)—their composition coincides with the
composition of their profunctors. They also have a
nondeterministic sum, and compose in parallel, and
most significantly allow a feedback operation [85].

In fact, stable spans were first discovered as a way
to represent, and give operational meaning to, the
profunctors that arose as denotations of terms in affine-
HOPLA, an affine Higher Order Process LAnguage [73,
74]. The spans helped explain the tensor of affine-
HOPLA as the parallel juxtaposition of event structures
and a form of entanglement which appeared there as
patterns of consistency and inconsistency on events.
The use of stable spans in nondeterministic dataflow
came later as a representation of the profunctors used
in an earlier semantics [76, 85].

3. CAUSAL MODELS AND SYMMETRY

3.1. Anomalies in traditional causal models

The insufficiency of stable spans: Although one can
easily encode CCS within affine-HOPLA this induces
the usual interleaving semantics of CCS. One can
prove that the spans denotable by terms of affine-
HOPLA can never be those of the usual event-structure
semantics of CCS [99]. More generally, because

The Computer Journal Vol. 00 No. 0, 2008

Events, Causality and Symmetry 7

output maps of stable spans are rigid, they are too
restrictive when considering parallel compositions via
synchronizations. Such a parallel composition of event
structures can augment extra causal dependency to
that which is present in the event structures originally.
So ‘projections’ from a parallel composition to a
component are rarely rigid.
Varying maps: There are uses for several different forms
of maps on event structures: rigid, total and partial
maps, demand maps and a variant of demand maps due
to Abbes [1]. Changing the category generally changes
important categorical constructions. One would like to
settle on some basic maps and then have a systematic
way to vary the nature of maps within it.
Unfoldings of general Petri nets: In general nets
conditions can hold with multiplicities. While their
occurrence net unfoldings can be defined, there is no
universal characterisation like that of Section 2.2. The
symmetry intrinsic to nets with multiplicities spoils
uniqueness.
Unfoldings of higher-dimensional automata: Higher-
dimensional automata are essentially glueings together
of cubes of concurrent actions [46]. Although they can
be unfolded to event structures the identifications due
to glueing spoil uniqueness in trying to get a universal
characterization.
Weak bisimulation: Just as for labelled transition
systems weak bisimulation between labelled event
structures (in which we abstract from invisible actions,
generally labelled τ) can be explained as strong
bisimulation between the results of ‘hiding’ the invisible
actions [34]. Whereas the ‘hiding’ operation on a
transition system is again a transition system, the
hiding operation on an event structures does not always
yield an event structure [34].
Name generation: There are methods to represent the
generation of new names in causal models, e.g. [23,
92, 108]. But the methods are overly concrete in the
sense that they ignore the implicit symmetry on names.
Presently there are difficulties in extending work on an
event-structure semantics of the pi-Calculus [66] to the
whole language because of the absence of a key algebraic
operation—a form of new-name abstraction on event
structures [22] .

The anomalies have a common solution: a formal
treatment of symmetry in processes. Consider the first,
that stable spans are insufficient. One wishes to free up
the choice of maps for the input and output legs of the
span. In answer to the second difficulty one would like
to do this systematically.

A systematic way to modify maps is through Kleisli
maps associated with monads [68]. Starting from an
original category—a good choice would be the category
of event structures with rigid maps—one could hope to
obtain other kinds maps from an object E to an object
B as original maps from E to T (B), where T is an
appropriate monad. This suggests that stable spans be

generalized to general spans of event structures

E

}}zzzzzzzz

""DDDDDDDD

S(A) T (B)

with input the event structure A, output B and process
E, w.r.t. suitable monads S and T to moderate the
regimes of input and output. More should hold for the
spans to compose [109, 110].

In the span shown above, one would hope in
particular for a monad S such that demand maps from
E to A are realized as Kleisli maps from E to S(A).
It becomes important that event structures are able
to support a reasonable repertoire of monads. It is
here we run into difficulties. Consider for example the
useful operation of replication !E forming the parallel
composition of countably many copies of an event
structure E. For this to be a monad we require a unit
ηE : E →!E and multiplication µE :!!E →!E. It would
seem reasonable that ηE takes E to the zeroth copy.
Assuming an injection [,] : N×N→ N encoding pairs
of natural numbers as natural numbers, again it would
seem reasonable that µE takes (i, (j, e)) to ([i, j], e). But
then the laws for monads fail. It is easy to check that
none of the monad diagrams commute:

!E

id!E !!CCCCCCCC
η!E // !!E

µE

��

!E

!E

id!E !!CCCCCCCC
!ηE // !!E

µE

��

!E

!!!E

!µE

��

µ!E // !!E

µE

��

!!E µE

// !E

For example if the first two diagrams commuted, i =
[0, i] = [i, 0], violating the injectivity of pairing. But
in !E one copy of E is similar to another. Up to this
symmetry, allowing one copy to swap with another, the
diagrams do commute. In answer to the first and second
anomalies at least, a formal treatment of symmetry is
needed.

It is illustrative to consider how symmetry is also
important in the third anomaly, that of obtaining a
universal characterisation of unfoldings of general Petri
nets. In general a condition of a Petri net may not just
hold or not hold, but hold with a certain multiplicity.
For example, below, the net on the right has an initial
marking in which a condition holds with multiplicity 2.
It is generally agreed that its unfolding should be the
occurrence net on the left, the two components of which
correspond to the two ways in which the conditions
and the events of the original general net can occur.
There is a folding map taking the occurrences back to
the conditions and events of the original net of which
they are occurrences:

ha ah h
hhh

6 6 6

6 6 6-

The Computer Journal Vol. 00 No. 0, 2008

8 Glynn Winskel

h h
hh

6 6

6 6

h h
hh

6 6

6 6

ha a
h
6

6-

�
��>

6 6

h h
hh

6 6

6 6

h h
hh

6 6

6 6

ha a
h
6

6-

�
��>....

....
....
..
7

.....
.....

.....
..
o

Earlier, in Section 2.2, we saw a universal character-
ization of the unfolding of (1-safe) Petri nets without
multiply-holding conditions. An analogous result here
would require that any map from an occurrence net to
the original net factored uniquely through the folding
map. But this does not hold of the folding map itself,
where both the identity and the map ‘swapping’ the
components in the unfolding provide a factorization—
see the figure above. However the two maps, identity
and ‘swap,’ are equal up to the symmetry implicit in
the unfolding. The two components of the unfolding
inherit their symmetry from the essentially symmetric
marking of the initial condition in the original net.

The two examples, replication and unfolding, are
alike and perhaps deceptively simple; symmetry in the
behaviour of a process can be much less structurally
apparent than in these examples. Still, they suggest
that the extra structure of symmetry should express
when a computation run, or path, can be swapped with
another in the behaviour of a process. The method
of adjoining symmetry should be tuned to process
behaviour, and applicable to a wide range of models.

3.2. Symmetry

The treatment of symmetry on models proposed here
makes use of a general method of open maps in defining
bisimulation in a variety of models. The method shows
one advantage of presenting models as categories—
see [56] for more details.

Let C be a category with a distinguished subcategory
P of path objects with path-extension maps. For
example, the category C might be that of event
structures and P the subcategory of finite ‘elementary’
event structures in which all subsets of events are
consistent—so partial-order runs. Alternatively, the
category C could be the category of transition systems
and P the subcategory of special transition systems that
have the form of single finite branches. (We might also
allow infinite runs, important in treating ‘fairness.’) A
map f : X → Y in C is a bisimulation map, traditionally
called open, if, for any map s : P → Q in P and maps

p : P → X and q : Q→ Y , if the diagram

P
p
//

s

��

X

f

��

Q
q
// Y

commutes then there is a map h : Q→ X such that the
diagram

P
p
//

s

��

X

f

��

Q
q
//

h

??~
~

~
~

Y

commutes, i.e. p = hs and q = fh. This path-
lifting property says that any extension, viz. qs
of a path fp in Y can be matched, via f , by
an extension hs of the path p in X. It can be
shown by straightforward diagrammatic arguments that
open maps include all isomorphisms, are closed under
composition (and therefore form a subcategory). It
is an instructive exercise to show that open maps are
preserved under pullbacks [56].

We define a bisimulation between two objects X and
Y in C to be a generalized relation in the form of a span
of open maps in C:

R

~~}}}}

@@@@

X Y

A bisimulation specifies when paths in X are similar
to paths in Y ; that the two maps are open guarantees
that similar paths have similar subpaths and similar
extensions. When C has pullbacks, and categories such
as those of event structures and transition systems do,
bisimulation induces an equivalence relation on objects
of C (using the fact that a pullback of an open map is
open). In the case of transition systems the equivalence
obtained is the usual strong bisimulation of Milner
and Park [65], while for event structures it is also
independently known, and called hereditary history-
preserving bisimulation (unfortunately!) [8] .

We now show how to extend a category of models to a
category of models with symmetry. We won’t describe
this in fullest generality, but for the case in which C is a
category with pullbacks with distinguished subcategory
P of path objects.

We define a new category, SC, of objects with
symmetry and symmetry-preserving maps, as follows.

The objects of SC are triples (C; l, r : S → C)
comprising an object C of C together with open maps
l : S → C and r : S → C, from a common object S in
C,

S

l

����������
r

@@@@@@@@

C C ,

The Computer Journal Vol. 00 No. 0, 2008

Events, Causality and Symmetry 9

so a bisimulation, which also forms a pseudo equivalence
(see Appendix). The span expresses the relation of
symmetry, when paths in C are similar according to the
symmetry; its being a bisimulation ensures that similar
paths will have similar pasts and futures. That it forms
a pseudo equivalence ensures that similarity is reflexive,
symmetric and transitive.

We call objects of SC objects with symmetry. When
l, r form an equivalence relation (see Appendix) we shall
call (C; l, r : S → C) a symmetry equivalence. In
writing them we shall adopt the convention that for
instance (A;SA) describes the object with symmetry
(A; lA, rA : SA → A).

In SC, a map f : (A;SA) → (B;SB) is a map
f : A→ B in C which preserves symmetry in the sense
that

A

f

��

SA
lAoo

h

��
�
�
�

rA // A

f

��

B SB
lBoo

rB // B

commutes for some h : SA → SB in C. This ensures
that under f similar paths according to the symmetry
in A go to similar paths according to the symmetry in
B. Maps in SC compose as maps in C and share the
same identity maps.

For maps f, g : (A;SA) → (B;SB), define f ∼ g iff
there is a map h : A→ SB in C such that

A
f

~~}}}}}}}}
h

��
�
�
�

g

 AAAAAAAA

B SB
lBoo

rB // B

commutes. Then, under f and g a path in A is sent to
similar paths according to the symmetry in B. Maps f
and g in SC for which f ∼ g are thought of as the same
up to symmetry.

The relation ∼ is an equivalence relation on maps
SC(A,B) between objects with symmetry A and B.
Composition respects ∼, and the category SC is
enriched in the category of equivalence relations.

The relation ∼ plays a central role. It allows the
relaxation of concepts normally defined using equality
on maps to analogous concepts up to symmetry. For
example, traditionally two objects are described as
isomorphic if there is a pair of mutual isomorphisms
between them. In the presence of symmetry it is more
appropriate to define another equivalence on objects:
Let A and B be objects with symmetry. An equivalence
from A to B is a pair of maps f : A→ B and g : B → A
in SC such that f ◦ g ∼ idB and g ◦ f ∼ idA; then we
say A and B are equivalent and write A ' B.

An object with symmetry B represents a presheaf
SC(−, B)/∼ over P, got by quotienting w.r.t. ∼, and
this can have a marked effect on those presheaves which
can be represented.

Under minor conditions, functors and adjunctions
between categories with pullbacks and subcategories of

paths lift to their extensions with symmetry.

Examples
(1) If the subcategory P of C is a groupoid (i.e. all its
maps are isomorphisms), then all maps of C are open
and the construction of SC from C coincides with its
exact completion [16].
(2) For the categories of event structures (with partial,
total or rigid maps), a symmetry equivalence on an
event structure E corresponds to an isomorphism family
S of bijections θ : x ∼=S y between finite configurations
such that
(i) idx : x ∼=S x for all finite x ∈ C(E); if θ : x ∼=S y
then θ−1 : y ∼=S x; if θ : x ∼=S y and ϕ : y ∼=S z then
ϕ ◦ θ : x ∼=S z.
(ii) if θ : x ∼=S y and x′ ⊆ x with x′ ∈ C(E), then the
restriction θ′ : x′ ∼=S y′ and y′ ⊆ y for some (unique)
y′ ∈ C(E).
(iii) if θ : x ∼=S y and x ⊆ x′ for finite x′ ∈ C(E), then an
extension θ′ : x′ ∼=S y′ and y ⊆ y′ for some y′ ∈ C(E).
Note that an event structure with symmetry now
represents a category of finite configurations where
maps are got by composing isomorphisms from its
isomorphism family with inclusions; by (ii) all maps
can be normalized to an isomorphism from the
isomorphism family followed by an inclusion. There are
characterizations in terms of isomorphism families of
preservation of symmetry by maps of event structures
and the relation ∼ on symmetry-preserving maps [109,
110].
(3) For transition systems (with the standard maps pre-
serving initial states and transitions [99]) a symmetry
equivalence on a transition system corresponds to an
equivalence relation on the states of the transition sys-
tem which is also a strong bisimulation [65].

3.3. Consequences of symmetry

A major consequence is that many wished-for monads
on event structures, such as replication, do indeed
become monads up to symmetry (technically forms
of pseudo monad) once event structures are extended
with symmetry. Starting with the category of event
structures with rigid maps, its extension with symmetry
has monads with which to realize demand maps
(including the variant in [1]), total non-rigid maps,
partial maps and replication [109, 111]. The monads
adjust the notion of event, including possibly their
atomicity, so that events can now have duration.

For example, on a (countable) event structure with
symmetry A, the monad for demand maps creates
events out of input histories, describing the way that
input is explored in A. Such a history is a demand map
h : I → A from an elementary event structure I with
events lying in the natural numbers. We can order two
histories h : I → A and h′ : I ′ → A by h v h′ iff there
is a rigid inclusion map j : I ↪→ I ′ such that h = h′ ◦ j.
So ordered, histories form a dI-domain. The domain is

The Computer Journal Vol. 00 No. 0, 2008

10 Glynn Winskel

represented by an event structure S(A), in which the
events are those histories h : I → A for which I has
a top element; the events inherit a causal order as a
restriction of the ambient order v and a consistency
relation from compatibility w.r.t. v. A symmetry on
S(A) allows us to regard two histories h : I → A and h :
I ′ → A as similar, when I and I ′ are isomorphic so that
their corresponding images are related by the symmetry
of A. Up to symmetry, demand maps between event
structures with symmetry, from E to A correspond to
rigid maps, preserving symmetry, from E to S(A)—for
more details see [109, 111]. Using a monad based on a
similar idea of history it is also possible to realize the
effect of compound ‘persistent’ events [86, 108], events
with duration, out of atomic events [111].

The ubiquity of monads up to symmetry opens the
way to general spans providing semantics to potentially
rich process languages and event types, supporting
case analysis on events. This work is incomplete, but
see [110] for an example of how such a higher-order
language can induce the usual event-structure semantics
for CCS, as well as an event-structure semantics for
a higher-order variant of CCS. In particular, the
stable spans used in the semantics of nondeterministic
dataflow can be realized as particular general spans,
with only one monad to modify the input map, a case
studied by Burroni [12]. Such spans comprise a pair of
rigid maps between event structures with symmetry

E

}}zzzzzzzz

��
????????

S(A) B

where, as we have seen, the monad S makes events of
S(A) out of input histories, in such a way that rigid
maps from E to S(A) correspond to demand maps.

By adjoining symmetry to Petri nets we can obtain a
universal characterisation of unfoldings of general Petri
nets, like that of Section 2.2, but where instead of
uniqueness we achieve uniqueness up to symmetry [50].
(An explicit notion of symmetry for Petri nets was also
used in [84].)

By extending event structures with symmetry
we are able to represent a broader category of
presheaves [106, 110, 112]. Operations that previously
only worked on presheaves now work on event structures
with symmetry. We can now obtain a universal
characterisation of an unfolding of higher-dimensional
automata as an event structure with symmetry [110].
Now, in principle, the hiding operation on event
structures with symmetry yields an event structure
with symmetry, bringing a central operation of weak
bisimulation back into causal models. Work on a
domain theory [94] within the theory of nominal
sets [78], was designed with the idea of extending
it to presheaf models. Viewing event structures as
presheaves (now in nominal sets) would yield constructs

such as new-name abstraction on event structures,
the missing key to an algebraic treatment of name
generation in causal models.

In summary, the introduction of symmetry is bringing
a new expressive power to causal models: previously
unthought-of semantics to higher-order types and
languages; mechanisms for event abstraction, allowing
the switch from atomic to compound events; extensions
to the usual Petri-net unfolding and its preservation
results; new constructions, equivalences and new-
name abstraction; and possibilities of new enrichments
with further structure through the presentation of
generalized relations as spans of causal models.

4. RESEARCH AREAS

So far it has been mainly shown how causal models and
the introduction of symmetry arise from mathematical
concerns, one thing leading to another. But of course
the importance of causal models to computer science
derives from their wide range of application, and the
numerous research areas in which they have potential
significance. In the past it has been not so much
the mathematical richness of causal models, but their
almost physical nature, making them close to what
is modelled or to be implemented, that has most
influenced their use. But it is their under-appreciated
and under-explored mathematical richness that will
drive their new uses in the research areas below.
Domain theory for causal models: The explanation
and development of causal models here, in particular
the introduction of symmetry, have been motivated
by considering how causal models might support a
form of ‘domain theory’ and denotational semantics,
though of a revolutionary form in which causal models
play the role of both types and maps (in the form of
spans). A lot remains to be done. Especially pressing
is the need for high-level syntax for general spans
and associated types (generalizing Moggi’s monadic
metalanguage [68], which has been very successful in a
more limited scenario); presently, in exploratory work,
definitions proceed by an intriguing ‘event induction’
on the structure of events associated with the types—
see [110].
Distributed algorithms: One motivation in boosting
the power of causal models has been to make
distributed algorithms, and the use of causal models
there, amenable to semantic description and reasoning
techniques. The area provides a valuable testing
ground for the new domain theory and ideas on
symmetry. The potential richness of event types
and higher-order languages should, when developed
more fully, be helpful in the design and analysis of
distributed algorithms, especially where causal models
or symmetry are involved. Lynch’s book [63] provides
a thorough introduction to distributed algorithms and
many examples, some using symmetry, to try out.
The techniques of distributed algorithms have become

The Computer Journal Vol. 00 No. 0, 2008

Events, Causality and Symmetry 11

relevant in chip design, recognized in the use of Petri
nets there [59], and become increasingly so as chip
design is forced to count the cost of communication [70].
Significant advances have been made in the more
limited regime of security protocols [23, 43, 92]—
there are gaps in the treatment and exploitation
of symmetry, and in relations with cryptography,
which calls for probability. Two other specialized
areas which rely on causal models, and probabilistic
event structures [97], are the distributed diagnosis
of communication networks [10], and the very recent
Bayesian analysis of event-based trust [71].
Probability and nondeterminism: The use
of spans suggests largely-unexplored methods to
enrich computation with probability, in addition to
nondeterminism, essentially by taking the vertex in a
span of event structures to be a probabilistic event
structure [2, 97]. The probabilistic event structure
expresses both the ways, and with which probability,
output is obtained. The output event structure (to
the right of the span) would now stand for a type
of probabilistic processes. In special cases the idea
relates to, again largely-unexplored, categorical versions
of the indexed-probability powerdomains [95, 96]. Each
construction gives a category of random variables on a
category, and mimics the corresponding construction on
domains. To combine probability with nondeterminism,
we expect distributive laws with the presheaf-category
construction, as a form of categorical powerdomain.
Systems biology: Causal models, with stochastic
information, are already used in bio-computation [51]
and there is reason to expect, by analogy with computer
systems, that higher-order bio-processes (beginning
to be accessible to the theory here) will become an
important abstraction tool. Issues of compound versus
atomic events are important in systems biology. In
the presence of symmetry there are ways to realize
forms of compound event, for example the ‘persistent’
events of [108], out of atomic events. Interestingly
biologists are not interested in quite the same unfolding
of Petri nets to event structures as most computer
scientists. Biologists are more interested in the
‘macroscopic’ events of a biological process rather than
the ‘microscopic’ events which are picked out by the
traditional computer-science unfolding. For example, in
the traditional unfolding of a Petri net the participation
of the same molecule at several stages in a reaction
would lead to a chain of causal dependencies. However
to a biologist that one particular molecule rather than
another has participated in a reaction is generally
neither here nor there, and such incidental dependencies
would be dropped [28]. The issue is closely related
to a developing understanding of unfoldings for the
‘collective-token’ understanding of Petri nets [45]; such
unfoldings involve the collapse of events according to
equivalences induced by symmetry.
Unfoldings and tools: Unfoldings of Petri nets have
provided strikingly successful methods for the analysis

of distributed systems [32], and with some variation
in systems biology [28]. The characterization of the
unfolding as a right adjoint has been exploited in
network diagnosis [33]. The techniques here, based on
symmetry, extend unfoldings and their characterization
to general nets, and begin to push Petri nets into the
new territory of higher-order processes (although we
have concentrated on event structures, similar ideas
are working for nets). The compact, often finite,
representations afforded by Petri nets accede to the
known decision procedures for Petri nets and regular
languages, and so potentially tools for the analysis of
higher-order processes (in the manner of algorithmic
game theory [39]). Symmetry is already exploited
in model checking [30], and its potential role in net-
unfolding techniques should be investigated.
Weak memory models: Weak memory models [54]
are challenging as they do not respect a property
fundamental to most causal models, that events
can be globally serialized. This is because a
memory transaction is more truly viewed as a
compound event, comprising several different events,
and which constituent event is in view depends on
the processor [83]. Formalizing the relation between
weak memory models and their implementation involves
event abstractions.
Operational semantics: There are practical,
design and dissemination issues in piloting structural
operational semantics with Petri nets. In several
separate Petri-net semantics, that of a language for
security protocols [23], a language for biochemical
systems [82], and a language with parallel commands
and semaphores [49], the same technique has been used,
and seems to be much more widely applicable. In
defining a semantics via a Petri net (or its abbreviation
as a form of coloured Petri net), first the net’s basic
conditions for data, names, resources and control are
defined followed by definition of its events in terms
of their pre- and postconditions. The definitions
proceed in a syntax-directed way, much as in Plotkin’s
‘Structural Operational Semantics’ (SOS) [81], but
where in SOS it is generally transitions which are
given inductively by rules, here it is events. One
feature currently missing from such semantics is that of
symmetry, for example between the different but similar
conditions standing for names of resources. The latter
suggests that the development might take place, more
appropriately, within nominal or Fraenkel-Mostowski
set theory [37, 78], rather than in traditional set theory
(see ‘Names and processes’ below).

One intention in moving to a more intensional
domain theory and denotational semantics is that
the denotational semantics can more fully prescribe
an operational reading. A guiding principle in
obtaining the operational semantics for HOPLA
was that elements in the presheaf denotation of
a process (standing for the ways a computation
could be realized) should correspond to derivations

The Computer Journal Vol. 00 No. 0, 2008

12 Glynn Winskel

according to an operational semantics. This led
to a ‘strong-correspondence’ theorem relating the
denotational and operational semantics [73, 75]. But
in general there is still some way to go in translating
mathematical semantics to a rule-based operational
semantics. For example, the fundamental higher-order
process metalanguage introduced in [108], inspired by
profunctors and exploiting their input-output duality,
challenges rule-based operational semantics.

Causal models such as event structures have already
played a key role in giving a more operational under-
standing of elements of presheaves (and so derivations in
an operational semantics), as congurations of an event
structure [73, 86, 108].
Quantum systems and event structures: There
are intriguing parallels between quantum processes and
processes described as event structures, where a degen-
erate form of entanglement appears in patterns of
consistency and conflict amongst events [74], labels
on copies of identical processes behave like ampli-
tudes [110], and ‘probabilistic tests’ [97] resemble the
consistent (or decoherent) families of the ‘consistent-
histories’ approach to quantum theory.

An event structure arises quite naturally in describing
the histories of quantum systems (with states in Hilbert
space H). The following construction is inspired by the
‘consistent-histories’ approach to quantum theory [44].
A quantum history of the quantum system might be
expressed as a finite sequence of quantum properties,
or theoretical observations, taken to be projectors on
H. The quantum histories possess the structure of
a Mazurkiewicz trace language by interpreting actions
as projectors, and independence as commutability of
distinct projectors. By a standard construction we
obtain an event structure from the Mazurkiewicz trace
language [99]. It is an event structure where the
events (occurrences of observations) are labelled by
projectors in such a way that concurrent events are
labelled by distinct commuting projectors. Each finite
configuration is associated with an operator, that got
by composing any sequence of projectors from which
the configuration arises. In the manner of consistent
histories, we can investigate those sets of configurations
over which the operator weights (got via the trace inner
product) determine a probability distribution. The
underlying event structure begins to suggest variations
on the form of decoherence conditions.

This is exploratory. But it does suggest studying
constructions on Hilbert spaces, such as Fock space,
in the light of event structures with symmetry, and,
more generally, ‘quantum event structures,’ with events
labelled by projectors on a Hilbert space; the hope is
that quantum event structures and their constructions
would furnish denotational semantics for quantum-
process languages [5, 89, 93].
Reasoning techniques: Connections to the broader
world of mathematics, strengthened by the addition
of symmetry to causal models, pave the way to new

methods of reasoning about processes. Through the
addition of symmetry, causal models represent certain
categories (in the case of event structures, categories
of elements of certain presheaves [110, 112]). Through
symmetry, equivalences such as weak bisimulation,
defined via bundles [34], can be imported back into
causal models, and potentially analyzed there. The
richer discipline of types could play a role in establishing
properties via type checking. The mathematical
connections move us closer to topology and geometry
and their use in reasoning about processes [31, 47, 48,
61].

For a long time it has been a puzzle how to
exploit causal structure in useful specification logics
for processes. There have been several suggestions and
considerable ingenuity in getting logics which achieved
some measure of expressivity according to one criterion
or another [20, 56, 98]; most of the logics possess
some form of backwards modality which can push aside
independent actions. One such logic arose from the
general categorical method for obtaining bisimulation
from open maps [56]. But such logics have yet to
become useful practical tools in the specification and
analysis of processes.

At the same time there are many instances of
informal reasoning through symmetry and chains of
dependencies arising naturally in reasoning about
distributed algorithms. In protocol design and analysis
considerable skill is used in specifying the identity
of events often through the generation of random
or fresh names, which play an essential role in
establishing causal dependencies. This is manifest
in the methods of strand spaces [23, 92]. We are
beginning to see convincing logics, designed specifically
for security protocols, to support reasoning along
causal dependency in the manner of strand spaces [26].
Symmetry is currently being exploited in tools for
strand spaces [29].

Causal models, their equivalences and logics are mak-
ing a surprising appearance in reversible computa-
tion [27, 77].

The influence between computer science and mathe-
matics goes both ways; sometimes the computer-science
need for frequent efficient and safe calculation can
lead to methods which streamline or remove the hand-
waving from the usual mathematical arguments [15, 58].
Mathematics and logic: The research cannot be
divorced from questions in mathematics and logic.
Games and proofs: Event structures represent types,
underlie game semantics [6, 53] and begin to appear as
denotations of proofs [4, 25]; the need for symmetry also
appears here and in the earlier but related geometry
of interaction of Girard [42]. It is not clear if the
bipartite nature of games (‘opponent’ vs. ‘player’)
and the often intricate structure associated with it
can be accommodated within spans of causal models.
Perhaps it can: there are, for example, ways to
express the composition of sequential algorithms as

The Computer Journal Vol. 00 No. 0, 2008

Events, Causality and Symmetry 13

relational composition and this is taking us close to the
composition of spans.
Names and processes: The need for fresh-name
assumptions and new-name abstraction within causal
models calls for projects in nominal and Fraenkel-
Mostowski sets [37, 78]: the development of category
theory, up to presheaves and profunctors, within
nominal sets; the development of causal models in
nominal sets. The first project is needed to treat new-
name generation in the full range of presheaf models
(by analogy with work on domain theory and semantics
in nominal sets [94]), the second to import new-name
abstraction and freshness assumptions systematically
into causal models. Already, we can see an
interesting byproduct of the second project, that
symmetry relations (like those of Section 3.2) appear
automatically, induced by the symmetry on names. The
second project is anticipated in two converging lines
of work on automata for calculi with names; ‘history
dependent automata’ [69] are seen to equal automata
in nominal sets once it is realized that ‘named sets with
symmetry’ are a compact representations of nominal
sets [36, 38].
Higher-dimensional algebra: The connection with
higher-dimensional algebra is woven into the develop-
ment of the new domain theory as several threads (ini-
tially via presheaves, profunctors and pseudo monads,
and now also through symmetry and the enriched cate-
gories it leads to) and has already been fruitful [18, 35]
and is likely to lead to the refinement and development
of causal models, as we seek to give computational inter-
pretation to mathematical constructions. We cannot
expect to separate causal models from the more purely
mathematical structures of higher-dimensional algebra.
In particular, we need to understand better the rela-
tionship between the two kinds of generalized relations,
spans of event structures and (certain kinds of) pro-
functors.

ACKNOWLEDGEMENTS

I have benefited from discussions with Marcelo Fiore,
Jonathan Hayman, Martin Hyland, Jean Krivine,
Ugo Montanari, Prakash Panangaden, Gordon Plotkin,
Lucy Saunders-Evans, Pawel Sobocinski, Peter Sewell
and Sam Staton, and the advice of the anonymous
referees.

REFERENCES

[1] Abbes, S. (2006) A cartesian closed category of event
structures with quotients. Discrete Mathematics and
Theoretical Computer Science (DMTCS) 8(1), 249-272.

[2] Abbes, S. and Benveniste, A. (2006) Probabilistic
models for true-concurrency: branching cells and
distributed probabilities for event structures. Inf. and
Comp. 204(2), 231-274.

[3] Abbott, M., Altenkirch, T. and Ghani, N. (2003)
Categories of containers. Proceedings of FSSCS’03,
LNCS 2620. Springer-Verlag, Berlin.

[4] Abramsky, S. (2007) Event Domains, Stable Functions
and Proof Nets. In Computation, Meaning and Logic:
Articles dedicated to Gordon Plotkin, ed. Cardelli, L.,
Fiore, M. and Winskel, G., ENTCS 172, 33–67.

[5] Abramsky, S. and Coecke, B. (2004) A categorical
semantics of quantum protocols. Proceedings of
LICS’04.

[6] Abramsky, S., Jagadeesan, R. and Malacaria, P. (2000)
Full Abstraction for PCF. Inf. and Comp. 163, 409–
470.

[7] Bednarczyk, M.A. (1988) Categories of asynchronous
systems, PhD thesis in Computer Science, report
no.1/88, University of Sussex, UK.

[8] Bednarczyk, M.A. (1991) Hereditary History Pre-
serving Bisimulations or What is the Power of the
Future Perfect in Program Logics. ICS PAS Report.
Available from http://www.ipipan.gda.pl/~marek/

papers.html.

[9] Benson, D.B. (1984) Counting Paths: Nondeterminism
as Linear Algebra. IEEE Trans. Software Eng. 10(6),
785-794.

[10] Aghasaryan, A., Fabre, E., Benveniste, A., Boubour,
R. and Jard, C. (1998) Fault detection and diagnosis
in distributed systems: an approach by partially
stochastic Petri Nets. Discrete event dynamic systems,
theory and applications, vol 8 No 2.

[11] Berry, G. (1979) Modèles completement adéquats et
stables des λ-calculs typés. Thèse de Doctorat d’Etat,
Université de Paris VII.

[12] Burroni, A. (1971) T-catégories. Cahiers de topologie
et géométrie différentielle, XII 3.

[13] Brock, J. and Ackerman, W. (1981) Scenarios: A
model of non-determinate computation. Proceedings
of the International Colloquium on Formalization of
Programming Concepts, LNCS 107. Springer-Verlag,
Berlin.

[14] Bunge, M. and Fiore, M.P. (2000) Unique factorisation
lifting functors and categories of linearly-controlled
processes. MSCS 10(2). CUP.

[15] Caccamo, M. and Winskel, G. (2005) Limit preserva-
tion from naturality. CTCS’04, ENTCS 122, 3-22.

[16] Carboni, A. and Vitale, E.M. (1998) Regular and exact
completions Pure and Applied Algebra 125, 79–116.

[17] Cattani, G.L., Stark, I. and Winskel, G. (1997)
Presheaf models for pi-Calculus. Proceedings of
CTCS’97, LNCS 1290. Springer-Verlag, Berlin.

[18] Cattani, G.L. and Winskel, G. (2005) Profunctors,
open maps and bisimulation. MSCS 15(3), 553–614.
CUP.

[19] Cervesato, I., Durgin, N.A, Lincoln, P.D., Mitchell, J.C.
and Scedrov, A. (2000) Relating strands and multiset
rewriting for security protocol analysis. Proceedings
13th IEEE Computer Security Foundations Workshop.

[20] Nielsen, M. and Clausen, C. (1994) Bisimulations,
Games, and Logic. In Karhumki, Maurer and
Rozenberg, eds, Results and Trends in Theoretical
Computer Science: Colloquium in Honor of Arto
Salomaa, LNCS 812. Springer-Verlag, Berlin.

The Computer Journal Vol. 00 No. 0, 2008

14 Glynn Winskel

[21] Coquand,T., Gunter, C.A. and Winskel, G. (1987) DI-
Domains as a Model of Polymorphism. Proceedings of
MFPS’97, LNCS 298. Springer-Verlag, Berlin.

[22] Crafa, S., Varacca, D. and Yoshida, N. (2007)
Event Structure Semantics for the Internal pi-calculus.
Proceedings of CONCUR’07, LNCS 4703. Springer-
Verlag, Berlin.

[23] Crazzolara, F. and Winskel, G. (2001) Events in
security protocols. Proceedings of ACM Conference on
Computer and Communications Security.

[24] Curien, P-L. (2006) Operads, clones, and distributive
laws. Notes for an invited talk at Operads 2006,
Strasbourg. Available from http://www.pps.jussieu.

fr/users/curien/.

[25] Curien, P-L. and Faggian, C. (2005) L-Nets, Strategies
and Proof-Nets. Proceedings of CSL’05, LNCS 3634.
Springer-Verlag, Berlin.

[26] Datta, A., Derrick, A., Mitchell, J.C. and Roy,
A. (2007) Protocol composition logic (PCL). In
Computation, Meaning and Logic: Articles dedicated
to Gordon Plotkin, ed. Cardelli, L., Fiore, M. and
Winskel, G., ENTCS 172.

[27] Danos, V. and Krivine, J. (2004) Reversible Commu-
nicating Systems. Proceedings of CONCUR04, LNCS
3170. Springer-Verlag, Berlin.

[28] Danos, V., Feret, J., Fontana, W. and Krivine, J. (2007)
Scalable Simulation of Cellular Signaling Networks.
Proceedings of APLAS’07, LNCS 4807. Springer-
Verlag, Berlin.

[29] Doghmi, S.F., Guttman, J.D. and Thayer, F.J.
(2007) Searching for shapes in cryptographic protocols.
TACAS’07.

[30] Emerson, E.A. and Sistla, A.P. (1994) Symmetry and
model checking. Formal Methods in System Design.

[31] Eppendahl, A. (2007) Knot Theory and Data Distri-
bution. Talk at Universal Structures in Mathematics
and Computing (USMC), Australian National Univer-
sity Canbera, February 2007.

[32] Esparza, J. and Heljanko, K. (2008) Unfoldings: A
Partial-Order Approach to Model Checking. EATCS
Monographs in Theoretical Computer Science.

[33] Fabre, E. (2007) Bayesian Networks of Dynamic
Systems. Habilitation thesis, IRISA Rennes.

[34] Fiore, M.P, Cattani, G.L. and Winskel, G. (1999) Weak
Bisimulation and Open Maps. Proceedings of LICS’99.

[35] Fiore, M., Gambino, N., Hyland, J.M.E. and Winskel,
G. (2007) The cartesian closed bicategory of generalised
species of structures. Journal of the London Math. Soc.,
77 2, 203–220. OUP.

[36] Fiore, M. P. and Staton, S. (2006) Comparing
operational models of name- passing process calculi. Inf.
and Comp. 204 (4), 524–560.

[37] Gabbay, M.J. (2001) A Theory of Inductive Definitions
with Alpha-Equivalence. PhD thesis, Cambridge
University.

[38] Gadducci, F., Miculan, M. and Montanari, U. (2006)
About permutation algebras, (pre)sheaves and named
sets. Higher-Order and Symbolic Computation, Vol 19
(2-3), 283-304.

[39] Ghica , D.R. and McCusker, G. (2000) Reasoning about
Idealized Algol using regular languages. Proceedings of
ICALP 2000, LNCS 1853. Springer-Verlag, Berlin.

[40] Girard, J-Y. (1988) Normal functors, power series and
lambda calculus. Ann. Pure Appl. Logic 37.

[41] Girard, J-Y. (1987) Linear Logic. Theoretical Com-
puter Science, 50, 1–102.

[42] Girard, J-Y. (1989) Towards a geometry of interaction.
Categories, Computer Science and Logic, Contempory
Mathematics, AMS 92.

[43] Gordon, A. and Jeffrey, A. (2002) Typing One-to-
One and One-to-Many Correspondences in Security
Protocols. Proceedings of ISSS 2002, LNCS 2609.
Springer-Verlag, Berlin.

[44] Griffiths, R.B. (2003) Consistent Quantum Theory.
CUP.

[45] Glabbeek, R.J. van (2005) The Individual and Collec-
tive Token Interpretations of Petri Nets. Proceedings of
CONCUR 2005, LNCS 3653. Springer-Verlag, Berlin.

[46] Glabbeek, R.J. van (2005) On the expressiveness
of higher dimensional automata. Proceedings of
EXPRESS 2004, ENTCS 128(2).

[47] Goubault, E. (2003) Some geometric perspectives
in concurrency theory. In Homology, Homotopy and
Applications, 5, 95–136.

[48] Gunawardena, J. (2001) Homotopy and concurrency.
Bulletin EATCS, 54, 184–193, 1994. Selected for
inclusion in Paun, G., Rozenberg, G., and Salomaa,
A., (eds), “Current trends in Theoretical Computer
Science: Entering the 21st Century”, World Scientific.

[49] Hayman, J. and Winskel, G. (2006) Independence and
Concurrent Separation. Proceedings of LICS’06.

[50] Hayman, J. and Winskel, G. (2008) The unfold-
ing of general Petri nets. Electronic proceedings
of FSTTCS 2008. http://drops.dagstuhl.de/opus/

volltexte/2008/1755

[51] Heiner, M., Gilbert, D. and Donaldson, R. (2008) Petri
nets for Systems and Synthetic Biology. LNCS 5016.
Springer-Verlag, Berlin.

[52] Hoare, C.A.R. (1985) Communicating Sequential
Processes. Prentice-Hall International.

[53] Hyland, J.M.E. and Luke Ong, C-H. (2000) On Full
Abstraction for PCF: I, II, and III. Inf. Comput. 163(2),
285–408.

[54] Intel Corp., Pentium Processor User’s Manual, Vol.1.

[55] Joyal, A. (1981) Une théorie combinatoire des séries
formelles. Advances in Mathematics 42.

[56] Joyal, A., Nielsen, M. and Winskel, G. (1996)
Bisimulation from open maps. LICS ’93 special issue
of Inf. and Comp., 127(2), 164–185.

[57] Kahn, G. (1974) The semantics of a simple language for
parallel programming. Information Processing, vol. 74.

[58] Kozen, D. (2004) Toward the Automation of Category
Theory. Technical Report TR2004-1964, Computer
Science Department, Cornell University.

[59] Khomenko, V., Koutny, M. and Yakovlev, A. (2006)
Logic Synthesis for Asynchronous Circuits Based on
STG Unfoldings and Incremental SAT, Fundamenta
Informaticae 70 (1-2).

[60] Lamport, L. (1978) Time, clocks and the ordering of
events in a distributed system. CACM vol.21.

[61] Lafont, Y. (2007) Algebra and geometry of rewriting.
Applied Categorical Structures 15, 415–437. Springer-
Verlag, Berlin.

The Computer Journal Vol. 00 No. 0, 2008

Events, Causality and Symmetry 15

[62] Lehmann D.J. (1976) Categories for fixedpoint seman-
tics. Warwick University Theory of Computation
Report No 15.

[63] Lynch, N. (1996) Distributed Algorithms. Morgan
Kaufmann Publishers, San Mateo, CA.

[64] McMillan, K.L. (1995) A technique of state space search
based on unfolding. Formal Methods in System Design
6(1).

[65] Milner, R. (1989) Communication and Concurrency.
Prentice-Hall International.

[66] Milner, R. (1999) Communicating and Mobile Systems:
the Pi-Calculus. CUP.

[67] Mislove, M.W. (2006) On Combining Probability and
Nondeterminism. ENTCS 162, 261-265.

[68] Moggi, E. (1989) Computational lambda-calculus and
monads. Proceedings of LICS’89.

[69] Montanari, U. and Pistore, M. (2005) History-
Dependent Automata: An Introduction. Proceedings
of Formal Methods for Mobile Computing, LNCS 3465.
Springer-Verlag, Berlin.

[70] Moore, S., and Greenfield, D. (2008) The Next
Resource War: Computation vs. Communication.
Proceedings of 10th International Workshop on System-
Level Interconnect Prediction.

[71] Nielsen, M., Krukow, K. and Sassone, V. (2007) A
Bayesian Model for Event-based Trust. In Computa-
tion, Meaning and Logic: Articles dedicated to Gordon
Plotkin, ed. Cardelli, L., Fiore, M. and Winskel, G.,
ENTCS 172, 499–521.

[72] Nielsen, M., Plotkin, G.D. and Winskel, G. (1981)
Petri nets, event structures and domains. TCS, 13(1),
85–108.

[73] Nygaard, M. (2003) Domain theory for concurrency.
PhD Thesis, University of Aarhus.

[74] Nygaard, M. and Winskel, G. (2004) Domain theory
for concurrency. TCS 316, 153–190.

[75] Nygaard, M. (2004) Strong correspondence for
HOPLA. Note. Available from http://www.daimi.au.

dk/~nygaard/pub/strongcorrespondence.pdf

[76] Hildebrandt, T., Panangaden, P. and Winskel,
G. (2004) A relational model of non-deterministic
dataflow. MSCS 14(5), 613–649. CUP.

[77] Phillips, I. and Ulidowski, I. (2007) Reversibility and
models for concurrency. Proceedings of SOS 2007,
ENTCS 192(1).

[78] Pitts, A.M. (2003) Nominal Logic, A First Order
Theory of Names and Binding. TACS2001 Special issue,
Inf. and Comp. 186.

[79] Petri, C. A. (1962) Kommunikation mit Automaten.
Ph. D. Thesis, University of Bonn.

[80] Plotkin, G.D. (1976) A Powerdomain Construction.
SIAM J. Comput. 5(3), 452-487.

[81] Plotkin, G. D. (1981) A Structural Approach to
Operational Semantics. Technical Report DAIMI FN-
19, Aarhus University.

[82] Plotkin, G.D. (2009) A calculus of biochemical systems.
In preparation.

[83] Sarkar, S., Sewell, P., Nardelli, F.Z., Owens, S.,
Ridge, T., Braibant, T., Myreen, M.O. and Alglave,
J. (2009) The Semantics of x86-CC Multiprocessor
Machine Code. Proceedings of POPL’09.

[84] Sassone, V. (1998) An axiomatization of the category
of Petri nets computations. MSCS 8, 117–151. CUP.

[85] Saunders-Evans, L. and Winskel, G. (2006) Event
structure spans for non-deterministic dataflow. Pro-
ceedings of Express’06, ENTCS 175(3).

[86] Saunders-Evans(=Brace-Evans), L. (2007) Events with
persistence. PhD thesis, University of Cambridge
Computer Laboratory.

[87] Scott, D.S. (1975) Data types as lattices. Lecture Notes
in Mathematics 499.

[88] Shields, M.W. (1985) Concurrent machines, Computer
Journal 28, 449–465.

[89] Selinger, P. and Valiron, B. (2008) On a fully abstract
model for a quantum linear functional language.
Proceedings of QPL 2006, Oxford, ENTCS 210, 123-
137.

[90] Sorkin, R. (2006) Geometry from order: causal
sets. From http://www.einstein-online.info/en/

spotlights/causal_sets/.

[91] Stoy, J. (1981) Denotational Semantics: The Scott-
Strachey Approach to Programming Language Theory.
MIT Press.

[92] Thayer, J., Herzog, J. and Guttman, J. (1998) Strand
spaces: Why is a security protocol correct? In IEEE
Symposium on Security and Privacy.

[93] Tonder, A. van (2004) A lambda calculus for quantum
computation. SIAM Journal on Computing, 33(5),
1109–1135.

[94] Turner, D. and Winskel, G. (2009) Nominal domain
theory for concurrency. Submitted.

[95] Varacca, D. (2003) Two Denotational Models for
Probabilistic Computation. PhD University of Aarhus.

[96] Varacca, D. and Winskel, G. (2006) Distributing
Probabililty over Nondeterminism. MSCS 16(1), 87–
113. CUP.

[97] Varacca, D., Voelzer, H. and Winskel, G. (2006)
Probabilistic event structures and domains. TTCS
358(2-3), 173-199.

[98] Walukiewicz, I. (2002) Local logics for traces.
Automata, Languages and Combinatorics 7, 259-290.

[99] Winskel, G. and Nielsen, M. (1995) Models for
Concurrency. Handbook of Logic and the Foundations
of Computer Science, vol. 4, 1–148. OUP.

[100] Winskel, G. (1980) Events in Computation. PhD
thesis, Univ. of Edinburgh. Available from http://www.

cl.cam.ac.uk/users/gw104.

[101] Winskel, G. (1982) Event structure semantics of
CCS and related languages. Proceedings of ICALP
82, LNCS 140. Springer-Verlag, Berlin. Extended
version available from http://www.cl.cam.ac.uk/

users/gw104.

[102] Winskel, G. (1983) A Note on Powerdomains and
Modalitiy. Proceedings of FCT, LNCS 158. Springer-
Verlag, Berlin.

[103] Winskel, G. (1984) A new definition of morphism
on Petri Nets. Proceedings of STACS’84, LNCS 166.
Springer-Verlag, Berlin.

[104] Winskel, G. (1987) Petri nets, algebras, morphisms
and compositionality. Inf. and Comp. 72, 197238.

[105] Winskel, G. (1987) Event structures. Invited lectures
for the Advanced Course on Petri nets, September 1986,
LNCS 255. Springer-Verlag, Berlin.

The Computer Journal Vol. 00 No. 0, 2008

16 Glynn Winskel

[106] Winskel, G. (1999) Event structures as presheaves—
two representation theorems. Proceedings of CONCUR
1999. LNCS 1664. Springer-Verlag, Berlin.

[107] Winskel, G. (2004) Linearity and nonlinearity in
distributed computation. In the book ‘Linear Logic
in Computer Science,’ CUP.

[108] Winskel, G. (2005) Relations in concurrency. Invited
talk. Proceedings of LICS’05.

[109] Winskel, G. (2007) Event structures with symmetry.
In Computation, Meaning and Logic: Articles
dedicated to Gordon Plotkin, ed. Cardelli, L., Fiore,
M. and Winskel, G., ENTCS 172. See http://www.cl.

cam.ac.uk/users/gw104 for corrections.

[110] Winskel, G. (2007) Symmetry and Concurrency.
Proceedings of CALCO’07, LNCS 4624. Springer-
Verlag, Berlin.

[111] Winskel, G. (2009) The symmetry of stability. In
preparation.

[112] Winskel, G. (2009) Event structures with symmetry
as presheaves. In preparation.

A.1. APPENDIX: PSEUDO EQUIVALENCE

Assume a category with pullbacks. A pair of maps
l, r : S → E forms a pseudo equivalence provided it
is:
Reflexive: there is a map ρ such that

E
idE

��~~~~~~~
idE

��
@@@@@@@

ρ

��

E S
l

oo
r
// E

commutes;
Symmetric: there is a map σ such that

S
r

���������
l

��
???????

σ

��

E S
l

oo
r
// E

commutes;
Transitive: there is a map τ such that

P
?�

���������

��
???????

τ

��

S
l

���������
r

????

��
????

S

looooooo

wwooooooo r
OOOOOOO

''OOOOOOO

S

l
����

������
r

��
???????

E E E

commutes.
When l, r are jointly monic (i.e. for all maps x, y :

D → S, if lx = ly and rx = ry, then x = y) they form
an equivalence relation.

The Computer Journal Vol. 00 No. 0, 2008

