
Nothing better than a

Python to write a Serpent Computer Laboratory

UNIVERSITY OF
CAMBRIDGE

Serpent is a new block cipher created by

Ross Anderson, Eli Biham and Lars Knudsen

as an AES candidate. It was designed to be

faster than DES and safer than triple-DES.

After the authors wrote their own preliminary

C version, an independent control

experiment reimplemented the cipher from

scratch in Python. This was by far the

slowest ever implementation — but,

favouring clarity and readability over

efficiency, it was also the first one to

produce the correct results.

Frank Stajano 1998http://www.cl.cam.ac.uk/~fms27/serpent/

THE OLIVETTI & ORACLE

RESEARCH LABORATORY

def

for in

return

(plainText, userKey):

K, KHat = makeSubkeys(userKey)
BHat = IP(plainText)

i range(r):

C = FP(BHat)
C

BHat = R(i, BHat, KHat)

encrypt
"""Encrypt the 128-bit bitstring 'plainText'

'with the 256-bit bitstring 'userKey
and return a 128-bit ciphertext bitstring."""

BHat_0 at this stage

BHat is now _32 i.e. _r
BHat_i -> BHat_i+1

Formal description of the cipher

def

assert

if

assert

return

(i, BHati, KHat):

0 <= i <= r-1
xored = xor(BHati, KHat[i])
SHati = SHat(i, xored)

0 <= i <= r-2:
BHatiPlus1 = LT(SHati)

else:
i == r-1:

BHatiPlus1 = xor(SHati, KHat[r])
BHatiPlus1

R
"""Apply round 'i' to the 128-bit bitstring
'BHati', returning another 128-bit bitstring
(conceptually BHatiPlus1). Do this using the
appropriately numbered subkey(s) from the
'KHat' list of 33 128-bit bitstrings."""

Valid round number

Round function

def

return

def

for in

return

assert

for in

for in

return

(box, input):

SBoxBitstring[box%8][input]

(box, input):

result = ""
i range(32):
result = result + S(box, input[4*i:4*(i+1)])

result

def (input):

len(input) == 128:
result = ""

i range(len(LTTable)):
outputBit =

j LTTable[i]:
outputBit = xor(outputBit, input[j])

result = result + outputBit
result

S

SHat

LT

"""Apply S-box number 'box' to 4-bit bitstring 'input' and return a
4-bit bitstring as the result.""”

"""Apply a parallel array of 32 copies of S-box number 'box' to the
128-bit bitstring 'input' and return a 128-bit bitstring as the
result."""

"""Apply the table-based version of the linear transformation to the
128-bit string 'input' and return a 128-bit string as the result."""

"0"

There used to be 32 different S-boxes in serpent-0. Now there are
only 8, each of which is used 4 times (Sboxes 8, 16, 24 are all
identical to Sbox 0, etc). Hence the %8.

Functions used in the round

def

for in

for in

return

(box, words):

result = ["", "", "", ""]
i range(32):
quad = S(box, words[0][i] + words[1][i] + words[2][i] + words[3][i])

j range(4):
result[j] = result[j] + quad[j]
result

SBitslice
"""Take 'words', a list of 4 32-bit bitstrings, least significant word
first. Return a similar list of 4 32-bit bitstrings obtained as
follows. For each bit position from 0 to 31, apply S-box number 'box'
to the 4 input bits coming from the current position in each of the
items in 'words'; and put the 4 output bits in the corresponding
positions in the output words."""

ideally in parallel

S for the bitslice variant

The widely used DES (Data Encryption Standard) block

cipher, fielded as a US standard in 1977 and possibly the

best known symmetric-key encryption algorithm, is now

reaching retirement age: its 56 bit key is too short by

modern standards, since a parallel keysearch machine that

can exhaust the keyspace in a few hours can be built for

about a million dollars.

Hence the American NIST (National Institute for Standards

and Technology) issued a call for algorithms for the

definition of AES, the Advanced Encryption Standard. The

successor to DES shall have a block size of 128 bits and

shall accept key sizes between 128 and 256 bits.

The Python reference

implementation

represents bit blocks

simply as little-

endian strings of the

ASCII characters “0”

and “1”. This

scheme yields a

“virtual CPU” with

arbitrarily long words

and it becomes a

simple matter to

perform operations

such as XOR, rotate,

extract a

particular bit

and so on, as

well as

assigning a

block or a key

to a variable or

to the return

value of a

function, and

inspecting it

(even

interactively)

just by printing

it out.

Premature optimisation is

bad, but it would be foolish to

dismiss efficiency altogether.

Once the program is correct,

it is often important for it to

be fast, especially for a

cipher.

However the best gains are

achieved not via a posteriori

optimisations but by

designing the efficiency in the

algorithm. Serpent shines in

this department, with its

patented bitslice technique.

The S-boxes in DES were originally designed for convenient

implementation on 1970s hardware. Take bit 4, OR it with

bit 2, AND it with bit 5 and so on. When implemented on a

modern CPU, these bit operations are cumbersome and

wasteful: you have to mask out the relevant bit, shift it into

position and then perform a full-width ALU OR to yield just

one bit of result.

Serpent was designed from the start around

bitslice operation: the data is cleverly arranged

so that a 32 bit wide OR operation now performs

32 independent bitwise ORs in one go.

Note that the code shown above is actually just a “simulation” of bitslice

operation: it produces the same intermediate results (useful for

debugging a real bitslice implementation), but it does not actually obtain

them using the parallel bitslice technique. To do so, one must rewrite the

S-boxes in terms of boolean operations instead of as a lookup table.

In Serpent’s bitslice operation, the bits in the block

are “stacked vertically” to a height equal to the width

of the ALU. And the move to 64 bit processors will

gain us another factor of 2.

The bitslice technique

Serpent in Python

The AES challenge
Writing a cipher is an open-loop process:

the output must look like random garbage

anyway, so how do you know when it’s

right? (Optimisation comes later!)

Python lets you express an algorithm at a

suitably high level of abstraction, essentially

isomorphic to the equations of the original

paper, without low-level machine-oriented

distractions.

Lesson learned: “ideas in executable form”

make a good complement to the formal

specification of an algorithm.

It is difficult to meaningfully

compare the relative speeds of

the AES candidates because

the different teams have

chosen different trade-offs

between security and speed.

Serpent has a very

conservative design and uses

twice as many rounds as

would be needed to guard

against all the known attacks;

hence it is only marginally

faster than DES, while others

are substantially faster.

However its highly optimised

bitslice design is indeed very

efficient: when the number of

rounds of all the AES

candidates is normalised to a

common strength, Serpent

tops the charts for speed.

0
1
1
1
0
1
0
1
1
0
0
0
1

0
1
1
1
0
1
0
1
1
0
0
0
1

0
1
1
1
0
1
0
1
1
0
0
0
1

0

0

0

