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Abstract

Privacy of personal location information is becom-

ing an increasingly important issue. This paper refines

a method, called the mix zone, developed to enhance user

privacy in location-based services. We improve the math-

ematical model, examine and minimise computational

complexity and develop a method of providing feedback

to users.

1. Introduction

Traditionally, privacy of personal location informa-
tion has not been a critical issue but, with the develop-
ment of location tracking systems capable of following
user movement twenty-four hours a day and seven days
a week, location privacy becomes important: records of
everything from the shelves you visit in the library to
the clinics you visit in a hospital can represent a very
intrusive catalogue of data.

Location privacy is an important new issue and sev-
eral strategies have been suggested to protect personal
location information. The first strategy is to restrict
access. The Geographic Location/Privacy (Geopriv)
Working Group [1] have outlined an architecture to
allow users to control delivery and accuracy of loca-
tion information through rule-based policies. Hengart-
ner and Steenkiste [2] describe a method of using dig-
ital certificates combined with rule-based policies to
protect location information.

An alternative approach is to degrade information
in a controlled way before releasing it. Gruteser and
Grunwald reduce the resolution of location informa-
tion available to location-aware applications [3]. In pre-
vious work [4] we introduced the mix zone model: the
model anonymizes user identity by restricting the posi-
tions where users can be located. The model provides:

• a middleware mechanism to provide anonymised
location information to third-party applications,
and

• a quantitative run-time estimate of the level of
anonymity provided by the middleware with a par-
ticular set of applications.

To gain a proper understanding of the privacy prop-
erties of mix zones it is important to find out how hard
it is to break the anonymity the system provides. The
mix zone approach for calculating anonymity does this:
the degree of success in playing the role of attacker—
attempting to recover the long-term user identities hid-
den by the constantly changing pseudonyms—is an in-
verse measure of the anonymity offered by the system.
In this paper we refine and extend our work on the mix
zone model to:

• show how to deal with irregularly-shaped zone
boundaries and how to improve the accuracy of the
observations for zones of a given size and shape;

• examine and reduce the computational complex-
ity of the algorithm used by the attacker to break
the anonymity, and

• develop a method of measuring and providing feed-
back of the level of anonymity the user experi-
ences.

2. The mix zone model

This section summarises the mix zone model de-
scribed more fully in [4]. The model assumes the ex-
istence of a trusted middleware system, positioned be-
tween the underlying location system(s) and untrusted
third-party applications. Applications register interest
in a geographic space with the middleware; we refer to
this space as an application zone. Example spaces in-
clude hospital grounds, university buildings or a super-
market complex. Users register interest in a particular
set of location-aware applications and the middleware
limits the location information received by applications
to location sightings of registered users located inside
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Figure 1. Example movement of three people

through a simple mix zone. Who went where?

the application zone. Each user has one or more unreg-
istered geographical regions where no application can
trace user movements; we call such areas mix zones, be-
cause once a user enters such a zone, user identity is
mixed with all other users in the mix zone, as will be-
come clearer shortly. A boundary line is defined as the
border between a mix zone and an application zone.1

Applications do not receive a traceable user iden-
tity associated with a location sighting, but instead re-
ceive a pseudonym. The pseudonym allows communi-
cation between user and application; such communica-
tion must pass through a trusted intermediary to pre-
vent trivial linking of a pseudonym with an underlying
user identity. The pseudonym of any given user changes
whenever the user enters a mix zone.

The aim of the mix zone model is to prevent track-
ing of long-term user movements, but still permit the
operation of many short-term location-aware applica-
tions. We have shown in our previous paper how some
more obvious pseudonymity mechanisms can be triv-

1 Location isa two-dimensionalposition in thispaper,butamore
complex model could be developed by moving to three dimen-
sions and considering boundary surfaces rather than lines.

ially defeated, allowing identification of the user be-
hind each pseudonym.

Since third-party applications are untrusted they
may collude, therefore all third-party application
providers are treated as one combined global hos-
tile observer. How well can this attacker correlate
movements of users into the mix zone with move-
ments into a subsequent application zone? In other
words, can the attacker link together user pseudonyms,
and therefore track long-term user movements? Fig-
ure 1 provides an example scenario.

An attacker may be able to use historical data from
nearby application zones or analytical methods2 to in-
fer likely user movement across the mix zone. User exit
boundary line and time is often strongly correlated to
user entry boundary line and time. For example, two
users walking down a corridor in opposite directions
are much more likely to continue in the same direc-
tion than turn around and retrace their steps.

The middleware can use historical data from inside
the mix zone to provide a (probably far superior) model
of user movement; movement patterns are not time-
invariant, but are likely to be self-similar over short
time spans, after twenty-four hours and after seven
days. A movement matrix is generated to record the
frequency of ingress and egress points for different time
periods across the mix zone at different times in the
day or week. Such a movement matrix provides an up-
per bound on the accuracy of the model the attacker
can generate.

A location system scenario (e.g. E911-enabled cellu-
lar phones in an urban setting) can therefore be exam-
ined using the mix zone model; the model takes into ac-
count the geometry of the zones, the temporal and spa-
tial resolution of the sightings, and the statistical be-
haviour of the user population to provide a quantita-
tive assessment of how well a hostile observer is able to
de-anonymize individual users. When designing a sys-
tem this analysis can be run iteratively, changing the
layout of the zones or the resolution of the sightings un-
til the desired level of anonymity is achieved.

3. Fine-grained modelling of boundaries

between zones

The example computational procedure outlined in
our previous paper only examines which boundary line
was crossed and not the specific position of the crossing

2 One analytical approach could estimate likely movements by
using details of building layouts, walking speed of users and a
goal-driven user movement model. Analytical techniques are
extremely complex and are not considered further in this pa-
per.



along the boundary line. In other words, only enough
information was recorded to answer the question “did
the user enter zone A from zone B?”; the particular
crossing position along a potentially very long border
between zone A and zone B was not considered.

A more accurate model can be generated by arrang-
ing all the boundary lines in an arbitrary order to set up
a one-dimensional coordinate system. In other words,
the boundary lines can be arranged lengthwise along
the real axis. A precise crossing point for the spatial
domain can then be recorded as a single real value.

Recording the crossing point is significant because
the better an attacker can model the users’ movements
from their observed past behaviour, the better he can
predict what users do once they are hidden inside the
mix zone. Therefore, being able to distinguish the posi-
tion along the boundary line at which users cross into
and out of the mix zone gives the attacker a better
chance of matching entering and exiting users with in-
creased reliability.

The middleware can record the ingress point i at
time t and egress point e at time t + τ of user move-
ment into and out of a mix zone and generate a move-
ment matrix; this technique differs from the previous
one because each row and column in the matrix repre-
senting boundary lines is replaced by discrete sections
of boundary lines. There are three fundamental lim-
its which prevent us from making the discrete bound-
ary sections arbitrarily small:

Location accuracy The length of a discrete section
cannot go below the accuracy of the underlying lo-
cation system.

Sampling accuracy Intuitively, the greater the num-
bers of samples for each crossing section, the more
accurate the estimate; therefore if the discretisa-
tion is too small, our estimates of user movement
are likely to be inaccurate.3

Computational cost There is a computational cost
associated with increasing the granularity of sam-
pling; this is discussed further in the next section.

4. Determining the anonymity level

Users enter the mix zone with one pseudonym,
change to a new unused pseudonym and, after an un-
known length of time, exit under the new pseudonym.

3 More precisely, the central limit theorem states that, as the size
of a random sample n increases, the distribution of the sam-
ple mean X̄ tends towards N(µ, σ/

√

n), where µ and σ are the
mean and variance of the underlying population. Therefore in-
creasing the number of samples, n, reduces the variance on our
random sample mean, X̄, and therefore X̄ becomes a more ac-
curate predictor of the underlying population mean.

The attacker can observe the times, coordinates and
pseudonyms of all these ingress and egress events. His
ideal goal is to reconstruct the correct mapping be-
tween all the ingress events and the egress events. This
is equivalent to discovering the mapping between new
and old pseudonyms.

How many such mappings are there? During the pe-
riod of observation, assume there are n ingress events
and n egress events.4 The attacker observes n old
pseudonyms going in, and n new pseudonyms coming
out, most likely with some interleaving. Each permuta-
tion of the set of n new pseudonyms gives a new map-
ping, so there is a total of n! mappings. Many of the
mappings can be ruled out because:

• a user cannot exit a mix zone before they enter it,
• users cannot move between two non-connected mix

zones without passing though an application zone
(and therefore being sighted), and

• portions of boundary lines containing walls or
other impassable objects prevent users entering or
exiting at these locations.

These temporal and spatial restrictions are represented
in the movement matrix as zero value cells and there-
fore the movement matrix is likely to be sparse.

The mapping problem faced by the attacker can be
viewed as a weighted bipartite graph, where vertexes
model ingress and egress pseudonyms and edge weights
model the probability two pseudonyms represent the
same underlying person. The edge weight probabilities
can be estimated from the movement matrix by nor-
malising the frequency count in each cell with the total
number of movement sightings; edges with zero weight
are removed from the graph. The maximal cost per-

fect match5 of this bipartite graph represents the most
probable mapping of incoming pseudonyms to outgoing
ones.6 Determining the maximal cost perfect match of
a weighted bipartite graph has several polynomial time
algorithms [5]. A simple algorithm to determine the
maximal cost perfect match was developed by Kuhn
[6] and is O(ev2) where e is the number of edges and v

is the number of vertexes.
The maximal cost perfect match is the best re-

sult the attacker can produce; it represents the most

4 There are additional subtleties concerning uneven numbers of
ingress and egress events (particularly concerning the use of
anybipartitegraphtheorywhich follows).Weshall ignore them
for the moment, assuming a long term steady-state condition.

5 A perfect match in a bipartite graph occurs when every ver-
tex is connected to another vertex by a single edge. The perfect
match with the highest summation of edge weights is the max-
imal cost perfect match.

6 This assumesuserbehaviour is independent, and the likelihood
of their movement can be accurately represented by the move-
ment matrix.



likely de-anonymization of the underlying users pass-
ing through the mix zone. But this information alone
is not as useful as it might sound: the attacker needs
a measure of confidence in the quality of this result.
Consider an example mix zone event with three pos-
sible mappings M = {m1,m2,m3} with the following
probabilities { 1

100
, 1

150
, 1

150
} respectively; knowing the

most likely event P (m1) = 1

100
is not the whole story;

what is really required is knowledge of how much more
likely this mapping is when compared with the rest;
one of these mappings must have occurred because
these are the only mappings which explain this pat-
tern of ingress and egress pseudonyms, at least accord-
ing to the model. This conditional probability can be
calculated as:

P (mi|M)
def
=

P (mi ∧ M)

P (M)
=

P (mi)∑
i P (mi)

(1)

in this case because mi ⊆ M .
The level of uncertainty in the set of possible map-

pings mi ∈ M can then be measured by using Shan-
non’s classic entropy measure [7]:

h = −
∑

i

P (mi|M)logP (mi|M) (2)

Intuitively, the entropy is related to the number of
people you are indistinguishable from; if the entropy
is b bits then 2b users are indistinguishable from one
another.

4.1. Computational and optimisation is-

sues

The problem with this technique comes in calculat-
ing P (mi|M): the probabilities of all of the possible
mappings must be calculated, and this is not compu-
tationally tractable because there are n! of them.

Instead of calculating P (M) =
∑

i P (mi) directly,
lazy evaluation can yield a lower bound Pl(M) ≤ P (M)
by iterating through only perfect matchings in the bi-
partite graph.

Calculation of Pl(M) in a lazy fashion starts by cal-
culating the maximal cost perfect match (for example
by using the Kuhn algorithm) and proceeds by search-
ing for other perfect matchings. This can be done by
finding an alternating circuit of edges with the follow-
ing properties:

• each edge starts on the vertex the previous edge
finished on,

• edges are alternately in the maximal cost perfect
match and not, and

• no vertex appears in the alternating circuit more
than once;

Therefore another perfect match can be generated
from the set of edges in the alternating circuit and not
in the maximal cost perfect match. Itai et al devel-
oped an algorithm based on this technique to iterate
through all perfect matches one by one [8]. The worst
case cost to find the next match (or determine no more
matches exist) is O(e).

The number of perfect matches cannot be pre-
computed, and there is no guaranteed bound on com-
putation time before the last match is found. Therefore
the lazy evaluation of Pl(M) is a lower bound; its value
cannot diminish because every new perfect match adds
one term to denominator

∑
i P (mi) and probabilities

are always in the range (0,1). Each time a new map-
ping is found the entropy or level of anonymity offered
by the mix zone can be recalculated and can only go
up. Therefore as lazy evaluation of Pl(M) progresses
one of three outcomes can occur:

• The level of anonymity in the mix zone rises to
meet the minimum level desired by the users. The
users have mixed sufficiently to thwart an attacker
and the algorithm is terminated.

• The lazy evaluation terminates (i.e. all possible
matches have been found), so Pl(M) = P (M). If
the level of anonymity in the mix zone is still not
sufficient, the identities of the users could be com-
promised by an attacker.

• Computation time runs out (i.e. computation has
gone on as long as practicable), therefore Pl(M) ≤
P (M). If the level of anonymity offered by the mix
is still not sufficient it is unknown whether a suf-
ficient level of anonymity will ever be reached for
this mix (but, given similar computing power, the
attacker is uncertain of the quality of his guess as
well).

5. Individual user anonymity

So far we have discussed ways of measuring the
level of anonymity experienced by users of the mix col-

lectively. Curiously, for a particular user, the level of
anonymity can change even after leaving the mix zone.

Consider the following simple scenario: a mix zone
with four boundary lines, north (n), south (s), east (e)
and west (w). To simplify the example we quantise the
boundary very coarsely (e.g. all points on the north
edge are treated as north) and assume any user enter-
ing the mix zone is guaranteed to have left after ei-
ther one or two time periods. A movement matrix for
this example is given in Table 1.

Consider the movements of two users u1 and u2 who
enter the mix zone at the same time t, one from n and
one from e respectively. If u1 exits at time t+1 through
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n 1

64

3

64

1

32

1

32

s 3

64

1

64

1

32

1

32

e 1

32

1

32

1

64

3

64

w 1

32

1

32

3

64

1

64

Table 1. Movement matrix for t + 1 and t + 2.

s and u2 remains in the mix zone, what level of mixing
has occurred?

The measure of uncertainty is dependent on the exit
taken by u2 in the following time period t+2. If u2 goes
west, the possible mappings are {n → s, e → w} and
{e → s, n → w}. Of these, according to the proba-
bilities encoded in the movement matrix, the first is
much more likely. If, on the other hand u2 goes south,
then the possible mappings become {n → s, e → s}
and {e → s, n → s}, whose probabilities are identical.
So, when u2 goes south the attacker is much less cer-
tain about what happened and u1 is much more anony-
mous (1 bit) than if u2 had exited through west (0.47
bits). See Fig. 2 for a pictorial representation of user
movements.

Given a movement matrix for a mix zone, the mid-
dleware can calculate a lower bound on the level of mix-
ing for a particular user u (who is still in the mix zone)
by assuming all the other current users leave the mix
zone in the most probable manner. A lower bound on
the level of mixing u experiences can then be calcu-
lated for each possible exit from the mix zone.

Intuitive user feedback is now possible, allowing the
user to decide whether to suspend certain location-
aware applications or take a detour if the level of
privacy offered is too low. For example, the level of
anonymity gained in a mix could be displayed as an
“anonymity strength” readout on the location device
(e.g. mobile phone).

6. Conclusions

In this paper we have refined the mix zone model, de-
scribing a quantifiable metric of location privacy from
the point of view of the attacker. Analysis is computa-
tionally expensive and may require partial evaluation
of the problem–we have described a method of achiev-
ing this. Furthermore, given fixed computational power
there exists a trade-off between the tractability of the
problem and the accuracy in which the real world is
modelled.
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Figure 2. Entropy of the mix zone is dependent

on the exit taken by u2.

Evaluation of the level privacy gained before the
user exits the mix zone provides increased usability
and the possibility of providing continuous feedback
to the user. In this scenario, the user can make de-
cisions about whether to disable some location-aware
services or to alter their movements in order to gain in-
creased privacy.

Enabling location privacy is going to become in-
creasingly important in a world where location-aware
services are available over larger and larger geographi-
cal areas. Deploying systems that support location pri-
vacy for users and provide feedback about the level
of anonymity users have may prove critical to the
widespread adoption of location-aware services.
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