Challenges for Data Driven Systems

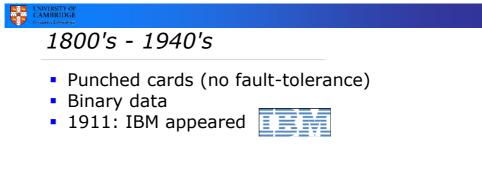
Eiko Yoneki

University of Cambridge Computer Laboratory

Quick History of Data Management

- 4000 B C Manual recording
- From tablets to papyrus...to paper

A. Payberah'2014 2



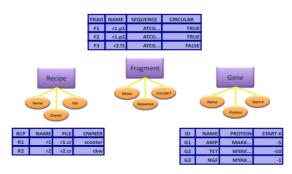
		1		1								I.																													
P				1	1								ı.		1																										
11.4	1223	333	72	593	23		533	3	È,	1	11	1	1	10	P	Ŀ	ž	3	33	12	15	33	1	23	23	23	2	12	22	33	22	23	22	23	12	3	12	12	82		
10		11	11	111	1	11	1	II.	13	ŧ,	11		11		11	11			11	11	D			Ú.	11	0		i i	11		ņ	11	11	ų	1	(1)		11		11)	
112		111	13	in					1	i.	ii i	ti	11	t	11	ŝ	t	11	22	1	-		iż.	ià	11	t	ù	ii.	îÌ		10	14	iii	11	i.			11	(11	i i	
6.2	1111	11		111		11		á	D:	1	13		ñ		į,	1		12			11	4		13	11	2.	123	11	53		h	23	23	ł.	it:	i.	à		11	id)	
8	1111	444	ii.	144	44	22					i.		÷.,		4	1	R.			1.4	1	1	i.	ú	ò		ų,	ú		ŭ	14	1.1			1			4	ŝ	ŝ	
			11	115	88	3.5	1	Ĥ		Ň		à	11	à	ŝ			4		11	ĥ		ù	11	11	i.	à	ñ	11	11	ŝ	5		11	ň	i.	ii	ŝ	4	2	
	1111		-	in							ñ	ű	ŝ	ú			-	i.				-		ŝ	à		i.		ŧŧ		11	11	44			à			4		
		173		ĥ				ĥ		ñ	ñ		n		1					11				12	17	'n	ui:	11	ŝi			11	11	13	ŭ		i,	ĥ	13	1	
	1111	111			2	24	£.	à	i.	4				6	i.	1	1	i.	à	4	2	2	á	ñ				â	à	2	11	Ŷ	24	-		iii	ii.		2	à	
112	111		19	22									Ē.				í.			11		Ċ.		2		99		2			÷.						2	83		111	

A. Payberah'2014 3

A. Payberah'2014 4

ENVERSITY OF CAMBRIDGE Coupets Laborators 1980's

- Relational DBMS (tables) and SQL
- ACID (Atomicity Consistency Isolation Durability)
- Client-server computing
- Parallel processing

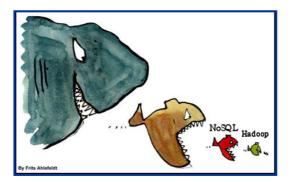


A. Payberah'2014 5

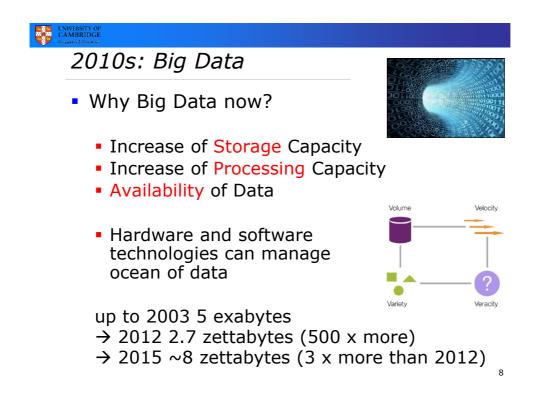
The Internet...

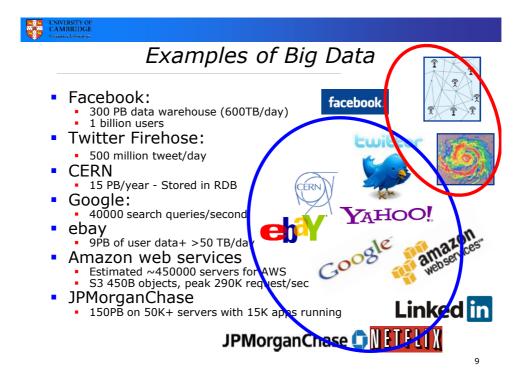
A. Payberah'2014 ₆

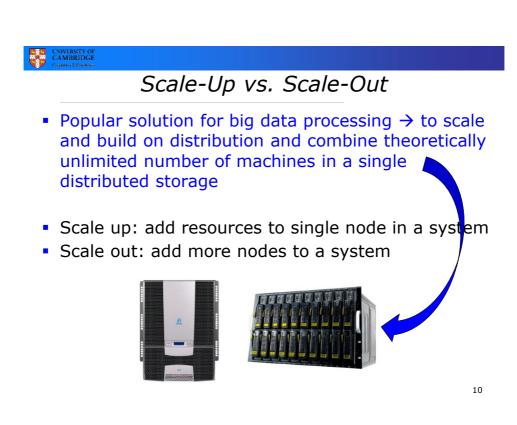
Big Data is emerging!



A. Payberah'2014 7







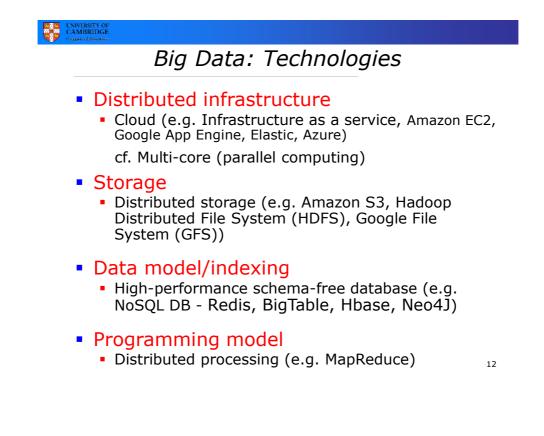
Challenges

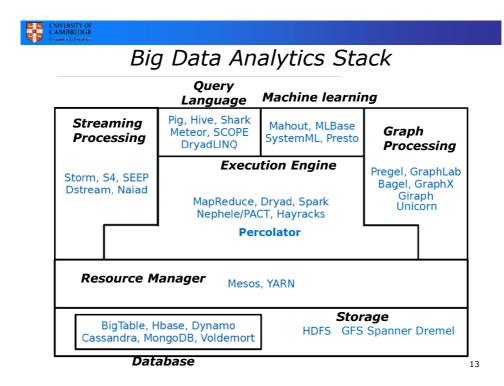
- Distribute and shard parts over machines
 - Still fast traversal and read to keep related data together
 - Scale out instead scale up

Avoid naïve hashing for sharding

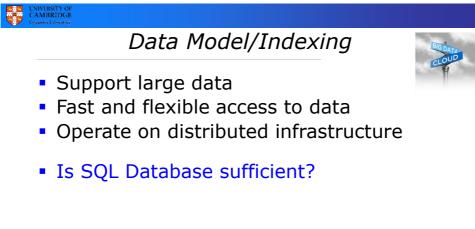
- Do not depend on the number of node
- But difficult add/remove nodes
- Trade off data locality, consistency, availability, read/write/search speed, latency etc.
- Analytics requires both real time and post fact analytics – and incremental operation

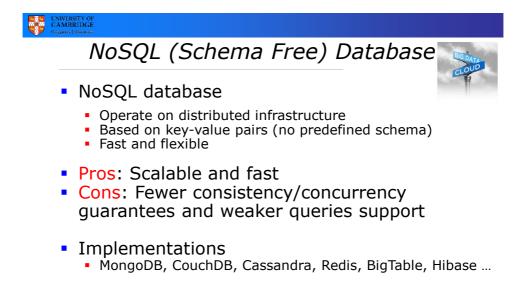
1	1
т	T.





CAMBRIDGE Casesta Laboratore	
Distributed Infrastructure	
 Computing + Storage transparently Cloud computing, Web 2.0 Scalability and fault tolerance 	CLOUD
 Distributed servers Amazon EC2, Google App Engine, Elastic, Azure System? OS, customisations Sizing? RAM/CPU based on tiered model Storage? Quantity, type 	
 Distributed storage Amazon S3 Hadoop Distributed File System (HDFS) Google File System (GFS), BigTable 	



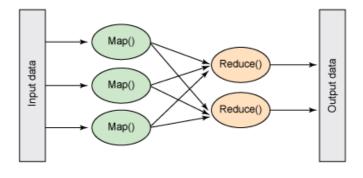


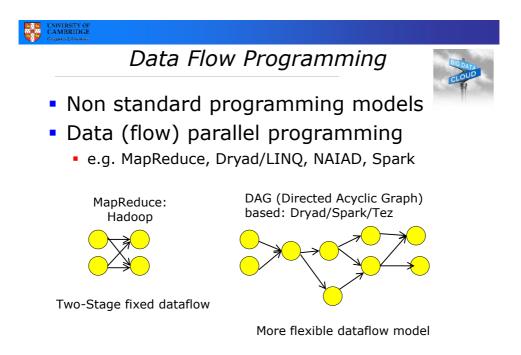
17

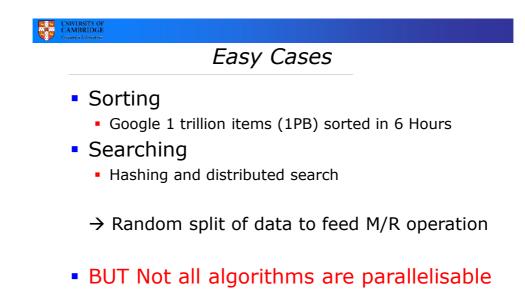
- Target problem needs to be parallelisable
- Split into a set of smaller code (map)

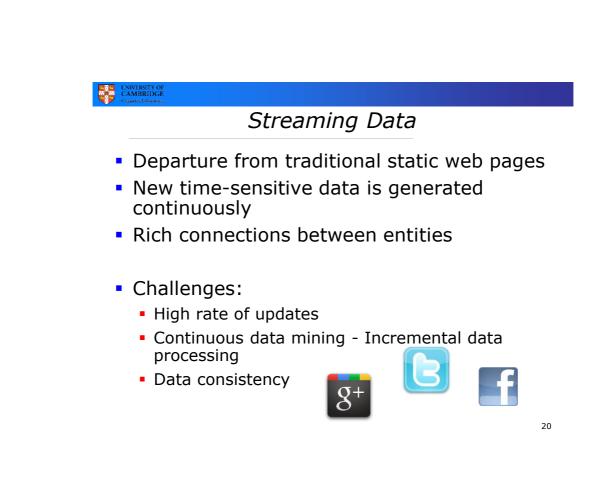
UNIVERSITY OF CAMBRIDGE

- Next small piece of code executed in parallel
- Results from map operation get synthesised into a result of original problem (reduce)









Techniques for Analysis

- Applying these techniques: larger and more diverse datasets can be used to generate more numerous and insightful results than smaller, less diverse ones
- Classification
- Cluster analysis
- Crowd sourcing
- Data fusion/integration
- Data mining
- Ensemble learning
- Genetic algorithms
- Machine learning
- NLP
- Neural networks
- Network analysis
- Optimisation

- Pattern recognition
- Predictive modelling
- Regression
- Sentiment analysis
- Signal processing
- Spatial analysis
- Statistics
- Supervised learning
- Simulation
- Time series analysis
- Unsupervised learning
- Visualisation

21

UNIVERSITY OF CAMBRIDGE Computer Laborator

Do we need new types of algorithms?

- Cannot always store all data
 - Online/streaming algorithms
 - Have we seen x before?
 - Rolling average of previous K items
 - Incremental updating

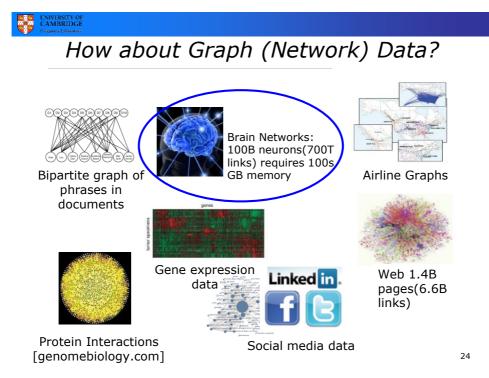
Memory vs. disk becomes critical

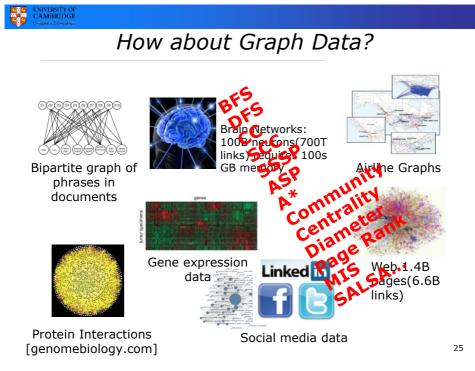
- Algorithms with limited passes
- N² is impossible and fast data processing
 Approximate algorithms, sampling
- Iterative operation (e.g. machine learning)
- Data has different relations to other data
 - Algorithms for high-dimensional data (efficient multidimensional indexing)

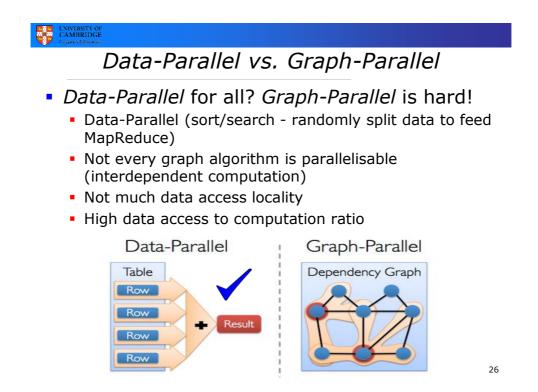
Typical Operation with Big Data

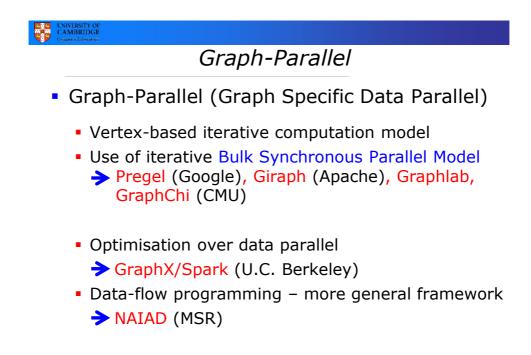
- Scalable clustering for parallel execution
- Smart sampling of data
- Find similar items > efficient multidimensional indexing
- Incremental updating of models
 support streaming
- Distributed linear algebra
 dealing with large sparse matrices
- Plus usual data mining, machine learning and statistics
 - Supervised (e.g. classification, regression)
 - Non-supervised (e.g. clustering..)

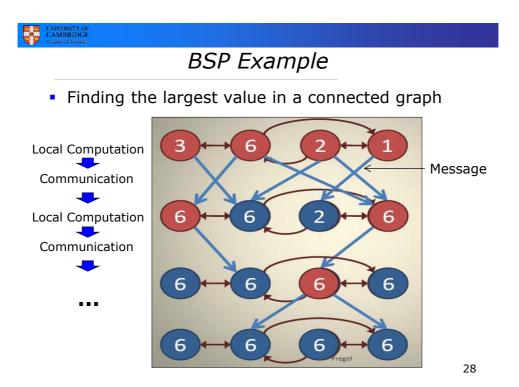
```
23
```

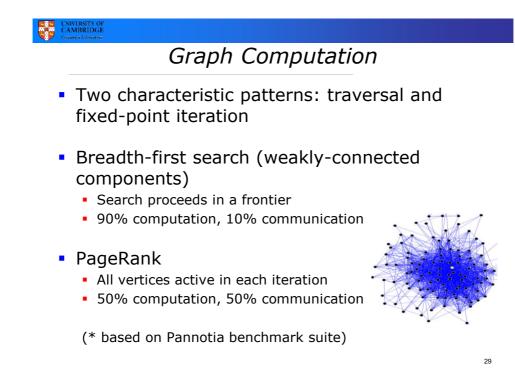








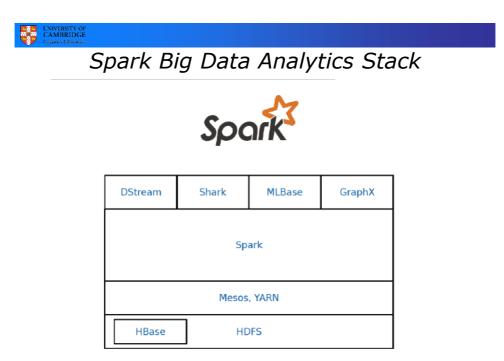




Storm, S4, SEEP Dstream, Naiad	Processing Storm, S4, SEEP	Meteor, SCOPE DryadLINQ	SystemML, Presto	Graph Processing
Storm, S4, SEEP Dstream, Naiad MapReduce, Dryad, Spark Nephele/PACT, Hayracks Percolator		Execu	tion Engine	1
Pesource Manager	Ostream, Naiad			Pregel, GraphLal Bagel, GraphX Giraph Unicorn
BigTable, Hbase, Dynamo		lanager _{Mesos}	5, YARN	rage

Hadoop Big Data Analytics Stack

	Pig/Hive	Mahout	
Storm	MapR	educe	Giraph
	YA	RN	
HBase	HC	DFS	



Do we really need a large cluster?

• A laptop can perform sufficiently

	Twenty page	gerank iterations	
System	cores	twitter_rv	uk_2007_05
Spark	128	857s	1759s
Giraph	128	596s	1235s
GraphLab	128	249s	833s
GraphX	128	419s	462s
Single thread	1	300s	651s

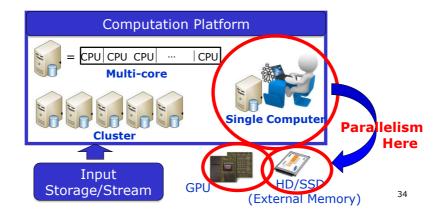
Label propagation to fixed-point (graph connectivity)

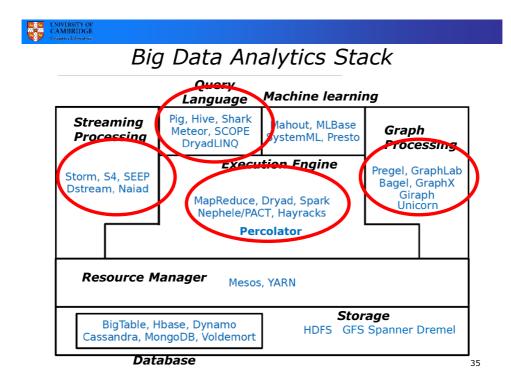
System	cores	twitter_rv	uk_2007_05
Spark	128	1784s	8000s+
Giraph	128	200s	8000s+
GraphLab	128	242s	714s
GraphX	128	251s	800s
Single thread	1	153s	417s

from blog by Frank McSherry 33

Single Computer?

- Use of powerful HW/SW parallelism
 - SSDs as external memory
 - GPU for massive parallelism
- Exploit graph structure/algorithm for processing





UNIVERSITY OF CAMBRIDGE Carguta Lebeatery
Topic Areas
Session 1: Introduction
Session 2: Programming in Data Centric Environment
Session 3: Processing Models of Large-Scale Graph Data
Session 4: Data Flow Programming Hands-on Tutorial with EC2
Session 6: Stream Data Processing + Guest lecture
Session 5: Optimisation in Data Processing
Session 7: Machine Learning for Computer System's Optimisation
Session 8: Project Study Presentation
36

Summary

R212 course web page:

www.cl.cam.ac.uk/~ey204/teaching/ACS/R212_2015_2016

Enjoy the course!