
1

Challenges for Data Driven Systems

Eiko Yoneki

University of Cambridge Computer Laboratory

Quick History of Data Management

 4000 B C Manual recording
 From tablets to papyrus…to paper

2A. Payberah’2014

2

1800's - 1940's

 Punched cards (no fault-tolerance)
 Binary data
 1911: IBM appeared

3A. Payberah’2014

1940's - 1970's

 Magnetic tapes
 Batch transaction processing
 Hierarchical DBMS
 Network DBMS

4A. Payberah’2014

3

1980's

 Relational DBMS (tables) and SQL
 ACID (Atomicity Consistency Isolation Durability)

 Client-server computing
 Parallel processing

5A. Payberah’2014

1990's - 2000's

 The Internet...

6A. Payberah’2014

4

2010's

 NoSQL: BASE instead of ACID
Basic Availability, Soft-state, Eventual consistency

 Big Data is emerging!

7A. Payberah’2014

2010s: Big Data

 Why Big Data now?

 Increase of Storage Capacity

 Increase of Processing Capacity

 Availability of Data

 Hardware and software
technologies can manage
ocean of data

up to 2003 5 exabytes
 2012 2.7 zettabytes (500 x more)
 2015 ~8 zettabytes (3 x more than 2012)

8

5

Examples of Big Data

 Facebook:
 300 PB data warehouse (600TB/day)
 1 billion users

 Twitter Firehose:
 500 million tweet/day

 CERN
 15 PB/year - Stored in RDB

 Google:
 40000 search queries/second

 ebay
 9PB of user data+ >50 TB/day

 Amazon web services
 Estimated ~450000 servers for AWS
 S3 450B objects, peak 290K request/sec

 JPMorganChase
 150PB on 50K+ servers with 15K apps running

9

Scale-Up vs. Scale-Out

10

 Popular solution for big data processing to scale
and build on distribution and combine theoretically
unlimited number of machines in a single
distributed storage

 Scale up: add resources to single node in a system

 Scale out: add more nodes to a system

6

Challenges

11

 Distribute and shard parts over machines
 Still fast traversal and read to keep related data together

 Scale out instead scale up

 Avoid naïve hashing for sharding
 Do not depend on the number of node

 But difficult add/remove nodes

 Trade off – data locality, consistency, availability,
read/write/search speed, latency etc.

 Analytics requires both real time and post fact
analytics – and incremental operation

Big Data: Technologies

12

 Distributed infrastructure
 Cloud (e.g. Infrastructure as a service, Amazon EC2,

Google App Engine, Elastic, Azure)

cf. Multi-core (parallel computing)

 Storage
 Distributed storage (e.g. Amazon S3, Hadoop

Distributed File System (HDFS), Google File
System (GFS))

 Data model/indexing
 High-performance schema-free database (e.g.

NoSQL DB - Redis, BigTable, Hbase, Neo4J)

 Programming model
 Distributed processing (e.g. MapReduce)

7

Big Data Analytics Stack

13

GFS Spanner Dremel

Percolator

Streaming
Processing

Resource Manager

Database

Storage

Execution Engine

Graph
Processing

Machine learning
Query

Language

Unicorn

Distributed Infrastructure

14

 Computing + Storage transparently
 Cloud computing, Web 2.0
 Scalability and fault tolerance

 Distributed servers
 Amazon EC2, Google App Engine, Elastic, Azure

 System? OS, customisations

 Sizing? RAM/CPU based on tiered model

 Storage? Quantity, type

 Distributed storage
 Amazon S3
 Hadoop Distributed File System (HDFS)
 Google File System (GFS), BigTable…

8

Data Model/Indexing

15

 Support large data

 Fast and flexible access to data

 Operate on distributed infrastructure

 Is SQL Database sufficient?

NoSQL (Schema Free) Database

16

 NoSQL database

 Operate on distributed infrastructure
 Based on key-value pairs (no predefined schema)
 Fast and flexible

 Pros: Scalable and fast
 Cons: Fewer consistency/concurrency

guarantees and weaker queries support

 Implementations
 MongoDB, CouchDB, Cassandra, Redis, BigTable, Hibase …

9

MapReduce Programming

17

 Target problem needs to be parallelisable

 Split into a set of smaller code (map)

 Next small piece of code executed in parallel

 Results from map operation get synthesised
into a result of original problem (reduce)

Data Flow Programming

18

 Non standard programming models

 Data (flow) parallel programming
 e.g. MapReduce, Dryad/LINQ, NAIAD, Spark

MapReduce:
Hadoop

More flexible dataflow model

Two-Stage fixed dataflow

DAG (Directed Acyclic Graph)
based: Dryad/Spark/Tez

10

Easy Cases

19

 Sorting
 Google 1 trillion items (1PB) sorted in 6 Hours

 Searching
 Hashing and distributed search

 Random split of data to feed M/R operation

 BUT Not all algorithms are parallelisable

Streaming Data

 Departure from traditional static web pages

 New time-sensitive data is generated
continuously

 Rich connections between entities

 Challenges:

 High rate of updates

 Continuous data mining - Incremental data
processing

 Data consistency

20

11

Techniques for Analysis

 Applying these techniques: larger and more
diverse datasets can be used to generate more
numerous and insightful results than smaller,
less diverse ones

21

 Classification
 Cluster analysis
 Crowd sourcing
 Data fusion/integration
 Data mining
 Ensemble learning
 Genetic algorithms
 Machine learning
 NLP
 Neural networks
 Network analysis
 Optimisation

 Pattern recognition
 Predictive modelling
 Regression
 Sentiment analysis
 Signal processing
 Spatial analysis
 Statistics
 Supervised learning
 Simulation
 Time series analysis
 Unsupervised learning
 Visualisation

Do we need new types of algorithms?

22

 Cannot always store all data
 Online/streaming algorithms

 Have we seen x before?
 Rolling average of previous K items

 Incremental updating

 Memory vs. disk becomes critical
 Algorithms with limited passes

 N2 is impossible and fast data processing
 Approximate algorithms, sampling

 Iterative operation (e.g. machine learning)

 Data has different relations to other data
 Algorithms for high-dimensional data (efficient

multidimensional indexing)

12

Typical Operation with Big Data

23

 Scalable clustering for parallel execution

 Smart sampling of data

 Find similar items efficient multidimensional
indexing

 Incremental updating of models support
streaming

 Distributed linear algebra dealing with large
sparse matrices

 Plus usual data mining, machine learning and
statistics
 Supervised (e.g. classification, regression)

 Non-supervised (e.g. clustering..)

How about Graph (Network) Data?

24

Protein Interactions
[genomebiology.com]

Gene expression
data

Bipartite graph of
phrases in
documents

Airline Graphs

Brain Networks:
100B neurons(700T
links) requires 100s
GB memory

Social media data

Web 1.4B
pages(6.6B
links)

13

How about Graph Data?

25

Protein Interactions
[genomebiology.com]

Gene expression
data

Bipartite graph of
phrases in
documents

Airline Graphs

Brain Networks:
100B neurons(700T
links) requires 100s
GB memory

Social media data

Web 1.4B
pages(6.6B
links)

Data-Parallel vs. Graph-Parallel

 Data-Parallel for all? Graph-Parallel is hard!
 Data-Parallel (sort/search - randomly split data to feed

MapReduce)

 Not every graph algorithm is parallelisable
(interdependent computation)

 Not much data access locality

 High data access to computation ratio

26

14

Graph-Parallel

27

 Graph-Parallel (Graph Specific Data Parallel)

 Vertex-based iterative computation model

 Use of iterative Bulk Synchronous Parallel Model
Pregel (Google), Giraph (Apache), Graphlab,
GraphChi (CMU)

 Optimisation over data parallel

GraphX/Spark (U.C. Berkeley)

 Data-flow programming – more general framework

NAIAD (MSR)

BSP Example

28

 Finding the largest value in a connected graph

Message

Local Computation

Communication

Local Computation

Communication

…

15

Graph Computation

29

 Two characteristic patterns: traversal and
fixed-point iteration

 Breadth-first search (weakly-connected
components)
 Search proceeds in a frontier

 90% computation, 10% communication

 PageRank
 All vertices active in each iteration

 50% computation, 50% communication

(* based on Pannotia benchmark suite)

Big Data Analytics Stack

30

GFS Spanner Dremel

Percolator

Streaming
Processing

Resource Manager

Database

Storage

Execution Engine

Graph
Processing

Machine learning
Query

Language

Unicorn

16

Hadoop Big Data Analytics Stack

31

Storm

Spark Big Data Analytics Stack

32

17

Do we really need a large cluster?

33

 A laptop can perform sufficiently

from blog by Frank McSherry

Single Computer?

CPU CPU CPU CPU…=

Cluster

Multi-core

Single Computer

Computation Platform

HD/SSD
(External Memory)

Input
Storage/Stream

 Use of powerful HW/SW parallelism
 SSDs as external memory

 GPU for massive parallelism

 Exploit graph structure/algorithm for processing

34

Parallelism
Here

GPU

18

Big Data Analytics Stack

35

GFS Spanner Dremel

Percolator

Streaming
Processing

Resource Manager

Database

Storage

Execution Engine

Graph
Processing

Machine learning
Query

Language

Unicorn

Topic Areas

Session 1: Introduction

Session 2: Programming in Data Centric Environment

Session 3: Processing Models of Large-Scale Graph Data

Session 4: Data Flow Programming Hands-on Tutorial
with EC2

Session 6: Stream Data Processing + Guest lecture

Session 5: Optimisation in Data Processing

Session 7: Machine Learning for Computer System's
Optimisation

Session 8: Project Study Presentation

36

19

Summary

 R212 course web page:

www.cl.cam.ac.uk/~ey204/teaching/ACS/R212_2015_2016

 Enjoy the course!

37

