Efficient and developer-friendly machine learning development on Apache Spark

Presented by Kenneth Lui (wckl2) 1st December, 2015

Agenda

- Why Spark?
- Motivation
- Project Plan
- Deliverable

Why Spark?

Active Developer Community

- GitHub
 - 750+ Contributors
 - 6,400+ Stars
- Online courses
 - edX Introduction to Big Data with Apache Spark
 - DataStax DataStax Enterprise Analytics with Apache Spark
- Spin-off company
 - Databricks

Availability

- AWS Elastic MapReduce 4.x supports Spark
- Databricks Cloud

Built on top of Spark

- Spark Streaming
- MLlib (machine learning)
- GraphX (graph)
- 150+ Spark packages
 - E.g. adam: A genomics processing engine and specialized file format built using Apache Avro, Apache Spark and Parquet
 - or **Thunder**: Large-scale image and time series analysis with Spark

Motivation

Pain Point

- Learning a distributed system takes longer than it should be
 - Resolving dependency
 - Configuration
- People get frustrated by the irrelavant troubleshooting before they can start any coding

Solution

- Address the deployment part of learning Spark
 - Major obstacle for beginners
- Transparent and incremental approach for developers to learn
- A demo project showcasing different options in using Spark and how they affect the performance

1. Installation

- a. Binary v.s. Build from source
- b. Understand the dependency
 - i. E.g. how it works with different Hadoop version, HDFS etc.

2. Deployment

- a. Spark's own standalone cluster manager v.s. Mesos v.s YARN
- b. Qualitative comparison between these three choices
- c. Cloud-based deployment on Amazon Web Services

- 3. Applying basic machine learning techniques
 - a. Native Spark
 - b. MLLib
 - i. Classification: SVMWithSGD, LogisticRegressionWithSGD
 - ii. Regression: LinearRegressionWithSGD, RidgeRegressionWithSGD and LassoWithSGD

4. Performance evaluation

- a. Different partition strategy
- b. Number of Executors per Worker Node
- c. Shuffle Behaviour configuration (Buffer size, number of connections etc.)
- d. Serializer (JavaSerializer v.s. KryoSerializer etc.)

Deliverable

- A detailed tutorial for setting up Spark in various environments
- Multiple examples for applying basic machine learning techniques
- Implement some custom machine learning algorithms
- Performance evaluation demonstrating different partition strategies
- Everything available on GitHub as an open source project

Questions?