
Faster Jobs in Distributed 
Data Processing using MTL

Neeraja J. Yadwadkar, et al.



Problem
→ Stragglers:

1. extended job completion times
2. inefficient use of resources
3. increased costs



Two Approaches
Reactive

→ e.g. MapReduce

- wait-and-speculate if task is executing 
slower

- spawn multiple copies 

Proactive

→ e.g. Wrangler

1. model builder
a. data points: current resource usage 

counters
2. model-informed scheduler

a. predict whether given task on given 
node would cause a straggler



Problems with Wrangler
1. need to build for each node

2. retrained for each workload

3. how to handle sparse data



AIM:
“Adapt MTL for learning a generalized 

predictive model with better prediction 
accuracy and improved job completion 

times.”



→ w0 + vt = wt

minw0,vt,b = λ0ǁwoǁ
2 + λ1/T Σtǁvtǁ

2+ΣiΣtξit

subject to:

yit ((w0 + vt)
Txit+b) ≥ 1 - ξit : ∀i,t

ξit ≥ 0 : ∀i,t

Multi-Task Learning



MTL: Formulation
N nodes, L workloads, NL tasks:

→ general group: wo

→ one group for each node: wn

→ one group for each workload: wl

→ one group for each task: vt

w = w0 + wn + wl + vt



→ w = w0 + wn + wl + vt

minw0,vt,b = λ0ǁwoǁ
2 + ν/N Σtǁwnǁ

2 +ധ/L Σtǁwlǁ
2 + τ/T Σtǁvtǁ

2+ΣiΣtξit

subject to:

yit ((w0 + wn + wl + vt)
Txit+b) ≥ 1 - ξit : ∀i,t

ξit ≥ 0 : ∀i,t

Multi-Task Learning



Evaluation & Experiments









Evaluation & Take Away
Pros:

→ Improve over speculative approach

→ Can handle stragglers

Cons:

→ Unclear evaluation


