
GREEN-MARL: A DSL FOR
EASY AND EFFICIENT GRAPH

ANALYSIS
Sungpack Hong, Hassan Chafi, Eric Sedlar, Kunle Olukotun

K.M.D.M Karunarathna
University Of Cambridge - 17th Nov 2015

Current Issues

Issues with large-scale graph analysis

■ Performance

■ Implementation

■ Capacity

Performance Issues

■ RAM latency dominates running time for large graphs

Solution: Solved by exploiting data parallelism

Implementation Issues

■ Writing concurrent code is hard

■ Race-conditions

■ Deadlock

■ Efficiency requires deep hardware knowledge

■ Couples code to underlying architecture

Solution: A DSL Green-Marl and its compiler

■ High level graph analysis language

■ Hides underlying complexity

■ Exposes algorithmic concurrency

■ Exploits high level domain information for optimisations

Example

Green-Marl Language Design

■ Scope of the Language

Based on processing graph properties, mappings from a node/edge to a value

- e.g. the average number of phone calls between two people

■ Green-Marl is designed to compute,

• scalar values from a graph and its properties

• new properties for nodes/edges

• selecting subgraphs (instance of above)

Green-Marl Language Design

■ Parallelism in Green-marl

Support for parallelism (fork-join style)

• Implicit

G.BC = 0;

• Explicit

Foreach(s: G.Nodes) (s!=t)

• Nested

p_sum *= t.B;

Language Constructs

■ Data Types and Collections - DATA

a) Five primitive types (Bool, Int, Long, Float, Double)

b) Defines two graph types (DGraph and UGRaph)

c) Second, there is a node type and an edge type both of which are always bound to
a graph instance

d) e node properties and edge properties which are bound to a graph but have

base-types as well

Language Constructs

■ Data Types and Collections - COLLECTION

: Set, Order, and Sequence.

a) Elements in a Set are unique while a Set is unordered.

b) Elements in an Order are unique while an Order is ordered.

c) Elements in a Sequence are not unique while a Sequence is ordered

Language Constructs

■ Iterations and Traversals

Foreach (iterator:source(-).range)(filter)

body_statement

Language Constructs

■ Deferred Assignment

a) Supports bulk synchronous consistency via deferred assignments.

b) Deferred assignments are denoted by <= and followed by a binding symbol

Language Constructs

Reductions

■ an expression form (or in-place from)

■ an assignment form

y+= t.A;

■ Compiler Overview

Figure. Overview of Green-Marl DSK-compiler Usage

User

Application

Graph Data Structure

(LIB)

Green-Marl

Code

Target

Code

Green-Marl

Compiler

Parsing &

Checking

Front-end

Transform

Back-end

Transform

Code Gen

Compiler

Compiler
■ Architecture Independent Optimizations

• Group Assignment

• In-place Reduction

• Loop Fusion

• Hoisting Definitions

• Reduction Bound Relaxation

• Flipping Edges

Foreach(s:G.Nodes)(g(s))

Foreach(t:s.OutNbrs)(f(t))

t.A += s.B;

Foreach(t:G.Nodes)(f(t))

Foreach(s:t.InNbrs)(g(s))

t.A += s.B;

Becomes

Compiler
■ Architecture Dependent Optimizations

• Set-Graph Loop Fusion

• Selection of Parallel Regions

• Deferred Assignment

• Saving BFS Children

Becomes

_prepare_edge_marker(); // O(E) array

for (e = edges ...) {

index_t t = ...node(e);

if (isNextLevel(t)) {

edge_marker[e] = 1;

} }

for (e = edges ..) {

if (edge_marker[e] ==1) {

index_t t = ...node(e);

DO_THING(t);

} }}

InBFS(v:G.Nodes; s) { ... //forward }

InRBFS { // reverse-order traverse

Foreach(t: v.DownNbrs) {

DO_THING(t);

} }

Compiler
■ Code Generation

• Graph and Neighborhood Iteration

• Efficient DFS and BFS traversals

• Small BFS Instance Optimization

• Reduction on Properties

• Reduction on Scalars

Experiments

Name LOC Original LOC Green-Marl Source

BC 350 24 [9] (C OpenMp)

Conductance 42 10 [9] (C OpenMp)

Vetex Cover 71 25 [9] (C OpenMp)

PageRank 58 15 [2] (C++, sequential)

SCC (Kosaraju) 80 15 [3] (Java, sequential)

Table. Graph algorithms used in the experiments and their Lines-of-Code(LOC) when

implemented in Green-Marl and in a general purpose language.

Experiments

Figure. Speed-up of Betweenness Centrality. Speed-up is over the SNAP library [9] version

running on a single-thread. NoFlipBE and NoSaveCh means disabling the Flipping Edges (Section

3.3 Architecture Independent Optimizations) and Saving BFS Children (Section 3.5 Code

Generation) optimizations respectively.

Experiments

Figure. Speed-up of Conductance. Speed-up is over the SNAPlibrary [9] version running on a

single-thread. NoLM and NoSRDCmeans disabling theLoop Fusion(Section 3.3 Architecture

Independent Optimizations) andReduction onScalars(Section 3.5 Code Generation)

optimizations, respectively.

Future Works

■ Solutions for Capacity Issue

■ Comments block to green Marl

■ Combining with Graph Lab as back end.(machine learning type)

■ generate code for alternative architectures(Clusters, GPU).

■ Green Marl as internal DSL.

Pros

• Easier to write graph algorithms

• Algorithms perform better

• Don’t need to rewrite entire application

• Code is portable across platforms

Critical Evaluation

• Assumes graph is immutable during the analysis

Thank you…

