Elixir A System for Synthesizing Concurrent Graph Programs

Prountzos D., Manevich R. & Pingali K.

Christopher Little

Motivation

Best solution to problems depends on:

- Data
- Machine Architecture
- Intra-algorithm tuning
- ...

Dream: let the compiler worry about it all

Running Example: SSSP (Single-Source Shortest Path)

Bellman-Ford

SSSP Elixir Specification

```
Graph [
    nodes(node: Node, dist: int)
    edges(src: Node, dest: Node, wt: int)
]
relax = [ nodes(node a, dist ad)
    nodes(node b, dist bd)
    edges(src a, dest b, wt w)
    bd > ad + w ] ->
    [bd = ad + w]
```

sssp = iterate relax >> schedule

Graph Type Definition

Operator Definition

Fixpoint Statement

SSSP Elixir Specification

```
Graph [
    nodes(node: Node, dist: int)
    edges(src: Node, dest: Node, wt: int)
]
relax = [ nodes(node a, dist ad)
    nodes(node b, dist bd)
    edges(src a, dest b, wt w)
    bd > ad + w ] ->
    [bd = ad + w]
    Guard
    [bd = ad + w]
    Jupdate
```

sssp = iterate relax >> schedule

SSSP Elixir Specification

```
d
Graph [
                                                                                              dh
     nodes(node: Node, dist: int)
                                                                                  W
     edges(src: Node, dest: Node, wt: int)
                                                                        а
relax = [ nodes(node a, dist da)
                                           Redex Pattern
                                                                                 > d<sub>a</sub>
           nodes(node b, dist db)
                                                                        lf
                                                                              d_{\rm b}
                                                                                          + w
           edges(src a, dest b, wt w)
                                         } Guard
           db > da + w ] ->
                                        } Update
           [db = da + w]
                                                                       \mathsf{d}_{\mathsf{a}}
                                                                                            d_a + w
sssp = iterate relax >> schedule
                                                                                   W
                                                                        а
```

Scheduling

- Metric
- Group
- Fuse
- Unroll
- Ordered/unordered

Galois


```
assume ( da + w < db )
assume !( dc + w' < db )
new_db = da + w
assert !( dc + w' < new_db )</pre>
```

SMT Solver


```
assume ( da + w < db )
assume !( db + w' < dc )
new_db = da + w
assert !( new_db + w' < dc )</pre>
```

SMT Solver

Evaluation

Experiments

Explored Dimensions

groupStatically group multiple instancesunroll kStatically unroll operator applicationsdynamic schedulerdifferent worklist policy/implementation

...

(a) FLA runtimes

(b) USA-W runtimes

(c) FLA runtime distribution

Complexity

Definition 3.1 (Graph). ¹ A graph $G = (V^G, E^G, Att^G)$ where $V^G \subset Nodes$ are the graph nodes, $E^G \subseteq V^G \times V^G$ are the graph edges, and $Att^G : ((Attrs \times V^G) \rightarrow Vals) \cup$ $((Attrs \times V^G \times V^G) \rightarrow Vals)$ associates values with nodes and edges. We denote the set of all graphs by Graph.

Definition 3.3 (Matching). Let G be a graph and P be a pattern. We say that $\mu : V^P \to V^G$ is a matching (of P in G), written $(G, \mu) \models P$, if it is one-to-one, and for every edge $(x, y) \in E^P$ there exists an edge $(\mu(x), \mu(y)) \in E^G$. We denote the set of all matchings by Match : Vars \to Nodes.

We extend a matching $\mu : V^P \to V^G$ to evaluate attribute variables $\mu : Vars \to Vals$ as follows. For every attribute a, pattern nodes $y, z \in V^P$, and attribute variable x, we define:

$$\begin{split} \mu(x) &= Att^G(a,\mu(y)) \quad \text{if} \quad Att^P(a,y) = x \\ \mu(x) &= Att^G(a,\mu(y),\mu(z)) \quad \text{if} \quad Att^P(a,y,z) = x \end{split}$$

Definition 3.2 (Pattern). A pattern $P = (V^P, E^P, Att^P)$ is a connected graph over variables. Specifically, $V^P \subset Vars$ are the pattern nodes, $E^P \subseteq V^P \times V^P$ are the pattern edges, and $Att^P : (Attrs \times V^P) \rightarrow Vars \cup (Attrs \times V^P \times V^P) \rightarrow$ Vars associates a distinct variable (not in V^P) with each node and edge. We call the latter set of variables attribute variables. We refer to (V^P, E^P) as the shape of the pattern.

Let μ_R and $\mu_{R'}$ be two matchings corresponding to the operators above. We say that μ_R and $\mu_{R'}$ overlap, written $\mu_R \\ightarrow \\multiple \\multiple \\ightarrow \\multiple \\m$

DELTA
$$\llbracket op, op' \rrbracket (G, \mu_R) =$$

let $G' = \llbracket op \rrbracket (G, \mu_R)$
in $\{\mu_{R'} \mid \mu_{R'} \land \mu_R, (G, \mu_{R'}) \not\models R^{op}, Gd^{op}, (G', \mu_{R'}) \models R^{op}, Gd^{op}\}$.

Conclusion

- Elixir can beat hand-written implementations
- "High-level" specification could be simpler
- Not very accessible paper (unhelpful formalisms)
- Dynamic graphs unsupported
- Is auto-tuning integrated yet?