ELixir
A System for Synthesizing Concurrent
Graph Programs

Prountzos D., Manevich R. & Pingali K.

Christopher Little

Motivation

Best solution to problems depends on:

Data
Machine Architecture
Intra-algorithm tuning

Dream: let the compiler worry about it all

Running Example: SSSP
(Single-Source Shortest Path)

Dijkstra Bellman-Ford

Graph Algorithm

i N

Operators Schedule

TN

~N
Order Activity ldentify New
Processing Activities

PN

Static Dynamic
Schedule Schedule

SSSP Elixir Specification

Graph [
nodes (node: Node, dist: int)
edges(src: Node, dest: Node, wt: int)

]

relax = [nodes(node a, dist ad)
nodes(node b, dist bd)
edges(src a, dest b, wt w)
bd > ad + w] ->
[bd = ad + w]

sssp = 1iterate relax >> schedule

Graph Type Definition

Operator Definition

Fixpoint Statement

SSSP Elixir Specification

relax = [nodes(node a, dist ad)
nodes(node b, dist bd) Redex Pattern
edges(src a, dest b, wt w)

bd > ad + w] -> }Guard
[bd = ad + w] } Update

SSSP Elixir Specification

da db
W
O, O,

relax = [nodes(node a, dist da)
nodes(node b, dist db) Redex Pattern If d > d + w
b a
edges(src a, dest b, wt w)
db > da + w] -> }Guard
[db = da + w] } Update

d d +w
a a
w
) >(»)

Scheduling

- Metric Parallel

- Group Galois C++

- Fuse Program
- Unroll

- Ordered/unordered

Graph Algorithm

T

Operators Schedule

TN

Order Activity ldentify New
Processing Activities

PN

Static Dynamic
Schedule Schedule

assume
assume
new_db
assert

(da + w <
!'(dc + w’
= da + w
!'(dc + w’

SMT Solver

db)
< db)

< new_db)

assume
assume
new_db
assert

(da + w < db)
!'(db + w’ < dc)

= da + w
!'(new_db + w’

SMT Solver

X

< dc)

Evaluation

Experiments

Explored Dimensions
group Statically group multiple instances
unroll k Statically unroll operator applications

dynamic scheduler different worklist policy/implementation

700

600

500

Time (ms)
N
8

300

200

100

(a) FLA runtimes

&
: Algorithm 3500
1 =@= | onestar
e | w50 3000
=8 V62
=t VB3 2500
T »B | dsv7 "g
~— 2000
[}]
E
1_
u 1500
1000
.E"' --lllﬂnnl'g".‘E
e e .
= —s— 500
.‘:'i-‘h.".-i. AT e el
[| | | |
12 16 20 24
Threads

(b) USA-W runtimes

Algorithm
=&= Lonestar
e Y50
=H : v62

=t | v63

= dsv7

8
Threads

Time

1400

1200

1000

600

400

200

(¢) FLA runtime distribution

X . 4
.- .o..‘:o . i . .'
...t.. i - L] ... L] . :

. L oy o I .‘

® an * & .
i * o e . ."V.‘. .

iR R R R R R i

Variant

Complexity

™ — (VP P B
Definition 3.1 (Graph). 1 A graph G = (VG,EG,AIEG) Definition 3.2 (Pattern). Apanem = (V }E ,Aff) Ay

where VE C Nodes are the graph nodes, E¢ C V& x V¢ a connected graph over variables. Specifically, VE C Vars
are the graph edges, and Ati® - ((Attrs x VE) = Vals) U are the pattern nodes, E¥ C V¥ xV'F are the pattern edges,
((Attrs x VG x VG) — Vals) associates values with nodes and Attf : (Attrs x VE) — Vars U (Attrs x VP x VP) —
and edges. We denote the set of all graphs by Graph. Vars associates a distinct variable (not in V) with each

node and edge. We call the latter set of variables attribute

Definition 3.3 (Matching). Let G b h and P b
' e L g s it s variables. We refer to (V¥ ET) as the shape of the pattern.

pattern. We say that i : VP — V' is a matching (of P in
G), written (G,) = P, if it is one-to-one, and for every
edge (z,y) € ET there exists an edge (pu(x), u(y)) € EC.
We denote the set of all matchings by Match : Vars —

Let ur and g be two matchings corresponding to the
operators above. We say that yp and pp overlap, written
IR A pge, if the matched subgraphs overlap: pgr(VE) N

Nodes. ;
g (VE (). Then, the following equality holds:
We extend a matching y : VE — V' to evaluate attribute o) # i d
variables y : Vars — Vals as follows. For every attribute a, DELTA[op, 0p'] (G, pr) =
pattern nodes vy, z € VP, and attribute variable z, we define: let & . [op](G #R)

N A4C . P _ in {,U,R: KR A UR,
p(z) = At (a, p(y)) if Aw (a,y) =z (G i) b R, Gd™,

fJ’('T) = A“G(a‘!#(?f)ﬂ ‘LL(Z)) if A”P(aﬂ ?J,-Z) =T . (G’, #R’) l_: Rop: Gd()b} .

Conclusion

Elixir can beat hand-written implementations

“High-level” specification could be simpler

Not very accessible paper (unhelpful formalisms)

Dynamic graphs unsupported

|s auto-tuning integrated yet?

