
Faster Jobs in Distributed Data Processing using Multi-Task Learning

Neeraja J. Yadwadkar∗ Bharath Hariharan∗ Joseph Gonzalez∗

Randy Katz∗

{neerajay,bharath2,jegonzal,randy}@cs.berkeley.edu

Abstract
Slow running or straggler tasks in distributed processing
frameworks [1, 2] can be 6 to 8 times slower than the
median task in a job on a production cluster [3], despite
existing mitigation techniques. This leads to extended job
completion times, inefficient use of resources, and increased
costs. Recently, proactive straggler avoidance techniques [4]
have explored the use of predictive models to improve
task scheduling. However, to capture node and workload
variability, separate models are constructed for every node
and workload, requiring the time consuming collection of
substantial training data and limiting the applicability to
new nodes and workloads. In this work, we observe that
predictors for similar nodes or workloads are likely to be
similar and can share information, suggesting a multi-task
learning (MTL) based approach. We generalize the MTL
formulation of [5] to capture commonalities in arbitrary
groups. Using our formulation to predict stragglers allows
us to reduce job completion times by up to 59% over
Wrangler [4]. This large reduction arises from a 7 percentage
point increase in prediction accuracy. Further, we can get
equal or better accuracy than [4] using a sixth of the training
data, thus bringing the training time down from 4 hours
to about 40 minutes. In addition, our formulation reduces
the number of parameters by grouping our parameters into
node- and workload-dependent factors. We show that, in
the event of a particular task having insufficient data, this
helps us generalize and achieve significant gains over a naive
MTL formulation [5].

1 Introduction

Distributed processing frameworks [1, 2] split a data
intensive computation job into multiple smaller tasks,
which are then executed in parallel on commodity clus-
ters to achieve faster job completion. A natural conse-
quence of such a parallel execution model is that slow-
running tasks, commonly called stragglers [1, 6, 3, 7, 8],
potentially delay overall job completion. Stragglers
form a major hurdle in achieving near optimal job com-
pletion times — a recent study [3] shows that straggler
tasks are on average 6 to 8 times slower than the median
task of the corresponding job.

Proactive straggler mitigation techniques [9, 10, 4]
attempt to schedule tasks in a way that limits the effect
of stragglers by modeling straggler behavior. Recently,
Wrangler [4] showed that incorporating predictive mod-
els of straggler behavior in the scheduler can lead to

∗University of California, Berkeley

large improvements in job completion times.
However, to address heterogeneity in the nodes and

changing workload patterns, proactive model based ap-
proaches have previously modeled each workload1 and
node independently. Independent models pose two criti-
cal challenges: (1) each new node and workload requires
new training data which can take hours to collect, delay-
ing the application of model based scheduling, and (2)
clusters with many nodes may have only limited data for
a given workload on each node leading to lower quality
models.

These shortcomings can be addressed if each clas-
sifier is able to leverage information gleaned at other
nodes and from other workloads. For instance when
there is not enough data at a node for a workload, we
can gain from the data collected at that node while it
was executing other workloads, or from other nodes run-
ning the same workload. Such information sharing falls
in the ambit of multi-task learning (MTL), where the
learner is embedded in an environment of related tasks,
and the learner’s aim is to leverage correlations between
the tasks to improve performance of all tasks. The aim
of this paper is to adapt MTL for learning a generalized
predictor with better prediction accuracy and ultimately
improve job completion times.

In this work, we exploit explicit knowledge about
the dependencies between tasks to improve the perfor-
mance of MTL. In particular, we can group classifiers
by workload and by node. To incorporate this group
structure we generalize the formulation proposed by Ev-
geniou, et al. [5], to include clusters of tasks. Using our
formulation to predict stragglers allows us to reduce job
completion times by up to 59% over Wrangler [4]. This
large reduction arises from a 7 percentage point increase
in prediction accuracy. Further, we can get equal or bet-
ter accuracy than [4] using a sixth of the training data,
thus bringing the training time down from 4 hours to
about 40 minutes. In addition, our formulation reduces

1Clusters are used for different purposes, and statistics such as
the kinds of jobs submitted, their resource requirements and the

frequency at which they are submitted vary depending upon the
usage. We call one such distribution of jobs a workload.



the number of parameters by grouping our parameters
into node- and workload-dependent factors. We show
that, in the event of a particular task having insuffi-
cient data, this helps us generalize and achieve signifi-
cant gains over a naive MTL formulation [5].

Finally, while we have shown experiments on strag-
gler avoidance, our learning formulation is general and
can be applied to other systems that train node or
workload dependent classifiers [10, 11]. For instance,
ThroughputScheduler [10] uses such classifiers to allot
resources to tasks, and can benefit from such multitask
reasoning. We leave these extensions to future work.
To summarize, our key contributions are:

1. We propose a generalized formulation for MTL that
considers clusters of tasks and allows us to reduce
parameters, improving generalization.

2. Instead of machine learning datasets, we show the
benefits of MTL in general and our formulation in
particular on a real world application, where we

(a) avoid stragglers better, improving job comple-
tion times significantly and reducing net re-
source usage, and

(b) can work even with a sixth of the training data
and thus a much shorter training period.

2 Background and Motivation

Today, data is getting generated at an unprecedented
scale due to popular Internet-based computer applica-
tions that serve millions of users, such as e-commerce
websites, social networks. The rate at which this data
is growing has rendered parallel processing on commod-
ity compute clusters an inevitable and an attractive op-
tion. Google originally proposed its MapReduce frame-
work [1] allowing them to process enormous amount of
data generated by various applications. MapReduce is
highly scalable to large clusters of inexpensive commod-
ity computers. Hadoop, a popular open source imple-
mentation of MapReduce [12], has been widely adopted
by industries of various sizes.

For accelerating a job’s completion time, MapRe-
duce divides a data intensive computation job in multi-
ple smaller tasks. These tasks are executed in parallel
on multiple machines (nodes) in a compute cluster. A
job finishes when all its tasks have finished execution. A
key benefit of such distributed parallel processing frame-
works is that they automatically handle failures, with-
out needing extra efforts from the programmer. Two
basic modes of failures include, failure of a node and
failure of a task. If a node crashes, MapReduce re-runs
all the tasks it was executing on a different node. If a
task fails, MapReduce automatically re-launches it.

However, a tricky situation arises when a node is
available but is performing poorly. This causes tasks
scheduled on that node to execute slower than other
tasks of the same job scheduled on other nodes in the
cluster. Since a job finishes execution only when all
its tasks have finished execution, such slow-running
tasks, called stragglers, extend the job’s completion
time. This, in turn, leads to increased user costs.

Existing approaches for dealing with stragglers
broadly fall into reactive and proactive categories. The
MapReduce paper [1] identified the problem of strag-
glers and suggested speculative execution as a mitiga-
tion mechanism. This is a reactive scheme that is
dominantly used on production clusters including those
at Facebook and Microsoft Bing [8]. It operates in
two steps: (1) wait-and-speculate if a task is executing
slower than other tasks of the same job, and (2) repli-
cate or spawn multiple redundant copies of such tasks
hoping a copy will reach completion before the origi-
nal. Due to the wait-and-speculate step, this scheme is
inefficient in time. Also, due to the second step that
replicates tasks, such mechanisms lead to increased re-
source consumption without necessarily gaining perfor-
mance benefits. LATE [7] improves over speculative
execution using a notion of progress scores, but still re-
sults in a resource wastage. Cloning mechanisms [3],
being replication-based, also incur extra resources.

Proactive approaches aim at predicting straggler
tasks before they are launched [9, 10, 4]. Thus, they
are time efficient. They are also efficient in reducing the
resources consumed by smarter scheduling and avoiding
replication of tasks. Hence, we use a recently proposed
proactive approach, Wrangler [4], as our baseline. We
first review Wrangler’s pipeline below, and then discuss
the avenues for improvement.

2.1 Our Baseline – Wrangler: Wrangler has two
components. (1) A model builder that trains a classifier
to predict if a task launched at a node will become a
straggler, given the current resource usage counters on
the node. Training data for each node and workload is
collected by recording the resource usage counters at the
time a task is launched along with the relative duration
of the tasks (i.e., did it straggle). Each such task forms a
data point; the resource usage counters form its feature
vector, and the label is whether or not the task became
a straggler. (2) A model-informed scheduler. Before
launching a task on a node, the scheduler collects the
node’s resource usage counters and runs the classifier.
If the model predicts that the task will be a straggler,
the scheduler does not assign the task to that node. It
is later assigned to a node that is not predicted to create
a straggler.



Due to the heterogeneity of nodes in a cluster,
the model builder trains a separate classifier for each
node. Note that to build a training set per node,
every node should have executed sufficient number of
tasks. Wrangler takes a few hours (approximately 2-
4 hours, depending on the workload) for this process.
Additionally, because each workload might be different,
these models are retrained for every new workload.
Thus, for every new workload that is executed on the
cluster, there is a 2-4 hour model building period. In
typical large production clusters with tens of thousands
of nodes, it might be a long time before a node collects
enough data to train the classifier.

Moreover, we may not always get enough data
for each node executing a workload. For example, in
our case, each task of a workload executed on a node
amounts to a training data point. Placement of input
data to tasks on nodes in a cluster is managed by
the underlying distributed file system [13]. To achieve
locality for faster reading of input data, sophisticated
locality-aware schedulers [7, 14] will try to assign tasks
to nodes already having the appropriate data. Based
on popularity of the data, number of tasks assigned to a
node could vary. Hence we may not get uniform number
of training data points, i.e., tasks executed, across all
the nodes in a cluster. There could be other reasons
behind skewed assignment of tasks to nodes [15]: even
when every map task has the same amount of data,
a task may take longer depending on the code path it
takes due to the data it processes. Hence, the node slots
will be busy due to such long running tasks. This could
lead to insufficient number of tasks assigned to some
nodes.

These observations suggest that our training should
work even when very little data is available.

2.2 Need for multitask learning: Our proposal is
to leverage the correlations between the classifiers to
reduce this model building time. Concretely, a task
executing on a node will be a straggler because of a
combination of factors. Some of these factors involve
the properties of the node where the task is executing
(for instance, the node may be memory-constrained)
and some others involve particular requirements that
the tasks might have in terms of resources (for instance,
the task may require a lot of memory). These are
workload-related factors. When collecting data for a
new workload executing on a given node, one must be
able to use information about the workload collected
while it executed on other nodes, and information about
the node collected while it executed other workloads.

This kind of sharing of information is precisely the
motivation for the machine learning paradigm known

as multitask learning. In MTL, we are given a set of
learning tasks and we want to learn a classifier for each
one. Each task has its own training data set, although
typically all training points of all tasks live in the same
feature space. The tasks are related to each other,
and the goal of multitask learning is to leverage this
relationship to improve performance or generalization
of all the tasks.

In our formulation, each node-workload pair will
form a task. However, unlike typical MTL formulations,
our tasks are not simply correlated with each other;
they share a specific structure, clustering along node-
or workload-dependent axes. With this in mind, we
describe our MTL formulation below.

3 Proposed Formulation

Suppose there are T tasks, with the training set for the
t-th task denoted by Dt = {(xit, yit) : i = 1, . . . ,mt},
with xit ∈ Rd. We begin with the formulation proposed
by Evgeniou, et al. [5]. Evgeniou, et al. write the
classifier wt for task t as:

(3.1) wt = w0 + vt

Here, w0 is a weight vector shared between all tasks and
captures information shared between tasks, and vt is a
vector that specifies how wt deviates from w0.

Learning then involves solving the following opti-
mization problem:

(3.2) min
w0,vt,b

= λ0‖w0‖2 +
λ1
T

T∑
t=1

‖vt‖2 +

T∑
t=1

mt∑
i=1

ξit

s.t

yit((w0 + vt)
Txit + b) ≥ 1− ξit ∀i, t

ξit ≥ 0 ∀i, t

This formulation shares information equally among
all the tasks. However, as argued before, our tasks
cluster into groups along various axes. To capture such
structure, we assume that the tasks are partitioned into
G groups. Denote the group of the t-th task by g(t).
Then we can write the classifier wt as:

(3.3) wt = w0 + vt + wg(t)

In general, there may be multiple ways of splitting
tasks into groups. In our application, one may split
tasks into groups based on workload or on nodes. To
formalize this, assume there are P ways of defining
groups. The p-th partitioning has Gp groups, and the
task t belongs to the gp(t) group under this partitioning.
Now, we also have a separate set of weight vectors for



each partitioning p, and the weight vector of the g-th
group of the p-th partitioning is denoted by wp,g. Then,
we can write the classifier wt as:

(3.4) wt = w0 + vt +

P∑
p=1

wp,gp(t)

Finally, note that w0 and vt can also be seen as
weight vectors corresponding to trivial partitions: w0

corresponds to the partition where all tasks belong to a
single group, and vt corresponds to the partition where
each task is its own group. Thus, we can include w0

and vt in our partitions and write Equation 3.4 as:

(3.5) wt =

P∑
p=1

wp,gp(t)

Intuitively, at test time, we get the classifier for the t-th
task by summing weight vectors corresponding to each
group to which t belongs.
The learning problem can then be generalized to:

(3.6) min
wp,g,b

P∑
p=1

Gp∑
g=1

λp#(p, g)

T
‖wp,g‖2 +

T∑
t=1

mt∑
i=1

ξit

s.t.

yit((

P∑
p=1

wp,gp(t))
Txit + b) ≥ 1− ξit ∀i, t

ξit ≥ 0 ∀i, t

Here #(p, g) denotes the number of tasks assigned to
the g-th group of the p-th partitioning. The scaling

factor
λp#(p,g)

T interpolates smoothly between λ0 when

all tasks belong to a single group, and λ1

T , when each
task is its own group.

3.1 Reduction to a standard SVM: One advan-
tage of the formulation we use is that it can be reduced
to a standard SVM, allowing the usage of off-the-shelf
SVM solvers. Below, we show how this reduction can be
achieved. For every group g of every partition p, define:

w̃p,g =

√
λp#(p, g)

λT
wp,g(3.7)

Now concatenate these vectors into one large weight
vector w̃ :

w̃ = [w̃T
1,1, . . . , w̃

T
p,g, . . . , w̃

T
P,GP

]T(3.8)

Then, it can be seen that λ‖w‖2 =∑P
p=1

∑Gp

g=1
λp#(p,g)

T ‖wp,g‖2. Thus with this change of

variables, the regularizer in our optimization problem
resembles a standard SVM. Next, we transform the
data points xit into φ(xit) such that we can replace the
scoring function with w̃Tφ(xit). This transformation is
as follows. Again, define:

φp,g(xit) = δgp(t),g

√
λT

λp#(p, g)
xit(3.9)

Here δgp(t),g is a kronecker delta which is 1 if gp(t) = g
(or, in other words, if the task t belongs to the group g
in the p-th partitioning ) and 0 otherwise. Our feature
transformation is then the concatenation of all these
vectors:

φ(x) = [φ1,1(x)T , . . . , φp,g(x)T , . . . , φP,GP
(x)T ]T(3.10)

It is easy to see that:

(3.11) w̃Tφ(xit) = (

P∑
p=1

wp,gp(t))
Txit

Intuitively, w̃ concatenates all our parameters with their
appropriate scalings into one long weight vector, with
one block for every group of every partitioning. φ(xit)
transforms a data point into an equally long feature
vector, by placing scaled copies of xit in the appropriate
blocks and zeros everywhere else.

With these transformations, we can now write our
learning problem as :

(3.12) min
w̃,b

λ‖w̃‖2 +

T∑
t=1

mt∑
i=1

ξit

s.t.

yit(w̃
Tφ(xit) + b) ≥ 1− ξit ∀i, t(3.13)

ξit ≥ 0 ∀i, t(3.14)

which corresponds to a standard SVM. In practice, we
use this transformation and change of variables both at
train time and at test time.

3.2 Application to straggler avoidance: We ap-
ply this formulation to straggler avoidance as follows.
Suppose there are N nodes and L workloads. Then
there are NL tasks, and Wrangler trains as many mod-
els, one for each task. For our proposal, we consider
four different notions of groups:

1. A single group consisting of all nodes and work-
loads. This gives us the single weight vector w0.

2. One group for each node, consisting of all L tasks
belonging to that node. This gives us one weight
vector for each node wn, n = 1, . . . , N , that cap-
tures the heterogeneity of nodes.



3. One group for each workload, consisting of all N
tasks belonging to that workload. This gives us one
weight vector for each workload wl, l = 1, . . . , L,
that captures peculiarities of particular workloads.

4. Each task as its own group. Since there are NL
tasks, we get NL weight vectors, which we denote
as vt (following the notation considered in [5]).

Thus, in our formulation, the weight vector wt for
a given workload lt and a given node nt is:

(3.15) wt = w0 + wnt
+ wlt + vt

The corresponding training problem is then:

min
w,b

= λ0‖w0‖2 +
ν

N

N∑
n=1

‖wn‖2 +
ω

L

L∑
l=1

‖wl‖2

+
τ

T

T∑
t=1

‖vt‖2 +

T∑
t=1

mt∑
i=1

ξit(3.16)

s.t

yit((w0 + wnt + wlt + vt)
Txit + b) ≥ 1− ξit ∀i, t

ξit ≥ 0 ∀i, t

where λ0, ν, ω, τ are hyperparameters which we set
using grid search on a validation set.

Different variants of this formulation can be
achieved by removing one or more of the terms from
Equation 3.15. Note that we can achieve this effect by
setting the corresponding hyperparameters, λ0, ν, ω, τ
to ∞. For example, setting ω to ∞ will force all wl to
be set to 0. To be mathematically rigorous, one can take
the equivalent feature transformation in Equation 3.10
and take the limit as one of the hyperparameters ap-
proaches ∞. The corresponding feature vector block
will approach 0, and the corresponding weight vector
block being a finite linear combination of the feature
vectors will approach 0. At test time, these terms will
not contribute.

3.3 Exploring the relationships between the
weight vectors: Before getting into the experiments,
we can get some insights on what our formulation will
learn by looking at the KKT conditions. The lagrangian
of the formulation in Equation 3.16 is:

L(w, b,α,β) = λ0‖w0‖2 +
ν

N

N∑
n=1

‖wn‖2 +
ω

L

L∑
l=1

‖wl‖2

+
τ

T

T∑
t=1

‖vt‖2 +

T∑
t=1

mt∑
i=1

ξit −
T∑
t=1

mt∑
i=1

βitξit(3.17)

+

T∑
t=1

mt∑
i=1

αit(1− ξit − yit(wT
t xit + b))

Taking derivatives w.r.t the primal variables and setting
to 0 gives us relationships between w0,vt,wn and wl:

λ0w
∗
0 =

τ

T

∑
t

v∗
t(3.18)

νw∗
n =

τ

T/N

∑
t:nt=n

v∗
t(3.19)

ωw∗
l =

τ

T/L

∑
t:lt=l

v∗
t(3.20)

λ0w
∗
0 =

ν

N

∑
n

w∗
n(3.21)

λ0w
∗
0 =

ω

L

∑
l

w∗
l(3.22)

Evgeniou et al., [5] also obtain Equation 3.18 in their
formulation, but the other relationships are specific to
ours. These relationships imply that these variables
shouldn’t be considered independent. wn, wl and w0

are scaled means of the vt’s of the group they capture.

3.4 Discussion and comparison to other formu-
lations: While our formulation (Equation 3.6) is more
general than that of [5], one might ask what we have
gained. After all, a lot of prior work [16, 17, 18] has fo-
cussed on MTL using known or latent clusters of tasks.
However, to see the advantage our formulation offers,
consider the variant of Equation 3.15 where we remove
vt. This variant does not have any task-specific pa-
rameters, but still captures both node- and workload-
dependent properties of the learning problem. It is thus
similar to a factorized model where the node and work-
load dependent factors are grouped into separate blocks.
It has (N +L)d parameters, whereas a formulation like
that of [5, 16, 17] will still have NLd parameters (here
d is the input dimensionality). Thus, it reduces the
number of parameters while still capturing the essential
properties of the learning problems.

In addition, since this variant no longer has a sep-
arate weight vector for each task, we can generalize to
tasks (i.e node-workload pairs) that are completely un-
seen at train time: the classifier for such an unseen task
t will simply be w0 + wnt + wlt . It thus explicitly
uses knowledge gleaned from prior workloads run on
this node (through wnt

) and other nodes running this
workload (through wlt). On the other hand, formula-
tions such as [5] will have to fall back on the generic w0

in such situations, while it is unclear how [16, 17] can
be adapted to such a case. This is especially an issue in
our application where there may be a large number of
nodes and workloads. In such cases collecting data for
each task (i.e node-workload pair) will be time consum-
ing, and generalizing to unseen tasks will be a significant
advantage. We show such generalization in Section 4.



% Training Data Wrangler [4] f0 fn fl f0,n,l f0,t f0,t,l

1 Insufficient data 66.88% 63.47% 66.52% 65.58% 63.71% 66.22%
2 Insufficient Data 67.1% 63.31% 67.7% 67.54% 64.33% 67.71%
5 Insufficient Data 67.54% 68.07% 69.1% 69.75% 69.59% 69.06%
10 63.91% 67.79% 70.91% 69.39% 72.3% 73.09% 72.9%
20 67.19% 67.97% 72.6% 70.1% 72.94% 74.72% 74.8%
30 68.45% 68.52% 73.18% 70.31% 74.08% 75.87% 75.79%
40 69.65% 68.17% 73.93% 70.49% 74.33% 76.43% 76.38%
50 70.08% 67.96% 73.73% 70.74% 74.72% 76.87% 76.69%
66 70.78% 68.17% 73.74% 70.1% 75.39% 77.34% 77.32%

Table 1: Prediction accuracies of various MTL formulations for straggler prediction with varying amount of
training data. See Section 4.2 for details.

4 Empirical Evaluation

Our dataset consists of real world traces from pro-
duction clusters at Facebook and Cloudera’s cus-
tomers and has 4 workloads, which we denote as
FB2009, FB2010, CC b and CC e. See [19, 4] for de-
tails on data and replay methodology. We evaluate our
approach using two metrics: first, the classification ac-
curacy, and second, the improvement in overall job com-
pletion time. Below, we describe (1) how we use differ-
ent MTL formulations and prediction accuracy achieved
by these formulations, (2) how we learn a classifier for
previously unseen node and/or workload and prediction
accuracy it achieves, (3) the improvement in the overall
job completion times achieved by our formulation over
Wrangler, and (4) reduction in resources consumed us-
ing our formulation compared to Wrangler.

4.1 Variants of proposed formulation: As speci-
fied in Section 3, we learn a weight vector of the form
wt = w0 + vt + wnt + wlt as shown in Equation 3.15.
We consider several variants of this general formulation.
We first consider individually w0, wn and wl:

• f0: In this formulation we set τ , ν and ω to ∞.
This corresponds to removing vt, wn and wl.
This formulation thus learns a single global weight
vector, w0, for all the nodes and all the workloads.

• fn: We set τ , λ0 and ω to ∞. This corresponds
to only learning a wn, that is, one model for
each node. This model learns to predict stragglers
based on a node’s resource usage counters across
workloads, but it cannot capture any workload-
dependent properties.

• fl: We set τ , λ0 and ν to ∞. This means we only
learn wl, i.e., a workload dependent model across
nodes executing a particular workload. This model
learns to predict stragglers based on the resource

usage pattern caused due to a workload across
nodes, but ignores the node’s characteristics.

The above three formulations either discard the node
information, the workload information, or both. We
now consider multi-task variants that capture both node
and workload properties:

• f0,n,l: We set τ to∞, removing vt entirely and only
learning w0, wl and wn. As described above, this
formulation reduces the total number of parameters
and can also generalize to unseen tasks.

• f0,t: This is the formulation proposed by Evgeniou,
et al. [5], and corresponds to setting ν and ω to
∞. Note that this formulation still has to learn on
the order of NLd different parameters and hence,
might generalize worse than f0,n,l.

• f0,t,l: This formulation extends the formulation in
f0,t by additionally learning a weight vector for
each of the workloads executing across a set of
nodes. Thus, only ν is set to ∞.

4.2 Prediction accuracy: Our aim is to learn to
predict stragglers using as small amount of data as fea-
sible, as this corresponds to shorter data capture time.
Table 1 shows the percentage accuracy of predicting
stragglers with varying amount of training data. We are
primarily interested in comparing the accuracy of these
MTL formulations with that achieved by Wrangler’s
node-and-workload-specific classifiers. We observe that:

• With very small amounts of data, all MTL variants
outperform Wrangler. In fact, all of f0 to f0,t,l need
only one sixth of the training data to achieve the
same or better accuracy.

• It is important to capture both node- and workload-
dependent aspects of the problem: f0,n,l, f0,t and
f0,t,l consistently outperform f0, fn and fl.



FB2009 FB2010 CC b CC e

f0,n,l f0,t f0,n,l f0,t f0,n,l f0,t f0,n,l f0,t

73.07% 45.29% 46.66% 48.33% 50.18% 49.43% 52.78% 68.15%
56.2% 57.51% 57.27% 58.68% 60.96% 53.45% 64.37% 48.88%
63.87% 55.51% 50% 48.82% 59.39% 53.38% 48.85% 65.12%
63.17% 47.67% 60.63% 57.44% 55.72% 49.53% 47.33% 73.9%
50.66% 42.38% 51.42% 56.19% 50.77% 44.58% 71.2% 59.85%

Table 2: Straggler Prediction accuracies of f0,n,l and f0,t on test data from an unseen node-workload pair. See
Section 4.3 for details.

FB2009 FB2010 CC b CC e
Wrangler f0,n,l Wrangler f0,n,l Wrangler f0,n,l Wrangler f0,n,l

Average 56.75% 96.37% 10.60% 21.77% 43.59% 44.67% 16.17% 17.72%
50p 5.29% 36.09% -1.07% 7.43% 6.62% 0.66% -10.61% -3.52%
75p 62.38% 80.99% 2.21% 6.58% 45.22% 34.44% 0.20% -2.49%
80p 62.07% 82.76% 3.74% 11.81% 50.41% 44.06% 3.33% -1.48%
85p 74.30% 89.12% 5.60% 19.87% 56.79% 52.81% 5.17% 0.84%
90p 75.00% 90.48% 9.61% 41.78% 56.05% 54.51% 11.01% -6.55%
95p 68.51% 88.48% 27.51% 41.08% 58.87% 63.70% 32.08% 2.16%
97p 65.81% 86.19% 39.66% 44.30% 62.09% 71.22% 13.07% 38.27%
98p 64.42% 84.84% 41.72% 43.35% 71.03% 72.98% 25.58% 31.19%
99p 59.98% 83.12% 27.77% 53.61% 43.12% 76.62% 15.84% 20.65%

Table 3: Improvement in the overall job completion times achieved by f0,n,l and Wrangler over speculative
execution.

• f0,t and f0,t,l perform up to 7 percentage points
better than Wrangler with the same amount of
training data, with f0,n,l not far behind.

Note that f0,n,l, f0,t and f0,t,l seem to perform sim-
ilarly, with f0,n,l performing slightly worse. However, as
mentioned earlier, formulation f0,n,l has reduced num-
ber of total parameters and, because it has no task-
specific weight vector, can generalize to new tasks un-
seen at train time. This is in contrast to f0,t which has
to fall back on w0 in such a situation, and thus may not
generalize as well. We see next if this is indeed true.

4.3 Prediction accuracy for a task with insuffi-
cient data: We trained classifiers based f0,n,l and f0,t
leaving out 95% of the data of one node-workload pair
every time. We then test the models on the left-out
data. Table 2 shows the percentage classification accu-
racy from 20 such runs. We note the following:

• For 13 out of 20 classification experiments, f0,n,l
performs better than f0,t. For 10 out of these 13
cases, the difference in performance is more than 5
percentage points.

• For workloads FB2009 and CC b, we see f0,n,l
performs better consistently.

• f0,n,l sometimes performs worse, but in only 3 of
these cases is it significantly worse (worse by more
than 5 percentage points). All 3 of these instances
are in case of the CC e workload. In general, for
this workload, we also notice a huge variance in the
numbers obtained across multiple nodes. See [4] for
a discussion of some of the issues in this workload.

This shows that f0,n,l works better in real-world
settings where one cannot expect enough data for all
node-workload pairs. We, therefore, evaluate f0,n,l in
our next experiment (Section 4.4) to see if it improves
job completion times.

4.4 Improvement in overall job completion
time: We now evaluate our formulation, f0,n,l, using
the second metric, improvement in the overall job com-
pletion times over speculative execution. We com-
pare these improvements to that achieved by Wran-
gler (Table 3). Improvement at the 99th percentile is
a strong indicator of straggler mitigation techniques.
We see that f0,n,l significantly improves over Wran-
gler, reflecting the improvements in prediction accu-
racy. At the 99th percentile, we improve Wrangler’s
job completion times by 57.8%, 35.8%, 58.9% and 5.7%
for FB2009, FB2010, CC b and CC e respectively.



Workload
% Reduction in total task-seconds

(MTL) (Wrangler)

FB-2009 73.33 55.09
FB-2010 8.9 24.77

CC b 64.12 40.15
CC e 13.04 8.24

Table 4: Resource utilization with f0,n,l and with Wrangler
over speculative execution, in terms of total task execution
times (in seconds) across all the jobs. f0,n,l reduces resources
consumed over Wrangler for FB2009, CC b and CC e.

4.5 Reduction in resources consumed: When a
job is launched in the cluster, it will be broken into
small tasks and each task will be run in a distributed
fashion. Thus, to calculate the resources used, we can
sum the resources used by all the tasks. As in [4], we
use the time taken by each task as a measure of the re-
sources used by the task. Note that, because these tasks
will likely be executing in parallel, the total time taken
by the tasks will be much larger than the time taken for
the whole job to finish, which is what job completion
time measures (shown in Table 3). Ideally, straggler
prediction will prevent tasks from becoming stragglers.
Fewer stragglers means fewer tasks that need to be repli-
cated by straggler mitigation mechanisms (like specula-
tive execution) and thus lower resource consumption.
Thus, improved straggler prediction should also reduce
the total task-seconds i.e., resources consumed.

Table 4 compares the percentage reduction in
resources consumed in terms of total task-seconds
achieved by f0,n,l and Wrangler over speculative exe-
cution. We see that the improved predictions of f0,n,l
reduce resource consumption significantly more than
Wrangler for 3 out of 4 workloads, thus confirming our
intuitions. In particular, for FB2009 and CC b, f0,n,l
reduces Wrangler’s resource consumption by about 40%,
while for CC b the reduction is about 5%.

5 Prior Work

Straggler mitigation: Reducing the completion times
for jobs running on distributed processing frame-
works [1, 2] is a well studied problem [20, 21, 22]. Strag-
glers are one of the major contributors to elongated job
completions, and several approaches [6, 7, 8, 3, 23] at-
tempt to mitigate them. Most of these approaches are
reactive and replicative - they act only when tasks are
already running slow and launch redundant copies of
such tasks leading to additional resource consumption.

Scheduling or load-balancing approaches [20, 14, 24,
25, 22, 21] though proactive, rely on advance knowledge
of causes behind stragglers or situations causing strag-
glers. Thus, they could miss dynamically changing loads
on the nodes, resource requirements and communication

patterns that are likely to cause stragglers [6, 4].
Other proactive approaches [9, 10, 4] use machine

learning to predict slow-down of tasks. Wrangler
showed a model-informed scheduler that uses the pre-
dictions to avoid stragglers by adapting to dynamically
changing cluster resource usage patterns. In this work,
we improve the accuracy of these predictions by sharing
data across nodes in a cluster, thus using lesser training
data per node and per workload. We also show how to
predict stragglers for new nodes and for new workloads.
Multitask learning: The idea that multiple learning
problems might be related and can gain from each other
dates back to Thrun [26] and Caruana [27]. This notion
was formalized by, among others, Baxter [28] and Ando,
et al. [29], who considered a learner embedded in an
environment of related learning problems and quantified
the gain it could get by sharing data between these
learning problems.

Much of this early work relied on neural networks as
a means of learning these shared representations. How-
ever, contemporary work has also focussed on SVMs and
kernel machines. Our work is an extension of the work
of Evgeniou, et al. [5], who proposed an additive model
for MTL that decomposes classifiers into a shared com-
ponent and a task-specific component. In later work,
Evgeniou, et al. [16], propose a general framework for
MTL that uses a general quadratic form as a regularizer.
They show that if the different tasks can be grouped
into clusters, they can use a regularizer that encour-
ages all the weight vectors of the group to be closer
to each other. Jacob, et al. [17], extend this formula-
tion when the group structure is not known a priori.
Xue, et al. [18], also infer the group structure, but use a
Bayesian approach instead. The formulation we pro-
pose is also designed to handle group structure, but
offers us several advantages over this prior work. In
particular, our formulation allows us to dispense with
task-specific classifiers entirely, reducing the number of
parameters drastically. This allows us to handle tasks
that have very little training data by transferring pa-
rameters learnt on other tasks. There are other ways
of controlling parameters, such as by using a 2, 1-norm
to encourage similar features to be selected [30] or by
learning a distance metric [31]. Our model is also similar
to using low rank regularizers [32].

6 Conclusion

Through this work, we have shown the utility of multi-
task learning in solving the real-world problem of avoid-
ing stragglers in distributed data processing. We have
presented a novel MTL formulation that captures the
structure of our tasks and reduces job completion times
by up to 59% over prior work [4]. This reduction comes



from a 7 percentage point increase in prediction accu-
racy. Our formulation can achieve better accuracy with
only a sixth of the training data and can generalize
better than other MTL approaches for tasks with lit-
tle or no data. Finally, we note that, although we use
straggler avoidance as the motivation, our formulation
is more generally applicable, especially for other pre-
diction problems in distributed computing frameworks,
such as resource allocation [10, 11].

References

[1] Jeffrey Dean and Sanjay Ghemawat. Mapreduce:
Simplified data processing on large clusters. In OSDI,
2004.

[2] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell,
and Dennis Fetterly. Dryad: Distributed data-parallel
programs from sequential building blocks. In EuroSys,
2007.

[3] Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker,
and Ion Stoica. Effective straggler mitigation: Attack
of the clones. In NSDI, 2013.

[4] Neeraja J. Yadwadkar, Ganesh Ananthanarayanan,
and Randy Katz. Wrangler: Predictable and faster
jobs using fewer resources. In Symposium on Cloud
Computing (To appear; short version included in sup-
plementary). 2014.

[5] Theodoros Evgeniou and Massimiliano Pontil. Regu-
larized multi–task learning. In KDD, 2004.

[6] Ganesh Ananthanarayanan, Srikanth Kandula, Albert
Greenberg, Ion Stoica, Yi Lu, Bikas Saha, and Edward
Harris. Reining in the outliers in map-reduce clusters
using mantri. In OSDI, 2010.

[7] Matei Zaharia, Andy Konwinski, Anthony D. Joseph,
Randy H. Katz, and Ion Stoica. Improving mapreduce
performance in heterogeneous environments. In OSDI,
2008.

[8] Ganesh Ananthanarayanan, Michael Chien-Chun
Hung, Xiaoqi Ren, Ion Stoica, Adam Wierman, and
Minlan Yu. Grass: Trimming stragglers in approxima-
tion analytics. In NSDI, 2014.

[9] Edward Bortnikov, Ari Frank, Eshcar Hillel, and Sri-
ram Rao. Predicting execution bottlenecks in map-
reduce clusters. In HotCloud, 2012.

[10] Shekhar Gupta, Christian Fritz, Bob Price, Roger
Hoover, Johan Dekleer, and Cees Witteveen. Through-
putscheduler: Learning to schedule on heterogeneous
hadoop clusters. In ICAC, 2013.

[11] Christina Delimitrou and Christos Kozyrakis. Quasar:
Resource-efficient and qos-aware cluster management.
In ASPLOS, 2014.

[12] Hadoop. http://hadoop.apache.org.
[13] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak

Leung. The google file system. In SOSP, 2003.
[14] Matei Zaharia, Dhruba Borthakur, Joydeep

Sen Sarma, Khaled Elmeleegy, Scott Shenker,

and Ion Stoica. Delay scheduling: a simple technique
for achieving locality and fairness in cluster scheduling.
In Eurosys, 2010.

[15] YongChul Kwon, Magdalena Balazinska, Bill Howe,
and Jerome Rolia. Skewtune: Mitigating skew in
mapreduce applications. In SIGMOD, 2012.

[16] Theodoros Evgeniou, Charles A Micchelli, Massimil-
iano Pontil, and John Shawe-Taylor. Learning multiple
tasks with kernel methods. JMLR, 6(4), 2005.

[17] Laurent Jacob, Jean philippe Vert, and Francis R.
Bach. Clustered multi-task learning: A convex for-
mulation. In NIPS. 2009.

[18] Ya Xue, Xuejun Liao, Lawrence Carin, and Balaji
Krishnapuram. Multi-task learning for classification
with dirichlet process priors. JMLR, 8, 2007.

[19] Yanpei Chen, Sara Alspaugh, and Randy H. Katz.
Interactive analytical processing in big data sys-
tems: A cross-industry study of mapreduce workloads.
PVLDB, 5(12), 2012.

[20] Matei Zaharia. The Hadoop Fair Sched-
uler. http://developer.yahoo.net/blogs
/hadoop/FairSharePres.ppt.

[21] Ganesh Ananthanarayanan, Ali Ghodsi, Andrew
Wang, Dhruba Borthakur, Srikanth Kandula, Scott
Shenker, and Ion Stoica. PACMan: Coordinated mem-
ory caching for parallel jobs. In NSDI, 2012.

[22] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi
Wieder, Kunal Talwar, and Andrew Goldberg. Quincy:
Fair scheduling for distributed computing clusters. In
SOSP, 2009.

[23] YongChul Kwon, Magdalena Balazinska, Bill Howe,
and Jerome Rolia. Skewtune: Mitigating skew in
mapreduce applications. In SIGMOD, 2012.

[24] Hadoop’s Capacity Scheduler. http://hadoop.apache
.org/core/docs/current/capacity scheduler.html.

[25] Faraz Ahmad, Srimat T. Chakradhar, Anand Raghu-
nathan, and T. N. Vijaykumar. Tarazu: Optimizing
mapreduce on heterogeneous clusters. In ASPLOS,
2012.

[26] Sebastian Thrun. Is learning the n-th thing any easier
than learning the first? NIPS, 1996.

[27] Richard A Caruana. Multitask learning: A knowledge-
based source of inductive bias. In Proceedings of the
10th International Conference of Cognitive Science.

[28] Jonathan Baxter. A model of inductive bias learning.
JAIR, 12, 2000.

[29] Rie Kubota Ando and Tong Zhang. A framework for
learning predictive structures from multiple tasks and
unlabeled data. JMLR, 6, 2005.

[30] Andreas Argyriou, Theodoros Evgeniou, and Massim-
iliano Pontil. Convex multi-task feature learning. Ma-
chine Learning, 73(3), 2008.

[31] Shibin Parameswaran and Kilian Q. Weinberger. Large
margin multi-task metric learning. In NIPS. 2010.

[32] Ting Kei Pong, Paul Tseng, Shuiwang Ji, and Jieping
Ye. Trace norm regularization: reformulations, algo-
rithms, and multi-task learning. SIAM Journal on Op-
timization, 20(6), 2010.


