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ABSTRACT

This work addresses the need for stateful dataflow programs that
can rapidly sift through huge, evolving data sets. These data-inten-
sive applications perform complex multi-step computations over
successive generations of data inflows, such as weekly web crawls,
daily image/video uploads, log files, and growing social networks.
While programmers may simply re-run the entire dataflow when
new data arrives, this is grossly inefficient, increasing result la-
tency and squandering hardware resources and energy. Alterna-
tively, programmers may use prior results to incrementally incor-
porate the changes. However, current large-scale data processing
tools, such as Map-Reduce or Dryad, limit how programmers in-
corporate and use state in data-parallel programs. Straightforward
approaches to incorporating state can result in custom, fragile code
and disappointing performance.

This work presents a generalized architecture for continuous bulk
processing (CBP) that raises the level of abstraction for building in-
cremental applications. At its core is a flexible, groupwise process-
ing operator that takes state as an explicit input. Unifying stateful
programming with a data-parallel operator affords several funda-
mental opportunities for minimizing the movement of data in the
underlying processing system. As case studies, we show how one
can use a small set of flexible dataflow primitives to perform web
analytics and mine large-scale, evolving graphs in an incremental
fashion. Experiments with our prototype using real-world data in-
dicate significant data movement and running time reductions rel-
ative to current practice. For example, incrementally computing
PageRank using CBP can reduce data movement by 46% and cut
running time in half.
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1. INTRODUCTION
There is a growing demand for large-scale processing of un-

structured data, such as text, audio, and image files. It is esti-
mated that unstructured data is now accumulating in data centers
at three times the rate of traditional transaction-based data [23].
For instance, YouTube integrates 20 hours of new video a minute,
Facebook analyzes 15 TB’s of information a day [20], and Internet
search companies regularly crawl the Internet to maintain fresh in-
dices. Many large-scale Internet services, such as social network-
ing sites or cloud-computing infrastructures, analyze terabytes of
system and application-level logs on a daily basis to monitor per-
formance or user behavior [27].

These environments often require data processing systems to ab-
sorb terabytes of new information every day while running a variety
of complex data analytics. This data “deluge” presents major data
management challenges, and non-relational information analysis
is quickly emerging as a bedrock technology for these large-scale
data processing efforts. Today, parallel data processing systems,
like Map-Reduce [10] and Dryad [14], offer a scalable platform
that can leverage thousands of cheap PC’s for large data process-
ing tasks. For example, the social networking site Facebook uses
Hive [1], a high-level relational programming language for Hadoop
(an open-source Map-Reduce), to manage their 2.5 petabyte data
warehouse [20].

Many of these applications must combine new data with data
derived from previous batches or iterate to produce results, and
state is a fundamental requirement for doing so efficiently. For
example, incremental analytics re-use prior computations, allow-
ing outputs to be updated, not recomputed, when new data arrives.
Incremental/iterative variants exist both for updating the answers
(views) to relational queries [3] and for non-relational algorithms
such as spatio-temporal queries [19], data clustering [12, 21], and
page rank [8], to name a few. Such an approach has obvious po-
tential for large performance improvements, increasing the size of
problems that may be tackled with a given hardware/energy budget.

However, current bulk-processing models limit how program-
mers incorporate state into their data-parallel programs, often forc-
ing programmers to add state by hand. To avoid this complexity,
they may re-use existing dataflows and re-process all data, paying
for a larger compute cluster to avoid performance penalties. Alter-
natively, they may add state by re-reading prior outputs or storing
data in an external storage service. In either case, state is outside
the purview of the bulk-processing system, where it either treats
it as any other input or is unaware of it, limiting the opportunities
for optimization. We find (Section 5.1) that this can lead to run
times proportional to total state size, not the changes to state, sig-
nificantly reducing the performance gains promised by incremental
algorithms. Moreover, current bulk-processing primitives are de-



signed for single-shot operation, not for environments with contin-
uous data arrivals. Thus they provide few mechanisms for synchro-
nizing processing across inputs or defining which data records to
process next.

This paper describes the design and implementation of a system
for continuous bulk processing (CBP). A core component of CBP is
a flexible, stateful groupwise operator, translate, that cleanly inte-
grates state into data-parallel processing and affords several funda-
mental opportunities for minimizing data movement in the underly-
ing processing system. Additionally CBP offers powerful dataflow
management primitives to accommodate continuous execution when
using one or more translate operators and a scalable and fault-
tolerant execution platform based on a modified Hadoop.

This paper makes the following contributions:

• Stateful groupwise operator: We propose a data processing op-
erator, translate, that combines data-parallel processing and access
to persistent state through grouping. This abstraction unifies two
common programming practices: the inclusion of state to re-use
prior work for incremental processing, and groupwise processing,
a well-known interface for bulk-data processing.

• Primitives for continuous bulk processing: Continuous datafl-
ows require precise control for determining stage execution and in-
put data consumption. The CBP model includes primitives that
support control flow and allow stages to synchronize execution with
respect to multiple inputs. These features simplify the construction
of incremental/iterative programs for large, evolving data sets.

• Efficient implementation: As we will show, emulating state-
ful dataflow programs with current bulk processing operators, such
as those in the Map-Reduce model, leads to unacceptable perfor-
mance (running time superlinear in input size). Thus, we design a
custom execution system (Section 4.5) that minimizes data move-
ment by taking advantage of constructs in the CBP model. These
constructs allow the system to optimize the incremental grouping
and modification of state records.

• Applications and evaluation: We explore CBP using a vari-
ety of processing tasks, including a simplified web crawl queue
and two incremental graph processing algorithms (PageRank [8]
and clustering coefficients [26]), using real-world data, including
Yahoo! web and Facebook crawls. We find the CBP model can
express many incremental processing constructs and that a direct
implementation of the model can ensure incremental performance
for a range of workloads. Our experiments that incrementally com-
pute a web crawl queue (described in the next section) reduced the
cumulative running time from 425 to 200 minutes (53%), when
compared to a non-optimized approach.

1.1 Example
As a motivating example, consider the challenge Internet search

engines face to keep indices up-to-date with the evolving web cor-
pus. To do so, they must optimize their crawl, looking for the most
valuable, rapidly changing parts of the web. This is an iterative
process; they first crawl a part of the web, add it to the collection of
crawled pages, rank the new and previously found links, and initiate
another crawl on the highest-ranked links. A “single shot” process-
ing approach re-processes all cached web pages after each partial
crawl. While obviously inefficient (the ratio of old to new data may
be ten to a thousand times), this can occur in practice due to its
simplicity and the ability of bulk-processors, like Map-Reduce, to
easily scale up.

Figure 1 shows a bulk-incremental workflow to compute the crawl
queue for a web indexing engine. Though crawling is a complex
issue, this workflow gives a high-level overview of how one might

Figure 1: A dataflow for incrementally computing a web crawl

queue. Edges represent flows of data, and stages marked with

an S are stateful.

leverage state. The first processing stage, extract links, extracts the
in-links from the raw web page text. Next, the count in-links stage
counts the number of times particular URLs and web sites appear
within the newly crawled pages. This stage has two outputs, one
for each count. The merge stage combines those counts with the
current known set of crawled pages. This stage sends new and up-
dated URLs from the last crawl to the next two stages that score and
threshold the updates. Those URLs whose scores pass the threshold
are the next crawl queue.

This workflow supports incremental computation in multiple wa-
ys. First, it runs continuously: an external crawler reads the output,
crawls the new pages, and waits for the workflow to run again.
As in a data stream management environment [2], edges transmit
only new or updated data items, and the execution system only runs
stages when there is sufficient (as defined by the programmer) data
on each input edge. Second, stages provide incremental processing
by leveraging persistent state to store prior or partial results (stages
marked with S). Many analytics exhibit opportunities for this kind
of incremental processing, including the standard set of aggregate
operators (e.g., min, median, sum, etc.), relational operations [3],
and data mining algorithms [18].

1.2 Related work
Non-relational bulk processing: This work builds upon recent

non-relational bulk processing systems such as Map-Reduce [10]
and Dryad [14]. Our contributions beyond those systems are two-
fold: (1) a programming abstraction that makes it easy to express
incremental computations over incrementally-arriving data; (2) ef-
ficient underlying mechanisms geared specifically toward continu-
ous, incremental workloads.

A closely related effort to CBP enhances Dryad to automatically
identify redundant computation; it caches prior results to avoid re-
executing stages or to merge computations with new input [24].
Because these cached results are outside the dataflow, program-
mers cannot retrieve and store state during execution. CBP takes a
different approach, providing programmers explicit access to per-
sistent state through a familiar and powerful groupwise processing
abstraction.

Our work also complements recent efforts to build “online” Map-
Reduce systems [9]. While their data pipelining techniques for
Map-Reduce jobs are orthogonal to the CBP model, the work also
describes a controller for running Map-Reduce jobs continuously.



(a) Basic groupwise processing, (b) with access to state, (c) and grouping input with state records.

Figure 2: The progression from a stateless groupwise processing primitive to stateful translation, T (·), with multiple inputs/outputs,

grouped state, and inner groupings.

The design requires reducers to manage their own internal state,
presenting a significant programmer burden as it remains outside
of the bulk-processing abstraction. The controller provides limited
support for deciding when jobs are runnable and what data they
consume. In contrast, CBP dataflow primitives afford a range of
policies for controlling these aspects of iterative/incremental datafl-
ows.

Twister [11], a custom Map-Reduce system, optimizes repeat-
edly run (iterative) Map-Reduce jobs by allowing access to static
state. Map and Reduce tasks may persist across iterations, amor-
tizing the cost of loading this static state (e.g., from an input file).
However, the state cannot change during iteration. In contrast, CBP
provides a general abstraction of state that supports inserts, updates,
and removals.

Data stream management: CBP occupies a unique place be-
tween traditional DBMS and stream processing. Data stream man-
agement systems [2] focus on near-real-time processing of continu-
ously-arriving data. This focus leads to an in-memory, record-at-
a-time processing paradigm, whereas CBP deals with disk-resident
data and set-oriented bulk operations. Lastly, CBP permits cyclic
data flows, which are useful in iterative computations and other
scenarios described below.

Incremental view maintenance: Traditional view-maintenance
environments, like data warehousing, use declarative views that are
maintained implicitly by the system [3, 25]. In contrast, CBP can
be thought of as a platform for generalized view-maintenance; a
CBP program is an explicit graph of data transformation steps. In-
deed, one can support relational view maintenance on top of our
framework, much like relational query languages have been layered
on top of Map-Reduce and Dryad (e.g., DryadLINQ [28], Hive [1],
Pig [22]).

2. STATEFUL BULK PROCESSING
This paper proposes a groupwise processing operator, transla-

tion, and dataflow primitives to maintain state during continuous
bulk data processing. We designed the translate operator to be run
repeatedly, allowing users to easily store and retrieve state as new
data inputs arrive. The design also enables a range of run-time opti-
mizations for the underlying bulk-processing system. This section
first gives an overview of groupwise processing and then describes
translation in detail through successive examples. It ends by sum-
marizing the CBP model (Table 1) programmers use to create trans-
lation stages.

We choose to add state to a groupwise processing construct be-
cause it is a core abstraction enabling parallel data processing. Here
we use the reduce : 〈k, v[]〉 → s[] function from the Map-Reduce
model as our exemplar groupwise processor. It transforms records

v grouped by key k1 into zero or more new output records s. Group-
wise processing underlies many relational and user-defined pro-
cessing steps. Indeed, upper-layer languages such as Pig [22] and
Hive [1] programs compile into a sequence of Map-Reduce jobs,
leveraging the inherent data partitioning, sorting, and grouping red -
uce provides. Equivalently, DryadLINQ [28] and SCOPE [6] com-
pile programs directly into compute DAGs of similar operations
on more general dataflow systems like Dryad [14]. Such an inter-
face has proven popular enough not only to warrant its inclusion in
these upper-layer languages, but also in commercial databases such
as Greenplum, Aster, and Oracle.

2.1 Example 1: A basic translate operator
We begin by studying the incremental crawl queue (Figure 1)

dataflow in more detail, where each stage is a separate translation
operator. We illustrate translate with a simplified version of the
count in-links stage, called URLCount, that only maintains the fre-
quency of observed URLs. This stateful processing stage has a sin-
gle input that contains URLs extracted from a set of crawled web
pages. The output is the set of URLs and counts that changed with
the last set of input records.

For illustration, Figure 2 presents a progression from a state-
less groupwise primitive, such as reduce , to our proposed translate
operator, T (·), which will eventually implement URLCount. Fig-
ure 2(a) shows a single processing stage that invokes a user-defined
translate function, T (·). To specify the grouping keys, users write
a RouteBy〈r〉 function that extracts the grouping key from each
input record r. In the case of URLCount, RouteBy extracts the
URL as the grouping key. When the groupwise operator executes,
the system reads input records, calls RouteBy, groups by the key
k, partitions input data (we illustrate a single partition), and runs
operator replicas in parallel for each partition. Each replica then
calls T (·) for each grouping key k with the associated records, r[].
We call each parallel execution of an operator an epoch.

To maintain a frequency count of observed URLs, the URLCou-
nt translator needs access to state that persists across epochs. Fig-
ure 2(b) adds a logical state module from which a translate func-
tion may read or write values for the current grouping key. In our
case, URLCount stores counts of previously seen URLs, maintain-
ing state records of the type {url, count}. However, as the next
figure shows, translate incorporates state into the grouping oper-
ation itself and the semantics of reading and writing to this state
module are different than using an external table-based store.

Figure 2(c) shows the full-featured translation function:
T : 〈k , F in

S , F in

1 , . . . , F in

n 〉, with multiple logical input and output
flows and grouped state. As the figure shows, we found it useful

1Unlike Map-Reduce, in our model keys are assigned at the en-
trance to a key-driven operation (e.g., group-by or join), and do not
exist outside the context of such an operation.



Function Description Default

Translate(Key,∆F in

0
, . . . , ∆F in

n )→ (∆F out

0
, . . . , ∆F out

n ) Per-Stage: Groupwise transform from input to
output records.

—

Runnable(framingKeys, state)→ (reads, removes, state) Per-Stage: Determines if stage can execute and
what increments are read/removed.

RunnableALL

FrameBy(r, state)→ (Key, state) Per-Flow: Assign records to input increments. FrameByPrior

RouteBy(r)→ Key Per-Flow: Extract grouping key from record. RouteByRcd

OrderBy(r)→ Key Per-Flow: Extract sorting key from record. OrderByAny

Table 1: Five functions control stage processing. Default functions exist for each except for translation.

URLCOUNT_T(url, F in
state[], F in

urls
[])

1 newcnt← F in
urls

.size()

2 if F in
state[0] 6= NULL then

3 newcnt← newcnt + F in
state[0].cnt

4 F out
state.write({url, newcnt})

5 F out
updates

.write({url, newcnt})

Figure 3: Translator pseudocode that counts observed URLs.

to model state using explicit, loopback flows from a stage output
to a stage input. This allows translate to process state records like
any other input, and avoids custom user code for managing access
to an external store. It also makes it simple for the system to iden-
tify and optimize flows that carry state records. For simple stateful
translators like URLCount one loopback suffices, F out

S to F in
S .

Figure 3 shows pseudocode for our URLCount translate func-
tion called within this stage. With multiple logical inputs, it is
trivial to separate state from newly arrived records. It counts the
number of input records grouped with the given url , and writes the
updated counts to state and an output flow for downstream stages.
A translation stage must explicitly write each state record present
in F in

S to F out
S to retain them for the next processing epoch. Thus

a translator can discard state records by not propagating them to the
output flow. Note that writes are not visible in their groups until the
following epoch.

We can optimize the URLCount translator by recognizing that
F in

urls may update only a fraction of the stored URL counts each
epoch. Current bulk-processing primitives provide “full outer” grou-
pings, calling the groupwise function for all found grouping keys.
Here URLCount takes advantage of translation’s ability to also
perform “inner” groupings between state and other inputs. These
inner groupings only call translate for state records that have match-
ing keys from other inputs, allowing the system to avoid expensive
scans of the entire state flow. However, to improve performance
this requires the underlying processing system to be able to ran-
domly read records efficiently (Section 4.5.2).

2.2 Example 2: Continuous bulk processing
We now turn our attention to creating more sophisticated trans-

lators that either iterate over an input or, in incremental environ-
ments, continuously process newly arrived data. A key question
for CBP is how to manage continuous data arrivals. For example,
an incremental program typically has an external process creating
input. CBP systems must decide when to run each stage based on
the records accumulating on the input flows. In some cases they
may act like existing bulk-processing systems, in which a vertex (a
Dryad vertex or a Map-Reduce job) runs when a batch of records
exists on each input. They may behave in a manner similar to data
stream processors [2], which invoke a dataflow operator when any
input has a single tuple available. Or they may behave in some
hybrid fashion.

During each processing epoch, the translator, T (·), reads zero

RouteBy<r>=URL

F
state

in

F
A

in
F
B

in

F
Adiff

out
F
state

out

F
Bdiff

out

SetDiff_T(url, S[], A[],  B[]){
     if S.hasNext() then {
          S.write(url); // propagate state
     } else {
          S.write(url); // write new state
          if (A.hasNext() && !B.hasNext()) 
               Adiff.write(url);
          if (B.hasNext() && !A.hasNext())
               Bdiff.write(url);
}   }

(URL,time)

FrameBy<r>=hour

Figure 4: A stage implementing symmetric set difference of

URLs from two input crawls, A and B.

or more records from each input flow, processes them, and writes
zero or more records to output flows. Thus a flow F is a sequence
of records passed between two processing stages over time. The
sequence of records read from a given input flow is called an input

increment, and a special input framing procedure determines the
sizes of the input increments. The sequence of records output to
a given flow during one epoch form an output increment. CBP
couples the framing function with a second function, runnability,
which governs the eligibility of a stage to run (Section 4.2) and also
controls consumption of input increments.

We illustrate these concepts by using a CBP program to com-
pare the output of two experimental web crawlers, A and B. The
stage, illustrated in Figure 4, has an input from each crawler whose
records contain (url,timestamp) pairs. Similarly, there is an output
for the unique pages found by each crawler. The translator imple-
ments symmetric set difference, and we would like to report this
difference for each hour spent crawling.2

First, the stage should process the same hour of output from both
crawlers in an epoch. A CBP stage defines per-flow FrameBy〈r〉
functions to help the system determine the input increment mem-
bership. The function assigns a framing key to each record, allow-
ing the system to place consecutive records with identical fram-
ing keys into the same increment. An increment is not eligible to
be read until a record with a different key is encountered.3 Here,
FrameBy returns the hour at which the crawler found the URL as
the framing key.

However, the stage isn’t runnable unless we have an hour’s worth
of crawled URLs on both F in

A and F in
B . A stage’s runnability func-

tion has access to the status of its input flows, including the framing
keys of each complete increment. The function returns a Boolean
value to indicate whether the stage is eligible to run, as well as the

2Note that this is the change in unique URLs observed; the outputs
won’t include re-crawled pages (though that is easily done).
3The use of punctuations [2] can avoid having to wait for a new
key, although we have not implemented this feature.



set of flows from which an increment is to be consumed and the set
from which an increment is to be removed.

For our symmetric set difference stage, runnability returns true

iff both input flows contain eligible increments. If both input flow
increments have the same framing key, the runnability function in-
dicates that both should be read. On the other hand, if the framing
keys differ, the runnability function selects only the one with the
smaller key to be read. This logic prevents a loss of synchroniza-
tion in the case that a crawler produces no data for a particular hour.

Finally, the stage’s translation function, SetDiff_T, is ready to
process observed URLs, storing them in state records. This stage’s
RouteBy〈r〉 function extracts the URL from each input record as
the grouping key for state and crawler records. If there is a state
record for this url, then it either was reported in a prior epoch or
belongs to both crawls (the intersection). In this case the translator
only needs to manually propagate the state record. Otherwise, this
URL has not been seen and it is written to state. If it was seen
exclusively by either crawl, we add it to the appropriate output flow.

Framing and runnability are a powerful combination that allows
stages to determine what data to present to a stage, and to syn-
chronize consumption of data across multiple input flows. As with
framing functions, runnability functions may maintain a small amount
of state. Thus it may contain significant control logic. We have
used it to synchronize inputs (e.g., for temporal joins), properly in-
terleave writes to and reads from state, and to maintain static lookup
tables (read but not remove an increment). Finally, applications
such as PageRank can use it to transition from one iterative phase
to another, as we show in Section 3.1.2.

2.3 Support for graph algorithms
Groupwise processing supports obvious partitionings of graph

problems by assigning a single group to each vertex or edge. For
example, programmers can write a single translator that processes
all vertices in parallel during each processing epoch. In many cases,
those per-vertex translation instances must access state associated
with other vertices. To do so, each vertex sends “messages” to
other vertices (addressed by their grouping key) so that they may
exchange data. Such message passing is a powerful technique for
orchestrating large computations (it also underlies Google’s graph
processing system, Pregel [17]), and the CBP model supports it.

Translation complements message passing in a number of ways.
First, using a second loopback flow to carry messages allows an
inner grouping with the state used to store the graph. Thus the
system will call translate only for the groups representing message
destinations. Second, message passing can take advantage of the
generality of the RouteBy construct.

Often a computation at a single vertex in the graph affects some
or all of the vertices in the graph. For example, our incremental
PageRank translator (Section 3.1.2) must broadcast updates of rank
from dangling nodes (nodes w/o children) to all other nodes in the
graph. Similarly, an update may need to be sent to a subset of the
nodes in the graph. While RouteBy can return any number of
grouping keys from within a record, there is no simple way for a
translator to write a record that includes all nodes in the graph. It is
difficult to know the broadcast (or multicast) keyset a-priori.

To address this issue, RouteBy supports logical broadcast and
multicast grouping keys. Figure 5 shows RouteBy returning the
special ALL broadcast key for the input record on F in

1 . This en-
sures that the record b becomes associated with all groups found
in the input flows. While not shown, it is also possible to limit the
broadcast to particular input flows, e.g., only groups found in state.
Translators may also associate a subset of grouping keys with a
single logical multicast address. Here RouteBy on input flow F in

0

Figure 5: Users specify per-input flow RouteBy functions to

extract keys for grouping. Special keys enable the broadcast

and multicast of records to groups. Here we show that multi-

cast address mcX is bound to keys k1 and k3.

returns a multicast address, mcX, associated with grouping keys
k1 and k3. We describe both mechanisms in more detail in Sec-
tion 4.5.3.

2.4 Summary
Naturally, multiple translation stages may be strung together to

build more sophisticated incremental programs, such as the incre-
mental crawl queue. In general, a CBP program itself (like Fig-
ure 1) is a directed graph P , possibly containing cycles, of trans-
lation stages (the vertices), that may be connected with multiple
directed flows (the edges). Here we summarize the set of dataflow
control primitives in our CBP model that orchestrate the execution
of stateful dataflow programs.

As our examples illustrate, CBP controls stage processing through
a set of five functions, listed in Table 1. An application may choose
these functions, or accept the system-provided defaults (except for
translate). The default framing function FrameByPrior returns the
epoch number in which the upstream stage produced the record,
causing input increments to match output increments generated by
upstream stages. The default runnability function, RunnableAll,
makes a stage runnable when all inputs have increments and then
reads and removes each.

The default RouteBy function, RouteByRcd, gives each record
its own group for record-wise processing. Such translators can
avoid expensive grouping operations, be pipelined for one-pass ex-
ecution over the data, and avoid state maintenance overheads. Sim-
ilarly, the OrderBy function, another key-extraction function that
provides per-flow record ordering, has a default OrderByAny, which
lets the system select an order that may improve efficiency (e.g., us-
ing the order in which the data arrives).

3. APPLICATIONS
The collection of default behaviors in the CBP model support a

range of important incremental programs, such as the incremental
crawl queue example from Section 1.1, which uses RunnableAll

and FrameByPrior for all its stages. Here we showcase the extra
flexibility the model provides by building stateful, iterative algo-
rithms that operate on graphs.

3.1 Mining evolving graphs
Many emerging data mining opportunities operate on large, evolv-

ing graphs. Instances of data mining such graphs can be found
in systems biology, data network analysis, and recommendation
networks in online retail (e.g., Netflix). Here we investigate al-
gorithms that operate over Web and social network graphs. The
Web is perhaps the canonical example of a large, evolving graph,
and we study an incremental version of the PageRank [5] algorithm
used to help index its content. On the other hand, the explosive
growth of community sites, such as MySpace or Facebook, have
created extremely large social network graphs. For instance, Face-
book has over 300 million active users (as of September 2009, see



Figure 6: Incremental clustering coefficient dataflow.

CLUSTERINGCOEFFICIENT_T(node,F in
state,F in

edges
,F in

F oF
)

1 if F in
state.hasNext() then state← F in

state.next()

2 foreach edge in F in
edges

3 state.adj.add(edge.dst);

4 foreach edge in F in
edges

5 foreach target in state.adj

6 F out
F oF

.write(target,edge.src,edge.dst);

7 foreach update in F in
F oF

8 state.adj[update.src].adj.add(update.dst);

9 if F in
F oF .hasNext() then

10 recalcCo(state); F out
Co .write(node,state.co);

11 F out
state.write(state);

Figure 7: The clustering coefficients translator adds new edges

(2-3), sends neighbors updates (4-6), and processes those up-

dates (7-10).

www.facebook.com/press). These sites analyze the social graph to
support day-to-day operations, external querying (Facebook Lexi-
con), and ad targeting.

3.1.1 Clustering coefficients

We begin with a simple graph analysis, clustering coefficient,
that, among other uses, researchers employ to ascertain whether
connectivity in social networks reflects real-world trust and rela-
tionships [26]. This example illustrates how we load graphs into a
stateful processing stage, how to use groupwise processing to iter-
atively walk across the graph, and how messages may be used to
update neighbor’s state.

The clustering coefficient of a graph measures how well a graph
conforms to the “small-world” network model. A high clustering
coefficient implies that nodes form tight cliques with their immedi-
ate neighbors. For a node ni, with N neighbors and E edges among
the neighbors, the clustering coefficient ci = 2E/N(N − 1).This
is simple to calculate if each node has a list of its neighbor’s neigh-
bors. In a social network this could be described as a “friends-of-
friends” (FoF) relation.

For graph algorithms, we create a grouping key for each unique
node in the graph. This allows the calculation to proceed in parallel
for each node during an epoch, and us to store state records de-
scribing each vertex. Figure 6 illustrates the single stateful stage
for incrementally computing clustering coefficients.4 The input
F in

edges carries changes to the graph in the form of (src,dst) node
ID pairs that represent edges. Records on the state flow reference
the node and its clustering coefficient and FoF relation. Each in-
put’s RouteBy returns a node ID as the grouping key.

Figure 7 shows the translator pseudocode. The translator must
add new graph nodes5, update adjacency lists, and then update the
FoF relations and clustering coefficients. Line 1 retrieves a node’s
state (an adjacency list, adj, of adjacencies). Each record on F in

edges

4Going forward we hide the loop in state loopback flows.
5For ease of exposition we do not show edge deletions.

Figure 8: Incremental PageRank dataflow.

INCRPAGERANK_T(node,F in
S

,F in
E

,F in
R

,F in
W

,F in
Cvg

,F in
Ω

)

1 if F in
E .hasNext() then makeGraph();startWeight();

2 if F in
W .hasNext() then sendWeightToNeighbors();

3 if F in
Ω

.hasNext() then updateSupernode();

4 if F in
Cvg

.hasNext() then resetRankState();

5 elseif F in
R

.hasNext() then

6 doPageRankOnG();

Figure 9: Pseudocode for incremental PageRank.

represents a new neighbor for this node. Lines 2-3 add these new
neighbors to the local adjacency list. While that code alone is suffi-
cient to build the graph, we must also send these new neighbors to
every adjacent node so that they may update their FoF relation.

To do so, we send a record to each adjacent node by writing
to the loopback flow F out

F oF (lines 4-6). During the next epoch,
RouteBy for F in

F oF routes these records to the node designated by
target. When the system calls translate for these nodes, lines 7-10
process records on F in

F oF , updating the FoF relation and recalculat-
ing the clustering coefficient. Finally, line 11 propagates any state
changes. Note that the runnability function allows the stage to ex-
ecute if input is available on any input. Thus during one epoch, a
translate instance may both incorporate new edges and output new
coefficients for prior changes.

There are several important observations. First, it takes two
epochs to update the cluster coefficients when the graph changes.
This is because “messages” cannot be routed until the following
epoch. Second, Figure 6 shows state as an “inner” flow. Thus
translation only occurs for nodes that have new neighbors (input
on F in

edges) or must update their coefficient (input on F in
F oF ). These

two flows actively select the graph nodes for processing each epoch.
Finally, where a single input record into the URLCount translator
causes a single state update, here the work created by adding an
edge grows with the size of state. Adding an edge creates messages
to update the FoF relation for all the node’s neighbors. The message
count (and size) grows as the size and connectivity of the graph in-
crease. We explore these implications further in Section 5.3.

3.1.2 Incremental PageRank

PageRank is a standard method for determining the relative im-
portance of web pages based on their connectivity [5]. Incremental
PageRank is important because (1) computing PageRank on the en-
tire web graph still takes hours on large clusters and (2) important
changes to the web graph occur on a small subset of the web (news,
blogs, etc.). However, truly incremental PageRank is challenging
because small changes (adding a link between pages) can propagate
throughout the entire graph. Here we implement the approximate,
incremental PageRank computation presented in [8], which thresh-
olds the propagation of PageRank updates. This algorithm takes as
input a set of link insertions in the web graph; other approaches
exist to incorporate node additions and removals [8].

Figure 8 illustrates our incremental PageRank dataflow, which



shares many features with clustering coefficient. It uses the same
format for input edges, groups records by vertex, stores adjacency
lists in state records, uses an inner state flow, and sends “messages”
to other nodes on loopback flows. We skip the sundry details of
translation, and instead focus on how to manage an algorithm that
has several distinct iterative phases.

At a high level, the algorithm must build the graph W , find the
subgraph G affected by newly inserted edges, compute transition
probabilities to a supernode Ω (W −G), and then compute PageR-
ank for G (pages in Ω retain their rank). This algorithm has been
shown to be both fast and to provide high-quality approximations
for a variety of real and synthesized web crawls [8].

Figure 9 shows high-level pseudocode for the PageRank transla-
tor. Internally, the translator acts as a per-node event handler, using
the presence of records on each loopback flow as an indication to
run a particular phase of the algorithm. Here the runnability func-
tion plays a critical role in managing phase transitions; it exclu-
sively reads each successive phase’s input after the prior input be-
comes empty. Thus runnability first consumes edges from F in

edges,

then F in
W (to find G), then F in

Ω (updating the supernode), and fi-
nally F in

R (to begin PageRank on G). When doPageRankOnG

converges, the second stage writes an ALL record to F out
Cvg . This

causes the translator to reset graph state, readying itself for the next
set of edge insertions.

This design attempts to minimize the number of complete scans
of the nodes in W by using both “inner” state flows and the multi-
cast ability of the RouteBy function. For example, when calculat-
ing PageRank for G, leaves in G multicast their PageRank to only
nodes in G. We discuss the multicast API more in Section 4. Fi-
nally, note that we place all the phases in a single translator. Other
organizations are possible, such as writing a stage for each phase,
though this may make multiple copies of the state. In any case, we
envision such analytics as just one step in a larger dataflow.

4. DESIGN AND IMPLEMENTATION
CBP architectures have two primary layers: dataflow and physi-

cal. The physical layer reliably executes and stores the results of a
single stage of the dataflow. Above it, the dataflow layer provides
reliable execution of an entire CBP dataflow, orchestrating the ex-
ecution of multiple stages. It ensures reliable, ordered transport of
increments between stages and determines which stages are ready
for execution. The dataflow layer may also compile the logical
dataflow into a more efficient physical representation, depending
on the execution capabilities of the physical layer. Such automated
analysis and optimization of a CBP dataflow is future work.

4.1 Controlling stage inputs and execution
The dataflow layer accepts a CBP dataflow and orchestrates the

execution of its multiple stages. The incremental dataflow con-
troller (IDC) determines the set of runnable stages and issues calls
to the physical layer to run them.

The IDC maintains a flow connector, a piece of run-time state,
for each stage’s input flow. Each flow connector logically connects
an output flow to its destination input flow. It maintains a logical,
ordered queue of identifiers that represent the increments available
on the associated input flow. Each output flow may have multiple
flow connectors, one for each input flow that uses it as a source.
After a stage executes, the IDC updates the flow connectors for
each output flow by enqueueing the location and framing key of
each new output increment. The default, with a DefaultFraming

framing function, is for the stage to produce one output increment
per flow per epoch.

The IDC uses a stage’s runnable function to determine whether

a stage can be run. The system passes the function the set of
flow connectors with un-read increments and the associated fram-
ing keys, and an application-defined piece of state. The runnable

function has access to each flow connector’s meta data (e.g., num-
ber of enqueued increments) and determines the set of flow con-
nectors from which to read, readSet, and remove, removeSet, in-
crements for the next epoch. If the readSet is empty, the stage is
not runnable. After each epoch, the IDC updates each flow connec-
tor, marking increments as read or removing increment references.
Increments may be garbage collected when no flow connector ref-
erences them.

4.2 Scheduling with bottleneck detection
The IDC must determine the set of runnable stages and the or-

der in which to run them. Doing so with prior bulk processing
systems is relatively straightforward, since they take a DAG as in-
put. In that case a simple on-line topological sort can determine
a vertex (stage) execution order that respects data dependencies.
However, CBP presents two additional criteria. First, P may con-
tain cycles, and the scheduler must choose a total order of stages to
avoid starvation or high result latency (makespan). Second, using
the runnability function, stages can prefer or synchronize process-
ing particular inputs. This means that increments can “back up” on
input flows, and that the stage creating data for that input no longer
needs to run.

Our simple scheduler executes in phases and may test each stage’s
runnability function. It can detect stage starvation and respond
to downstream backpressure (a bottleneck stage) by not running
stages that already have increments in all outputs. Full details of
this algorithm are available in our techreport [15]).

4.3 Failure recovery
The dataflow layer assumes that the physical layer provides atomic

execution of individual stages and reliable storage of immutable in-
crements. With such semantics, a single stage may be restarted if
the physical layer fails to run a stage. The executed stage specifies
a naming convention for each produced increment, requiring it to
be tagged by its source stage, flow id, and increment index. These
may be encoded in the on-disk path and increment name. Once the
physical layer informs the IDC of success, it guarantees that result
increments are on disk. Dryad used similar techniques to ensure
dataflow correctness under individual job failures [14].

Next, the IDC updates the run-time state of the dataflow. This
consists of adding and deleting increment references on existing
flow connectors. The controller uses write-ahead logging to record
its intended actions; these intentions contain snapshots of the state
of the flow connector queue. The log only needs to retain the last
intention for each stage. If the IDC fails, it rebuilds state from the
XML dataflow description and rebuilds the flow connectors and
scheduler state by scanning the intentions.

4.4 CBP on top of Map-Reduce
We divide the design and implementation of the CBP model into

two parts. In the first part we map translate onto a Map-Reduce
model. This is a reasonable starting point for the CBP physical
layer due to its data-parallelism and fault-tolerance features. How-
ever, this provides an incomplete implementation of the translate
operator and CBP dataflow primitives. Further, such a “black-
box” emulation results in excess data movement and space usage,
sacrificing the promise of incremental dataflows (Section 5). The
next section describes our modifications to an open-source Map-
Reduce, Hadoop, that supports the full CBP model and optimizes
the treatment of state.



The design of our bulk-incremental dataflow engine builds upon
the scalability and robustness properties of the GFS/Map-Reduce
architecture [13, 10], and in particular the open-source implemen-
tation called Hadoop. Map-Reduce allows programmers to specify
data processing in two phases: map and reduce. The map func-
tion outputs a new key-value pair, {k1, v1}, for each input record.
The system creates a list of values, [v]1, for each key and passes
these to reduce. The Map-Reduce architecture transparently man-
ages the parallel execution of the map phase, the grouping of all
values with a given key (the sort), and the parallel execution of the
reduce phase.

We now describe how to emulate a single CBP stage using a
single Map-Reduce job.6 Here we describe the Map and Reduce
“wrapper” functions that export translate T (·). In CBP applica-
tions data is opaque to the processing system, and these wrapper
functions encapsulate application data (a record) inside an applica-

tion data unit (ADU) object. The ADU also contains the flowID,
RouteByKey, and OrderByKey.

While the Map-Reduce model has one logical input and output,
current implementations allow a Map-Reduce job to process mul-
tiple input and write multiple output files. In CBP, the flowIDs
within each ADU logically separate flows, and the wrapper code
uses the flowID to invoke per-flow functions, such as RouteBy
and OrderBy that create the routing and ordering keys. This
“black-box” approach emulates state as just another input (and out-
put) file of the Map-Reduce job.

• Map: The map function wrapper implements routing by run-
ning the RouteBy function associated with each input flow. It
wraps each input record into an ADU and sets the flowID, so
the reduce function can separate data originating from the differ-
ent flows. Map functions may also run one or more preprocessors

that implement record-wise translation. The optional Map-Reduce
combiner has also been wrapped to support distributive or algebraic
translators.

• Reduce: The Hadoop reducer facility sorts records by the
RouteByKey embedded in the ADU. Our CBP reduce wrapper
function multiplexes the sorted records into n streams, upcalling
the user-supplied translator function T (·) with an iterator for each
input flow. Per-flow emitter functions route output from T (·) to
HDFS file locations specified in the job description. Like the map,
emitter functions may also run one or more per-record postprocess-

ing steps before writing to HDFS.

Thus a single groupwise translator becomes a job with a map/reduce
pair, while a record-wise translator can be a map-only job (allowed
by Hadoop) or a reduce postprocessor.

4.4.1 Incremental crawl queue example

We illustrate the compilation of a CBP dataflow into Map-Reduce
jobs using our incremental crawl queue examples from Figure 1.
This dataflow is compiled into two Map-Reduce jobs: CountLinks
and DecideCrawl. Figure 10 shows the two jobs and which stages
each wrapper function implements. In both jobs all input flows
RouteBy the site, and order input by the URL. Otherwise all in-
put flows use the default framing and runnability functions. The
first Map-Reduce job implements both extract links and count in-

links. It writes state ADUs with both site and URL routing keys
to maintain counts for each. The second job places both score and
threshold as postprocessing steps on the groupwise merge transla-
tor. This state flow records all visited src URLs.

6An efficient implementation of CBP over a Map-Reduce environ-
ment requires deterministic and side-effect-free translators.

Figure 10: The Map-Reduce jobs that emulate the CBP incre-

mental crawl queue dataflow.

4.4.2 Increment management

Map-Reduce implementations use shared file systems as a re-
liable mechanism for distributing data across large clusters. All
flow data resides in the Hadoop distributed file system (HDFS). The
controller creates a flow directory for each flow F and, underneath
that, a directory for each increment. This directory contains one or
more files containing the ADUs. As discussed in Section 4.2, when
Hadoop signals the successful completion of a stage, the controller
updates all affected flow connectors.

We emulate custom (non-default) framing functions as post pro-
cessing steps in the upstream stage whose output flow the down-
stream stage sources. The reduce wrapper calls the framing func-
tion for each ADU written to that output flow. By default, the incre-
ment directory name is the stage’s processing epoch that generated
these ADUs. The wrapper appends the resulting FramingKey to
the increment directory name and writes ADUs with that key to that
directory. The wrapper also adds the FramingKey to the meta
data associated with this increment in the input flow’s flow connec-
tor. This allows a stage’s runnable function to compare those keys
to synchronize input increments, as described in Section 2.2.

4.5 Direct CBP
We now modify Hadoop to accommodate features of the CBP

model that are either inexpressible or inefficient as “black-box”
Map-Reduce emulations. The first category includes features such
as broadcast and multicast record routing. The second category op-
timizes the execution of bulk-incremental dataflows to ensure that
data movement, sorting, and buffering work are proportional to ar-
riving input size, not state size.

4.5.1 Incremental shuffling for loopback flows

The system may optimize state flows, and any loopback flow in
general, by storing state in per-partition side files. Map-Reduce
architectures, like Hadoop, transfer output from each map instance
or task to the reduce tasks in the shuffle phase. Each map task
partitions its output into R sets, each containing a subset of the
input’s grouping keys. The architecture assigns a reduce task to
each partition, whose first job is to collect its partition from each
mapper.

Hadoop, though, treats state like any other flow, re-mapping and
re-shuffling it on each epoch for every groupwise translator. Shuf-
fling is expensive, requiring each reducer to source output from
each mapper instance, and state can become large relative to in-
put increments. This represents a large fraction of the processing
required to emulate a CBP stage.

However, state is local to a particular translate instance and only
contains ADUs assigned to this translate partition. When transla-
tors update or propagate existing state ADUs in one epoch, those



ADUs are already in the correct partition for the next epoch. Thus
we can avoid re-mapping and re-shuffling these state ADUs. In-
stead, the reduce task can write and read state from/to an HDFS
partition file. When a reducer starts, it references the file by parti-
tion and merge sorts it with data from the map tasks in the normal
fashion.

Note that a translator instance may add state ADUs whose RouteBy

key belongs to a remote partition during an epoch. These remote

writes must be shuffled to the correct partition (translation instance)
before the next epoch. We accomplish this by simply testing ADUs
in the loopback flow’s emitter, splitting ADUs into two groups: lo-
cal and remote. The system shuffles remote ADUs as before, but
writes local ADUs to the partition file. We further optimize this
process by “pinning” reduce tasks to a physical node that holds a
replica of the first HDFS block of the partition file. This avoids
reading data from across the network by reading HDFS data stored
on the local disk. Finally, the system may periodically re-shuffle
the partition files in the case of data skew or a change in processor
count.

4.5.2 Random access with BIPtables

Here we describe BIPtables (bulk-incremental processing tables),
a simple scheme to index the state flow and provide random state
access to state. This allows the system to optimize the execution
of translators that update only a fraction of state. For example, a
translator may specify an inner state flow, meaning that the system
only needs to present state ADUs whose RouteBy keys also exist
on other inputs. But current bulk-processing architectures are opti-
mized for “streaming” data access, and will read and process inputs
in their entirety. This includes direct CBP with state partition files
(described above), which reads the entire partition file even if the
translator is extremely selective.

However, the success of this approach depends on reading and
writing matched keys randomly from a table faster than reading
and writing all keys sequentially from a file. Published perfor-
mance figures for Bigtable, a table-based storage infrastructure [7],
indicate a four to ten times reduction in performance for random
reads relative to sequential reads from distributed file systems like
GFS[13] for 1000-byte records. Moreover, our recent investiga-
tion indicates even achieving that performance with open-source
versions, such as Hypertable, is optimistic, requiring operations to
select under 15% of state keys to improve performance [16]. The
design outlined below outperforms sequential when retrieving as
many as 60% of the state records (Section 5.2).

BIPtables leverages the fact that our CBP system needs only
simple (key, ADUs) retrieval and already partitions and sorts state
ADUs, making much of the functionality in existing table-stores
redundant or unnecessary. At a high level, each state partition
now consists of an index and data file. While similar to HDFS
MapFiles or Bigtable’s SSTable files, they are designed to ex-
ist across multiple processing epochs. Logically, the data file is
an append-only, unsorted log that contains the state ADUs written
over the last n epochs. Because HDFS only supports write-once,
non-append files, we create additional HDFS data files each epoch
that contain the new state inserts and updates.

Each translate instance reads/writes the entire index file corre-
sponding to its state partition each epoch. They use an in-memory
index (like Bigtable) for lookups, and write the index file as a sorted
set of key to {epoch, offset} pairs. To support inner state flows us-
ing BIPtables, we modified reduce tasks to query for state ADUs
in parallel with the merge sort of mapper output and to store reads
in an ADU cache. This ensures that calls to the translate wrapper
do not stall on individual key fetches. Our system learns the set of

keys to fetch during the merge and issues reads in parallel. The pro-
cess ends when the ADU cache fills, limiting the memory footprint,
or all keys are fetched. The reduce task probes the ADU cache on
each call to the translate wrapper, and misses fault in the offending
key.

4.5.3 Multicast and broadcast routing

The CBP model extends groupwise processing by supporting a
broadcast ALL address and dynamic multicast groups. Here we
describe how to do so efficiently, reducing duplicate records in
the data shuffle. We support ALL RouteBy keys by modifying
mappers to send ALL ADUs to each reduce task during the shuffle
phase. At this point, the reduce wrapper will add these tuples to
the appropriate destination flow before each call to translate. Since
the partition count is often much less than the number of groups in
state, this moves considerably less data than shuffling the messages
to each group. ALL may also specify an optional set of input flows
to broadcast to (by default the system broadcasts to all inputs).

While broadcasting has an implicit set of destination keys for
each epoch, we provide translator authors the ability to define mul-
ticast groups dynamically. They do so by calling associate(k
,mcaddr), which associates a target key k with a multicast group
mcaddr. A translator may call this for any number of keys, making
any key a destination for ADUs whose RouteBy returns mcaddr.
The association and multicast address are only valid for this epoch;
the translator must write to this multicast address in the same epoch
in which it associates keys.

Under the hood, calls to associate place records of {k,mcaddr}
on a dynamically instantiated and hidden loopback flow named
fmcaddr. The system treats input records routed to a multicast ad-
dress in a similar fashion to ALL ADUs, sending a single copy to
each reduce task. That record is placed in an in-memory hash ta-
ble keyed by mcaddr. When the reduce wrapper runs, it reads the
hidden loopback flow to determine the set of multicast addresses
bound to this key and probes the table to retrieve the data.

4.5.4 Flow separation in Map-Reduce

While the FlowID maintains the logical separation of data in
the black-box implementation, the Map-Reduce model and Hadoop
implementation treat data from all flows as a single input. Thus
the system sorts all input data but must then re-separate it based
on flowID. It must also order the ADUs on each flow by that
flow’s OrderBy keys. This emulation causes unnecessary compar-
isons and buffering for groupwise translation.

Consider emulating a groupwise translator with n input flows.
A Hadoop reduce tasks calls the reduce function with a single it-
erator that contains all records (ADUs) sharing a particular key.
Direct CBP emulates the individual flow iterators of T (·) by feed-
ing from a single reduce iterator, reading the flow iterators out of
flowID order forces us to buffer skipped tuples so that they can
be read later. A read to that last flow causes the system to buffer the
majority of the data, potentially causing OutOfMemoryErrors and
aborted processing. This occurs in practice; many of our examples
apply updates to state by first reading all ADUs from a particular
flow.

We resolve this issue by pushing the concept of a flow into Map-
Reduce. Reduce tasks maintain flow separation by associating each
mapper with its source input flow. While the number of transfers
from the mappers to reducers is unchanged, this reduces the number
of primary (and secondary) grouping comparisons on the RouteBy

(and OrderBy) keys. This is a small change to the asymptotic analy-
sis of the merge sort of r records from m mappers from O(rlogm)
to O(rlog m

n
). This speeds up the secondary sort of ADUs sharing



a RouteByKey in a similar fashion; the reduce task now employs
n secondary sorts based only on the OrderByKey. This allows
each flow to define its own key space for sorting and permits read-
ing flows in an arbitrary order that avoids unnecessary ADU buffer-
ing.

5. EVALUATION
Our evaluation establishes the benefits of programming incre-

mental dataflows using the CBP model. It explores how the vari-
ous optimizations for optimizing data movement improve the per-
formance of our three example programs: the incremental crawl
queue, clustering coefficients, and PageRank. We built our CBP
prototype using Hadoop version 0.19.1, and the implementation
consists of 11k lines of code.

5.1 Incremental crawl queue
This part of the evaluation illustrates the benefits of optimizing

the treatment of state for incremental programs on a non-trivial
cluster and input data set. These experiments use the physical real-
ization of the incremental crawl queue shown in Figure 10. Our in-
put data consists of 27 million web pages that we divide into ten in-
put increments (each appr. 30GB) for the dataflow. We ran our ex-
periments on a cluster of 90 commodity dual core 2.13GHz Xeons
with two SATA harddrives and 4GB of memory. The machines
have a one gigabit per second Ethernet connection to a shared switch
fabric.
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Figure 11: Cumulative execution time with 30GB and 7.5GB

increments.

The goal of our system is to allow incremental algorithms to
achieve per-epoch running times that are a function of the number
of state updates, not the total amount of stored state. Note that for
the incremental crawl queue, the number of state record updates is
directly proportional to the number of arriving input records. Thus,
as our test harness feeds the incremental crawl queue successive in-
crements, we expect the running time of each successive increment
to be almost constant. To measure the effectiveness of our opti-
mizations, we compare executions of the “black-box” emulation
with that of direct CBP.

For some dataflows, including the incremental crawl queue, the
benefits of direct CBP increase as increment size decreases. This
is because processing in smaller increments forces state flows to be
re-shuffled more frequently. Figure 11 shows the cumulative pro-
cessing time for the black-box and direct systems with two different
increment sizes: 30GB (the default) and 7.5GB (dividing the orig-
inal increment by 4). Though the per-stage running time of direct
CBP rises, it still remains roughly linear in the input size (i.e., con-
stant processing time per increment). However, running time using
black-box emulation grows super linearly, because the cumulative
movement of the state flow slows down processing.

Figure 12 shows a similar experiment using 30GB increments,
but reports the individual epoch run times, as well as the run times
for the individual CountLinks and DecideCrawl jobs. This experi-
ment includes the strawman, non-incremental processing approach
that re-computes the entire crawl queue for each arriving incre-
ment. In this case we modify the dataflow so that runs do not read
or write state flows. As expected, the running time of the non-
incremental dataflow increases linearly, with the majority of the
time spent counting in-links. While the incremental dataflow offers
a large performance improvement (seen in Figure 12(b)), the run-
time still increases with increment count. This is because the black-
box emulation pays a large cost to managing the state flow, which
continues to grow during the execution of the dataflow. Eventually
this reaches 63GB for the countlinks stage at the 7th increment.

Figure 12(c) shows run times for the direct CBP implementa-
tion that uses incremental shuffling (with reducer pinning) and flow
separation. Note that state is an “outer” flow in these experiments,
causing translation to access all state ADUs each epoch. Even so,
incremental shuffling allows each stage to avoid mapping and shuf-
fling state on each new increment, resulting in a nearly constant
runtime. Moreover, HDFS does a good job of keeping the partition
file blocks at the prior reducer. At the 7th increment, pinning in
direct CBP allows reducers to read 88% of the HDFS state blocks
from the local disk.

5.2 BIPtable microbenchmarks
These experiments explore whether randomly reading a subset

of state is faster using BIPtable than reading all of state sequen-
tially from HDFS. We identify the break-even hit rate, the hit rate
below which the random access outperforms the sequential access.
The test uses a stage that stores a set of unique integers in an in-
ner state flow; input increments contain numbers randomly drawn
from the original input. Changing input increment size changes
the workload’s hit rate, the fraction of accessed state. We run the
following experiments on a 16-node cluster consisting of Dual Intel
Xeon 2.4GHz machines with 4GB of RAM, connected by a Gigabit
switch. We pre-loaded the state with 1 million records (500MB).
Here translation uses a single data partition, running on a single
node, though HDFS (or Hypertable) runs across the cluster.
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Figure 13: Running time using indexed state files.

Figure 13 compares running times for four configurations. BIPt-

able outperforms Sequential, which reads the entire state partition
file, for every selectivity. One benefit is that BIPtable does not sort
its records; it uses hashing to match keys on other inputs. To mea-
sure this effect, sequential, no sort does not sort the partition file
(and will therefore incorrectly execute if the translator writes new
keys during an epoch). In this case, BIPtable still outperforms se-
quential access when accessing a majority (>60%) of state. For
reference we include a prior result [16] using Hypertable; it failed
to produce data when reading more than 50% of state. Finally, it
is relatively straightforward for BIPtables to leverage SSDs to im-
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(a) Non-incremental dataflow.
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(b) Incremental dataflow: black-box.
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(c) Incremental dataflow: direct.

Figure 12: The performance of the incremental versus landmark crawl queue.

prove random access performance; a design that promises to sig-
nificantly extend the performance benefit of this design [16].

5.3 Clustering coefficients
Here we explore the performance of our clustering coefficient

translator (Figure 7). These graph experiments use a cluster of 25
machines with 160GB drives, 4GB of RAM, and 2.8GHz dual core
Xeon processors connected by gigabit Ethernet. We incrementally
compute clustering coefficients using a publicly available Facebook
crawl [26] that consists of 28 million edges between “friends.” We
randomize the graph edges and create increments containing 50k
edges a piece. These are added to an initial graph of 50k edges
connecting 46k vertices.

Figure 14(a) shows the cumulative running time for processing
successive increments. We configure the translator to use full, outer
groupings and successively enable incremental shuffling and mul-
ticast support. First note that, unlike the incremental crawl queue,
running times with incremental shuffling are not constant. This is
because the mapped and shuffled data consists of both messages
and state. Recall that these messages must be materialized to disk
at the end of the prior epoch and then shuffled to their destina-
tion groups during the next epoch. In fact, the message volume
increases with each successive increment as the graph becomes in-
creasingly more connected.

Additionally, map tasks that emulate multicasting (i.e, by repli-
cating an input record for each destination) take four to six times as
long to execute as map tasks that operate on state records. Hadoop
interleaves these longer map tasks with the smaller state map tasks;
they act as stragglers until state becomes sufficiently large (around
epoch 24). At that point incremental shuffling removes over 50%
of the total shuffled data in each epoch, enough to impact running
times. Even before then, as Figure 14(b) shows, incremental shuf-
fling frees a significant amount of resources, reducing total data
movement by 47% during the course of the experiment.

For this application the critical optimization is multicasting, which
both eliminates the user emulating multicast in map tasks and re-
moves duplicate records from the data shuffle. In this case, direct
CBP improves cumulative running time by 45% and reduces data
shuffled by 84% over the experiment’s lifetime.

5.4 PageRank
This section explores the impact of direct CBP optimizations on

the incremental PageRank dataflow. We have verified that it pro-
duces identical results for smaller, 7k node graphs using a non-
incremental version. As input we use the “indochina-2004” web
graph obtained from [4]; it contains 7.5 million nodes and 109 mil-
lion edges. These experiments execute on 16 nodes in our cluster
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Figure 14: Incremental clustering coefficient on Facebook data.

(described above). Here our incremental change is the addition of
2800 random edges (contained in a single input increment).

Figure 15 shows the cumulative execution time for this process.
As Section 3.1.2 explained, the dataflow proceeds in three phases:
computing PageRank on the original graph (epochs 1-3), finding
the subgraph G (epochs 4-8), and re-computing PageRank for nodes
in G (epochs 9-16). Here we have purposefully reduced the number
of iterations in the first phase to highlight the incremental compu-
tation. For this incremental graph update, the affected subgraph G
contains 40k nodes.

Here we evaluate the impact of incremental shuffling and inner
state flows via BIPtables. Note that this dataflow required the direct
CBP implementation, specifically broadcast support for propagat-
ing weights from dangling nodes. Without it, local disks filled with
intermediate data for even small graphs.

Unlike clustering coefficient, incremental shuffling improves cu-
mulative running time by 23% relative to only using broadcast sup-
port. Improvements occur primarily in the last phase as there are
fewer messages and processing state dominates. After re-computing
PageRank, incremental shuffling has reduced bytes moved by 46%.
Finally, we see a significant gain by using inner state flows (BIPt-
ables), as each epoch in the last phase updates only 0.5% of the
state records. In this case our architecture reduced both network
and CPU usage, ultimately cutting running time by 53%.

6. CONCLUSION
A goal of this work is to allow programmers to take advantage

of incremental processing in much the same way as prior bulk pro-
cessing systems have simplified parallel programming. We believe
the model strikes a rich balance between sufficient flexibility for
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Figure 15: The cumulative running time of our incremental

PageRank translator adding 2800 edges to a 7 million node

graph.

applications and the structure needed by the underlying system to
optimize data movement. While the CBP model has relatively few
constructs, we recognize that building incremental dataflows by
hand is not just tedious but may involve delicate tradeoffs. Thus
future work includes providing a compiler to translate an upper-
layer language into CBP dataflows, paving the way towards the
general study and development of a canon of scalable, incremental
algorithms.
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