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ABSTRACT

Focused crawling is the process of exploring a graph iteratively,
focusing on parts of the graph relevant to a given topic. It occurs in
many situations such as a company collecting data on competition,
a journalist surfing the Web to investigate a political scandal, or an
archivist recording the activity of influential Twitter users during a
presidential election. In all these applications, users explore a graph
(e.g., the Web or a social network), nodes are discovered one by one,
the total number of exploration steps is constrained, some nodes are
more valuable than others, and the objective is to maximize the total
value of the crawled subgraph.

In this article, we introduce scalable, generic, and adaptive sys-
tems for focused crawling. Our first effort is to define an abstraction
of focused crawling applicable to a large domain of real-world sce-
narios. We then propose a generic algorithm, which allows us to
identify and optimize the relevant subsystems. We prove the in-
tractability of finding an optimal exploration, even when all the
information is available.

Taking this intractability into account, we investigate how the
crawler can be steered in several experimental graphs. We show
the good performance of a greedy strategy and the importance of
being able to run at each step a new estimation of the crawling
frontier. We then discuss this estimation through heuristics, self-
trained regression, and multi-armed bandits. Finally, we investigate
their scalability and efficiency in different real-world scenarios and
by comparing with state-of-the-art systems.

Categories and Subject Descriptors
H.3.7 [Digital Libraries]: Collection
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1. INTRODUCTION

Thanks to better interfaces, better hardware, and the Internet, dig-
ital resources are omnipresent. People and institutions produce and
consume more and more of them. Being able to efficiently collect
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data thus becomes increasingly important. However, the challenge
is not to simply collect any data but only relevant data. An elec-
tronic music publishing company, for instance, will be particularly
interested in blog posts about electronic music and probably less in
those about classic painting.

Many focused data collection operations can be formalized as a
topic-driven exploration of a graph. Searching for Web content is
performed by following hyperlinks in the Web graph. Looking for a
file in a decentralized file sharing peer-to-peer network is done by
exploring the graph of the connected peers. Influential users in an
online social network are found by exploring its graph. Even some
social tasks such as looking for job opportunities may amount to an
iterative and recursive exploration of one’s connections. In addition,
in all these cases, those explorations are guided by a specific need:
they are topic-driven.

Accessing data in these scenarios is not free. The cost of access
can be in terms of bandwidth, processing power, available time,
server policies, etc. One particularly relevant example is crawl-
ing Twitter. Twitter stores vast amounts of data but only allows a
comparatively tiny number of requests in a 15-minute period on
its API [24]. Furthermore, not only big companies with vast IT re-
sources need to collect data, but also individuals or small companies
with more modest means.

For all those reasons, being able to build better systems for fo-
cused crawling is crucial. This is the essence of the work presented
in this article. In this direction, we propose a simple and widely
applicable abstraction for focused crawling, practical considera-
tions, various new systems adaptable to different use cases, and
experiments on real-world datasets.

More specifically, we offer the following contributions:

e A generic model for focused crawling, as an optimization
problem on a graph, with various examples of its application;
[Section 2];

e A proof that it is intractable to compute optimal crawl se-
quences [Section 3];

o A flexible high-level algorithm to perform focused crawling
[Section 4];

e A consistent experimental framework, based on real and large
datasets! [Sections 2 and 5];

e Pragmatic considerations on how to drive the crawl [Sec-
tion 6];

T All datasets and source code used in the experiments are available
online at http://netiru.fr/research/14fc/index.
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e A variety of techniques to estimate the value of unknown
nodes, some inspired by the literature, some conceptually
novel [Section 7];

e A detailed study of the behavior of these estimators in a
variety of situations [Section 8].

We summarize the related work in Section 9, just before conclud-
ing. A preliminary version of this work was presented in a national
conference without formal proceedings [14]; additions with respect
to that version include estimators based on the second-level neigh-
borhood, multi-armed bandit approaches, and final experiments.

2. MODEL AND USE CASES

In this section, we define focused crawling with a generic model,
explain how it applies to real-world scenarios, then introduce our
experimental datasets.

2.1 Generic Model for Focused Crawling

We fix a crawling space G to be a directed graph, G = (V,E).
The nodes, V, are the resources that we want to crawl (e.g., Web
pages). The edges, E, are the links between those resources (e.g.,
hyperlinks).

We assume there are non-negative weights (or scores) on both
edges and nodes. The weight of a node is its relevance to the topic
(e.g., how much the Web page is related to the topic of the crawl).
The weight of an edge is an a priori indication of the relevance of
the node it links to (e.g., how much the hyperlink occurs in a context
that is related to the topic of the crawl). In actual crawling scenarios,
the weight of a node will only be known once this node has been
crawled, while the weight of an edge will be known once its source
has been crawled.

These weights are computed by functions. They can be any
scoring technique. For instance, in the case of the Web, we may
define the score of a node, given a term, to be the tf-idf of the Web
page for this term. However, we stress the generality of our approach
to any edge scoring function, noted o : E — Q7 and node scoring
function B : V — QF. Weights are assumed to be rationals to be
representable in machine format. For the crawling space, we assume
o and fB to be fixed.

From the score of an individual node, we define the score of a
set of nodes. Let X be a subset of V, then by definition (X) =
Y .ex B(v). Other ways of aggregating node scores could be used,
we chose the sum as it is intuitive, simple, and enough for most use
cases. Any other monotonically increasing scoring function could
be used; the sum has the advantage of simplicity.

We now introduce some concepts specific to the setting of graph
crawling. For a subset V' of V, the frontier of V' is the set of nodes
not in V’ it directly connects to. Formally:

DEFINITION 1. We define the frontier of any V' CV as:
Frontier (V') :={veV\V' |3 eV (V,v)eE}.

A crawl has a starting point, a set of nodes (e.g., some handpicked
Web pages) the seed set which is a subset of V.

The crawled set is originally Vy. A step of the crawl consists
in downloading a resource from the frontier of the crawled set,
and adding it to the latter. A crawl has a limited number of steps,
depending on the request rate, the bandwidth, or the hardware. We
detail some typical use cases in the next part. This limit is the craw/
budget, that we simply define to be a fixed non-negative integer 7.

A crawl sequence is a sequence of n nodes, where each node is at
the frontier of the crawled set:

DEFINITION 2. A crawl sequence (v;...v,) € V" is any se-
quence of n nodes such that

V1<i<n, v;é€Frontier(VoU{vi...vi_1}).

The graph, the scoring functions, the seed set, and the budget
define a crawl configuration. A crawling system or crawler returns
a crawl sequence given a crawl configuration.

A crawl happens online, the crawler only has access to the in-
formation of the nodes of the current crawled set; their score, their
outgoing edges, and their edges’ scores. The scores of the nodes at
the frontier are not known. We define the performance of a crawler
as the aggregated score of the crawl sequence it returns.

For each crawl configuration, there is a fixed number of possi-
ble crawl sequences. The optimal crawl sequences are the crawl
sequences with the highest score:

DEFINITION 3. The set of optimal crawl sequences is defined
as:

argmax
(v1...vy) crawl sequence

B{viy--sv})

(argmax returns a set as there may be different crawl sequences
with the same score.)

An optimal crawler is one that always returns an optimal crawl
sequence. The unique B value of all the optimal crawl sequences
is the optimal score. Edge weights are not part of the definition
of optimality but, as we will see later, can be used to estimate the
weights of the nodes at the frontier.

2.2 Example Use Cases

Our model covers different use cases, beyond classical focused
Web crawling. The main ingredients V, E, «, 3, Vp, and n can be
instantiated for a variety of problems. We propose here examples
of a and B, but other scoring techniques could be used in the same
settings. To calculate » in the following use cases, we consider a
crawl that lasts one week. For instance, in a Web crawling scenario,
with one request per domain per second, it is possible to perform a
total of 60 x 60 x 24 x 7 &~ 6 x 10° crawling steps per domain.

Focused Web crawling [6]. This is the classical focused crawl-
ing scenario where the objective is to crawl the Web. We assume
given a keyword query, used to focus the crawl.
V: Web pages;
E: hyperlinks;
oz tf—idf of the anchor text, w.r.t. the query;
B: tf—idf of the page, w.r.t. the query;
Vo: manually selected Web pages;
n: 6 x 103 requests for a unique domain, 6 x 108 for a thousand
domains crawled in parallel.

In more elaborate settings [20], @ and 3 are computed by auto-
matically trained classifiers — this still fits within our model, with
slight modification to the definition of these two functions.

Topic-centered Twitter user crawl [15]. The aim is to crawl

Twitter users, retrieving their tweets from the API, and adding to

the frontier the Twitter users they mention in them. We also assume

a keyword query is given.

V: Twitter users;

E: mentioning relations, (u,v) € E if at least one tweet of user u
mentions v;

o tf—idf of all the tweets of u mentioning v w.r.t. the query;

B tf—idf of all the tweets of u w.r.t. the query;

Vo: users obtained using the Twitter Search API;

n: 2% 10° statuses/user_timeline requests [24].



Deep Web siphoning through a keyword search inter-

face [3]. The goal s to siphon an entire database which is only ac-

cessible beyond an HTML form. Keyword queries are used through

the form and new keywords are discovered from the pages given in

response to the query.

V: keywords;

E: keyword relations, (u,v) € E if the keyword v appears in the
response page obtained by submitting the form with the key-
word u;

a: number of occurrences of the keyword v in the result pages for
the keyword u;

B: number of records returned for a keyword;

Vo: initial small dictionary of keywords;

n: 6x 10° requests for one domain.

In the examples so far, the crawling entity is centralized, but we
can also consider cases where multiple entities perform a distributed
crawl.

Gossiping peer-to-peer search [2]. One peer (e.g., in a file

sharing network) issues a query and this query is propagated through

gossiping to the neighboring peers.

Vi peers;

E: peer-to-peer overlay network;

a: relevance, to the query, of the cached information about a remote
peer;

B: relevance of a peer’s data to the query;

Vo: peer issuing the query;

n: 10* propagation steps, limited to prevent flooding, e.g., one tenth
of the total number of nodes in the network.

Using a real-world social network to answer a query

[23, 11]. This example is a well-known sociological experiment

where individuals are asked to use their direct social network to,

e.g., forward a message to another person of the network that they

are not directly connected to.

V: individuals;

E: acquaintance network;

a: assessment of an individual of her acquaintance’s ability to
forward the message to the right person;

B: 1if the individual is the receiver, 0 otherwise;

Vo: user the query starts from;

n: 103 requests made from an individual to another, the collective
effort allowed (how many people contribute).

These examples are from very different settings: the resources
can be Web pages, users, machines; in some cases, a centralized
entity governs the crawl, in others the process is distributed; the
budget can be set to prevent flooding, or as a consequence of a
time limit; etc. Yet, they all can be seen as instances of our general
problem of finding the best crawl sequences starting from a given
set of nodes.

We advocate that our general framework, and the algorithms we
present hereafter, can be used in a wide range of scenarios, listed
previously and beyond, as a basis to build efficient adaptive systems.
Obviously, specific settings may also require specific adjustments.
In particular, we chose to study centralized crawls. The question of
managing distributed focused crawls is left for future work.

2.3 Experimental Use Cases

We chose five large and diverse datasets? from scenarios that
correspond to actual needs.

2 Available at http: //netiru.fr/research/14fc/index.

Wikipedia datasets: bretagne and france. Wikipedia has
a density of links and a diversity of content that makes it a good
candidate to simulate a focused crawl on the Web, a very common
use case.

We used scoring functions based on one keyword, bretagne in
one dataset, and france in the other. The two keywords we sufficient
in obtaining datasets that have realistic score distributions, and
different crawling challenges, on one hand a very specialized topic,
on the other a more generic one. We used the content of the French
Wikipedia3.

Let first f be a logarithm smoothening function f : x — log(1+x)
that maps non-negative numbers to non-negative numbers. If x is
the number of occurrences of the keyword in a Wikipedia article u,
we set B(u) := f(x). Similarly, if y is the number of occurrences of
the keyword in a 100-character window around a hyperlink from u
to v, we set ot (u,v) == f(»).

Twitter datasets: happy, jazz, and weird. Crawling social
networks is of particular interest given the popularity of those plat-
forms, and their graphs are structurally different from the graph of
the Web.

We built three datasets simulating a user crawl on Twitter, one
of the most popular social network. Here also, we used scoring
functions based on one keyword to obtain realistic score distributions
with three different degrees of specialization. The three keywords
are happy, jazz, and weird. We used the SNAP Twitter dataset [25]4.

For x the number of occurrences of the keyword in the tweets of
auser u, we define f3(u) := f(x). For y the number of occurrences
of the keyword in the tweets of user ¥ mentioning user v, we let

o(u,v) = f()-

Dataset Nodes Non-zero Edges Non-zero

(million) nodes (%) (million) edges (%)
BRETAGNE 2.2 2.0 35.6 0.5
FRANCE " 19.2 " 6.8
HapPPY 16.9 11.0 78.0 24
JAZZ " 0.6 " 0.1
WEIRD " 3.2 " 0.4

Table 1: Size of the experimental datasets

Experimental diversity. Our datasets correspond to popular
use cases, and as shown in Table 1, they cover different graph
settings, in terms of size and score distribution.

3. INTRACTABLE OPTIMAL CRAWLS

In Section 2, we defined the notion of optimality for a crawling
system, which depends on optimal crawl sequences. In our effort to
build efficient crawling systems, it is important to investigate these
optimal crawl sequences. Unfortunately, even in an offline setting, a
setting where it is possible to access the whole graph, to determine
the optimal sequence is NP-hard.

3February 2013 dump downloaded from http://dumps.
wikimedia.org/backup-index.html.

4Formerly available at http://snap.stanford.edu/data/
twitter7.html, it contains an estimated 30 % of all the tweets
published between June and December 2009, 476 million tweets.
The dataset unfortunately had to be pulled out from this Web site by
request of Twitter.
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PROPOSITION 1. Let G be a graph, B a PTIME-computable
node scoring function, Vi a subset of nodes of G, and n a budget. To
determine if there is a crawl sequence of score greater than or equal
to a given rational r for G, B, Vo, and n is an NP-complete problem.
NP-hardness holds even if Vyy is a singleton and r is an integer.

PROOF. Membership in NP is straightforward. We guess a node
sequence of size n, check that it is a valid crawl sequence (easily
done in PTIME), compute its score (feasible in PTIME by hypothe-
sis), and compare it to r.

For NP-hardness, we exhibit a PTIME many-one reduction from
the LST-Graph problem described in [17]. The edge-uniform LST-
Graph problem is defined as follows: given two positive integers
L and W, and a directed graph G = (V, E) where each edge (u,v)
is annotated with a nonnegative integer weight w(u,v), does there
exist a subtree 7' of G such that the number of edges in T is less
than or equal to L and that the sum of edge weights is greater than
or equal to W? Theorem 5 of [17] shows this problem is NP-hard,
by reduction from Set-Cover.

First, observe that instead of weights w on edges and budgets L
and W on total edge counts and total edge weights, we can as well
have weights w on nodes and budgets L' on node counts and W on
the sum of node weights. To reduce the former problem to the latter,
just add nodes in the middle of each edge, with weight being the
weight of the edge, set weight O to all nodes originally in the graph,
and set budget on node count L' to 2L+ 1 (in a tree, there is one
more node than the number of edges, and there are twice more edges
now). It is straightforward to show the reduction from the original
edge-uniform LST-Graph problem to this modified LST-Graph*
problem, with weights on nodes and budgets on node counts and
sum of node weights.

Let (L,W,G,w) be an instance of LST-Graph*. Without loss of
generality, we can assume L to be at most |V| (otherwise, just set
L to |V|, the problem will have the same answer) and the graph to
have at least 2 nodes (otherwise, just add one more node with no
edges). Let G’ be the graph obtained from G = (V, E) by adding:

e an additional node r;
e for each node u of G, L+ 1 new nodes uy,...,ur11;
e for each node u of G, a chain of L+ 2 edges (r,u;), (uj,us),
cevy (ML7ML+1), (ML-H ,M).
Since L is at most |V|, this construction is in O(|V |?). The score of
a node is their weight in the old graph, new nodes having score 0.

We claim that LST-Graph* (L, W, G,w) has a solution if and only
if (G',w,{r},2L+1) admits a crawling sequence of score greater
than or equal to W. This reduction is obviously polynomial-time.
We shall prove both directions of the equivalence.

First, assume (L,W,G,w) is a “yes” instance of LST-Graph*. Let
T be a subtree of G of total weight at least W and of size / at most L.
Let (vI .. .vl) be a topological sort of tree T (i.e., an ordering such
that v/ descendant of v/ implies i < j). We consider the sequence
(v, oviaovh ) of length L4+ 141 < 2L+ 1; this is a valid
crawl sequence starting from {r}. We complete this crawl sequence
into a crawl sequence S of length exactly 2L+ 1 by adding L — 1
additional nodes uy,uy,...,u;_; for an arbitrary node u € V distinct
of v!. The score of S is the summed weight of 7', and is thus > W.

Conversely, assume (G’',w,{r},2L+ 1) admits a crawling se-
quence S of score greater than or equal to W. This crawling se-
quence S, together with r, naturally defines a tree 77 in G: the root
of this tree is r; for every node v in § there is an edge from u to v
where u is first node u in the sequence (r,S) such that (u,v) € G'.
Consider the forest F = T/ NV, the restriction of 7’ to the nodes of
G. F is not empty since S has non-zero score. F is a forest of G
of length at most L (because since F' is not empty, 7 must include
at least one chain vy,...,v;11,v) and of summed weight greater

than or equal to W (because new nodes do not contribute to weight).
We just have to show that F is connected. Since T is connected,
F is disconnected only if there are two chains uy,...,u;41,u and
Vi,...,vr+1,vin T with u # v. But the length of these two chains
combined is 2L+2 > 2L+ 1, which is impossible to fitinside 7. [

An immediate corollary of Proposition 1 is that it is unfeasible for
practical purposes to determine whether a specific crawl sequence
is close enough in score to the optimal. Consequently, it is also
intractable to find an optimal crawl sequence. As in [17], we leave
as an open problem the possibility of approximating the optimal
score or finding a crawling sequence with a score being a factor of
the optimal one.

In order to be optimal, a crawler would have to produce an optimal
crawling sequence — the result above shows that this is NP-hard.
This implies that even a crawler using a greedy strategy with an
oracle estimator (concepts that we introduce later) cannot be optimal
in the general case.

On a side note, if we do not use the sum of individual node
weights but the count of nodes having non-zero weight as subset
scoring, a greedy solution does work as long as there are some non-
zero nodes in the frontier. The proof is straightforward, as adding
one non-zero node always adds one to the total score, which is the
best that can be done at any given point.

4. HIGH-LEVEL ALGORITHM

We gave in Section 2 the intuition behind a crawling process. In
this part, we clarify this introducting a generic algorithm and the
subsystems that we will investigate later: scoreFrontier, get-
BatchSize, and getNextNodes.

Algorithm 1: High-level algorithm

input :seed subgraph Gy, budget n
output : crawl sequence V, with a score as high as possible
V(s
G Go;
budgetlLeft « n;
while budgetLeft > 0 do
frontier <+ extractFrontier(G');
scoredFrontier < scoreFrontier (G, frontier);
b < getBatchSize();
NodeSequence + getNextNodes(scoredFrontier,b);
V < (V,NodeSequence);
for u in NodeSequence do
G’ + G' UcrawlNode(u);
budgetlLeft = budgetLeft — b
return V

DI B L I R

=
N o= S

-
w

Algorithm 1 maintains a crawled graph G'. This is the union
of the subgraph induced by the crawled set, and the set of its
outgoing edges, pointing to the frontier. G’ is initialized to G,
the subgraph of G induced by Vy (line 2), it is then updated as
more nodes are crawled (lines 10-11). The main loop of the crawl
(lines 4-12) iterates as long as there is some budget left. The method
getBatchSize allows to create a batch of crawling steps of size b,
which avoids estimating the frontier between each crawled node —
instead, a batch of b nodes are crawled using the current estimation
of the scored frontier.

The method extractFrontier extracts the frontier from the
crawled graph (line 5). As we explained in Section 2, the crawler
does not have access to the scores of the nodes at the frontier, so
scoreFrontier assigns a score estimation to these nodes. For that



purpose, it has access to the crawled graph, which can serve as a
training set. getNextNodes decides which should be the b nodes
to crawl, depending on the scored frontier. The crawl sequence
V, the crawled graph, and the budget are then updated accordingly
(line 9-12), crawlNode consisting in retrieving a node, its actual
score, and its outgoing edges, which are added to G’.

The above pseudocode gives a high-level overview of a generic
focused crawler, but the details might change slightly in practical
implementations, for instance to implement incremental statistical
learning models.

S. EXPERIMENTAL FRAMEWORK

Now that we have a good understanding of the general context, we
will study different systems in detail and present several empirical
findings. It is therefore important to understand the experimental
framework we used in order to ensure the consistent quality of these
findings.

Baseline. For any crawl configuration with a meaningful budget,
it is not possible to find the optimal crawl sequence. We thus could
not compare our crawlers to an absolute optimal baseline. However,
we specified in each experiment a baseline crawler, and compared
the different crawlers, including those from the literature, relatively.

Testing configuration. We also tested our crawlers with enough
configurations to ensure statistical significance. We tested fifty dif-
ferent configurations. For each experimental dataset (introduced in
Section 2.3), we built ten seed sets, made of fifty different nodes
chosen uniformly at random among those having non-zero weights.
We ran the crawler for each seed set to obtain a seed score. We then
computed their arithmetic mean to obtain a dataset score. This score
was divided by the dataset score of a baseline, specified in each
experiment, to obtain a normalized score. We eventually computed
the geometric mean of the normalized score among the different
datasets to obtain a global score.

Crawl budget. The maximum crawl budget we used is 107, As
explained in Section 2.2, this would be a crawl campaign of three
days and a half on Twitter [24], and a bit more than one day on
Wikipedia. It is reasonable both in terms of time and freshness of
the crawled data.

Implementation. The running time and memory consumption
of a crawler is critical. For the largest experiments, we used the
C++ programming language and stored the graph and the crawler
metadata in the RAM. The RAM memory cost of our datasets was
important — especially for the Twitter graph. Thus, all experiments
were run on a Linux PC with 48 GB RAM. The CPU model was an
Intel(R) Core(TM) i7-3820 CPU @ 3.60GHz.

Each subsystem of the crawler was an abstract C++ class, with
derived classes for different possible implementations (greedy vs
altered greedy, different estimators), that provide a number of vir-
tual methods, especially scoreFrontier and getNextNodes. The
source code, the datasets, and instructions to run the experiments
are available online.’

We used the Boost graph library®. For the linear regression, we
used the dlib C++ library’ that implements an incremental version
of the recursive least squares algorithm.

Shttp://netiru.fr/research/14fc/index
Shttp://www.boost.org/libs/graph
"http://dlib.net/
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Figure 1: Best altered greedy parameters for JAZZ at step 5,000

6. STEERING THE CRAWLER

Before looking at how to build a good estimation of the fron-
tier (scoreFrontier), we think here about which nodes to pick
once the frontier has been estimated (getNextNodes), and what the
impact of using batch processing is (getBatchSize).

To study those questions, in this section, we allow the crawlers
not to worry about the estimation. They have access to the perfect
estimator, the oracle, meaning that scoreFrontier returns the
exact scores of the nodes at the frontier. The estimators that we use
in practice are quite far from the oracle, as we will see in Section 8.1,
so we consider only properties that look reasonable as invariants.

6.1 Rich People have Rich Friends

getNextNodes looks at the estimated frontier and returns the
next nodes to crawl. We investigate here what this function should
do, limiting ourselves to a batch size of 1, thus getNextNodes
returns only one node. The estimated score of a node is noted f(v).
We also refer to getNextNodes as the strategy of the crawler.

In our online and incremental situation, a greedy strategy is a
reasonable option:

STRATEGY 1. greedy strategy = argmax f(v)
veFrontier(V')

Yet, a pure greedy strategy could miss interesting parts of the
graph. A node bridging to a rich subgraph with a low score would
never be selected. This is the usual trade-off between exploita-
tion and exploration. To test this risk, we consider altered greedy
strategies, defined by a probability q € [0,1] and a ratio § € [0,1].

STRATEGY 2. altered greedy =
with probability g, argmax f(v),
veFrontier(V’)
with probability 1 — g,

random({ v € Frontier (V') | B(v) > & x max, (B (x)) })

We tested the altered greedy strategies for ¢ = 0.2,0.4,...,1.0
and £ =0.0,0.2,...,0.8.

Figure 1 illustrates well what we found with all the datasets. For
any number of steps greater or equal to a few thousands, the best
altered greedy strategies are the one with the highest probability and
ratio, and all the randomized strategies fall behind greedy.
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We explain this with the “rich people have rich friends” property.
The rich nodes (with a high score) cannot, statistically, have as
friends (connected nodes) only poor nodes, they also have some rich
nodes. When the frontier has a significant size, crawling the rich
nodes is generally enough to get to the other rich nodes.

However, for experiments below a thousand steps, we sometimes
saw altered greedy beat greedy, even with risky probability and ratio.
With a small frontier, some rich parts can “hide” behind poor nodes,
which then become more interesting. It is a phenomenon worth
mentioning, but the gain was not very important and our work is
mostly on large crawls so we did not investigate further on.

Greedy being a clear winner for any crawl of significant size, we
use the greedy strategy for the rest of the study, getNextNodes
returns the nodes with the top estimated scores.

6.2 The Batch Disadvantage

As introduced in Section 4, getBatchSize can be used to reduce
the computation time. It does so by returning an integer, b, the batch
size, greater than 1. It is then used to crawl a set of nodes of that size,
instead of a unique node, before calling scoreFrontier, which is
a relatively costly operation.

However, increasing the batch has a performance cost. We tested
crawlers differing only by their batch sizes. The estimator was the
oracle. For each crawler, we computed a global score according to
the experimental framework defined in Section 5. The baseline for
the score degradation was the score of the crawler with b = 1. If
the crawler had no estimated node in the frontier, it picked the next
node randomly.

Step
Batchsize 100 1,000 10,000 100,000
2 0.4 2.2 3.9 6.4
8 1.3 6.5 12.8 18.3
32 6.6 6.5 17.5 24.3

128 38.8  10.7 19.9 29.5
1024 38.8 743 25.8 35.9

Table 2: Score degradation (%) for different batch sizes

In Table 2, we see the importance of the performance degradation,
even for a batch size of 2. We explain it with two main arguments.
First of all, the crawler is sometimes forced to pick nodes randomly,
which, on average, degrades the performances (see Section 6.1).
Secondly, the sooner a rich node is crawled, the sooner its connec-
tions are added to the frontier. Adding a rich node later creates a
score delay, that will remain during the crawl, and increase if this
delay is repeated.

Even for a batch size of 2, the performance degradation is notable.
For this reason, we will, for the rest of the study, look for scalable
estimation techniques, allowing to refresh of the estimation at each
step.

7. FRONTIER ESTIMATORS

scoreFrontier is our last system to study, and the most difficult.
It takes as an input the crawled graph and the frontier, and returns a
scoredFrontier, an estimation of the § value of each node of the
frontier, f3.

Thanks to the previous parts, we now have some precise ideas on
what we would like for scoreFrontier. We look for a scalable
system able to identify the top nodes of the frontier. We also call
such a system an estimator.

In this part, we formalize frontier estimators, some adapted from
the literature, some new. We are in the context of a specific crawl,
V' is the set of crawled nodes, E’ the set of known edges — in-
cluding edges from V' to Frontier (V'), and d,, : V — N (resp., d;)
the number of known outgoing (resp., incoming) edges of a node.
The estimators are defined by their node weight estimation func-
tion 3 : Frontier (V') — Q™. We defined a short_name for each
estimator.

7.1 State-of-the-Art

We start our list looking at estimators from the literature that we
adapted and translated using our model.

BFS. bfs is the breadth-first search estimator, a simple estimator
based on a common crawling technique.

ESTIMATOR 1  (bfs). E(v) = ](‘)ﬁ where 1(v) is the dis-

tance of v to V.

This estimator is naive and we can expect poor results. We used it
as a bottom line.

As we discuss in Section 9, most focused crawling systems from
the literature mostly deal with how to compute the score of a node
or an edge (i.e., how to define o and f3), once they have been
crawled [20]. Not many are about how to estimate those values
before they are crawled (i.e., how to define ). The exceptions are
the following two approaches. They are inspired by PageRank and
perform iterative computations on the crawled graph.

Navigational Rank. Navigational Rank [12] is a two-step node
importance computation specifically designed for focused crawling.
The first step is an iterative propagation from offsprings to ancestors,
combined with the actual node score:

NR (u)f

di (u)
where NR; (u)" is the node score at the iteration step 7, and 7 is a
parameter affecting convergence speed.

The second propagation step is performed only on the frontier
nodes, and is from ancestors to offspring, as follows:

NRz(u)t
do(u)

We must make it clear that [12] contained an error in both equa-
tions (1) and (2). The senses of the propagations were reversed. It
is fixed in the equations we just presented and has been confirmed
with the authors of [12].

We define nr, the Navigational Rank estimator, as the NR; score.

NR ()" =1 x B(v) +(1=n) x avg (e

NRy(v) ™' x NRy (v) + (1= 1) X avg(,.p)epr

ESTIMATOR 2 (nr). E(v):NRz(v).

One step of nr estimation requires two successive iterative com-
putations (with perhaps a few dozens steps) on the whole crawled
graph. This results in an overall quadratic complexity, with im-
portant multipliers, for each frontier estimation. As we will see in
Section 8.1, this will have major consequences on the running time.

OPIC. OPIC [1] is an algorithm designed to estimate the PageR-
ank of a node in a crawling situation.

OPIC maintains two per-node counters during the crawl: C(v)
— the cash value of of a node, initially set to 1, and H(v), its cash
history, starting at 0. It also keeps a global counter G, the entire
cash accumulated in the system.

The estimation takes three steps:



1. the node v with the highest cash among all encountered nodes
is selected (ties resolved arbitrarily), and its history is updated
with the current cash value H(v) = H(v) +C(v),

2. for each outgoing node u of v, the cash value is updated
Clu) = C(u) + §2,

3. the global counter is incremented and the cash value of v is
reset, G =G+ C(v) and C(v) =0.

Since OPIC does not take into account edge scores, we changed
the second step with the following formula:

cw)
Z(V,W)GE’ OC(V, W) x C(W)
opic is based on the three counters defined above.

H®v)+C(v)
G+1

7.2 Looking at the Neighborhood of a Node

The estimators from the research literature are not entirely satis-
fying for focused crawling. nr is computationally costly. opic is
PageRank specific and initially does not take into account node and
edge weights. We thus defined new estimators, starting here with
intuitive heuristics.

For those heuristics, we combine in simple ways the scores of
the nodes already crawled and of their outgoing edges. For a node
of the frontier v, P(v) is the set of parent nodes, or the first-level
neighborhood of the node v. P(v) ={u€V’'| (u,v) € E'}. The
nodes of V'’ pointed to by the nodes of the first-level neighborhood
constitute the second-level neighborhood.

The £1_ estimators are based on the first-level neighborhood, and
the s1_ estimators on the second-level.

Clu)=C(u)+ x a(v,u) x C(u)

ESTIMATOR 3 (opic). B(v) =

ESTIMATOR 4 (f1_n fl_e fl_ne sl_n sl_e sl_ne).

£1_deg: B(v)=di(v) = |P(v)|

f1_n: [i(v) Yuep(v) B(u)
fl_e: ﬁA('V) ZMEP Oc(u,v)
fl_ne:Nﬁ(v) = Yuer(v) B (u)or(u,v)
sl_n: B(V) ZMGP (v) Y vevez/') ﬁ(w)
sl_e: E( ) ZueP r weV’ (M,W)
_ ueP(w)
sl_ne: ﬁ( ) ZMEP Y wev’ ﬁ(W)(Z(M, W)
ueP(w)

We will see how those heuristics perform later in the article. Be-
fore that, we looked at statistical correlations between the heuristics
and the node scores. We used the Pearson correlation coefficients
for this purpose. We obtained the results in a setting where the full
graph is known so we have to look at those measures cautiously.
However the intuitions we gain from this analysis proved, as we
will see, robust enough for the online setting. We averaged the
coefficients geometrically over the five graphs. Lastly, we looked
also tried to smooth the values with the function f : x — log(1 +x)
(log row in the following table).

Type fl deg fln fl e flne sl.n sl_e sl_ne

orig. 0.063 0.127 0.073  0.090 0.170 0.199  0.203
log 0269 0373 0402 0412 0273 0360 0.356

Table 3: Pearson correlation coefficients

From Table 3, we learn several things. First of all, the corre-
lation between any of the features and the actual node score is

positive. Secondly, logarithmic smoothening reinforces significantly
the correlations (on a relative scale). We thus decided to use the
smoothened version of those estimators in the rest of the study
(B(v) = f(B(v)). Lastly, we observe some differences between the
heuristics, but there is no clear winner as the coefficient remains
small.

7.3 Linear Regression

These positive correlations gave us the intuition to use these
estimators as features for a linear regression. We define 1r_£1 and
1r_sl, respectively the first-level and second-level linear regression
estimators.

These estimators are linear combinations for which the coeffi-
cients are trained. The crawled graph is used as the training data
and the coefficients are updated before each frontier estimation. We
used the least-squares linear regression with incremental solvers.
This allowed us to not fully retrain the models for each estimation.

ESTIMATOR 5 (1r_f1 1lr_sl).

1r_£1: E(v) = trained linear combination of the f1_ estimators.
1r_sl: B(v) = trained linear combination of the fl_ and sl_
estimators.

To have a first intuition on those estimators, we performed a R?
analysis. It is a measure of the precision we can expect from the
linear models, but shown here with full graph knowledge.

Type 1r_f1 1r_sl

orig. 0.030  0.075
log 0.221  0.230

Table 4: Linear regression fit (R?), geometrically averaged over the
five graphs

From Table 4, we confirm the logarithmic smoothening is ben-
eficial, as well as the addition of the second level features to the
training, which means we do not have an overfitting problem. How-
ever, we also see that, even if the R? fit is better for 1r_s1, its value
remains low in the absolute.

7.4 Reinforcement Learning

As we saw in the previous statistical analysis and as we will see
more in details in Section 8.1, the intuition gained from the obser-
vation of the different estimators is that they perform differently at
different stages. For instance, in some graphs, £1_e performs on
average very well at the beginning of a crawl but poorly later. In this
situation, reinforcement learning allows us to pick the right model
at the right time.

Initial multi-armed bandit strategy. We chose to model our
situation as a multi-armed bandit problem [22]. There is a room full
of casino machines (the bandits) with different reward distributions.
A player enters the room with a budget of » lever pulls and looks for
a strategy to maximize its total reward. In our case, a slot machine
is an estimator, and a reward is the weight of the top node returned.
Playing a lever is the action of crawling the top node of an estimation
model.

In this situation, the challenge is to balance properly the explo-
ration (the player wants to test as many slot machines as possible)
and the exploitation (if the player has found the best machine, he
should focus on this one). A first usual way is to use an epsilon-
greedy bandit strategy. Let € € [0, 1] be the epsilon-greedy parame-
ter. With a probability € the slot machine with the highest average



reward is used. With a probability 1 — €, the slot machine used is
chosen uniformly randomly.

ESTIMATOR 6 (mab_g). E(v) = output of an epsilon-greedy
strategy

With € = 0.1, this estimator already gives interesting results.
However, it has two major potential shortcomings. It gives the same
importance to old and to new rewards, when we might want to favor
new information. It also does not adapt well to variations of pace in
the average reward changes. We want the exploitation—exploration
ratio to vary with how dynamic the context is. We propose a new
simple and robust solution to solve those two issues.

e-first with variable reset strategy. Let r € N be the reset
parameter, a bandit strategy with reset is so that, every r steps, all
the slot machines average rewards are set to 0. From a different
perspective, let n be the number of lever pulls so far, the average
reward is calculated with a weight of 1 for the rewards at the steps
from max(0,n — r) to n, and O for the more ancient ones.

This notion of reset is particularly intuitive in the context of
an epsilon-first bandit strategy. Let € € [0, 1] be the epsilon-first
parameter and N the total amount of lever pulls. For the steps
between 0 and | € x N |, the slot machine used is chosen uniformly
randomly. For the rest of the steps, the slot machine with the highest
average reward is used.

ESTIMATOR 7 (mab_e-first). B(v) = output of an epsilon-
first strategy

The epsilon-first with reset bandit strategy is a succession of
LMJ + 1 epsilon-first bandit strategies, all of them except the last
one with N = r. The last one is so that N = Ny ;) — 1 X LMJ

Let f : N2 — N be the reset variation function, p the number of
times the best estimator at the end of the exploration phase has been
the same, an epsilon-first bandit strategy with variable reset is an
epsilon-first bandit strategy with reset where r = h(p). Obviously,
we will pick 4 increasing with respect to p.

ESTIMATOR 8 (mab_var). E(v) = output of an epsilon-first
with variable reset strategy

8. COMPARING THE ESTIMATORS

We tested the quality of the different estimators in terms of pre-
cision, running times, and ability to lead a crawl. We chose to use
a batch size of 1 and getNextNodes returning the top nodes (the
greedy strategy from Section 6.1), due to the reasons explained in
Section 6. The crawl is thus driven by the estimated top node.

8.1 With the Same Crawl Sequence

In this section, we force the crawlers to have the same crawl
sequence, the crawl sequence returned by the crawler with the oracle
as its estimator.

Running times. We look here at how long an estimator takes to
compute its estimation. This running-time depends on the size of
the estimated frontier and the scores of the crawled graph. Crawl
sequences thus determine running times. That is why we chose to
compare the crawlers with the same crawl sequence.

As explained in Section 2.2, the different use cases require differ-
ent running-times. However, for the less demanding use cases, there
is 1 second between two requests for a unique Web domain, and 3

seconds for the Twitter API. The estimators must at least scale to
those examples.

We measured how long the frontier estimation took at different
steps on a Wikipedia (FRANCE) and a Twitter (HAPPY) graph. We
chose only one graph from Wikipedia and one from Twitter as the
main variable affecting the running time is the topology of the graph,
rather than the scores themselves.

Dataset  Evaluator 100 1,000 10,000 100,000
FRANCE nr 2,832.1 19,720.5 N/A N/A
opic 1.9 2.5 4.6 4.7
ne_f1 0.2 0.1 0.1 0.1
1r_f1 0.2 0.2 0.1 0.1
mab_var_f1 0.6 0.3 0.2 0.2
ne_sl 8.5 27.1 2.0 6.1
1r_sl 8.5 27.2 2.0 6.1
HapPPY nr 45,965.7  105,209.3 N/A N/A
opic 1.8 1.6 1.9 2.5
ne_f1 0.3 0.1 0.2 2.1
1r_f1 0.5 0.1 0.2 2.1
mab_var_f1l 1.1 0.3 0.5 3.9
ne_sl 111.1 24.5 63.3 240.5
1r_sl 111.4 24.5 63.3 241.0

Table 5: Running-times (in ms) of the evaluators at various steps

From Table 5, we see that the nr running time is several orders
of magnitude above what we require. Simulating a few thousand
steps of crawl took hours, compared with seconds for the others
estimators. The second-level neighborhood estimators can scale, but
have a non negligible cost, and might not be usable for restricted
running time budgets. The other estimators have sub-millisecond
running-times on both graphs, and are thus able to fit for most
crawling restrictions.

Regarding nr, we remarked that the analysis performed in [12]
is based on graphs that are much smaller than those we use here,
typically graphs of small individual websites.

Precision. A precise estimation will return, as a top node, a node
that is not too far in score from the oracle top node. To quantify
the precision of an estimator, we measured the distance between the
score of the top node it returns to the score of the oracle node. The
distance being the score difference.

Following the same crawl sequence allows us to see the variations
in performance at the different stages. The results were noisy so we
smoothed them, arithmetically averaging the distance in a window
of 1,000 steps.

We computed the precision for the estimators based on the first-
level neighborhood only. The intuitions we gained from them are
similar for the second-level neighborhood. We also did not look at
multi-armed bandit strategies at that time since those experiments
led us to them.

Figure 2 illustrates well the general properties we observed. First
of all, the average distance decreases in the long run. At the begin-
ning, there are a lot of rich nodes that can easily be missed. In the
long run, the richest nodes will have been consumed. The average
distance logically tends to be lower. Secondly, making abstraction
of this tendency, the estimators perform differently at different steps.
Here, we can see that ne does very well at first, but then loses ground
to n. Lastly, on average, we observed the common trend that the
simple neighborhood-based estimators seem to perform best at the
start, while the linear regression estimator catches up in the later
stages of the crawl. However, we could not find a global winner
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Figure 2: Estimators precision for BRETAGNE

among the different heuristics or regressions, which gave us the
intuition of the multi-armed bandit strategies.

8.2 Driving the Crawl

In the previous part, we looked at situations where the crawl
sequence was decided by the oracle. We investigate here what
happens when the estimators are themselves leading the crawl.

Multi-armed bandit estimators. 1tis convenient to first study
the estimators based on multi-armed bandit strategies. We exper-
imented several of them with different parameters. For all these
estimators, the slot machines are the estimators based on the first-
level neighborhood, including the linear regression. The reason why
we did not look at estimators based on the second-level neighbor-
hood is explained in the next paragraph.

We used the generic experimental framework introduced in Sec-
tion 5 to obtain global scores, using the oracle greedy as a baseline.
Those global scores allow to gauge the overall potential of each
estimator, disregarding as much as possible the particular cases.

mab_g and mab_&e-first have been parametrized with € = 0.1.
mab_var-0.1-1000 and mab_var-0.2-200 have respectively for
parameters € = 0.1,r = h(p) = 1000 x (p+1) and € = 0.2,h(p) =
200 x (p+1).

Type 100 1,000 10,000 100,000

€ 0450 0.481 0.477 0.495

e-first 0409 0.501 0.484 0.490
var-0.1-1000 0.383 0.439  0.420 0.494
var-0.2-200 0.427 0413 0461 0.458

Table 6: Global performance of the multi-armed bandit estimators

Looking at Table 6, our first observation is that the multi-armed
bandits are very comparable in terms of performances. We can also
already notice that their global score is stable at different steps. As
we will see below, this stability is a major difference with the other
estimators. For the other experiments, in order not to overcrowd our
figures, we chose to only consider mab_var-0.2-200.

Overall comparison. We ran crawls on the five datasets for the
estimators introduced in Section 7, with a few exceptions. As ex-
plained in the previous paragraph, we only show one estimator based
on multi-armed bandit, mab_var-0.2-200. We also excluded nr
as its running-time was too long. Lastly, we studied the estimators
based on the second-level neighborhood on a few examples, and
found out that their crawl performances are not better than those of
the first-level. Since their running times are too large, we decided
not to compute the full results for those estimators.

Figure 3 shows the crawl performance for the different estimators
in two scenarios. It illustrates interesting properties of the estimators.
First of all, the breadth-first estimator, bfs, and the PageRank-
based estimator, opic, are clearly worse than the other estimators.
However, they remain interesting baselines. Note that we also tried
the original OPIC, that does not use edge or node scores, without
any improvement. The first-level neighborhood estimators, on the
other hand, usually perform quite well, but with different quality in
different situations. This confirms the results found in Section 8.1.
Regarding the linear regression, it seems to do better at the end than
at the beginning, and achieves good results at the end of the crawl.
At last, the multi-armed bandit strategy seems to perform well all
along the crawl, staying on the highest part.

Estimator 100 1,000 10,000 100,000

bfs 0.147 0.132  0.130 0.207
opic 0.283 0.184  0.205 0.287

n 0358 0280 0.362 0.467
e 0594 0560 0457 0.377

ne 0583 0570 0.466 0.378
1Ir_f1 0325 0382 0.466 0.504

mab_var-0.2-200 0427 0413  0.461 0.458

Table 7: Global score of the estimators

Those results are confirmed by Table 7. It shows the global score
(averaged over the five graphs), normalized with the oracle greedy.
This score gives a general idea of the ability of an estimator to lead a
crawl. bfs and opic are significantly worse than the rest. n behaves
worse than the other heuristics at first, except in later stages of the
crawl. e and ne are almost equivalent, leading a good crawl at
the beginning but not towards the end. 1r_£1 is not great at the
beginning but performs well in the long run. mab_var does stably
well all along the crawl.

8.3 Building the Right Crawling System

We can now come up with reasonable recommendations in order
to build a crawler that will perform generally well. This crawler will
implement the high-level algorithm with getNextNodes as greedy,
and getBatchSize as the constant 1.

To build scoreFrontier it is more complicated. First, we sug-
gest to compute the estimators based on the first-level neighborhood.
They are not very costly and usually helpful. From there, it is in-
teresting to perform an incremental linear regression using those
estimators as features. Eventually, combining those different esti-
mators with a multi-armed bandit strategy should allow to pick the
best estimator at different steps of the crawl.

9. RELATED WORK

General works. Most works on focused crawling addressed web
page and hyperlink scoring or classification. Those works are com-
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Figure 3: Average graph scores for various estimators leading the crawl of two graphs

plementary with ours, and serve as inspiration for the scoring func-
tions ¢ and 3. A 2005 survey [20] studied the different options
available at that time for focused crawling classifiers and scorers.
The Fish-search [9] and Shark-search [16] algorithms score pages
and links with tf-idf measures. [7, 5] put forward a crawler made
of a classifier, to distinguish relevant pages, and a distiller, to iden-
tify pages more likely to point to other relevant pages. Classifiers
used range from SVMs [19], HMMs [18, 4], to reinforcement learn-
ing [21]. An experimental study [19] proved that a crawler using
both link and page scores outperforms single-score techniques.

Steering the crawler. The complexity result regarding find-
ing the optimal crawl score was proved by reduction to the length-
constrained maximum-sum subtree problem [17]. The altered greedy
strategy was inspired by greedy randomized adaptive search proce-
dures [13]. To the best of our knowledge, the impact of using batch
processing for the frontier estimation has not been studied before.

Frontier estimation. A firstidea to use some graph properties
to estimate a frontier node score is formulated in [10] but only
applies to Web pages, requires that the crawler is aware of backlinks
to pages, and is only compared to one other system.

We compared our crawler with two main state-of-the-art systems:
OPIC [1], which aims at estimating a PageRank score (on a similar
idea, the RankMass crawler [8] intends to maximize coverage of
high Personalized PageRank nodes); and the Navigational Rank [12],
that uses a two-way propagation to estimate frontier scores and
found to perform better than previous approaches.

The multi-armed bandits with variable reset was inspired by the
adaptive e-greedy exploration for reinforcement learning [22].

10. CONCLUSIONS

In this paper, we formulated the focused crawling problem as
a graph exploration problem, the graph having weighted nodes
and weighted edges. We then illustrated how this model can be
applied to different use cases. This formalization allowed us to

introduce a generic algorithm to perform focused crawling and to
identify several important subproblems. From there, we studied
those subproblems one by one. We demonstrated the NP-hardness
of the offline optimal crawl problem, the “rich people have rich
friends” property, and the batch disadvantage. Then, we looked
at different techniques to estimate the frontier. We adapted state-
of-the-art estimators to our formalization and proposed various
new estimators. Finally, we dissected them and evaluated their
running-times, their precision in identifying the best nodes, and
their performance when leading a crawl.

Our formalization of focused crawling is novel and high-level.
The results we present can be applied in many cases. The systems we
propose have very good performance. We believe this is a significant
contribution towards scalable, generic, and adaptive systems for
focused crawling.

This work also allowed us to identify promising opportunities.
As we proved the NP-hardness of the offline optimal crawl problem,
finding an approximation technique is an interesting new challenge.
The question of a distributed focused crawling systems is open
and exciting. We also did not address the issue of refreshing a
node already crawled, it should be possible to reuse our model to
integrate it. Finally, a more thorough study on the multi-armed
bandits techniques is worthy of investigation.
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