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Abstract—Contact-based simulations are a very popular tool
for the analysis of opportunistic networks. They are used for
evaluation of networking metrics, for quantifying the effects
of infrastructure and for the design of forwarding strategies.
However, little evidence exists that the results of such simulations
accurately describe the performance of opportunistic networks,
as they commonly ignore some important factors (like limited
transmission bandwidth) or they rely on assumptions such as
infinite user cache sizes.

In order to evaluate this issue, we design a testbed with a
real application and real users; we collect application data in
addition to the contact traces and compare measured performance
to the results of the contact-based simulations. We find that
contact-based simulations significantly overestimate delivery ratio,
while the captured delay tends to be 2-3 times lower than the
experimentally obtained delay. We show that assuming infinite
cache sizes leads to misinterpretation of the effects of backbone on
an opportunistic network. Finally, we show that contact traces can
be used to analytically estimate the delivery ratios and the impact
of backbone, through the dependency between a user centrality
measure and her delivery ratio.

I. INTRODUCTION

Many performance studies of opportunistic networks are

based on contact traces. They are used for estimation of funda-

mental networking measures, such as delay or delivery ratio [1],

[2]. They are also used for the design of caching and forwarding

strategies [3], [4] and in the studies of the effects of adding

infrastructure to an opportunistic network [5]. Intuitively, con-

tacts between opportunistic users are one of the key factors to

take into account when modeling information propagation in an

opportunistic network. Nevertheless, contact traces have certain

limitations. By default, contact-based studies do not address

the limited transmission bandwidth [6], [2]. Traffic generation

is artificial or obtained from a distribution [7], [8]. Certain

technology limitations, such as the inability of Bluetooth to

concurrently discover and send data are ignored. In addition

to this, contact-based studies often assume infinite sizes of

users’ caches and data exchanges without prioritization [1].

This, coupled with the absence of a model for the limited

transmission bandwidth, can lead to simulations of unrealistic

data exchanges.

In spite of the obvious need to quantify the effects of these

approximations, little effort has been invested in justifying the

perpetual use of contact traces for the analysis and simulation

in the area of opportunistic networks. In other words, little

evidence confirms that values obtained from the simulation

on contact data sets accurately describe performance of oppor-

tunistic applications. In this paper, we perform an initial study

of the often neglected factors and assumptions in the contact-

based simulations. Our goal is to find out whether contacts are

sufficient to evaluate performance of an opportunistic network,

with or without an infrastructural component and if so, how to

use them best to achieve this.

The task is far from trivial. The conclusions of contact-based

simulations need to be compared against the data coming from

the use of real opportunistic applications. As such data is hard

to find, we develop an easy to use opportunistic application

that can also internetwork with the Internet. We then run an

experiment with 50 users, during 2.5 weeks in order to collect

contact traces and the application data that can be compared

with the results of contact-based simulations.

Instead of inventing a new application, we decided to extend

an existing web application - Twitter to the intermittently

connected opportunistic space. This significantly simplifies the

bootstrapping phase (exploits an already established user base

and relationships between users), shortens the learning curve

of the experiment participants and allows them to keep their

existing habits and use the application in a more natural way.

The choice of Twitter also allows us to cover several realistic

use cases. For example, it is quite expensive for roaming users

to synchronize their mobile applications with the Internet on

foreign networks. However, for a broad set of applications,

such as e-mail, Twitter, Facebook and other social-networking

apps, the synchronization may not be needed in real time. An

opportunistic Twitter application, with occasional access to data

sinks that provide Internet connectivity, might deliver tweets

with acceptable delays.

Another example, where an opportunistic Twitter application

(accompanied with a few points of interconnection with the

Internet) can be of great help are deliberate shutdowns of

telecommunication networks during protests. Internet blackouts

target primarily Twitter and other social networks, with the

goal of preventing information propagation and communication

among protesters. Solutions, such as voice-to-tweet software

provided by Google and Twitter [9] can allow users to tweet

using voice. Nevertheless, when the mobile phone service is

down, the opportunistic communication, supported by a few

satellite Internet connections [10], remains the only option.

We make the following contributions:

• We show that the common practice of ignoring certain

factors in the contact-based studies of opportunistic networks

significantly affects important performance metrics. Namely,

we show that contact-based simulations overestimate delivery

ratios up to 30%, while the estimated delays are 2-3 times lower
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than the experimental values. We demonstrate how the default

assumption in contact-based simulations about the unlimited

cache sizes completely alters conclusions about the utility of a

backbone in an opportunistic network. We verify the robustness

of our findings by rotating the caching strategies.

• We show that weighted contact graph can be a very useful

tool for statistical analysis of opportunistic networks. We find

a strong dependency between a user centrality measure in this

graph and the perceived delivery ratio and we fit a simple curve

to this dependency. This allows one to predict users’ delivery

ratios based on the contact trace. We show that this dependency

persists when a backbone is added to the network, which means

that it can be used to estimate the effects of adding limited

infrastructure to an opportunistic network.

• From the systems aspect, our study gives a comprehensive

insight into performance of a small to medium opportunistic

network and to a lesser extent into users’ reaction to it. It also

highlights certain design choices used to extend an existing web

application to the world of intermittently connected devices.

The paper is organized as follows. We describe our exper-

iment setup in §II. We introduce notation in §III. We analyze

the obtained data sets in §IV. In V we give insights into

the experimentally obtained performance and we compare it

with the results of the contact-based simulations. We highlight

common traps of the simulation based approach. Finally, in

§VI we use contact graph for statistical analysis of network

performance and prediction of delivery ratios.

II. THE EXPERIMENT SETUP

We design our experiment with two main goals in mind: (i)

To collect the application data from which important perfor-

mance metrics can be extracted and (ii) to collect the contact

trace that can be used in discrete event simulations. This will

allow us to compare the experiment results with the values

obtained from the contact-based simulation.

A. The Experiment Scenario

We use the scenario of roaming users as the running example

in our experiment (although the scenario itself is not essential

for the results of our study). We assume a mixed population

at the university campus site, composed of visitors (Roaming

Users) and users in their home networks (Home Users). As pol-

icy restrictions prevent Roaming Users (RUs) from connecting

to the Internet via the campus WLAN, we assume they prefer

using an opportunistic application to paying high roaming fees

for data traffic. It is difficult to involve visitors in a rather long

experiment. Thus, we chose 50 volunteers to represent the RUs.

While fully aware that the mobility of real roaming users can

be somewhat different, we find that our experiment participants

share certain mobility properties with campus visitors. About

half of the participants are master students who followed

courses in the classrooms where winter schools are organized

(only for visitors). All participants normally have lunch at the

same places where visitors are likely to have lunch or coffee.

Home Users (students/faculty) are normally in majority.

They have laptops with access to the campus WLAN, and/or

inexpensive data plans with mobile operators. We assume some

of them are cooperative and willing to run a piece of software

on their devices, helping Roaming Users deliver their tweets to

the Internet and receive the tweets of the people they follow.

Creating a significant Home User population for the purposes of

the experiment (in addition to the Roaming User population we

had to recruit) would require substantial financial and human

resources. Thus, we resort to an abstraction. We place ten

Linux laptops in popular places around the university campus

(restaurants, computer rooms, coffee shops, libraries, etc.). We

refer to these machines as Home User Equivalents (HUEs).

We believe this is a good approximation, as (i) these are

the locations where Home Users (with their cell phones and

laptops) can be found during the day, (ii) the range of the

Bluetooth dongles plugged into HUEs matches the Bluetooth

range of cell phones and laptops (∼ 10m), and (iii) the set

of functions handled by the HUEs is very limited, which

means that the code can easily run on any piece of hardware

(smartphones, laptops, etc.).

B. System Architecture

Our experimental setup consists of three main parts (Fig-

ure 1): (i) Roaming Users (RUs) with the opportunistic Twitter

application running on their phones, (ii) Home User Equiva-

lents (HUEs) that serve as interconnection points between the

opportunistic space and the Internet, and (iii) our proxy server

in charge of communication with the HUEs on the front-end

and synchronization with Twitter servers on the back-end.

Fig. 1. The system comprises three major components: (i) Proxy server, (ii)
Home User Equivalents (HUEs), and (iii) the phones carried by Roaming Users
(RUs). Proxy server communicates with Twitter servers at the back-end and
with the HUEs at the front-end. HUEs provide Internet connectivity to RUs.

Opportunistic Twitter. Opportunistic Twitter is a mobile

Twitter application we developed for the publicly available

Haggle publish/subscribe framework [11]. It leverages intermit-

tent Bluetooth connectivity for the exchange of messages with

other devices running the Haggle framework. The framework

can work on top of several mobile and desktop operating

systems (Windows, Android, Linux, Mac OS, etc.). In our
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experiment, the framework and the application run on HTC

and Samsung phones. Like most Twitter applications, our

application allows to a user with Twitter account to follow a

set of other users or channels. As a result, messages (“tweets”)

created by these channels become visible in the user’s message

feed. So, every RU in our experiment has a group of other

users/channels that she follows, as well as a group of followers

that receive her updates. We refer to these relationships as the

“Twitter following relationships”. The tweets created by RUs,

as well as the changes in the “Twitter following relationships,”

propagate through the network using a form of epidemic,

as explained later in this section. Vibration informs users of

message reception.

For the discovery of nearby users, all RUs and HUEs use

the Bluetooth inquiry mechanism that allows them to find

other Bluetooth devices within transmission range. Conducting

inquiries consumes power, so one has to be moderate when

setting the inquiry interval. Additionally, while inquiring, a

device cannot answer other devices’ inquiries, so performing

frequent inquiries is not the best solution. On the other hand,

choosing a too large interval results in missed discoveries

(exchange opportunities). As users can recharge their phones

on a daily basis, we choose the inquiry interval of 2 minutes. If

a contact that was seen during the previous inquiry disappears

during the following inquiry, but reappears again during the

subsequent inquiry, we assume that the recorded contact was

never broken.

Home User Equivalents (HUEs). HUEs run a small ap-

plication on top of Haggle framework and they have Internet

connectivity. This allows to the RUs to use them as sinks and

have their tweets delivered to the Internet, i.e. to their external

followers around the world. HUEs can also fetch content from

our proxy server and deliver tweets from the Internet to the

RUs inside the campus.

Proxy. Our proxy server is a component of the system that

resides between Twitter servers and HUEs. It is a Java Web

application running on Apache Tomcat 6 server that uses a

MySQL database for storing all the information important for

the operation of the system and for the post-experiment data

mining process. Given the current restrictions of Twitter API

this component is needed to handle user authentication and to

serve as a buffer between the Twitter servers and HUEs.

On the back-end, the proxy passes to Twitter servers the

tweets that arrive from HUEs. It also fetches from the Internet

the tweets of interest to experiment participants, by synchro-

nizing the local copies of their accounts with the accounts

on Twitter servers. On the front-end, the proxy processes

HTTP requests received from HUEs, it performs the database

transactions and it sends back messages that need to be pushed

into the opportunistic Haggle space.

C. Caching Strategies

Caching in RUs. Caching strategies (also called replication

strategies) determine the channels that a user should store on the

device and then forward. Note that channels, not packets, are

the proper abstraction for Twitter traffic propagation, contrary

to forwarding strategies in opportunistic networks. The reason

is that users express their interests by choosing channels to

follow. These interests remain relatively stable and they do not

change on a packet-by-packet basis.

One can classify caching strategies according to how selfish

they are: The more selfish a strategy is, the more preference

it gives to channels that the user is interested in. In contrast,

the more altruistic a strategy is, the more it prefers channels

that are of interest to the rest of the community (network). The

choice of strategy can affect network performance metrics.

In our experiment, we want to make sure that our conclusions

are robust with respect to the choice of caching strategy, so we

use three very different strategies. The first strategy is extremely

selfish, storing only channels that the user is subscribed to; the

second is extremely altruistic, preferentially storing channels

that the user is not interested in; the third, which we refer to

as proportional strategy (proportional to channel popularity),

balances between the two extremes. More specifically, the

third strategy [3] always stores the channels that a user is

subscribed to and uses the remaining cache space for helping

other channels. When two devices meet, each helped channel

is a candidate for replacement, and each device performs the

following operations: A locally helped channel c is selected

uniformly at random among all locally helped channels, and

a remote channel c′ is selected uniformly at random among

those remote channels that are not locally present. Then, the

local channel c is dropped and replaced by the remote channel

c′ with probability min{1, βc′

βc
}, where βc is the number of

users following channel c.

Although considering an altruistic strategy can seem like a

strange choice, it is important to understand that the caching

strategy can be chosen by someone else, other than the ap-

plication users. For instance, an application developer can

intentionally add a dose of altruism in order to improve the

overall performance.

We choose cache sizes for the RUs that we believe are

commensurate with the parameters of our experiment, e.g.,

the number of users (devices), the amount of traffic that they

generate, and the device hardware capabilities. Our objective

is to examine the effect of a constrained cache size on the

performance of the application. If the cache size is large, it

will be practically infinite for the purposes of our experiment,

so the results would not be representative for a larger network.

We present results for cache sizes of 10 and 20 messages. The

rationale is to be able to use the obtained results as best-effort

indications of the performance in a larger scale deployment.

Additionally, cached tweets are aged out after 8 hours, as we

assume that older tweets are of no interest to Twitter users.

Caching in HUEs. Home User Equivalents (HUEs) have

Internet connectivity. They can access all tweets available at the

proxy in real time. However, keeping all tweets of interest to

RUs in HUEs’ caches is unwise. Downloading all these tweets

to the local HUEs’ caches, would increase the bandwidth cost

for HUEs. Additionally, this approach has a scaling issue with

the increase in number of RUs. Thus, we make the content
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available at HUEs adapted to the context, i.e. to the interests

of RUs in the vicinity of HUEs and other RUs that can be

reached in the near future. HUEs have caches of 40 messages

and they are refreshed upon reception of messages from RUs

and messages pushed by the proxy.

D. Putting it All Together

Message Flow. The users create tweets that are forwarded

among them in the following way: Upon a meeting between two

users, messages in their caches are exchanged over Bluetooth.

The Haggle pub/sub framework prioritizes message exchanges

according to user interests: Messages of higher interest will

be exchanged first, followed by the remaining messages in the

cache of the other user’s device. This prioritization is crucial

when contacts are too short to exchange all messages of both

caches. After the exchanges are over, the local caching strategy

decides which messages, if any, should be dropped. To avoid

transmitting messages that are then dropped, we align the

Haggle prioritization with the caching strategy used at the time.

The HUEs are interconnection points between the Internet

and the disconnected Haggle space. The reception of a message

from a RU triggers creation of an HTTP request by the HUE

that is sent to the proxy through the Internet. The proxy

processes the request, performs necessary transactions with the

database and returns a set of messages (“tweets”) as response.

The HUE adds these messages to its local cache and makes

them available to Haggle devices in its vicinity.

Experiment Population. Our RUs’ population counted 50

people. Most of them received phones with the opportunistic

Twitter application; some of them used their own phones. For

the rest of the paper, we will be referring to our population of

Roaming Users (RUs) also as internal users. Many participants

continued using their existing Twitter accounts. The others were

free to choose the channels to follow. A followed channel can

be either internal (content created by an internal user) or exter-

nal (content created by an arbitrary Twitter user on the Internet,

henceforth collectively called external users (or channels)). The

social graph obtained from the “Twitter following relationships”

shows that almost all internal users follow some internal and

external channels. As the content created by external users is

also propagated in our system we can, in a way, consider the

external users as a part of the experiment.

III. NOTATION AND METRICS

Let N = {1, . . . , N} be the set of internal users, let X =
{1, . . . , X} be the set of external users, and let Fj ⊆ N ∪ X
be the set of users that user j ∈ N follows.

Let A,B ⊆ N ∪ X be arbitrary subsets of users. We use

MA→,MA→ for the set and number of messages generated

by any user i ∈ A; M→B,M→B for the set and number of

messages delivered to any user j ∈ B, and MA→B = MA→∩
M→B. Only the messages generated by users that j follows can

ever be considered to be “delivered” to j, but not the messages

that j receives just to forward on behalf of others.

For an internal user j ∈ N and a message m ∈ M→j , let

Dm
j be the delivery delay of message m to user j. That is, Dm

j

is the time elapsed between the generation of m at some user

i ∈ Fj and the delivery of m to j.

For internal users j ∈ N we define the following metrics:

The delivery ratio RA
j from A to j is the fraction of messages

generated by users in A and delivered to user j over the total

number of messages generated by users in A and destined for

user j.

RA
j =

MA→j

MA∩Fj→
. (1)

When A = Fj we drop A from RA
j , and we simply call Rj

the delivery ratio; RN
j is the internal delivery ratio, and RX

j

is the external delivery ratio.

We define the message delay DA
j from A to j as the average

delay over all messages generated by users in A and delivered

to user j.

DA
j =

∑
m∈MA→j

Dm
j

MA→j

(2)

As with the delivery ratio, we call Dj the message delay; DN
j

is the internal message delay, and DX
j is the external message

delay.

We are also interested in evaluating the quality of the syn-

chronization between the opportunistic part and the Internet part

of the application. For this purpose, we treat the Proxy server as

another user and measure its delivery ratio and message delay.

We use the same two definitions as for mobile users, but we

assume that the Proxy follows all internal users.

IV. OBTAINED DATA SETS

As a result of the experiment we get two data sets: (i) the

application metadata that we use to extract the fundamental

performance metrics, such as delay and delivery ratio and (ii)

the contact trace, which we use in trace driven simulations

to obtain the same metrics from contacts. Each of the three

caching strategies applied at RUs is evaluated for two different

cache sizes: 10 and 20 messages. This gives a total of six

combinations, each of which is tested during two working days.

In the trace driven simulations that we perform after the

experiment we implement the same combinations of caching

strategies and cache sizes. Each combination is simulated using

the corresponding 2-day contact trace.

In our experiment, an average internal user (RU) follows 9

internal and 14 external channels (> 600 external channels in

total). The maximum number of internal and external channels

followed by an internal user are 17 and 98, respectively. The

most popular internal channel is followed by 18 internal users,

while the most popular external channel has 8 internal fol-

lowers. The internal users alone create 3010 tweets during the

experiment. “Twitter following relationships” between internal

users are shown in Figure 2.

Figure 3 shows the total number of contacts each of the 50

internal users and 10 HUEs have with other internal users and

HUEs, during the six observed 2-day periods. We distinguish

between contacts with followed internal users, with other inter-

nal users and with HUEs. The total number of contacts varies

depending on user ID and the day of the week. For example, the
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Fig. 2. “Twitter following relationships” between internal users. An edge
between two users means that one of the users follows the other one.

students of the Master’s program have lectures and labs together

on Thursdays and Fridays. Subfigures 1, 2, 4 and 6 (from top

left to bottom right), which correspond to 2-day periods that

contain either Thursday, Friday or both, clearly show more

contacts (116, 98, 123 and 116 contacts per user per day,

respectively) than subfigures 3 and 5 (56 and 59 contacts per

user per day), which correspond to combinations of Mondays,

Tuesdays and Wednesdays. The contact durations follow a

similar pattern. For this reason, the comparison between the

caching strategies is not perfect, but a more comprehensive

study on this topic is out of the scope of this paper.
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Fig. 3. Total number of contacts experienced by internal users (j = 1, .., 50)
and HUEs (j = 51, .., 60) during 2-day evaluations of the 6 combinations of
caching strategy cStrat and cache size cSize.

In Figure 4 we plot the CCDF of inter-contact times between

the internal users and HUEs. It shows how often RUs visit

the popular locations within the campus where HUs can be

found. We view all HUEs as parts of the same backbone (as

they all have access to the Internet) and calculate inter-contact

times with it for all internal users. The CCDF in Figure 4 is

flat between 3 and 20 hours, which implies that it is more

probable for a user to meet a HUE soon after the previous

meeting. We also see that 80% of inter-contact times with HUEs

is shorter than 50 min and only 3% is longer than 24h. We

observe two drops, at 20-25 hours and at 3 days, corresponding

to meetings that happen once a day around the same time, and

Friday meetings that happen again on Mondays.
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Fig. 4. The distribution function of inter-contact times with HUEs obtained
for the whole duration of the experiment.

V. PERFORMANCE METRICS: EXPERIMENT RESULTS VS.

CONTACT-BASED SIMULATION

The availability of the application metadata and contacts for

the same experiment allows us to test the accuracy of com-

monly used contact-based simulations. The rotation of caching

strategies permits us to verify the robustness of our conclusions.

We focus on two fundamental networking measures, namely,

delay and delivery ratio. In the case of both metrics we first

analyze the values obtained from the experiment. We then

compare these values with the corresponding values obtained

from the contact-based simulations. Finally, we study the effects

of adding a backbone to an opportunistic network, showing

that as a rule, contact-based studies underestimate the impact

of backbone, due to hidden assumptions.

A. Delivery Ratio: Experiment vs. Contact Simulation

Experimentally obtained delivery ratios. Figure 5 shows

the internal and external delivery ratios, RN
j and RX

j , seen by

internal users (j = 1, ..., 50) and by the proxy (j = 51) during

the observed evaluation periods. Each period of two working

days corresponds to a combination of a caching strategy and a

cache size. We see that proportional strategy performs on aver-

age 10-20% better for both evaluated cache sizes. We observe
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higher delivery ratios when the cache size is 20, regardless of

the caching strategy. Finally, through the performance of user

51 (proxy), we see that almost all messages, created by internal

users are delivered to Twitter web site.
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Fig. 5. Internal and external delivery ratios, RN
j and RX

j , seen by the internal

users (j = 1, ...,50) and by the proxy (j = 51). Every combination of caching
strategy (cStrat) and cache size (cSize) was evaluated during 2 days.

Figure 5 also shows that the external delivery ratio is lower

than the internal. The reason is that the number of external

channels is large (> 600) and there is only a limited overlap

between channels followed by internal users. So, each cached

external channel is useful to few internal users. Even if caches

were full of external channels, there would still be channels

that are not cached anywhere, thus making it difficult for the

followers of these channels to receive them.

Contact simulations overestimate delivery ratios. We now

compare the experimental results with the values of delivery

ratio obtained from the contact-based simulations. Each com-

bination of cache size and caching strategy is simulated using

contacts collected during the period when the combination

was used. In Figure 6, the full lines on the right subfigure

represent delivery ratios perceived by experiment participants,

for messages created by internal users and for cache size of

20 messages. The same unsorted values are shown on Figure 5

(three subfigures on the right). The left subfigure on Figure 6

contains the corresponding delivery ratios, obtained from the

contact-based simulations of the same caching strategies for

the cache size of 20 messages. It also contains delivery ratios

obtained from the simulation with unlimited cache sizes, where

users cache all received messages (top full line). This is the

most represented case in the existing literature [2], [1].

The two subfigures allow us to draw the first two conclu-

sions about the deficiencies of contact-based simulations. First,

contact-based simulations overestimate the delivery ratios. This

is due to the fact that they fail to model the limited contact

durations and transfer bandwidth, as well as the limitations of

the used wireless technology. In other words, some recorded

contacts do not result in transfers and some of them allow

transfers of only a part of available data. This is further

confirmed in Section V-B, where we analyze delays. Second,

assuming unlimited cache sizes always increases delivery ratios.

For example, we can see that this assumption increases delivery

ratios for up to 30%, compared to the case with altruistic

caching strategy and the cache size of 20 messages.

Misinterpreting the importance of backbone. The col-

lected data set enables us to study the improvement that a

backbone brings to opportunistic communication. The appli-

cation metadata allows us to differentiate between copies of

a message that traversed the backbone (HUEs, proxy) in the

process of forwarding and those that reached their destinations

using pure ad hoc forwarding. By considering the former as

lost, we calculate delivery ratios and delay in a hypothetical

system without backbone connectivity. As external messages

cannot enter the system without the backbone, the metrics in the

hypothetical system are about internal messages only. Similarly

to the definition of Rj in Section III, we define R′
j as the

fraction of messages delivered to user j over the total number of

messages destined for user j, in a system without a backbone.

The dotted lines in Figure 6 represent delivery ratios in

the system without backbone (HUEs, proxy), for different

caching strategies and the cache size of 20 messages. Again, the

contact-based simulation significantly overestimates delivery

ratios (about 30% in the case of proportional caching strategy).

Figure 6 allows us to observe another trap of contact-based

simulations. We see that in the case of limited cache sizes

backbone brings significant improvement to delivery ratios.

However, in the comprehensive simulation study in [1] the

authors conclude that backbone brings only marginal improve-

ment to delivery ratios. This conclusion is the result of an often

hidden assumption in contact based studies that cache sizes are

infinite. Indeed, as we see in Figure 6, in the simulated case

with unlimited cache sizes, backbone brings almost negligible

improvement. This is due to the fact that a user with unlimited

cache can store much more information, so during a contact,

she can provide almost as much data as a backbone.

B. Delay: Experiment vs. Contact Simulation

Delay obtained from the experiment. Figure 7 shows the

internal and external message delays, DN
j and DX

j , observed

by the internal users (j = 1, .., 50) and by the proxy (j = 51).

The average internal delay typically ranges from 100 to 140

minutes. The average external delay is higher. Intuitively, one

would expect the external messages to reach their destinations

faster, due to their availability at all HUEs soon after creation.

Messages created by internal users, in contrast, experience a

non-negligible delay before becoming available at HUEs, as

we can see from the delay observed by the proxy (j = 51 in

Figure 7). However, as we observe in our message log, some

of the external messages created in different time zones are

created during the night. This introduces delay, as there are

very few or no internal users on the campus in the nighttime.

Contact-based simulation underestimates delay. In Fig-

ure 8 we plot delays obtained from the experiment and contact-

based simulations, for the cases with and without backbone.

We see that simulations give delays that are 2-3 times lower



7

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

User ID

D
e
liv

e
ry

 R
a
ti
o

 

 

With backbone, cacheUnlimited (cSize=unlimited)
With backbone, cacheProportional (cSize=20)
With backbone, cacheSelfish (cSize=20)
With backbone, cacheAltruistic (cSize=20)
No backbone, cacheUnlimited (cSize=unlimited)
No backbone, cacheProportional (cSize=20)
No backbone, cacheSelfish (cSize=20)
No backbone, cacheAltruistic (cSize=20)

(a) Delivery ratios - simulation

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

User ID

D
e
liv

e
ry

 r
a
ti
o

 

 

With backbone, cacheProportional (cSize=20)
With backbone, cacheSelfish (cSize=20)
With backbone, cacheAltruistic (cSize=20)
No backbone, cacheProportional (cSize=20)
No backbone, cacheSelfish (cSize=20)
No backbone, cacheAltruistic (cSize=20)

(b) Delivery ratios - experiment

Fig. 6. Delivery ratios obtained from the simulations and from the experiment for different caching strategies. The full lines correspond to the system with the
backbone (HUEs, proxy), while the dotted lines describe the system without the backbone.

than the experimentally obtained delays. We inspect the contact

trace and the application data and we observe that recorded

contacts do not always result in message transfers. This means

that limited transmission bandwidth, short contact durations

and inability of Bluetooth to concurrently scan and send data

prevented users from leveraging all transfer opportunities. As

most of these limitations are not inherent only to Bluetooth, we

conclude that delays obtained from contact simulations should

be taken with a grain of salt, as they tend to be too optimistic.
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Fig. 7. The average age of received message observed by internal users.
Every combination of caching strategy (cStrat) and cache size (cSize) was
evaluated during 2 working days.

Delay from Users’ Viewpoint. The recorded delays give

us some insights into performance from the networking per-

spective. However, we would like to know more about users’

perception of this performance and their reaction to it. Twitter

option called “@replies” allows us to find out more about this.

When a Twitter user receives a tweet she wants to respond to,

she can create an @reply message, by putting @ + the name of

the creator of the original tweet in his reply. This helps us easily

identify pairs containing original tweets and @replies to these

tweets. We then record delays for the tweets whose reception

led to the creation of @replies by the recipients and we plot

the corresponding CCDF (Figure 9). We see from the figure

that 60% of the tweets that receive an @reply are received

with a delay inferior to 2h. However, 40% of the tweets that

instigated the creation of an @reply message are received with

a delay between 2 and 3h, which means that the recipients

still find this non-negligible delay acceptable. In addition to

this, we find that many of the @replies are threaded and parts

of longer conversations (we also verify this by checking the

message content), which means that the observed delays allow

users to maintain longer message exchanges.

1 10 min 1 h 2 h 3 h
0.01

0.1

0.5

Time

P
[X

>
x
]

Fig. 9. The distribution function of observed delays for the tweets whose
reception led to the creation of @replies by the recipients.
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Fig. 8. Delays obtained from the simulations and from the experiment for different caching strategies. The full lines correspond to the system with the backbone,
while the dotted lines describe the system without the backbone. The case with unlimited caches is also simulated.

VI. CLOSENESS CENTRALITY PREDICTS DELIVERY RATIO

In Section V we show that simulations on contact traces

suffer from multiple drawbacks. A contact trace can also be

analyzed using its statistical properties. The goal is the same,

estimating the performance of a network/application. We apply

the following approach: to represent the contacts among users,

we define the contact graph as an undirected weighted complete

graph Gcon = (N ∪ {I}, Econ). The vertex set comprises the

internal users and the vertex I representing the infrastructure.

As the graph is complete, the edge set Econ comprises all

unordered pairs of vertices. The weight of the edge ij ∈ Econ

is equal to wij = 1

cλ
ij

, where cij is the number of contacts

between users i and j, and λ is a real number constant.

In the graph Gcon, we denote by dij(λ) the shortest path

distance between i and j. The average shortest distance di(λ)
of a node i (other than I) to all other nodes in the graph is

di(λ) =

∑
j∈N\{i}∪{I} dij(λ)

N
, (3)

also called closeness centrality in the social network literature

[12]. The lower this quantity is, the more connected a node is.

We find a noticeable dependency between the delivery ratio Ri

of a node i and the node’s closeness centrality di. In particular,

the following curve fits the data well:

Ri =
1

1 + kdi(λ)
, λ = 0.95, (4)

where k is a constant that depends on the caching strategy

(discussed later). Other centrality measures that we tested,

namely degree centrality, eigenvector centrality and between-

ness centrality, result in weaker dependency. By applying a

similar approach to the social graph shown in Figure 2, we find

no dependency between delivery ratio (or delay) and centrality

measures in this graph.

The weight exponent λ can change the relative importance

of small and large edge weights. The weight of a path p is the

sum of the weights of its edges e1, e2, ..., el:

w(p) =
1

cλe1
+

1

cλe2
+ . . .+

1

cλel
. (5)

With a large positive value of λ, the edges with a small number

of contacts dominate, whereas with a large negative value of

λ, the edges with a large number of contacts dominate.

We choose λ = 0.95 because this value maximizes the

mutual information between d(λ) and R, viewed as discrete

random variables. Intuitively, the mutual information of d(λ)
and R is high when the knowledge of one reduces our uncer-

tainty about the other, which is desirable as we want to use

d to predict R. The advantage of using mutual information as

opposed to, for instance, correlation, is that mutual information

is not biased by the relative values of the quantities involved.

So, we see that, to maximize the predictive power of d for R,

all edge weights should be treated with approximately equal

importance. After choosing λ = 0.95, we do curve fitting to

find the value of k that minimizes the sum of vertical distances.

The values of k are always in the interval [2.7, 3.5].
Knowing the dependency and using the curve helps one esti-

mate a typical node’s expected delivery ratio if one can estimate

or guess a typical node’s closeness centrality. Furthermore, one

can form an expectation about the effect of connecting to the

backbone (thus changing nodes’ closeness centralities) on the

delivery ratio that network users will experience.

For k = 3.1, we plot the data and the curve in Figure 10. In

every subfigure each user’s Ri and di are plotted for the cases

with and without backbone. We see that the R− d dependency

holds, not only across users within the same network topology,

but persists even across qualitative changes in the topology.

Moreover, we see that the dependency exists, and the curve
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Fig. 10. Dependency between delivery ratio Ri and closeness centrality di.

fits, regardless of the caching strategy used. This last point is

important, because caching strategies affect delivery ratios. But

the effect of the caching strategy can be included in the constant

k, which is limited to a small range of values. We conclude that

a node’s distance is a reliable indicator of its delivery ratio.

VII. RELATED WORK

The validation of simulation results with measurements has

been used to evaluate the accuracy and determine the level

of fidelity of simulation models [13], [14]. To the best of

our knowledge, this is the first paper that studies limitations

of the contact-based simulations in opportunistic networks.

This is somewhat surprising, given the variety of topics and

proposals validated using contact-based simulation. A possible

explanation can be sought in the cost, scale and complexity of

the experimental evaluation, needed for such a study. Although

the first of its kind, this paper is closely related to a large

body of work that covers various aspects of opportunistic

communication through contacts. It concerns contact-based

evaluations of caching and replication schemes [3], validations

of forwarding protocols [4] and studies of content dissemination

in urban environment [2], [7].

Finally, this paper is closely related to the studies of the

effect of backbone on opportunistic communication. Initially,

they relied exclusively on contact traces [5], [1]. In [1] the

authors perform extensive simulations on Bluetooth contacts in

order to quantify the effect of the opportunistic and backbone

components in a DTN. They conclude that backbone brings

only marginal improvement to opportunistic communication.

The UMass DieselNet testbed addressed a similar topic, but

the Wi-Fi equipped buses exchanged traffic (obtained from

the Poisson distribution). The authors observe higher utility of

the backbone component [8]. Our study permits to reveal that

much of this discrepancy, in the observed backbone-induced

improvement, comes from a common assumption in contact-

based simulations about the infinite cache sizes.

VIII. CONCLUSIONS

Several important conclusions can be drown from this study

of the drawbacks of contact-based simulations in opportunistic

networks. First, our experimental results show that the com-

monly ignored factors in simulation studies, such as technology

limitations and transmission bandwidth, lead to significant

discrepancies between experimental and simulation values. All

caching strategies and cache sizes, tested by 50 users during

the 2.5 week experiment, unanimously confirm that contact-

based simulations tend to overestimate network performance

(especially delay). This means that an effort should be made to

include these factors in the future trace driven simulations.

Second, we find that some commonly hidden assumptions,

like the assumption about infinite cache sizes, result in the

overly pessimistic conclusions about the utility of a backbone

in an opportunistic network. This is an interesting finding that

could direct more attention towards hybrid networks, that in-

clude both, the opportunistic and the infrastructural component.

Finally, we show that a statistical treatment of the con-

tact trace, offers a good prediction of certain performance

aspects, namely delivery ratio. We show how the existence of

a backbone increases the message delivery ratio by reducing

user distances on the contact graph. The strong statistical

dependency that we find (between node’s centrality and delivery

ratio) can help predict not only delivery ratios, but also the

effect of adding a backbone to an opportunistic network.
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