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Abstract—Mobile phones are integral to everyday life with
emails, social networking, online banking and other applica-
tions; however, the wealth of private information accessible
increases economic incentives for attackers. Compared with
fixed networks, mobile malware can replicate through both
long range messaging and short range radio technologies; the
former can be filtered by the network operator but determining
the best method of containing short range malware is an open
problem. While global software updates are sometimes possible,
they are often not practical. An alternative and more efficient
strategy is to distribute the patch to the key nodes so that they
can opportunistically disseminate it to the rest of the network
via short range encounters; but how can these key nodes be
identified in a highly dynamic network topology?

In this paper, we address these questions by presenting Socio-
Temporal Opportunistic Patching (STOP), a two-tier predictive
mobile malware containment system: devices collect co-location
data in a decentralized manner and report to a central server
which processes and targets delivery of hot fixes to a small
subset of k devices at runtime; in turn mobile devices spread the
patch opportunistically. The STOP system is underpinned by a
recent theoretical framework for analysing dynamic networks
that takes into account temporal information of links. Using
empirical contact traces, we find firstly, the top-k ranking
temporal centrality nodes are highly correlated with past time
windows; and secondly, simple prediction functions can be
designed to select the set of top-k nodes that are optimal for
patch spreading.

I. INTRODUCTION

Smartphones have become increasingly powerful and their
ubiquity and convenience has increased our reliance on them
for both personal use (e.g., online social networks, location
aware applications, mobile banking, NFC payment systems)
and business applications (e.g., corporate emails, business
calendar, client contact books and authentication to corporate
network). With increasing economic incentives, in recent
years we have seen a steady rise in mobile malware [13],
[14], with exploits including remote access to devices [2],
mobile banking attacks [4] and eavesdropping of calls [3].

Recently, approaches have been developed to reduce the
threats of such malicious or poorly written programs [9],
[15]; however, such techniques are mainly used to de-
tect unauthorized access to information. Unlike these ap-
proaches, the solution presented here focusses on an ef-
fective security patch dissemination system to mitigate the
spread of a mobile worm. Though prevention is very im-
portant, there are inherent detection limitations [7], hence,
actively disseminating patches may be necessary.

This requirement is exacerbated by more diverse channels
of propagation rendering mobile malware more sophisticated
than desktop viruses; mobile malware can potentially exploit
both long range (SMS, MMS, email etc.) and short range
(Bluetooth, WiFi, ZigBee etc.) channels. Although a mobile
network operator can potentially filter long range messages,
this is not the case for short range propagation. The hazards
of short range mobile worms were first highlighted when
the first Bluetooth worm, cabir [1], broke out of a research
lab by replicating to researcher’s own devices; this prompted
the need for a radio-shielded room for future research [12].
More recently, Rieback et al. demonstrated the feasibility
of a RFID based worm propagation [17]. STOP addresses
the important issue of containing short range transmission
of mobile worms, by utilizing the same propagation channel
which facilitates quick spreading via social contacts.

A. Motivation

There are several reasons why naively sending security
patches directly to every device is not efficient in cellular
environments. Firstly, the cost in mobile data service plans
is not widely in favor of end users hence they may resist to
receive security patches via 2G/3G networks if they do not
subscribe to unlimited wireless data access plans; secondly,
many mobile devices, such as tablets, do not have 2G/3G
radios and hence rely on Bluetooth or WiFi to receive data;
thirdly, there are inherent restrictions in bandwidth due to the
current cellular infrastructure. In fact, it has been shown that
the mobile infrastructure for the entire United States can be
congested by only half-a-million messages per second [10].
Finally, service coverage is not guaranteed in certain areas
(e.g., rural or underground metro systems).

We envisage that in scenarios where we may not be able
to solely rely on the mobile network operator to deliver the
patch, STOP can provide an alternative or complementary
method for patch distribution. STOP uses both social and
temporal information to target a small subset of devices to
receive a patch and allow opportunistic contacts to spread
the patch between devices.

Such proximity and social network based patch delivery
mechanism have been introduced recently [23], [19], how-
ever, they show several limitations including:

• neglect periodic or regular human activity in a short-
time scale [23];



• require that mobile devices perform non-trivial compu-
tation of containment strategies locally [23]; and

• are based on the assumption that global knowledge of
all past and future contacts is available [19].

B. Contributions

We address these three shortcomings by introducing
STOP (Socio-Temporal aware Opportunistic Patching sys-
tem), a solution for malware containment that takes into
account temporal contact patterns of real social behavior,
offloads non-trivial computation to the mobile network op-
erator, and predicts the best set of devices to start spreading
a security patch1. STOP is composed of a two-tier model:
mobile devices scan nearby devices using Bluetooth, Zigbee,
NFC or other future short range radio technologies and
upload these sightings periodically via WiFi, 3G or desktop
sync. A patch service hosted by the mobile network operator
is responsible for collecting the traces of mobile services and
distributing the latest security patch to a key subset of central
devices that then will spread the patch to neighbouring
devices opportunistically via short range radio.

But can we predict important nodes which can quickly
spread a patch in order to stop malware dissemination?
To answer this question, we first have to take into ac-
count the rich temporal variation in the network of device
contacts. Then, we need to evaluate the hypothesis that
a currently important node is also likely to be important
in the future (we verify this conjecture experimentally in
Section III-A2). More specifically, firstly, we use techniques
founded on time-varying social network analysis, namely
temporal graphs to model the underlying contact process
and temporal closeness centrality as a measure of node
importance. Temporal closeness is a measure of a node’s
ability to spread information quickly to the most number of
nodes [19]. Secondly, the definition of effective prediction
functions requires the specification of a model which is able
to capture the correlation of a node’s importance in terms
of information propagation with respect to the past history
of the evolution of the contact network.

Our contributions can be summarized as follows:
• We define the top-k set membership prediction problem

which is used to study the selection of a subset of nodes
from which to start spreading a patch (see Section
III-A). The goal of this prediction model is to forecast if
a certain node can spread a message quickly and to the
most number of devices in the future (more precisely,
a member of the set of the top-k central nodes) based
on the previous observations of the network evolution.

• By exploiting empirical datasets, we observe that the
list of the top-k important devices shows a high corre-
lation over time: linear time-complexity algorithms can

1Such a security patch could be a malware signature or binary code to
fix a known vulnerability.
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Figure 1. Example (a) temporal graph and corresponding (b) static graph.

be devised to predict the best devices to start spreading
a patch (see Sections III-B & III-C).

• We evaluate node selection based on temporal closeness
centrality against those founded on static closeness
and random selection; we demonstrate that the most
effective devices for spreading a patch can be identified
through temporal centrality using a simple logarithmic
weighted prediction function (see Section IV).

Before we proceed, the next section shall motivate the
need for temporal graph analysis and introduce the temporal
centrality measure and empirical datasets used in this paper.

II. PRELIMINARIES

A. Temporal Graph Model

Temporal graphs have recently been proposed [20] to
model real time-varying networks, with the intuition that
the behavior of dynamic networks can be more accurately
captured by a sequence of snapshots of the network topology
as it changes over time instead of using a representation
whereby all the contacts are aggregated into a single static
graph. For example, consider a temporal graph (Figure 1
(a)), consisting of 3 time windows and the corresponding
aggregated static graph (Figure 1 (b)). The shortest path
from node A to node F has 2 hops via (A,D,F ); however,
if we take into account the actual time order of contacts
(Left of Figure 1), we notice that the first edge AD at
time t2 will never precede edge DF at time t0; in fact the
real temporal shortest path is 4-hops (A,B,C,E, F ) (AB
at time t0, BCE at time t1 and EF at time t2) taking 3
time windows. Since static analysis ignores time ordering of
contacts, static shortest paths overestimate the available links
and underestimate the actual shortest path length; STOP
takes advantage of this more realistic time-varying graph
model. Also note that the high density of links within the
static graph contributes to problems discriminating between
important nodes when calculating static centrality [11]. Fur-
ther, since closeness centrality is based on shortest paths, we
use a temporal closeness centrality which takes advantage
of this temporal information [19].

To take into account both uni- and bi-directional short
range radio technologies, we define a directed temporal
graph, which can be thought of as an ordered sequence of
directed graphs2.

2This does not lose generality in terms of bi-directional communication
as transmissions can still be reciprocated during the same encounter.



More formally, given a real-world contact trace starting
at tmin and ending at tmax, the directed temporal graph
Gw(tmin, tmax) is defined as the ordered sequence of graphs
(G0, G2, . . . , Gτ−1) where τ = ((tmax − tmin)/w) =
|Gw(tmin, tmax)| is the number of graphs in the sequence
and w is the size of each time window expressed in some
time units (e.g., seconds or hours). There exists a directed
link from i to j in Gt if there is a contact from i to j during
the time interval [(tmin + (w× t)), (tmin + (w× (t+1)))].
All windows have the same set of nodes V .

From this, a temporal path starting at i and finishing at
j can be defined over Gw(tmin, tmax) as a sequence of η
hops via a distinct node nWη

η at time window Wη:

phij = (nW1
1 , . . . , nWη

η ) (1)

where i = n1, j = nη , node nη is passed a message
at time window Wη ≥ Wη−1, 0 ≤ Wη < τ and h is
the maximum number of hops through which a message is
replicated within the same window. Subsequent definitions
implicitly set h = 1, since higher values of h lead to similar
performance of the containment schemes. We call Qij the
set of all temporal paths between nodes i and j. If a temporal
path from i to j does not exist, we set the distance lij =∞.

Using the function D(pij) = (w×Wη) which returns the
delivery time (at window Wη) for the given path relative to
tmin, the shortest temporal path length is defined as:

lij = min(D(qij)),∀qij ∈ Qij (2)

B. Temporal Centrality Calculation
In social network analysis, various centrality measures

have been defined for different applications, however for
identifying the best node to spread a message quickly,
closeness centrality has been shown to be effective [19].

Two nodes of a static graph are said to be close to each
other if their geodesic distance is small. In a static graph an
estimation of the global closeness of a node i is obtained as
the average static shortest path length to all other nodes in
the graph, or more formally for a node i:

Cstatic(i) =
1

N − 1

∑
j 6=i∈V

pi,j(i) (3)

where pi,j is the number of hops in the shortest path
from node i to node j and N is the set of nodes in the
network [21]. However, this does not capture the time-
varying nature of the contacts such as time order. We can
extend the definition of closeness to temporal graphs using
the temporal shortest path length between nodes, which is
a measure of how fast a source node can deliver a message
to all the other nodes of the network. Given the shortest
temporal distance lij(tmin, tmax), the temporal closeness
centrality is defined as follows:

Ctemporal(i) =
1

N − 1

∑
j 6=i∈V

1

li,j
(4)

CAMBRIDGE INFOCOM MIT
Environment Office Conference Campus

N 18 78 100
Start Date 3 Feb ’10 23 Apr ’06 26 Jul ’04
Duration 10 Days 5 days 280 days

Avg. contacts per day 1927 25796 231
Scanning Rate 30 sec 2 min 5 min

Table I
EXPERIMENTAL DATASETS

where 1/li,j is the inverse of the temporal path length to
a destination node j, so that nodes that have on average
shorter temporal distances to the other nodes are considered
more central.

We compare temporal closeness with the static version
using aggregated static graphs (i.e., considering a graph
where an edge is present if it appears at least once in any
time window in Gt). The calculation of closeness centrality
for all nodes a static graph has O(N3) time complexity,
while it requires O(N3 + I) in the aggregated static graph,
where I is the number of total interactions between nodes.
The calculation of temporal closeness has O(N3τ) time
complexity, however, in practice, this is much smaller since
most windows are sparse and the algorithm can stop once
all nodes are reached. Note also that this computation can
be parallelized with respect to each source node i.

C. Empirical Datasets

To evaluate our socio-temporal aware mobile malware
containment scheme, three traces of real mobile device
contacts carried by humans are used: Bluetooth traces of
researchers at the University of Cambridge, Computer Lab-
oratory, as part of an emotion sensing experiment [16];
Bluetooth traces of participants at the 2006 INFOCOM con-
ference [18]; and campus Bluetooth traces of students and
staff at MIT [8]. We shall refer to these as CAMBRIDGE,
INFOCOM, MIT, respectively, and can be classified as of-
fice, conference and campus environments. Table I describes
the characteristics of each set of traces. All three datasets
were constructed from mobile device co-location where
participants were given Bluetooth enabled mobile devices to
carry around. When two devices come into communication
range of the Bluetooth radio, the device logs the colocation
with the other device. For the CAMBRIDGE dataset, all 10
days are used as part of the evaluation. For the INFOCOM
dataset, since devices were not handed out to participants
until late afternoon during the first day, only the last 4
days are used. For the MIT dataset, we show results for the
first two weeks of the Fall semester3 representing a typical
fortnight of activity. The most important characteristic is the
density, described by the average number of contacts per
day. Indeed, since the INFOCOM dataset is extracted from a
confined conference environment with scheduled talks, they
are temporally denser compared to the campus and office
settings.

3http://web.mit.edu/registrar/www/calendar0405.html
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Figure 2. Example of the top-k set membership prediction problem, using
uniform weighted frequency selection.

III. PREDICTING CENTRAL NODES FOR PATCH
DISSEMINATION

We now turn our attention to predicting the top-k highly
ranked temporal centrality nodes based on past observations.
This section is split into three parts: firstly, we describe how
past rankings can be used to predict future rankings (Section
III-A); secondly, we gain insight into the predictability of
empirical datasets by demonstrating the correlation between
rankings at different time points (Section III-B); and finally,
we use these insights to inform our prediction function
design (Section III-C).

A. Top-k Prediction Model

The top-k prediction model captures the problem of iden-
tifying the top-k nodes to start spreading a patch, starting
from the current instant of time. Intuitively, using past
observations, this prediction is based on the number of times
a node i is in the set of top-k central nodes in the previous
intervals of time. This frequency of observations can also
be weighted by considering the time difference relative to
the current time (i.e., more recent observations could have
higher weighting or vice versa, etc.).

1) Example: To illustrate this idea, Figure 2(a) depicts
the problem of predicting the top k = 1 node at the
current time tnow. For each time window (x-axis), we
construct an ordered list of node identifiers. For example,
at time t0, nodes are ranked by a centrality measure as
(A,C,B,E, F,D). Since we may not have the most recent
information of contacts and node rankings, we need to take

into consideration a lag time L between tnow and the last
training window at tnow−L.

Using this model we need to define a suitable weighting
function on the top-k set of nodes in these past windows;
this shall be discussed in further detail in Section III-B2,
however, for now let us consider a simple uniform weighting
function Wuniform, where all training windows are treated
equally. Since node A appears three times across the training
windows, it has the top weight and would be sent the patch.

Extending this to k = 3, again we iterate over all training
windows, weighting the top 3 nodes accordingly. Notice
again that node A is predicted to be in the top 3 nodes, along
with node C and B; a patch is sent to all three devices.

Finally, it is worth noting that patching additional nodes
might provide a limited benefit in some cases. For example,
if two temporally connected components exist, the top-2
nodes may belong to the same component. If the infection
is started also from this additional node, the benefit will
be incremental, since both nodes are members of the same
connected component. However, this proposed scheme does
allow for redundancy which might be very useful given
the inherent uncertainty of predictions. We shall see in
Section IV-E that temporal centrality requires a smaller value
of k for an effective containment scheme.

2) Definitions: More formally, given the number of top
nodes k, lag time L and current time tnow, we first construct
the temporal graph G(t0, tnow − L) from the uploaded
contact data. Next for every graph Gt ∈ G at time t, we
calculate the temporal centrality Ct using G(t, tnow − L).4
From this we construct the list of window centrality rank-
ings R(t0, tnow−L) for each time window in the interval
[t0, tnow−L]. Each window centrality ranking rt ∈ R at
time t is an ordered list of N node identifiers ranked by
temporal centrality using Ct. Next we construct the list of
top-k centrality window sets Sk = (s0...sW−1), where set st

corresponds of top-k centrality nodes in the window ranking
rt.

From this, given the top-k sets Sk(t0, tnow−L), for each
node i, its weighted frequency value Fi is defined as:

Fi =

W−1∑
t=0

ztiw(d), zti =

{
1 if i ∈ st
0 otherwise (5)

where zti is used to count the presence of node i in the
top-k set sk, d = tnow−t is the difference between the time
to be predicted and the training window and w(d) is an aging
function used to assign different values to the presence of
the node in the set of the top-k nodes in a certain window.

Then the nodes are sorted in descending order by their
value of Fi and the top-k are selected for patching. In
the previous example a uniform weighting w(d) = 1 was
described. Note that although contact uploads could be

4It is pertinent to note that this model can be generalized to any form of
node ranking.
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Figure 3. Plotting self similarity between the rankings related to all
windows a with all windows b ≤ a, averaged by time difference d = a−b
(x-axis). Static (left column) and temporal (right) centralities plotted.
Legacy correlation is observed with both static and temporal centrality.

staggered between different devices, we consider a uniform
lag time (for example, all nodes uploaded at the same
time yesterday). This is reasonable since any extra recent
information increases prediction accuracy. In Section III-C
we shall describe more refined prediction functions.

B. Predictability of Human Contact Traces

The derivation of our prediction functions is founded on
the hypothesis that since human mobility is highly regular
[6], a central person today is highly likely to be central at
some point in the future.

1) Top-k Correlation Function: To test this hypothesis,
we first define a correlation function to measure the sim-
ilarity of top ranking nodes between different windows.
Building on definitions in Section III-A2, given a sequence
of top-k centrality window sets Sk(tmin, tmax), we simply
use the Jaccard index between any two given window sets
sa, sb ∈ Sk and where k = |sa ∪ sb|:

Aka,b =
|sa ∩ sb|
|sa ∪ sb|

(6)

2) Testing for Top-k Correlations: We now measure
the self-similarity between the rankings for different time
windows, by first calculating the complete sequence of

Function w(d)
Uniform 1
W-log(d) log(d+ 2)−1

W-sqrt(d) (
√
d+ 1)−1

W-exp(d) (2d)−1

Table II
PREDICTION FUNCTIONS WITH TIME DIFFERENCE, d.

window centrality rankings S(tmin, tmax) for each dataset,
and then plotting the correlation function Aa,b for every
training window sa ∈ S against a past window sb ∈ T
where b ≤ a. We repeat this for different values of k.
Figure 3 plots the time difference d = a − b across the
x-axis against Aa,b on the y-axis, averaged by d. First, we
notice that, as expected, as we increase k the correlation
function A also increases. However, we also notice across
both static and temporal closeness centralities, there is a
clear legacy effect in that top-k nodes are stable for some
consecutive time windows (around a day in all traces). The
peak at around 10 days in the CAMBRIDGE dataset can
be attributed to the devices being collected and physically
colocated at the end of the experiment. We also tested these
correlations against a null model where we randomly shuffle
the windows and calculate the same correlation function A:
we found < 2% correlation for top-75% nodes uniformly
across different time differences; for clarity, these are not
plotted.

C. Prediction Function Design

Our aim is to predict the top-k ranked nodes from which
to spread the patch by taking advantage of the knowledge
about the previous evolution over time of the network. By
making use of past observations, this prediction is based on
the number of times a node i is in the set of top-k nodes
which can also be weighted by the time difference relative
to the current time. Since we have observed both a strong
correlation with recent past windows (in all centralities) we
design empirical functions which weight past windows by
distance in time.

We now describe four possible prediction functions based
on a weighted average characterized by different complex-
ity5. These functions are summarized in Table II. From
our observations of a strong correlation with recent time
windows, we can assign an age weighted function to a
nodes membership in a previous time window ti with time
difference d = (tnow − ti): W-log(d), W-sqrt(d), and W-
exp(d). In addition, we also compare to a simple option
that weights all previous set membership equally: Uniform.
Note that these functions can be computed in O(M) for one
prediction of w(d) where M is the number of training time
windows used.

Our approach has two key advantages: (1) it is simple
to implement and deploy since we only require the past

5We have tested other potential alternatives, but given the space limita-
tions, we describe those that led to the best prediction performance.
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Figure 4. MIT: Malware started at day 0 and patch started 1 day later
from device selected by temporal closeness (left) and random (right). Area
under each curve reported in legend.

centrality values of mobile services, rather than tracing the
whole past geometric positions of nodes; (2) it requires
linear time to approximate network centrality. Our strategies
are thus useful for large-scale and online computation –
training data can be frequently updated in real time.

IV. EVALUATION

We now evaluate STOP through trace-driven simulations
using as input the three datasets described in Section II-C,
replaying the trace contact-by-contact to simulate the spread-
ing of a malicious worm. The top-k devices are chosen
according to the calculated temporal closeness and static
closeness centrality rankings6 as described in Section III-A2
where w is set to the finest window granularity, correspond-
ing to the scanning rate of the devices in each dataset (for
example, 30 second windows for CAMBRIDGE).

The nodes that are initially infected with malicious mes-
sages are chosen uniformly randomly, averaged over 100
runs. Our evaluation is based on the following assump-
tions: firstly, when a node receives a patch message, it is
immunized for the rest of the simulation (i.e., we assume
that the malware does not mutate over time); secondly,
there is always a successful file transfer between devices
(errors in transmission can be taken into consideration in
the assessment of the contention scheme without changing
significantly the results of our work, assuming random
transmission failures); thirdly, following the previous point,
we assume 100% malware infection rate (this gives us the
worst case scenario); finally, an attacker chooses nodes at
random (or users download malware randomly).

A. Parameters and Evaluation Metrics

Figure 4 plots the infection rate when a piece of malware
is started at midnight on the first day of the MIT dataset
and a patch is sent 1 day later from two different devices.
Note the difference between the device selected by temporal
closeness (left) and a random selection (right) in containing
the malware, which indicates that there is a clear advantage
in using such a temporal graph measure. To understand if
this still holds across different malware start times and patch
delays we first characterize the infection rate using three
metrics:

6In the case of the static model, Ct is the static centrality calculated on
a graph aggregated over G(t, tnow − L).

• the area under the curve (AUC), which captures the
behavior of the infection over time with respect to the
number of infected devices;

• the time zero in hours necessary to achieve total mal-
ware containment (TZ); and

• the peak number of compromised devices (MAXN ).
Note that we aim to minimize these three metrics. In the

figure, device 2 reduces the AUC of the malware to 0.24
vs. 2.01; can contain the malware quicker (6 days vs. 2
weeks) and has a smaller MAXN (10% vs. 60%). Since
there are many parameters under investigation, these three
metrics now help to understand the effects of:
• Malware Start: the time at which malware is deployed,

starting every 3 hours of each trace;
• Patch Delay: the delay before a patch is ready to be

deployed from {1 hr, 3 hrs, 24 hrs, 48 hrs};
• Upload Interval: the frequency of mobile device contact

uploads {1 hr, 24 hrs};
• Initial number of compromised devices and number of

devices we start a patch from.

B. Effect of Malware Start Time

Figure 5 plots the effects of disseminating malware start-
ing from a single device at different times (x-axis) during
the trace for the MIT dataset. We fix the upload interval to
1 day and average across all delay times. For each centrality
measure (as described in Section II-B), each plot shows
how different prediction functions perform when selecting a
single nodes to start spreading the patch. We plot curves for
naive random patch device selection and an oracle device
selection, corresponding to the case of temporal closeness
with knowledge of all future contacts which has previously
been shown to be the most effective for opportunistic patch
dissemination [19]. To compare between curves, we present
the area under each curve in the legend.

First, notice that there is a significant improvement over a
random node selection and that the performance of devices
selected approaches that of the oracle. Second, notice that
both static and temporal centrality are highly accurate across
all prediction types, however, static centrality is only accu-
rate when using W-exp. Third, comparing the best prediction
function between static and temporal centralities, temporal
has a lower AUC, translating to better patching performance
across different start times. Fourth, all methods take around
150 hours (6.25 days) to fully contain the malware, however,
notice that there is less than 10% MAXN when using W-
log weighting for static and temporal centralities: this fits our
aim of spreading the patch to as many nodes quickly and rely
on the natural chain of human contacts to eventually trickle
the patch to remaining devices over time. Finally, common
across all centrality types, there are small peaks around noon
for TZ and MAXN and troughs during the evening, which
demonstrates that a time-aware approach is required since
malware has more opportunity to spread during the daytime.
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Figure 5. MIT Traces: Comparison of Centrality type vs. Prediction Function, as a function of Start Time (x-axis).

Generalizing to all traces, we enumerate in Table III the
AUC for all centrality prediction pairs for all datasets.
There is no single perfect choice prediction function that
is best for all centralities, however, the centrality prediction
pairs which minimize the AUC can be used as a first
approximation (shown in bold). Note that there is more
than one best prediction function for temporal centrality
in the MIT dataset, however, we use W-log since it is
the best performing overall for temporal centrality across
all datasets. Now, comparing the best performing centrality
prediction combination between datasets, we observe that
the temporal approach performs best to minimize AUC in
CAMBRIDGE and MIT datasets, however, static centrality
has more accurate prediction for INFOCOM. This suggests
that in confined spaces with denser contacts a static model
may be best suited; however, temporal can still be relied on
across all scenarios to contain malware in a finite time and in
most cases perform better than static centrality. Quantifying
the overhead of the best centrality prediction combination
with the oracle, using temporal centrality we can achieve
up to 1.16x accuracy in the best case and also on average
across the three scenarios temporal centrality has the lowest
overheads.

C. Increasing Patch Delay

Figure 6 plots the best centrality prediction pairs, binned
by increasing patch delays (x-axis), for the CAMBRIDGE,

CAMBRIDGE INFOCOM MIT
Model Static Temporal Static Temporal Static Temporal

Uniform 9.06 6.27 8.85 17.65 69.18 2.65
W-Exp 6.12 6.38 12.76 10.31 5.88 6.32
W-log 9.06 6.07 8.84 17.71 57.52 2.65
W-Squ 9.13 6.07 9.42 17.7 21.98 2.65
Best W-Exp W-Log W-Log W-Exp W-Exp W-Log

Oracle 3.37 1.52 2.29
Overhead 1.82x 1.80x 5.82x 6.78x 2.57x 1.16x

Table III
COMPARING CENTRALITY VS. PREDICTION FUNCTION, MEASURED BY

AUC OF ALL START TIMES AVERAGED OVER ALL LAG TIMES.

INFOCOM and MIT datasets, respectively. Increasing the
patch delay is detrimental to malware containment, increas-
ing the AUC, time of total containment and peak infected
devices. Across all datasets, this is most prominent in the
conference (INFOCOM) environment which again can be
attributed to the confined space which increases the malware
spreading rate and again suits a static model better than
temporal centrality. However, for CAMBRIDGE and MIT,
temporal centrality outperforms static device selection.

D. Effects of Contact Upload Interval

So far we have considered a daily upload interval;
Figure 7 again plots an increasing patch delay for the
CAMBRIDGE dataset (compared with Figure 6(a)) but for
an hourly upload interval. We can note two things: firstly,
there is very little improvement from a daily upload, and
secondly, static methods have improved more than temporal.
This suggests that these prediction functions are still able to
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Figure 6. Best centrality prediction binned by patch delay (upload interval
24 hours).
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Figure 7. CAMBRIDGE: Best centrality prediction binned by patch delay
(upload interval 1 hour).
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Figure 8. MIT: Effects of increasing number of patched devices against
initial infected devices. Midday infection, 3 hours patch delay.

perform accurately even with missing data (increased lag
time, L).

E. Varying initial compromised and patched devices

To understand the effects of increasing the number of
initially infected devices In and increasing top-k patched
devices, we fix the malware start time to day 2 at midday (the
most damaging time of day for malware spreading), upload

time to 1 hour and patch delay to 3 hours. Figure 8 plots the
percentages of initially infected devices (equal to 10% (left
column), 25% (middle) and 50% (right)) with increasing
top-k patched devices (x-axis) using the MIT dataset.

Starting with a low In = 10%, containment is effective
with an equally low value for k = 5%. Increasing the
number of devices to spread the patch past k = 10% does
not add performance gains. Notice that temporal centrality
is able to contain the malware within TZ = 10 hours,
compared with the static one, which take around 75 hours.

With In = 25%, again temporal offers advantages using
a low value of k. However, as we increase the value of k to
10% then static and temporal centrality are very similar; this
is more apparent when In = 50%. From this, we observe
that temporal can more effectively select a smaller set of de-
vices compared to static methods. This is a useful property,
because one of the requirements is the minimization of the
number of devices required to receive the initial patch.

V. DISCUSSION AND COMPARISON WITH THE STATE OF
THE ART

We have shown the benefits and limitations of STOP:
by using real traces, we have demonstrated that STOP can
contain malware in a finite time in three different types
of environments (office, campus and conference), however,
in presence of very temporally dense networks (e.g., a
conference environment) a model based on static metrics
measured on aggregate networks is worth considering. Past
work has shown that with global knowledge of all contacts
temporal metrics are more accurate than static ones in dif-
ferent environments [19], but with dense traces the lag time
L (i.e., any missing training windows) is key to accurately
identifying the same devices with only historical knowledge.
Also, compared to static measures of node importance, we
found that temporal centrality is more accurate at selecting a
smaller subset of devices to start opportunistic dissemination
of such a patch. Indeed, there is a balance of accuracy and
complexity; static centrality is easier to calculate, however,
temporal centrality is better at predicting high-impact nodes
to disseminate a patch. At the same time, since computation
is offloaded to a mobile network operator, such a require-
ment can be easily fulfilled. We evaluated several intuitive
prediction functions and found that even simple prediction
functions can be very effective for malware containment.

We are aware of the privacy implications of the proposed
approach. However, we would like to point out that since
mobile network operators already collect the location of
devices (i.e., through cell tower registrations for billing pur-
poses) additional information on short range radio contacts
does not significantly intrude on user privacy; future work
could take advantage of this information to eliminate the
need for devices to collect contact information. In addition,
actual contacts can be deleted after the centrality rankings
are calculated since raw contacts are not required for later



prediction. Also, potentially an attacker could use the same
temporal centrality prediction system to distribute its mobile
worm, however, an attacker will not be able to collect the
same amount of contact data and hence their prediction will
be limited by incomplete data.

There are still areas open for investigation. Firstly, we
assume total infection and patch success, whereas in real
life this depends on many factors such as contact time;
our study is clearly a worst case scenario. Secondly, from
the simulation results, the best prediction function can be
improved depending on the nature of network environment;
our aim is to further explore automatic derivation of an
optimal weight assignment for a given dataset.

Social network based strategies for patch propagation have
received increasing attention given the availability of data
about physical and virtual user interactions. For example,
Zhu et al. [22] propose that the most central nodes derived
from phones call logs should be prioritized for patching.
However, this only captures potentially long-distance rela-
tionships and misses important opportunistic contacts that
Bluetooth worms can exploit. Zyba et al. [23] evaluate the
spreading of a patch via short-range radio transmission.
However, this work is based on a random mobility model and
assume homogeneous mixing and degree distribution over
time. As we have shown, mobile phone contact networks
are driven by periodic human schedules and so the models
proposed in this paper could be considered as an over-
simplification of real world situations. Such schemes are
also partially founded on work into robustness of networks
against random failures and targeted attacks of individual
nodes in complex networks [5]: these solutions, however,
are based on static graph representations which ignore time
ordering and frequency of contacts. More recently, we con-
sidered temporal relationships based on dynamic networks in
order to effectively select a set of nodes as a starting points
of the patching process [20], [19]. We demonstrated the
feasibility of time-aware central node identification methods
for patch dissemination but this strategy required a priori
knowledge of future contacts, which is not available in
practice. Instead, in this work we propose a predictive socio-
temporal aware central node identification method that only
requires past history of device contacts.

VI. CONCLUSIONS

We have presented STOP, a socio-temporal aware dissem-
ination scheme based on the identification of the key nodes
in a mobile network from which a patching process should
start to contain malware effectively. Through extensive simu-
lations we have demonstrated that STOP can block malware
spreading in a finite time. We have found that temporal
centrality metrics with a logarithmic-weighted function is
well suited to predicting the best nodes to start spreading
an opportunistic patch compared to schemes based on static
centrality measures.
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