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ABSTRACT
Almost all work on mobile ad hoc networks relies on sim-
ulations, which, in turn, rely on realistic movement models
for their credibility. Since there is a total absence of real-
istic data in the public domain, synthetic models for move-
ment pattern generation must be used and the most widely
used models are currently very simplistic, the focus being
ease of implementation rather than soundness of foundation.
Whilst it would be preferable to have models that better re-
flect the movement of real users, it is currently impossible to
validate any movement model against real data. However,
it is lazy to conclude from this that all models are equally
likely to be invalid so any will do.

We note that movement is strongly affected by the needs
of humans to socialise in one form or another. Fortunately,
humans are known to associate in particular ways that can
be mathematically modelled, and that are likely to bias their
movement patterns. Thus, we propose a new mobility model
that is founded on social network theory, because this has
empirically been shown to be useful as a means of describ-
ing human relationships. In particular, the model allows
collections of hosts to be grouped together in a way that
is based on social relationships among the individuals. This
grouping is only then mapped to a topographical space, with
topography biased by the strength of social ties.

We discuss the implementation of this mobility model and
we evaluate emergent properties of the generated networks.
In particular, we show that grouping mechanism strongly
influences the probability distribution of the average degree
(i.e., the average number of neighbours of a host) in the
simulated network.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modelling techniques;
C.2.1 [Network Architecture and Design]: Wireless
Communication
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1. INTRODUCTION
The definition of realistic mobility models is one of the

most critical and, at the same time, difficult aspects of the
simulations of applications and systems designed for mo-
bile environments. Currently, there is no publicly available
data capturing node movement in real large-scale mobile ad
hoc environments. Instead, synthetic models are used, and
many such models have been presented in recent years [3].
The most widely used such models are based around ran-
dom individual movement; the simplest, the Random Walk
Mobility Model (equivalent to Brownian motion), is used
to represent pure random movements of the entities of a
system [4]. A slight enhancement of this is the Random
Way-Point Mobility Model, in which pauses are introduced
between changes in direction or speed.

All synthetic movement models are suspect because there
is no means of assessing to what extent they map reality.
However, it is not difficult to see by eye that the random
mobility models generate behaviour that is most unhuman-
like. This last point is key. Mobile devices are usually car-
ried by humans, so the movement of such devices is neces-
sarily based on human decisions and socialisation behaviour.
Thus, for example, it is important to model the behaviour
of individuals moving in groups and between groups, as is
likely in the typical ad hoc networking deployment scenarios
of disaster relief teams, platoons of soldiers, etc. In order
to capture this type of behaviour, it is necessary to define
models for group mobility that are heavily dependent on the
structure of the relationships among the people carrying the
devices. Existing group mobility models fail to capture this
social dimension.

Taken together, for those systems in which mobility is im-
portant and for which a synthetic mobility model is an essen-
tial ingredient, it would appear to be important to consider
the influence of the human-level social network as something
that informs likely individual and group mobility patterns.
Fortunately, in recent years, such networks have been inves-
tigated in considerable detail, both in sociology and in other
areas, most notably mathematics and physics. Excellent re-



views of the recent progress in complex and social networks
analysis may be found in [1] and [11]. Mathematical models
of such networks have been empirically shown to be useful in
describing many types of relationships, including real social
relationships [14].

In this paper, we propose a new two-level mobility model
that is founded on artificially generated social relationships
among the individuals carrying the mobile devices. The
generation process respects the mathematical basis of so-
cial networks theory and is therefore grounded in empirical
experience of actual social relationships. As part of this,
we consider both individuals and groupings of individuals
as first class entities in the model. The second stage of the
model maps the social organisation onto topographical space
in such a way that the actual topography generated is biased
by the strength of social ties that, in reality, determine the
likelihood of colocation.

The model we propose is relatively simple, but is parame-
terisable in a way that allows different scenarios to be mod-
elled both at the level of social organisation and topograph-
ical translation. Only a single alternative mobility model
founded on the relationships between people has been pre-
sented [6]; in this, the composition of the groups is static
and it lacks a rigorous mathematical representation of the
relationships between the individuals. Both points are ad-
dressed within this paper.

The remainder of this paper is organised as follows. Sec-
tion 2 describes the design of our mobility model in detail.
The implementation of the model is presented in Section 3,
together with an analysis of its possible applications; some
rather interesting statistical simulation results of the emer-
gent properties of the model are also presented. Section 4
contains a critical analysis of our solution and a compar-
ison to other models and research in this space. Finally,
Section 5 concludes the paper, outlining our future research
directions.

2. DESIGN OF THE MOBILITY MODEL

2.1 Modelling Social Relationships
Recent results in social network theory can be used to

design more realistic mobility models for mobile ad hoc re-
search. In particular, we represent a social network using a
weighted graph, by defining the weights associated with each
edge of the network to model the strength of the direct in-
teractions between individuals. In this case, interactions are
said to be direct if they take place between people who are
colocated. It is our explicit assumption that these weights,
which are expressed as a measure of the strength of social
ties, can also be read as a measure of the likelihood of ge-
ographic colocation, though the relationship between these
quantities is not necessarily a simple one, as will become
apparent.

We model the degree of social interaction between two
people using a value in the range [0, 1]. 0 indicates no in-
teraction; 1 indicates a strong social interaction. It is worth
noting that these indicators are not a measure of the sub-
jective importance of the relationships, such as family ties
or friendships. Let us consider the case of a person working
in a town that is different from the one in which his parents
live. In this case, the social relationship is strong from a
genealogical (and affective) point of view, but is weak if we
consider the likelihood of direct interaction between them.

In other words, in our model, this relationship will be mod-
elled using a low value (but not as low as between the person
and an unconnected individual in their parents’ town). An
example of strong social interaction may be the case of two
colleagues sharing the same office.

We use a matrix M, which we call Interaction Matrix, to
store this information. One example may be the following:

M =



1 0.75 0.60 0.91 0.11 0.05 0.00 0.03 0.20
0.75 1 0.23 0.81 0.24 0.03 0.13 0.18 0.21
0.60 0.23 1 0.30 0.28 0.03 0.01 0.02 0.17
0.91 0.81 0.30 1 0.65 0.13 0.14 0.23 0.04
0.11 0.24 0.28 0.65 1 0.23 0.13 0.11 0.05
0.05 0.03 0.03 0.13 0.23 1 0.83 0.44 0.55
0.00 0.13 0.01 0.14 0.13 0.83 1 0.71 0.03
0.03 0.18 0.02 0.23 0.11 0.44 0.71 1 0.94
0.20 0.21 0.17 0.04 0.05 0.55 0.03 0.94 1


The generic element mi,j represents the interaction be-

tween two individuals i and j. We refer to the elements
of the matrix as the interaction indicators. The diagonal
elements represent the relationships that an individual has
with himself and are set, conventionally, to 1. If the in-
teraction indicator between two individuals i and j is less
than 0.25, they are considered socially disconnected. The
choice of the value 0.25 is arbitrary and it is only used to
provide a clearer graphical representation of the important
connections between people.

The matrix is symmetric since, to a first approximation,
interactions can be viewed as being symmetric. It is, how-
ever, worth underlining the fact that we are using a specific
measure of the strength of the relationships. Using psycho-
logical tests it is probable that the importance of a rela-
tionship, such as a friendship, will be valued differently by
the different individuals involved; in our modelisation, this
would lead to an asymmetric matrix. We plan to investigate
this issue further in the future.

Each individual is also characterised by an Sociability Fac-
tor (SF), that is an indicator of its attitude towards inter-
action with others. The Sociability Factor of an individual
i is obtained using the following formula:

SFi =

n∑
j=1
j 6=i
mi,j>ct

mi,j

z

where ct is the connection threshold (in our case 0.25). In
other words, we consider only the people who have a signifi-
cant social relationship with person i. z is the total number
of people in the system characterised by mi,j > ct (i.e., the
number of neighbours in the social network). A sociable
host will have a SF close to 1 and a solitary one will be then
characterised by a SF close to 1.

2.2 Establishment of the Social Model
For reasons of clarity, we make the assumption that only

one device is associated with each individual. However,
again, the model can easily be extended. In the remain-
der of the discussion, we note that the terms host, node and
individual are equivalent and indicate a single moving entity
in the mobility scenario.

Our aim is to use the social relationships among individ-
uals to define groups of hosts that move together in the
simulated scenarios. Moreover, we use this social network
as a basis for the dynamics of the simulated environment.



The first step in this two-level process is the generation
of the social network; that is, the generation of the Inter-
action Matrix, using random distributions. It is possible to
choose different distributions according to the specific mod-
elling requirements. For example, it is possible to choose
a uniform distribution for the generation of equiprobable
interaction indicators or a Poisson distribution to model a
scenario where the connections are characterised by interac-
tion indicators that are denser around a given value. An-
other development in which we are currently engaged stems
from the creation of a possible variant of the Albert-Barabasi
model [1] to generate weighted scale-free social networks.
Using the generated interaction indicators, the Sociability
Factors are calculated for each host as described in Section
2.1.

Grouping can occur at two levels. Firstly, grouping natu-
rally arises at the social level, and connected social groups
are defined in the process of creating the interaction matrix
by manipulating the interaction indicators. However, social
groupings only indicate a propensity to be colocated; in a
geographical sense, individuals form groups more dynami-
cally, by socialising with different subgroups of people with
whom they are socially related at different times (e.g., office
and home groups) and sometimes by not socialising with
such groups at all. Thus geographic grouping is a different
concept to social grouping and must be treated differently
within the model. In the main, individuals will move within
the sphere of influence of the geographic group with which
they are associated at any given point in time, but, occasion-
ally, they will decide either to move between groups or to
leave the group structure and to move completely indepen-
dently. This decision process is biased by both social attrac-
tiveness of different groups and by the difficulty of reaching
each group, which we represent by a function of the distance
to that group. In the current instantiation of the model, the
number of geographic groups to which an individual may
belong, and the radius of such groups, are parameters of the
model and are statically defined (we refer to the number of
geographical groups with ngroups). This is something of an
oversimplification, and we are currently engaged in identify-
ing dynamic mechanisms that allow changes in the numbers
of groups over time; in other words, geographic grouping
will itself be an emergent property of the model in future.

Given the value of ngroups, the hosts are ordered using
their SFs. Then, starting from the host with the highest
SFs, the first ngroups hosts are randomly assigned to differ-
ent groups. After this, the remaining hosts are iteratively
assigned to each group according to the intensity of the rela-
tionships between the host and the members that are present
in the various groups. More specifically, the attraction in-
tensity of a certain group G towards a host i is given by the
sum of the interaction indicators that describes the relation-
ships between the host i and the nodes in group G. We call
this quantity the group attraction towards a certain host.
More formally, the attraction exerted by a group G towards
a host i is calculated using the following formula

GAi,G =

n∑
j=1
j∈G

mi,j

f

where f is the number of members in the group.
A possible refinement of the model derives from an em-

pirical consideration. Generally, it is more probable that a
person joins a group of friends/acquaintances if this is close
to him/her. In order to model this phenomenon, we in-
troduce the distance r between the host and the group1 as
denominator in the previous formula as follows

GAi,G =

n∑
j=1
j∈G

mi,j

frk

where f is the number of the members of the group and k
is a parameter that can be tuned in accordance with the
possible various modelling requirements. It is worth not-
ing that, by setting k = 0, the previous formula is obtained
(i.e., the distance has no influence). Higher values of k in-
creases the influence of the distance in the computation of
the Group Attraction values. The last h hosts in the ordered
list are located in the space between the group areas. This
means that the initial instantiation of the social model in
geographic form may have some hosts that do not initially
belong to any group. A group (or cloud) area is associated
with each group of hosts. Each group area is defined using a
geometric shape. In our model, shapes can be square or cir-
cular. Assuming a Cartesian system, rectangular areas are
defined by selecting the coordinates (minX, minY ), which
represent the point of the cloud with the minimum distance
from the origin, and the length of the side. Similarly, circu-
lar areas are defined by selecting the centre of the circle and
its radius.

2.3 Position Selection and Update
In this section, we will discuss the mechanisms that form

the basis of the evolution of the simulated scenarios after
the initial establishment phase.

A host belonging to a group moves inside the correspond-
ing group area towards a goal (i.e, a point randomly chosen
in the group space) using the standard Random Way-Point
model. It is worth noting that clouds also move towards
randomly chosen goals in the simulation space.

Each group moves with a random speed (with a value con-
tained in a predefined range); moreover, each host moves
with a randomly generated different speed (once again, con-
tained in a predefined range). Therefore, the movement of a
host that belongs to a cloud is the result of the composition
of these speeds. The equations used to update the position
of the host are the following:

newXnodei
= currentXnodei

± speednodei
∆t± speedgroupi∆t

newYnodei
= currentYnodei

± speednodei
∆t± speedgroupi∆t

We use the following simple equations for the position of
each group:

newXgroupi = currentXgroupi ± speedgroupi∆t
newYgroupi = currentYgroupi ± speedgroupi∆t

Similarly, the hosts that are not in cloud areas move to-
wards goals that are randomly chosen in the simulation area.
The positions of all the hosts and groups are updated every
∆t seconds.

1More precisely, we consider the distance between the host
and the geometrical centre of the group area.
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Figure 1: Distribution of degree of connectivity (sce-
nario with 30 hosts grouped into 5 groups).
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Figure 2: Distribution of degree of connectivity (sce-
nario with 60 hosts grouped into 5 groups).

2.4 Modelling Hosts and Groups Dynamics
In the previous section, we presented a general overview

of the model. In this section we describe how social network
relationships influence the evolution and the dynamics of the
simulated mobile scenario.

Let us consider the case of a host inside a group. When a
host reaches a goal, it implicitly reaches a decision point at
which it must decide whether to remain within the group, to
move to another group, or to escape outside all groups. This
process is driven by the Sociability Factor of the host. More
specifically, a threshold is generated using a uniform random
distribution; if the Sociability Factor of the host is higher
than the threshold, a new goal is chosen outside the areas
of any group. If this does not happen, a new goal inside one
of the groups (including the current one) is chosen. More
specifically, the attraction intensities exerted by the groups
towards the host are calculated. The host will join the group
that exerts the highest attraction. If the group, of which the
host is currently a part exerts the greater attraction, the host
will not leave the group.

The case of a host starting outside group areas is symmet-
ric. When the host reaches its goal, a threshold is generated
and if the Sociability Factor of the host is lower than the
threshold, the host will join the group of hosts that exerts
the greatest attraction.

3. IMPLEMENTATION AND EVALUATION
In order to extract quantitative information about the

structure of the generated mobile scenario, the mobility model

was implemented using OmNet++ [13], a discrete event sim-
ulator. We used uniform distributions to generate the In-
teraction Matrices and the connection threshold was set to
0.25.

We considered two scenarios characterised by different
numbers of hosts and groups. We defined a square simu-
lation area with a side of 1 km and group areas with a side
of 200 m. The simulation was set to run for 1 hour of simu-
lated time (10 replicates for each mobile scenario) in order to
obtain a statistically meaningful set of results. Each group
moves with a random speed (with a value in the range 1-2
m/s) and each host moves with a randomly generated differ-
ent speed (with a value in the range 1-3 m/s). As described
above, the movement of a host is the result of the com-
position of these speeds. The first scenario was composed
of 30 hosts grouped into 5 geographically separate groups,
whereas the second was composed of 60 hosts grouped into
the same number of groups. In both cases, 80% of the hosts
were initially placed inside the groups.

From the simulation results, we extracted the distribution
of the average degree of connectivity. The average is com-
puted using a sample interval equal to 1 second. Figure 1
and Figure 2 show the distributions of the degree of connec-
tivity related to the scenarios composed of 30 and 60 hosts
respectively, each with five groups. The resulting distribu-
tions of the degree of the networks are typically Poisson-
like, as in mobile ad hoc networks in which the hosts have
random movements [5]. However, the social clustering in-
fluences the dynamic network topology and, consequently,
the average node degree, as it can be seen by comparing
the range of values of k corresponding to the “peak” of the
function(< k >) in Figures 1 and 2. The value of < k > in
Figure 2 roughly doubles with respect to Figure 1 (from the
range 3-4 to the range 6-8), indicating that, approximately,
double the number of the nodes are now clustered in the
group areas2.

4. DISCUSSION AND RELATED WORK
In our previous research work about the definition of a

context-aware adaptive routing protocol [9] and the design
of an epidemic routing based messaging middleware [10] for
ad hoc networks, we developed a group mobility model in
which the composition of groups is based on probabilistic
mechanisms. We also presented some solutions for the evo-
lution of the simulated scenarios in terms of movement of
the hosts between the various groups.

Many mobility models have been presented for the testing
of protocols and algorithms of mobile ad hoc networks. A
comprehensive review of the most popular mobility models
used by the mobile ad hoc research community can be found
in [3]. However, it is interesting and, at the same time, sur-
prising to note that even the best solutions and approaches
have only been tested using completely random models such
as the Random Way-Point model, without grouping mecha-
nisms, or using other simple groups mobility models, like [7].
The almost pervasive adoption of such models has generated
a considerable amount of work that is predicated on the rea-
sonableness of random mobility models.

2Given the relationship of the transmission range and the
side length of the group areas (both equal to 200m), roughly
all the hosts in a group are connected in our simulation.
Therefore, k is strictly correlated to the average number of
hosts per group.



The work most directly related to ours can be found in [6].
This work is based on similar assumptions to ours, but is
considerably more limited in scope. For example, hosts are
statically assigned to a particular group during the initial
configuration process whereas our model accounts for move-
ment between groups. Moreover, the authors claim that mo-
bile ad hoc networks are scale-free, but the typical properties
of scale-free networks are not exploited in the design of the
model presented by the authors. The scale-free distribution
of mobile ad hoc networks is still not proven in general, since
practical measurements are not currently available. How-
ever, it is worth noting that the scale-free properties are
strictly dependent on the movements of hosts and therefore
are dependent on the actual simulated scenarios [5].

In the recent years, many researchers have tried to refine
existing models in order to make them more realistic. For
example, in [8], a technique for the creation of more realistic
mobility models that include the presence of obstacles is
presented. The specification of obstacles is based on the use
of Voronoi graphs in order to derive the possible pathways in
the simulation space. This approach is orthogonal to ours,
and it is possible to modify our framework in order to include
the presence of obstacles using similar techniques; only the
equations used to update the positions of the entities need
to be modified.

Some interesting studies have been recently carried out on
the connectivity of ad hoc networks with respect to complex
networks theory. For example, Glauche et al. in [5] discuss
some network properties using percolation theory; that is,
an application of complex networks theory derived by the
investigation of physical phenomena such as phase transi-
tions in molecular lattices. In [12], the authors presents
mathematical results about the possible emergence of scale-
free structures in ad hoc networks. However, the authors
consider only fixed ad hoc networks (such as peer-to-peer
networks), without analysing the influence of movement in
the definition of their model.

5. FUTURE WORK AND CONCLUSIONS
Existing mobility models, on which much ad hoc networks

research is founded, are based on highly simplistic random
movement models. Since these models are patently unre-
alistic, the practical applicability of much current ad hoc
networks research must be considered highly suspect.

In the absence of trace data, the best that can be achieved
is to base synthetic mobility models on realistic models of
human socialisation. In this paper, we have presented a
novel group mobility model for mobile ad hoc networks re-
search, founded on social network theory. Since mobility
models can only be judged on the basis of behaviour that
emerges as a consequence of their dynamic evolution, we
have discussed the emergent properties of the networks gen-
erated using our model. We have shown, in particular, that
the degree of the simulated network is strongly influenced
by the grouping mechanisms.

We are now investigating other properties of networks gen-
erated by our model from a theoretical point of view. In
particular, we intend to study the network topology using
some remarkable mathematical results about random graphs
presented in [2]. The mobility model presented in this paper
will be used in our current investigation about the design of
efficient routing protocols and systems (especially in terms
of the use of the available resources) for mobile ad hoc net-

works. We believe that it is possible to design mechanisms
based on the evaluation of the social network that connects
the individuals carrying the mobile devices, in order to build
more efficient and, at the same time, more reliable systems.
For example, in order to reduce the number of replicas that
are presented in the system, it is possible to consider the
likelihood of the colocation of certain hosts.

Finally, we plan to refine the model both by making dy-
namic changes in the number of groups and by allowing the
definition of obstacles within the simulation environment.
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