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1.1 Introduction

Mobility models are used to simulate and evaluate the performance of mo-
bile wireless systems and the algorithms and protocols at the basis of them.
The definition of realistic mobility models is one of the most critical and, at
the same time, difficult aspects of the simulation of applications and systems
designed for mobile environments. There are essentially two possible types of
mobility patterns that can be used to evaluate mobile network protocols and
algorithms by means of simulations: traces and synthetic models [15]. Traces
are obtained by means of measurements of deployed systems and usually con-
sist of logs of connectivity or location information, whereas synthetic models
are mathematical models, such as sets of equations, which try to capture the
movement of the devices.

Currently, there are very few and very recent public data repository of
traces capturing movement of people. Examples are GPS traces and Blue-
tooth connectivity traces (i.e., traces containing the Bluetooth identifiers of
the devices that have been in radio range of a device). For instance, re-
searchers at the Intel Research Laboratory and the University of Cambridge
distributed Bluetooth devices to people, in order to collect data about human
movements and study the characteristics of the colocation patterns among
people. These experiments were firstly conducted among students and re-
searchers in Cambridge [17] and then among the participants of INFOCOM
2005 [37]. Examples of similar projects are the Wireless Topology Discov-
ery project at UCSD [57] and the campus-wide WiFi traffic measurements
that have been carried out at Dartmouth College [31]. At this institution, a
project with the aim of creating a repository of publicly available traces for
the mobile networking community has also been started [46].

In general, synthetic models have been largely preferred [15]. The reasons
of this choice are many. First of all, as mentioned, the publicly available
traces are limited. Telecommunication companies usually collect and ana-
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lyze large sets of data but these are kept secret since they may represent a
source of competitive advantage, for example, for investments and marketing
choices. Secondly, these traces are related to very specific scenarios (such as
campus environments) and it is currently difficult to generalize their validity.
However, it is important to note that these data show surprising common
statistical characteristics, such as the same distribution of the duration of
the contacts and inter-contacts intervals1. Thirdly, the available traces do
not allow for sensitivity analysis of the performance of algorithms, since the
values of the parameters that characterize the simulation scenarios, such as
the distribution of the speed or the density of the hosts, cannot be varied.
Finally, in some cases, it may be important to have a mathematical model
underlying the movement of the hosts in simulations, in order to formally
analyze its impact on the design of protocols and systems.

For these reasons, many mobility models for the generation of synthetic
traces have been presented [15]. The most widely used of such models are
based on random individual movements; the simplest, the Random Walk
mobility model (equivalent to Brownian motion), is used to represent pure
random movements of the entities of a system [23]. Another widely adopted
random model is the Random Way-Point mobility model [41], in which pauses
are introduced between changes in direction or speed. More recently, a large
number of more sophisticated random mobility models for ad hoc network
research have been presented [50, 39, 55].

However, all synthetic models are suspect because it is quite difficult to
assess to what extent they map reality. It is not hard to see, even only with
empirical observations, that the random mobility models generate behavior
that is most unhuman-like. This analysis is confirmed by the examination of
the available real traces [46]. As we will discuss later in this chapter, mobility
models based on random mechanisms generate traces that show properties
(such as distributions of the duration of the contacts between the mobile
nodes and the inter-contacts time between two subsequent connections) that
are different from those observed in real scenarios2.

1 We define contact duration as the time interval during which two devices are in radio
range. We define inter-contacts time as the time interval between two contacts. These
indicators are particularly important in ad hoc networking and, in particular, in delay
tolerant mobile ad hoc networks [59, 29], since inter-contacts times define the frequency
and the probability of being in contact with the recipient of a message or a potential
message carrier in a given time period.
2 However, as we will discuss in Section 1.4, Karagiannis et alii in [43] demonstrate that
the inter-contacts time distributions generated by means of classic random mobility models
such as the Random Way-Point model show properties that can also be observed in real
traces such as power-law behavior in a certain range of values and an exponential tail after
a characteristic time. Power-law distributions are characterized by the following form:

P (x) = x
−k

with k ≥ 0. A power-law distribution is also called scale-free since it remains unchanged
to within a multiplicative factor under a re-scaling of the independent variable x [66].
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An alternative approach to the problem of modeling human mobility is
designing synthetic models starting from real traces. The challenge is to cap-
ture and model the key statistical properties of the traces in order to be able
to reproduce and, possibly, to generalize them providing sets of realistic input
data for simulators. The first examples of this kind of models are [35, 88],
in which the authors considered, respectively, the movement traces collected
from a campus scenario and direct empirical observations of pedestrians in
downtown Osaka as a basis of the design of their models. Many refined models
have been presented in the last years such as [38, 53, 101, 45]. A key research
area is the analysis and mathematical characterization of the available traces.
The goal is to derive the fundamental properties of human mobility and con-
nectivity. In fact, connectivity models derived from the analysis of the traces
have also been proposed [14, 103]. Finally, another promising approach is
the application of social network theory results to the design of mobility
models, since mobile devices are carried by humans and, therefore, the re-
sulting mobility and connectivity patterns are strongly influenced by human
relationships [61].

This paper is organized as follows: in Section 1.2 we outline the most
significant examples of synthetic mobility models, whereas in Section 1.3
we present the recent research efforts in exploiting traces to build realistic
mobility models. Then, in Section 1.4 we discuss some key results in human
mobility modeling from an analytical point view. In Section 1.5 we present
an overview of the concepts at the basis of the design of mobility models
based on social networks. The design of connectivity models is discussed
in Section 1.6. Section 1.7 provides a brief overview of the available tools
for protocol simulations and mobile systems testing. Finally, a roadmap for
future research in the field of mobility modeling is outlined in Section 1.8.

1.2 Purely Synthetic Models

We firstly consider the class of purely random synthetic mobility models. We
outline the main characteristics of these models and the most recent relevant
results about the analytical characterization of such models. In [15] Camp,
Boleng and Davids provide an excellent survey of the most relevant and
popular random synthetic mobility models used in ad hoc network research.

1.2.1 Random Walk Mobility Model

The simplest mobility model is the Random Walk mobility model [23, 62],
also called Brownian motion; it is a widely used model to represent purely
random movements of the entities of a system in various disciplines from
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physics to meteorology. However, it cannot be considered as a suitable model
to simulate wireless environments, since human movements do not present
the continuous changes of direction that characterize this mobility model.

1.2.2 Random Way-Point Mobility Model

Another example of random mobility model is the Random Way-Point mobil-
ity model [41]. This can be considered as an extension of the Random Walk
mobility model, with the addition of pauses between changes in direction or
speed. However, also in this case, the realism of the model in terms of geo-
graphical movement is far from being realistic. First of all, the initial place-
ment of the nodes in the network does not mirror any real-world situation3.
The model also suffers from the fact that the nodes concentrate in the middle
of the area if we consider a bounded area. A possible solution is to assume
spherical or toroidal surfaces, but clearly these geometrical abstractions are
utterly unrealistic. An additional problem is related to the stationarity of the
model (i.e., the variance of the characteristics of the model over time). This
model suffers from the fact that the transient (i.e., non-stationary) regime
may last for a very long time. One method for avoiding such a bias is to
remove the initial part of the simulations in order to avoid the transient
regime. However, this does not guarantee that the simulation has reached
a stationary regime, since the time that is necessary to reach a stationary
regime may be longer than the duration of the simulation itself. Finally, it
has also been shown that the model also exhibits speed decay over time [99].
A partial solution to this problem have been proposed in [100].

In [50, 51], the authors present a generalization of the Random Walk and
Random Way-Point mobility models that they call Random Trip model. The
authors introduce a technique to sample the initial simulation state from
the stationary regime (a methodology that is usually called perfect simula-

tion) based on Palm Calculus [49] in order to solve the problem of reaching
time-stationarity. Perfect simulation for the Random Way-Point model was
originally proposed by Navidi and Camp in [63].

The analytical properties of the Random Way-Point model have been an-
alyzed in several works from different perspectives such as the stationary dis-
tribution of nodes [9, 10], the node spatial distribution [75] and the evolution
of the distribution of the nodes by means of partial differential equations [26].

3 As discussed in the introduction, this position has been disputed in [43]. We will present
more details about this current discussion in the community in Section 1.4.
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1.2.3 Other Synthetic Single Node Mobility Models

Starting from the Random Walk and Random Way-Point models, many varia-
tions have been proposed. The common characteristic of this class of models
is that the movements of the nodes are independent from each other and
that the movements are based on random distributions. Notable examples
include the Random Direction mobility model [62], the Gauss-Markov mo-
bility model [54] and the Smooth Random mobility model [8]. The choice of
these mobility models is usually driven by the need of using a model that is
easily mathematically tractable.

Other random mobility models were designed with the goal of reproducing
movements in a urban space. The movements of the nodes are constrained
by the topology of streets and their associated maximum speed. Examples of
this class of models are the City section [15], the Freeway and the Manhattan
models [4]. These models are particularly useful for applications of ad hoc
mobile networking technologies to vehicular settings.

1.2.4 Synthetic Group Mobility Models

These models and similar existing ones are used to represent the movements
of single mobile nodes, however, in some situations the behavior of mobile
hosts that move together, such as platoons of soldiers, group of students or
colleagues and so on need to be modeled. For these reasons, group mobility
models have been devised such as the Reference Group mobility model [34],
the Reference Velocity Group mobility model [95] and the Structured Group
mobility model [12]. These models are based on a set of equations that link
the movements of a node to the positions of a subset of the other nodes of
the network. These models are useful to reproduce scenarios characterized
by the presence of clusters of people, however, the generated movements do
not map those observed in the real worlds since the groups move randomly
in the simulation space. The membership mechanisms are also usually hard-
wired and single nodes cannot join other groups during the simulation time.
Recently, Piorkowski et alii propose a synthetic model called Heterogeneous
Random Walk [74] that is able to reproduce the presence of clusters that
are observed in real-world traces. The goal of this model is to have a math-
ematically tractable model to study and explain the emergence of clustered
networks.
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1.2.5 Modeling Obstacles

Another key issue is the modeling of obstacles (such as buildings and walls)
in simulation scenarios. This problem is highly intertwined with the defini-
tion of realistic radio propagation models [80]. This is an open research area
and very few solutions have been proposed. The most remarkable solution
is probably [39], where the authors present a technique for the creation of
more realistic mobility models that include the presence of obstacles. The
specification of obstacles is based on the use of Voronoi graphs in order to
derive the possible pathways in the simulation space. The approach proposed
by the authors is general and can be applied to other mobility models.

1.3 Trace-based Mobility Models

In recent years, many researchers have tried to refine existing models in order
to make them more realistic by exploiting the available mobility traces [46].
The key underlying idea of these models is the exploitation of available mea-
surements such as connectivity logs to generate synthetic traces that are
characterized by the same statistical properties of the real ones.

Various pioneering measurement studies have been conducted both in
infrastructure-based and infrastructure-less environments since the first wire-
less networks have been deployed. Extensive measurements about the usage
of the early deployed Wireless Local Area Networks (WLANs) have been
conducted, for instance, in [87], in [5], and in [6]. A detailed analysis of the
usage of the WLAN of the Dartmouth College campus is presented in [31].

The first examples of mobility models are based on traces of WLAN cam-
pus usage. In [88] a mobility model based on real data from the campus
WLAN at ETH in Zurich is presented. The authors use a simulation area di-
vided into squares and derive the probability of transitions between adjacent
squares from the data of the access points. Also in this case, the session du-
ration data follow a power-law distribution. This approach can be considered
as a refined version of the Weighted Way-Point mobility model [11, 35]. The
authors of this model represent the probability of user movements between
different areas of the USC campus by means of a Markov model. The model
is extracted from data collected from user surveys (i.e, the users were asked
to keep a diary of their movements for one month).

The Model T and it evolution, the Model T++, proposed in [38] and [53]
generate traces also mirroring the spatial registration patterns of user move-
ments inside a campus WLAN (i.e., the connections to the access points
spread in the campus area). The authors define the concept of popularity
gradient between different access points and its influence on users’ move-
ments. This model is evaluated using traces from Dartmouth College. In [101]
another model extracted from real traces based on the study of probability
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of transitions between different locations is presented. The evaluation of the
model is essentially based on the matching of the geographical movements
and density of users, rather than on the analysis of the patterns of connec-
tivity among them.

A mobility model based on the extraction of user mobility characteristics
from the wireless network traces of the Dartmouth College WLAN is pre-
sented in [45]. The authors define popular regions in the campus and char-
acterize the transitions among these areas by means of a Markovian model.
Another key finding of the authors is the fact that pause time and speed
follow log-normal distributions. These models only represent the transitions
between five and sixth locations respectively. The data present characteris-
tics, similar to [45], that evidently differ from those generated by means of
classic synthetic random mobility models. In [76] Resta and Santi present a
model of user movement between access points driven by the quality of ser-
vice perceived by the users themselves. This approach is very generic and it
is composed of different models that allow for the simulation of user mobility,
network traffic, underlying wireless technology and quality of service.

Another interesting model representing the movement inside downtown
Osaka is discussed in [55]: the authors reproduce the movements of pedestri-
ans by analyzing the characteristics of the crowd in subsequent instants of
time and maps of the city using an empirical methodology, without relying
on any wireless measurements.

With respect to mobility models for vehicular networks, a large amount
of traces mapping the movements of vehicles in cities and in highways are
collected by the traffic authorities but they are not publicly available also for
security reasons. Starting from these traces and from empirical observations,
several models have been recently presented. Examples include the model
proposed by Saha and Johnson [79] extracted from the TIGER traces [90],
GrooveSim [56] and STRAW [19].

Finally, a model for the generation of the inter-contacts time duration be-
tween buses derived from the log traces of the DieselNet is presented in [103].
We note that this is not a mobility model, but a connectivity model, i.e., it
is used to represent topological and not geographical information over time.
We will discuss these models in detail in Section 1.6.

1.4 Characterization and Analytical Models of Human

Connectivity

A number of pioneering works [87, 5, 6, 31] have been focussed on traces in
order to gain insight about human mobility patterns. A key study in this area
is the work on connectivity patterns presented by Chaintreau et alii in [18]
which illustrates the fundamental insight that contacts duration and inter-
contacts time between individuals can be represented by means of power-law
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distributions and that these patterns may be used to develop more efficient
opportunistic protocols.

The work confirms the results of other studies conducted at Dartmouth [31],
UCSD [57] and University of Toronto [86]. At the same time, it is interesting
to note that these observed connectivity patterns are at odds with those that
can be extracted from random mobility models that show an exponential
decay of inter-contacts time intervals [83]. In a previous work [37], similar
connectivity patterns have also been observed among the participants of IN-
FOCOM’05.

Recently, Karagiannis, Le Boudec and Vojnovic in [43] offered a novel
perspective to the problem of the approximation of these distributions. The
authors consider 6 sets of traces and derive several analytical results that
can be summarized as follows. First of all, the authors verify the power-law
decay of inter-contacts time CCDF between mobile devices. Secondly, they
demonstrate that beyond a characteristic time of about 12 hours the CCDF
exhibits exponential decay. This is the major novel contribution, especially
with respect to the findings presented in [18]. Thirdly, they present an ana-
lytical framework demonstrating that mobility models such as the Random
Way-Point model should not be abandoned since they are able to represent
power-law decay of inter-contact time with an exponential tail after this char-
acteristic time. Finally, they show that the return time of mobile nodes to
the same location can be modeled by means of a function composed of a
scale-free distribution for a certain range between 0 and a characteristic time
with an exponential tail.

Connectivity patterns have been studied by the authors of the aforemen-
tioned Model T [38] and Model T++ [53]. The main result of these studies is
that user registration patterns exhibit a distinct hierarchy, and that WLAN
access points (APs) can be clustered based on registration patterns. Cluster
size distributions, intra-cluster transition probabilities and trace lengths are
highly skewed and can be modeled by a heavy-tailed Weibull distribution with
a good degree of approximation. The fraction of popular APs in a cluster, as
a function of cluster size, can be modeled by exponential distributions.

The spatio-temporal correlation in the user registration patterns has also
been investigated in [52]. The mobility patterns are modeled using a semi-
Markov process by means of the transition probability matrix. The authors
estimate the long-term wireless network usage among different access points.
By comparing the steady-state distributions of semi-Markov models based
on trace data collected at different time scales, they characterize the degree
of correlation in time and location. The analysis is founded on the logs from
Dartmouth College [47]. An analysis of the periodic properties of the move-
ments between access points using Fourier transforms is presented in [44].

Rhee et alii proposed a possible modelization of human movement by
means of Lévy flights [77] but the analysis show that this approximation is
valid only considering a coarse-grained geographical scale. Recently, Gonza-
lez et alii [28] present the analysis of the movements of 100.000 mobile phone
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users by analyzing their registration patterns. According to this study human
trajectories show a high degree of temporal and spatial regularity; each user
usually move between a few highly frequented locations. They also disprove
the theory that a pure Lévy flights model can be used to represent human
trajectories, since random jumps typical of this model are not observed in
their traces.

We would also like to mention briefly the considerable amount of work
done by mathematical biologists in modeling animal movements [89]. One
of the most interesting studies is that about animal foraging behavior. It
was believed that the movement of animals for foraging can be modeled by
means of Lévy flights; many different species have been studied including
albatrosses [93], deer [94] and grey seals [2]. Lévy flights are random walks
characterized by step lengths extracted from probability distributions with
heavy tails: the result is that sequences of short steps are followed by rare long
steps. However, in a study published on Nature in 2007 [22], by reanalyzing
the data about albatrosses, the authors conclude that the movement can be
modeled with gamma distributions with an exponential decay and not by
means of a Lévy flights model.

1.5 Social Network based Mobility Models

In this section we discuss a recent development of mobility modeling [61], i.e.,
the introduction of social networking concepts as a basis of the representation
of people movements. These models are usually trace based, i.e., they are
generally founded or evaluated by means of real traces. The modeling of
these relationships and their implications to human mobility is of paramount
importance to test protocols and systems that exploit the underlying social
structure, such as socially-aware delay tolerant forwarding protocols [21, 20].

Social network mobility models are based on a simple observation. In mo-
bile networks, devices are usually carried by humans, so the movement of
such devices is necessarily based on human decisions and social behavior. A
key characteristic is the presence of clusters that are usually dependent on
the relationships among the members of the social group. In order to capture
this type of behavior, mobility models dependent on the structure of the re-
lationships among people carrying the devices have been defined. However,
existing group mobility models fail to capture this social dimension [15]4.

4 These mobility models can also be used to test other types of networks. Within the
emerging field of sensor networks, mobile hosts are not necessarily carried directly by
humans. However, sensor networks are usually embedded in artifacts and vehicles (such as
cars, planes or clothing) or are spread across a geographical area (such as environmental
sensors). In the former case, the movements of the sensors embedded in cars or in airplanes,
for instance, are not random but are dependent on the movements of the carriers; in the
latter, movement is not generally a major issue.
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1.5.1 Social Network Models

In recent years, social networks have been investigated in considerable detail,
both in sociology [97] and in other areas, most notably mathematics and
physics [1]. Various types of networks (such as the Internet, the World Wide
Web and biological networks) have been studied by researchers especially in
the statistical physics community. Theoretical models have been developed
to reproduce the properties of these networks, such as the so-called small
worlds model proposed in [98] or various scale-free models [65, 92]. Excellent
reviews of the recent advances in complex and social networks analysis can
be found in [1] and [65].

As discussed in [68], social networks appear to be fundamentally different
from other types of networked systems. In particular, even if social networks
present typical small-worlds behavior in terms of the average distance be-
tween pairs of individuals (the so-called average path length), they show a
greater level of clustering. In [68] the authors observe that the level of clus-
tering seen in many non-social systems is no greater than in those generated
using pure random models. Instead in social networks, clustering appears
to be far greater than in networks based on stochastic models. The authors
suggest that this is strictly related to the fact that humans usually organize
themselves into communities. Examples of social networks used for these stud-
ies are rather diverse and include, for instance, networks of coauthorships of
scientists [64] and the actors in films with Kevin Bacon [98].

1.5.2 The Community Based Mobility Model

In [60] the authors propose the Community based mobility model, founded on
social network theory5. A key input of the mobility model is the social network
that links the individuals carrying the mobile devices in order to generate
realistic synthetic network structures [98]. The model allows collections of
hosts to be grouped together in a way that is based on social relationships
among the individuals. This grouping is only then mapped to a topographical
space, with topography biased by the strength of social ties. The movements
of the hosts are also driven by the social relationships among them. The model
also allows for the definition of different types of relationships during a certain
period of time (i.e., a day or a week). For instance, it might be important to
be able to describe that in the morning and in the afternoon of weekdays,
relationships at the workplace are more important than friendships and family
one, whereas the opposite is true during the evenings and weekends.

The model is evaluated by means of real mobility traces provided by the
Intel Research Laboratory [82]; the authors show that the model provides

5 This model can be considered an evolution of the basic model initially proposed in [58].
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Fig. 1.1 Example of social network.

a good approximation of real movements in terms of some fundamental pa-
rameters, such as the distribution of the contacts duration and inter-contacts
time. In particular, the data show that an approximate power law holds over
a large range of values for the inter-contacts time. Instead, contacts dura-
tion distribution follows a power law for a more limited range of values.
These statistical characteristics are also very similar to those observed by
the researchers at the University of California at San Diego and Dartmouth
College [17].

We now describe in more details the key aspects of the Community based
mobility model, starting from the representation of the social graph. One of
the classic ways of representing social networks is using weighted graphs. An
example of social network is represented in Figure 1.1. Each node represents
one person. The weights associated to each edge of the network are used
to model the strength of the interactions between individuals [81]. It is our
explicit assumption that these weights, which are expressed as a measure of
the strength of social ties, can also be read as a measure of the likelihood of
geographic colocation. We model the degree of social interaction between two
people using a value in the range [0, 1]. 0 indicates no interaction; 1 indicates
a strong social interaction. Different social networks can be valid for different
parts of a day or of a week.

As a consequence, the network in Figure 1.1 can be represented by the
10×10 symmetric matrix M showed in Figure 1.2, where the names of nodes
correspond to both rows and columns and are ordered alphabetically. We refer
to the matrix representing the social relationships as Interaction Matrix.

The generic element mi,j represents the interaction between two individ-
uals i and j. We refer to the elements of the matrix as the interaction indi-

cators. The diagonal elements represent the relationships that an individual
has with himself and are set, conventionally, to 1. In Figure 1.1, we have rep-
resented only the links associated to a weight equal to or higher than 0.25.
A key issue of this model is the definition of this Interaction Matrix. This
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Fig. 1.2 Example of an Interaction Matrix representing a simple social network.
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Fig. 1.3 Example of a Connectivity Matrix representing a simple social network.

is clearly a simplified model of human relationships. The definition of these
weights is an open research area also in sociology [97].

The Interaction Matrix is also used to generate a Connectivity Matrix.
From matrix M we generate a binary matrix C where a 1 is placed as an
entry cij if and only if mi,j is greater than a specific threshold t (i.e., 0.25).
The Connectivity Matrix extracted by the Interaction Matrix in Figure 1.2
is showed in Figure 1.3. The idea behind this is that we have an interaction

threshold above which we say that two people are interacting as they have a
strong relationship.

The Interaction Matrix (and, consequently, the Connectivity Matrix) can
be derived by available data (for example, from a sociological investigation) or
using mathematical models that are able to reproduce characteristics of real
social networks. The default implementation of the model uses the so-called
Caveman model [98] for the generation of synthetic social networks with
realistic characteristics (i.e, high clustering and low average path length).
However, this is a customizable aspect and, if there are insights on the type
of scenarios to be tested, a user-defined matrix can be used as input.

The simulation scenario is established by mapping groups of hosts to cer-
tain areas in the geographical space. After the definition of the social graph
described above, groups, i.e., the highly connected set of nodes in the graph,
need to be isolated. The authors use the algorithm proposed in [67] to de-
tect the presence of community structures in social networks represented by
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matrices, like the Connectivity Matrix that we have defined in the previous
section. This algorithm is based on the calculation of the so-called between-

ness of edges. This provides a measure of the centrality of nodes.
In order to illustrate this process, let us now consider the social network in

Figure 1.1. Three communities (that can be represented by sets of hosts) are
detected by running the algorithm: C1 = {A, B, C}, C2 = {D, E, F, G} and
C3 = {H, I, L}. Now that the communities are identified given the matrix,
they need to be associated with locations.

After the communities are identified, each of them is randomly associated
to a specific location (i.e., a square) on a grid6. We use the symbol Sp,q to
indicate a square in position p, q. The number of rows and columns are inputs
of the mobility model.

Going back to the example, in Figure 1.4 we show how the communities
we have identified can be placed on a 3x4 grid (the dimension of the grid
is configurable by the user and influences the density of the nodes in each
square). The three communities C1, C2, C3 are placed respectively in the
grid in the squares Sa,2, Sc,2 and Sb,4. Each node of a certain community is
placed in randomly selected positions inside the assigned square.

As described in the previous section, a host is initially positioned in a
certain square in the grid. Then, in order to drive movement, a goal is assigned
to the host. More formally, we say that a host i is associated to a square Sp,q

if its goal is inside Sp,q. Note that host i is not necessarily always positioned
inside the square Sp,q, despite this association (see below).

The goal is simply a point on the grid which acts as final destination of
movement like in the Random Way-Point model, with the exception that the
selection of the goal is not as random. When the model is initially established,
the goal of each host is randomly chosen inside the square associated to its
community (i.e, the first goals of all the hosts of the community C1 will be
chosen inside the square Sa,2).

When a goal is reached, the new goal is chosen according to the follow-
ing mechanism. A certain number of hosts (zero or more) are associated to
each square Sp,q at time t. Each square (i.e., place) exerts a certain social

attractivity to a certain host. The social attractivity of a square is a measure
of its importance in terms of the social relationships for the host taken into
consideration. The social importance is calculated by evaluating the strength
of the relationships with the hosts that are moving towards that particular
square (i.e., with the hosts that have a current goal inside that particular
square). More formally, given CSp,q

(i.e., the set of the hosts associated to
square Sp,q), we define social attractivity of that square towards the host i

SAp,qi
, as follows:

6 A non random association to the particular areas of the simulation area can be devised,
for example by deciding pre-defined areas of interest corresponding for instance to real
geographical space. However, this aspect is orthogonal to the mechanisms at the basis of
this model.
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SAp,qi
=

∑

j∈CSp,q

mi,j

w
(1.1)

where w is the cardinality of CSp,q
(i.e., the number of hosts associated to the

square Sp,q). In other words, the social attractivity of a square in position
(p, q) towards a host i is defined as the sum of the interaction indicators that
represent the relationships between i and the other hosts that belong to that
particular square, normalized by the total number of hosts associated to that
square. If w = 0 (i.e., the square is empty), the value of SAp,qi

is set to 0.
The mobility model allows for two alternative mechanisms for the selection

of the next goal that are described, a deterministic one based on the selection
of the square that exerts the highest attractivity and a probabilistic one based
on probability of selection of a goal in a certain square proportional to their
attractivities. Using the first one, the goals are chosen only inside the squares
associated to the community, whereas with the second, the hosts may also
randomly select their goals in other squares of the simulation area, with a
certain non zero probability. In other words, the second mechanism allows
for the selection of the destinations not only based on social relationships
adding more realism to the model. According to this mechanism, the new
goal is randomly chosen inside the square characterized by the highest social
attractivity; it may be again inside the same square or in a different one.
New goals are chosen inside the same area when the input social network is
composed by loosely connected communities (in this case, hosts associated
with different communities have, in average, weak relationships between each
others). On the other hand, a host may be attracted to a different square,
when it has strong relationships with both communities. From a graph theory
point of view, this means that the host is located between two (or more)
clusters of nodes in the social network7.

An alternative mechanism is based on a selection of the next goal pro-
portional to the attractivity of each square. In other words, we assign a
probability P (s = Sp,qi

) of selecting the square Sp,qi
as follows:

P (s = Sp,qi
) =

SAp,qi
+ d

∑p×q

j=1
(SAp,qj

+ d)
(1.2)

where d is a random value greater than 1 in order to ensure that the proba-
bility of selecting a goal in a square is always non zero8.

The parameter d can be used to increase the randomness of the model in
the process of selection of the new goal. This may be exploited to increase

7 This is usually the case of hosts characterized by a relatively high betweenness that, by
definition, means that they are located between two (or more) communities.
8 The role of d is similar to the damping factor used in the calculation of the Google
PageRank [13]. In fact, the transitions between squares can also be similarly represented
using a Markov Chain model with P (s = Sp,qi

) as probability of transitions between states
(squares).
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Fig. 1.4 Example of initial simulation configuration.

the realism of the generated scenario, since in real situations, humans also
move to areas without people or for reasons not related to their social sphere.

1.5.3 Other Social Network based Mobility Models

Another notable example of mobility model founded on the social relation-
ships between the individuals carrying the mobile devices is presented in [32].
This work is based on assumptions similar to [60], but it is considerably more
limited in scope. Hosts are statically assigned to a particular group during
the initial configuration process, whereas [60] accounts for movement between
groups. Moreover, the authors claim that mobile ad hoc networks are scale-
free, but the typical properties of scale-free networks are not considered in
the design of the model presented by the authors. The scale-free distribution
of mobile ad hoc networks is still not proven in general, since very limited
measurements are available and it is worth noting that the scale-free proper-
ties are strictly dependent on the movements of hosts and, therefore, they are
dependent on the actual application scenarios [27]. The idea of using com-
munities to represent group movements in an infrastructured WiFi network
has also been exploited in [85] and in its time-variant extension presented
in [36]. More specifically, this model preserves two fundamental characteris-
tics, the skewed location visiting preferences and the periodical re-appearance
of nodes in the same location. Recently, Ekman et alii propose a model based
on the daily activities of the users (and group of users) and their movements
between place of interests in a city map [24].

15



1.6 From Mobility to Connectivity Models

Another class of models for mobile networking research is that of connectiv-
ity models, that focusses on the evolution of the emergent connectivity graph
that is changing over time as nodes move. Topological properties are funda-
mental for analyzing, for example, the performance of protocols and systems
where (intermittent) connectivity plays an essential role such as protocols
for delay tolerant networks or solutions for bandwidth provision in WLANs.
This is a very open area and very few models have been proposed. Most of
them are based on the analysis of the available connectivity traces, i.e. from
logs of Bluetooth contacts or WLANs registration patterns.

In [14] the authors propose the Connectivity Trace Generator (CTG).
This work differs from previous approaches in that probability distributions
describing the patterns of colocation of mobile users (in terms of contact du-
ration and inter-contacts time) are exploited for the first time as direct inputs

of a synthetic traces generation tool. More specifically, the input parameters
of this component are the relevant parameters of the connectivity model,
namely: number of nodes, the contacts duration (i.e., the time interval in
which two devices are in radio range) and inter-contact time (i.e., the time
interval between two contacts), and node degree (i.e., number of neighbors)
distributions.

All these distributions can be extracted by measurements of connectiv-
ity on real traces. The key steps of the proposed simulation framework are
depicted in Figure 1.5. The input of the CTG is a set of real traces. These
are processed by a trace analyzer to generate the parameters describing user
connectivity required by the tool. These are essentially the coefficients of
the curves used to approximate the distributions of the inter-contacts times,
contacts durations and link degrees characterizing the social graph of the
contacts among the users. This is a graph of the potential contacts between
pair of nodes, i.e., an edge between two nodes exists if there is a probability
different from zero that these two nodes will meet in a specified time interval
equal to the simulation duration. This graph is also built from the traces.
Additionally, a range of variations for the parameters is provided in input.

The process of generation is based on the selection of the desired number
of hosts and on the construction of a connectivity graph of all the potential
contacts of each host. In other words, we map each host to a node of the
graph and we link a pair of nodes with an edge if the two hosts can potentially
get in contact. The connectivity graph is then used to unfold a number of
connection links between users for each time instant. In other words, we
use the connectivity graph as a basis for a time-varying graph of instant

connectivity for each instant t. In these time-varying graphs (one for each
time instant), each link is either active if the two hosts are colocated, or is
not present if the two are not.

Each link is activated and de-activated according to the distributions of the
contacts duration and inter-contacts time. Let us consider an example. Each
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pair at the beginning is initially disconnected. Let us consider the connectivity
pattern between two hosts A and B. At the beginning, the model generates an
initial disconnection time (an “inter-contacts time”) sampled from the inter-
contacts time distribution. Let us assume that this is equal to 15 seconds.
Then after 15 seconds, the model has to generate a colocation time from the
distribution of the contacts duration. Let us assume that this is equal to 30
seconds. An edge between A and B is activated for 30 seconds to represent
the colocation of the hosts A and B between the instants 15s and 45s. In
other words, the edge will be present in the graph for the next 30 seconds
and then removed. Then the model generates another value, this time from
the distribution of the inter-contacts time, for example 4 minutes. After 4
minutes, the link between A and B is re-activated for a duration time that is
again generated from the distribution of the contacts duration interval and
so on.
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This process is completely automated and implemented by the trace gen-
erator component that produces traces containing the events of connections
and disconnections for each pair of nodes of the simulation scenario and the
time of each event. These traces can be used as test cases for the testing of
opportunistic mobile systems [25].

As a concrete case study, the authors used the log session traces of the
campus WLAN of Dartmouth College [47], to obtain empirical distributions
for residence time, colocation and degree distribution of the nodes. These
traces were used in conjunction with an original model developed by the
authors that aims at representing the properties of the colocation of two
users as a function of the probability for a user of being in a specific place
for a given period of time. Two hosts were considered colocated if they were
registered to the same access point.

As we said, the design of connectivity models is still an open research
area; to the best of our knowledge, the other existing proposal is the position
paper by Nykvist and Phanse [72]. With respect to vehicular networks mod-
eling, the only existing example of connectivity models is that of the buses
of the DieselNet project [103] discussed in Section 1.3. Another recent work
analyzing the connectivity properties of a bus transportation system is [33].

1.7 Testing Tools and Mobility Modeling

The first step of any performance evaluation exercise based on simulations is
the choice of the simulator tool. Various network simulators are available for
the evaluation of protocols and systems of mobile networks; the most popular
are ns-2 [70] with the so-called Monarch extension [42] (and the upcoming
new version ns-3 [71]), Glomosim [102] and Opnet [73]. Another class of tools
for simulation of generic complex systems (not only computer systems, but
also economic, biological, industrial, etc.) are the so-called discrete-event sim-

ulators. These tools only provide primitives for the concurrent execution of
multiple entities and communication among them usually by means of mes-
sage passing based paradigms. OMNeT++ [91] and Parsec [3] are examples
of this class of simulators.

These tools generally receive in input traces with different formats usually
in the form of a series of triplets that specify when the change of direction has
to take place, the next goal (that defines the direction of the host) and the
node speed. Unfortunately, there is no standard format for this kind of these
traces. More in general, no standards have been defined also for measurement
traces both of movements represented by means of geographical positions or
connectivity traces (such as those collected by means of Bluetooth or ZigBee
radio devices).

The results of simulations performed by means of different simulators may
show significant differences; this fact may be explained by the various model-
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ing techniques and assumptions and by the different levels of details offered
by these simulators. In [16] the authors show and discuss the divergent results
obtained by using OPNET Modeler, ns-2 and Glomosim. Other problems can
be related to the methodology followed by the researchers and, unfortunately,
this has caused a decreasing confidence in simulation results to evaluate the
performance of protocols and systems: this is motivated by the apparent
issues in terms of scientific standards of some of the existing published pa-
pers [48]. With respect to mobility modeling, the use of unrealistic mobility
models or the absence of a meaningful number of runs to achieve a sufficient
statistical validity of the results has contributed to this lack of confidence.
It is interesting to note that there is a clear problem of achieving statistical
validity when a limited set of traces is used to evaluate an algorithm or a
protocol. More specifically, in presence of a limited set of nodes and/or of
a limited duration of the traces, there is a critical issue of generality. For
this reason we believe that tools like the CTG that allows the researchers to
vary the parameters describing the mobility patterns distributions in order
to explore their impact are needed.

There is also a growing interest in approaches for testing mobile systems
and applications (see for instance [84]). Most of these approaches, however,
concentrate on testing aspects related to context awareness (see, for exam-
ple, [96]). Mobility and connectivity can be considered as context elements;
however, these tools do not provide specific support for modeling these es-
sential aspects of this class of systems.

The CTG presented in Section 1.6 provides automatic generation of con-
nectivity test cases in order to evaluate the performance of communication
protocols and applications in opportunistic mobile systems. The approach al-
lows flexible performance testing of new protocols and applications. Indeed,
when a system is being prototyped, usage patterns logs could be collected
through a small scale trial. The connectivity traces could then be analyzed
and, using the methodology proposed by the authors of the CTG, a simulation
on a larger scale could be carried, using larger synthetic traces by a higher
number of hosts or different colocation or inter-contacts time distributions.

A tool for the generation of traces for vehicular networking simulations is
presented in [7]. The model allows for the generation of traces that reproduce
steady-state random trips on real road topology from the Swiss Geographic
Information System (GIS).

However, there are no comprehensive solutions for the verification of mo-
bile systems; for example the CTG lacks a metric for coverage criteria of the
generated test cases. An investigation along these lines for a similar prob-
lem has been presented in [78]: the authors of the CTG leave the issue of
evaluating coverage conditions open for future work.
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1.8 Summary and Outlook

In this survey, we have presented a description of the state of the art in mobil-
ity modeling, considering different classes of synthetic and trace-based mod-
els. We have also discussed the analytical models that have been developed
to understand human movements. Finally, we have presented the concepts at
the basis of the design of mobility models based on social networks. We now
present a summary of the open research challenges in this area, outlining a
research agenda for the mobile networking and systems community in this
area. The research challenges can be summarized as follows:
Specificity of Available Models The available traces describe very spe-
cific situations like campuses or conference environments and, for this reason,
it is difficult to generalize the results obtained using the traces directly or the
mobility models derived from the analysis of these traces. With high prob-
ability, different types of mobility patterns characterize specific application
scenarios, both in terms of contacts distribution and scale of movements in
the geographical space. The main research challenge resides in the identifica-
tion of the common features of human mobility and the characterization of
the specificity of a set of deployment scenarios. This problem will be tackled
more and more effectively with the increasing availability of mobility traces
extracted from heterogeneous environments.
Mobility Models vs Connectivity Models In this survey, we have intro-
duced and discussed the concept of connectivity models. This kind of models
are not alternative but complementary to the existing models. In fact, mo-
bility models (i.e., containing information about the locations of the nodes)
are necessary for testing several classes of protocols and applications such as
geocasting protocols [40] or location-aware applications [30]. An open prob-
lem is how to integrate the use of connectivity and mobility models in an
effective way to characterize human mobility. Connectivity models can be
derived by mobility models but the former represent a much more powerful
tool for the statistical characterization of colocation patterns. These mod-
els are very useful for designing and evaluating protocols and systems where
these aspects are fundamental such as in the case of performance evaluation
of delay tolerant protocols or wireless peer-to-peer systems (for example to
evaluate the available transmission bandwidth among a set of hosts). As for
mobility models, further investigations are needed to characterize common
properties of human connectivity and distinct features of specific application
environments. Another open issue is the characterization of the interaction
between human movement and the surrounding environment: more specifi-
cally, the influence of the geographical features of the simulation spaces such
as the presence of obstacles (e.g., buildings, hills, green areas) on human
connectivity and mobility patterns has not been studied yet.
Benchmarks for Protocol and System Evaluation Unfortunately, the
choice of values for parameters of simulations for mobile (in particular, ad
hoc) networks research is extremely variable. In fact, the ad hoc and delay
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tolerant research communities lack of consistent scenarios to validate and to
benchmark the different solutions. As cited previously, in [48] Kurkoswski,
Camp and Colagrosso reported an analysis of the performance evaluation of
papers published at MobiHoc from 2000 to 2005, showing evident flaws of a
large number of works from a scientific point of view in terms of simulation
methodology. The community should define a common set of mobility traces
that should be used to verify the performance of protocols. A possible idea
is to define a series of sets of traces for different classes of application sce-
narios such as dense networks, urban environments and sparse networks, for
instance for the evaluation of delay tolerant networking protocols or Blue-
tooth based systems. This can be seen as a medium term goal, given also
the limited amount of available traces. However, following the introduction
of more powerful and, at the same time, affordable devices such as phones
equipped with GPS units and Bluetooth, we believe that the amount of avail-
able information will increase hugely in the next few years.
Tools There is a very limited number of available tools, in particular open
source and free, for academic and industrial testing of mobile applications.
With respect to mobility modeling, there is a concrete need of network emu-
lators that are able to simulate connectivity based on an underlying mobility
model (or directly on traces). An interesting example of this kind of systems
is [69]. Another very useful class of systems for performance evaluation stud-
ies are emulators based on virtualization techniques on a single machine for
testing multiple instances of mobile applications by means of virtual commu-
nication interfaces (such as Bluetooth or ZigBee) and infrastructure-based
(such as based on access points or GPRS), also providing radio propagation
models.
Standardization of the Trace Formats Unfortunately, the available
traces (see, for example, those stored in the CRAWDAD repository [46])
do not follow a common standard and scripts are needed to convert them
to the various formats in order to be processed by the different simulators.
The mobile networking and systems community should allow for common
standards in order to promote an easy data exchange among researchers for
cross-comparisons, also for the establishment of benchmarks for the commu-
nity, as it happens in other fields of computer science.
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