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Abstract—Road congestion results in a huge waste of time
and productivity for millions of people. A possible way to deal
with this problem is to have transportation authorities distribute
traffic information to drivers, which in turn can decide (or be
aided by a navigator) to route around congested areas. Such
traffic information can be gathered by relying on static sensors
placed at specific road locations (e.g., induction loops, video
cameras) or by having single vehicles report their location, speed
and travel time. While the former approach has been widely
exploited, the latter has seen birth only more recently, and,
consequently, its potential is less understood. For this reason,
in this paper we study a realistic test case that allows to evaluate
the effectiveness of such a solution. As part of this process: a)
we designed a system that allows vehicles to crowd-source traffic
information in an Ad-Hoc manner, allowing them to dynamically
reroute based on individually collected traffic information, b) we
implemented a realistic network-mobility simulator that allowed
us to evaluate such a model, and c) the main focus of this
paper: we performed a case study that evaluates whether such
a decentralized system can help drivers to minimize trip times.
This study is based on traffic survey data from Portland, Oregon
and our results indicate that such navigation systems can indeed
greatly improve traffic flow. Finally, to test the feasibility of
our approach we implemented our system and run some real
experiments at UCLA’s C-Vet test-bed.

Index Terms—Ad-Hoc, Wireless Communication, Intelligent
Transportation System (ITS), Realistic Traffic Flow Simulation,
Vanet

I. INTRODUCTION

According to “The 2007 Urban Mobility Report” published
by the Texas Transportation Institute, in year 2005 the traffic
congestion cost to the nation (in the 437 US urban areas) added
up to $78.2 billion. The same report also observes that more
and more time is spent in cars due to congestion. A measure
of this phenomenon is the increase of the Travel Time Index
(TTI), the ratio of travel time in rush hours to travel time at
quiet periods that has steadily risen from 1.09 in 1982 to 1.26
in 2005. This trend has led to the development of Intelligent
Transportation System (ITS) technologies. Although there is
a general consensus about the role ITSs may play in reducing
traffic, such systems are not necessarily guaranteed to succeed
in reducing congestion.

During the last few years, a wealth of research has studied
how to optimize the internetworking of vehicles utilizing

short-range radios (e.g., WiFi, DSRC), in order to support a
wide range of services. In particular, Intelligent Transportation
Systems could benefit from the use of Vehicular Ad-Hoc
Networks (VANET) in metropolitan areas by enabling each
vehicle to act as a traffic probe that measures and afterwards
spreads traffic related information. This information can then
be used by other vehicles to efficiently select their routes
in order to avoid congested areas. In essence, an Intelligent
Transport System can use the vehicles themselves to crowd-
source traffic information.

Clearly, the advantages deriving from the deployment of
a VANET-based ITS are manifold. Many more streets, than
those nowadays equipped with a monitoring infrastructure,
could be easily observed without requiring additional costs
(currently only major urban areas can afford monitoring infras-
tructure). Furthermore, many more services that may utilize
the same infrastructure (e.g., pollution management, accident
prevention, etc.) could be provided, thus requiring only limited
additional investments.

While cellular networks can be used to offer some of
these services [1], this solution can also create a number
of issues. First of all, the service providers in each country
impose different rules and restrictions as to what kind of
data can be exchanged through their network or even what
type of applications can access it, making it impossible for
vehicular applications to be deployed globally (e.g., at least
a per country agreement will be required). Additionally, the
cost of cellular data communication is restrictively high, as it
can reach a few pence per KB. Even expensive “unlimited”
plans are usually capped to a few hundred megabytes per
month, making large-scale communication (such as real-time,
fine-grained traffic information) between millions of vehicles
unfeasible. Furthermore, although 3G connections can support
up to 128 Kbits/sec inside a moving vehicle, the bandwidth is
shared between all users inside the cell. Even today, when 3G
is not widely used, the network is swamped by traffic, resulting
in very low throughput in densely populated areas. Finally, Ad-
Hoc connectivity is more sensible in order to disseminate local
information. The use of one-hop local Ad-Hoc communication
does not require any kind of license or any infrastructure de-
ployment and, most importantly, local wireless communication
between vehicles is becoming a reality: there is increasing
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industrial interest and support for vehicular networks [2], [3],
led mainly by the interest to maximize road safety (i.e., to
avoid vehicle collisions).

However, before being implemented, VANET-based ITS
systems require further assessments, as their beneficial effects
on traffic conditions are not yet fully understood. In fact, in
a fully decentralized ITS, each vehicle bases its own traffic
knowledge and routing decisions on only partial data, as only
part of the generated traffic information could be received. As
a result, many new research initiatives have taken place with
the scope of understanding the impact of distributed ITSs on
urban congestion [4].

In this context, we would like to examine the effects of
such a distributed system on traffic. To conduct this study we
designed a distributed ITS and an evaluation platform based
on two realistic simulators, i) a vehicular mobility and ii) a
network simulator, that interact and depend, at each step, one
on the output of the other. Moreover, the key contribution of
this work is that we used these tools in order to examine the
impact of this system in a realistic city scenario. Finally, we
implemented and ran a small-scale proof-of-concept field tests
at UCLA’s C-Vet test-bed

Summarizing, with this paper we aim at understanding the
impact of a distributed ITS system in a realistic scenario. To
the best of our knowledge, this work is the first to consider a
real city topology and realistic traffic flows in evaluating such
systems. In fact, origin-destination pairs of all vehicles utilized
in our simulations are derived from large-scale surveys on the
population of Portland, Oregon [5]. These data allow us to
study a realistic case-study where traffic patterns are matching
real observations. Our results show that such systems can be
beneficial for minimizing traffic conditions in metropolitan
areas, but also open new interesting research directions, as
we show that its improvements on traffic vary as a function of
different parameters (e.g., flow intensities, traffic information
aggregation algorithms, percentage of malicious vehicles, etc).

The remainder of this paper is organized as follows. We
start by describing the existing related work in Section II and
our main motivation scenarios in Section III. In Section IV
we illustrate CATE, our distributed ITS system. In Section V
we present our evaluation platform: a simulation platform that
combines a mobility and a network simulator. In Section VI
we present the extensive study on how such an Ad-Hoc
system could affect traffic conditions in a realistic scenario,
while Section VII discusses a few simple experimental trials
we have conducted to test the feasibility of this solution.
Finally, Section VIII concludes the paper listing possible future
directions.

II. RELATED WORK

An extensive body of literature exists on traffic congestion
causes and effects. Therefore, we only directly cite those works
that are particularly relevant in the present study.

First of all, there was a lot of research about how perfect
traffic information does not guarantee lower congestion. In
fact, assuming all vehicles were provided with real-time traffic
information about every road segment and each vehicle self-
ishly selects the shortest-time path, then this may not always

result in a global minimization of trip times. This result, due
to Beckmann et al. [6], may be used as an argument against
navigation systems that implement traffic guided routing. On
the other hand, no proof exists that a sub-optimal solution is
worse than the absence of any control.

The Comprehensive Automobile Traffic Control System
(CACS), developed in Japan in the seventies, laid the foun-
dations for the use of vehicular traffic sensors. The CACS
system was designed to test the effectiveness of the provision
of real-time traffic information to vehicles. Tests were run on
a 4 km × 7 km urban area in Tokyo, area which contained
85 intersections. Traffic information was recorded with 103
roadside units, 255 loop antennas and 1,000 taxis. The impact
of traffic information dissemination was observed on 330
CACS vehicles. After this seminal work, many researchers
have begun to investigate the impact of traffic information
dissemination on traffic flows.

In [7] authors implement an integrated traffic flow, behav-
ioral and traffic information model. The goal of this work
is to show the impact of traffic information on a vehicular
network, as the penetration ratio increases. Interestingly, in
this study higher penetration ratios lead to poor overall per-
formance. In [7] a fully informed traffic network attains the
same performance of a system with no information feedback.
However, this and other studies [8], [9] focus on very simple
traffic networks, far from the complexity of the network that
is under study in this paper.

In [10] a framework is defined to disseminate traffic in-
formation. This work describes in detail the architecture of a
distributed traffic information system. However, authors do not
investigate the effects the traffic information system may have
on traffic. The evaluation only considers a 15 km straight street
with 4 lanes in both directions. Similar observations were also
independently found in [11].

More recently, authors of [12] implement a bi-directionally
coupled simulator, integrating a vehicular and a telecommu-
nications simulator. The analysis of the impact of a smart
navigation system is limited to a test case with 200 vehicles
that leave a single location and all head to the same destination.

A key role in this area is played by traffic measurement
methodologies and by the technologies employed to gather the
measurements [13]. One of the oldest and most widely spread
technologies is induction loops. Induction loops are usually
placed in the asphalt and provide punctual measurements for
speed and traffic flow for that location. This metric suffers
from a number of problems that limit its reliability. Intuitively,
induction loops record speed information at certain locations
on a street, thus they may result misleading with urban stop-
and-go traffic. A more complete analysis of induction loops
may be found in [14]. Video cameras are slowly replacing
induction loops, but their widespread deployment is limited by
their cost. The advantage in using video cameras is of record-
ing end-to-end times rather than a punctual speed samples.
While these methods are well established and their impact on
traffic is well understood, we aim to compare them with a
fully decentralized crowd-sourced solution.

Finally, in this paper we do not deal directly with security
and privacy concerns. In vehicular networks, it is important
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that the disseminated information is trustworthy, as it can
affect driving decisions. Furthermore, the disseminated infor-
mation can even raise safety issues (e.g., cause accidents) and
raise privacy concerns. Privacy mechanisms could be built
over our system to make sure that such a framework can be
widely used [15], [16], [17]. Numerous trust mechanisms
were also devised [18], [19], [20] to improve cooperation
and quality of the disseminated information. Finally, security
mechanisms [21], [22] can also be enforced to ensure safety
and privacy. All these systems are orthogonal to our approach.

III. SCENARIO AND SYSTEM REQUIREMENTS

Vehicles provided with a computerized system can be aided
in navigation by continuously assessing and correcting the
best route prediction to a destination. To do this each vehicle
should be capable of: i) sensing traffic information; ii) sharing
it with neighboring vehicles (in an Ad-Hoc manner); iii)
dynamically re-computing the best route to destination from
the current position based on the collected information. There-
fore, a Navigation System (NavSys) becomes an element of
a distributed system that cooperatively collects and exchanges
traffic conditions and, at the same time, a sophisticated traffic
estimator, based on real-time information.

Such a system would be useful in many traffic scenarios,
beyond regular traffic management operations. For instance,
a VANET-based ITS may be used where infrastructure-based
traffic monitoring systems are not deployable for various
reasons. This is in fact quite common, only a few cities
around the world implement an infrastructure capable of
recording traffic data and of providing it to drivers. Other
possible applications span from traffic management under
uncommon conditions (i.e., accidents, disasters, evacuations)
to less critical applications as constrained navigation (e.g.,
reach the closest station before gas runs out).

A number of basic characteristics identify a system able to
offer the solution just described:

1) Traffic Sensing. Each vehicle should be able to act as
a traffic sensor. The requirement for a traffic-sensing
module is to measure a quantity closely related to traffic.
Speed, traffic volume, traffic density and trip time are
the most commonly used metrics;

2) Traffic Information Dissemination. Afterwards, vehicles
will exchange the sampled information in an Ad-Hoc
manner. The right traffic information should reach the
right vehicles with the minimum delay. Excessive redun-
dancy risks to congest the feedback channel, too little
can lead to uninformed decisions;

3) Traffic Estimation. Finally, each vehicle should be able
to independently evaluate the traffic conditions based on
the traffic samples received through the network. Raw
samples should be filtered and transformed in correct
traffic estimates. For instance, a red traffic light phase
should not be mistaken with a congested state. Moreover,
as samples arrive at different rates, we need a model to
estimate the traffic conditions when only a few or only
very old samples are available.

To understand how such a system affects global traffic
conditions it is important to evaluate the consequences of each
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Fig. 1. CATE’s architecture.

design choice. However, the complexity and the scale of the
real system makes an “on the field” evaluation prohibitive.
Therefore, there is a need for tools capable of producing
realistic traffic data and handling dynamic routing. This is a
very important piece of the puzzle. As we have seen in the
related work section, in the past many studies [7], [8], [9]
have concluded that informed navigation can lead to traffic
disruption. In the following section, we will describe our
prototype system and we will later describe the tools that we
designed to study its impact on traffic.

IV. CATE: COMPUTER ASSISTED TRAVELING
ENVIRONMENT

We now briefly examine the Computer Assisted Traveling
Environment’s (CATE) architecture (Figure 1). CATE is a
smart navigation system designed to answer the requirements
described the previous section. We will now provide more
details about each one of the three key modules.

A. Traffic Sensing Module
CATE assumes that every vehicle can become a traffic sen-

sor. Therefore, the vehicle’s navigation systems should be able
to accurately take these measurements. Street section delay
is widely accepted as one of the most effective measures of
the degree of congestion. Therefore, the vehicular navigation
problem can be modeled as a search of the shortest path on
a weighted graph. In such model, street sections are links,
intersections are nodes, and a link’s weight is given by the
time required to traverse it. The graph model well applies to
the majority of map databases [23] and navigation systems.

In CATE every time a vehicle exits a road segment, it creates
a traffic sample of type {linkID, delay, timeStamp,
carID}. The linkID is unique per street segment and
direction throughout the vehicular network. The delay field
represents the time spent by the vehicle on link linkID.
The GPS and the map information is used to identify the
time when the vehicle entered/exited a certain road segment.
The timeStamp is the GPS time at which the sample was
collected and more specifically the time when the vehicle
exited the measured road segment.
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B. Dissemination Module

The dissemination module deals primarily with spreading
these samples throughout the vehicular Ad-Hoc network in an
efficient way.

Previous studies [24], [25], [26], [27], [28] show how the
performance of traditional Ad-Hoc routing dissemination is
heavily affected by vehicle density in urban areas. Conversely,
gossip-based Ad-Hoc routing is very effective [29] in dissem-
inating large amounts of information in dense networks and
this is why we choose a utility-based gossip model in CATE.
We will now provide more details about our traffic sample
dissemination protocol.

Periodically, CATE selects a subset of the samples that are
available in the buffer (notice that the buffer contains both the
vehicle’s collected information and information generated by
other vehicles) and broadcasts this information to its neigh-
bors. One-hop neighbors will combine the received samples
with those that were already in their buffer, and later spread
them even further.

A key element of the dissemination module is the sample se-
lection algorithm: how to select which subset of information to
broadcast, assuming only a fraction of a vehicle’s knowledge
can be sent within given bandwidth restrictions. Therefore,
we designed a simple mechanism to prioritize the samples.
To take these decisions each sample is ranked with the help
of utility function: a metric that represents the effectiveness of
each sample. Afterwards the K links with the highest utility
are broadcasted to the neighbors.

There are numerous ways to design an appropriate utility
function but we chose to emphasize on two simple factors:

• Prefer fresh samples: rank the links based on
how recent is the information. In that case rmostRecent is
calculated based on the timeStamplinkID.

• Maximize coverage: rank the links based on
how rare is the disseminated information. In that
case rlessbroadcasted is defined as 1/NBLINK where
NBLINK is the number of times information about
this link was received during the last t minutes (if
NBLINK = 0 we move the link to the top of the
ranking).

Afterwards, we linearly combine these two rankings to
prioritize fresh links but also to encourage high geographi-
cal coverage of the disseminated information. Therefore, our
utility is ULink = rmostRecent + rlessbroadcasted. As we shall
see in Section V, this simple approach provides satisfactory
results in a 4 km x 7 km realistic urban scenario. Numerous
optimizations can improve the information dissemination pro-
cedure (e.g., use a utility that includes topology information
to disseminate only information that is needed by nearby
vehicles). However, an in depth study of such algorithms is
beyond the scope of this paper.

C. Traffic Estimation and Dynamic Routing Module

As we described before, each vehicle will individually
collect a set of measurements (samples) through the network
interface. The key challenge is how to estimate the current
traffic conditions and dynamically re-route the vehicle.

CATE periodically computes the route of a vehicle using the
modified Dijkstra algorithm described in [30] (although other
algorithms specifically devised for vehicular networks can be
easily integrated [31]). In practice, the modified version of
Dijkstra only considers those links (road segments) that are
inside the geographical area between the current position and
the destination. Each link has a weight w that allows Dijkstra
to find the shortest path. In our case, the weight represents
the updated traffic condition of the segment (i.e., how long a
vehicle is expected to be on the road segment based on the
information that it managed to collect via the network).

The problem of estimating a link’s traffic condition based
on the collected samples is not trivial due to the following
reasons:

First of all, noise in the observations: although traffic con-
ditions do not change rapidly over time (traffic jam’s dynamics
are relatively slow), sample delays can be quite noisy. Distinct
vehicles may drive through the same street segment at the same
time, but at a different pace. Some vehicles may stop at a traffic
light, at a pedestrian crossing or to pick up a passenger, while
other vehicles rush through the street segment. The result is
that samples may vary significantly, although collected close
in time.

Secondly, sample rate variation: there is no guarantee that a
link’s traffic samples will be received at a fixed rate (it depends
on traffic and on the dissemination strategy). For example, a
vehicle may receive multiple old samples and just a few fresh.
One key problem is how to weight this information (age of
samples) in order to calculate the best possible estimation of
the current conditions.

Finally, absence of information: no recent information may
be received for some road sections. The two possible choices
are to use weights that represent either historical data (e.g.,
typical average speed at that time on that road segment) or
speed limits. However, we need to identify how quickly the
information is considered as obsolete.

To answer these questions, we tested a number of solutions
in order to interpret the collected samples to provide an
accurate estimation of the current traffic conditions:

• Default: a link’s weight is computed dividing its length
by its speed limit:

WlinkID =
LinkLength

SpeedLimit
(1)

CATE sets this as the default weight when no information
is known about a link.

• Most Recent Estimate: for each link CATE selects the
most recent sample in terms of timeStamp (not the
time this vehicle received it):

WlinkID = DelaylinkID,mostRecentSample (2)

This is the simplest algorithm as it discards all the sam-
ples that were collected earlier. However, a link’s weight
can heavily fluctuate, since samples can vary rapidly.
Surprisingly, the results illustrated in Section V show
that this approach achieves a satisfactory performance.
From a theoretical viewpoint, this is justified by observing
that end-to-end times on road segments follow a bimodal
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distribution [32]. If the distribution that models the low
congested state and the distribution that models the highly
congested state are not very spread, considering that it
takes some time to transit from one state to the other,
any recent traversal time sample can correctly represent
the current state of the link.

• Bayes Estimate: We use a simple Bayesian estimator to
predict the current traffic conditions by using a large
number of samples taken at different times:

WlinkID = (1− α) ∗DelayNewSample

+α ∗ CurrentWeightLinkID (3)

where α is a parameter tuned by the sample’s age (so
that older samples do not excessively weight).

• Bayes with Aging Estimate: The same as before, but the
absence of information moves the weight back to the
default value given by the free flow traversal time:

WlinkID = (1− c) ∗BayesWeightlinkID

+c ∗DefaultWeightLinkID (4)

c is an aging factor computed as:

c =
Min(curT ime− recentSampleT ime,maxAge)

maxAge
(5)

This approach differs from [10], where information is al-
ways assumed to be known, in interpreting no information
as no congestion, and, therefore, accordingly dropping
link weights.

V. THE EVALUATION PLATFORM

To evaluate CATE, we designed and implemented a tool
that simulates both dynamic vehicular navigation (mobility)
and the VANET dissemination. Solutions that couple a mo-
bility simulator and a telecommunications network simulator
can be found in [12], [33], [34], [35]. Differently from in
previous work, we integrate QualNet [36], a communications
network simulator specifically designed for wireless networks,
and MobiDense [37], a mobility simulator we designed and
implemented. These two simulators constantly interact: future
mobility decisions are influenced by the network dissemination
(e.g., collected information), and the network dissemination is
influenced by the mobility patterns (location of the vehicles).
A depiction of the interactions between the two tools is shown
in Figure 2.

A. MobiDense

MobiDense [37] is a mobility simulator which combines
topology and traffic flow information to generate a mobility
trace. We chose MobiDense as it allows us to dynamically
modify the road weights and because it can directly plug
in to QualNet. It is able to simulate vehicular mobility on
real road-network topologies that are extracted from digital
maps. Moreover, we use detailed information about the type
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Fig. 2. MobiDense and QualNet Interactions.

of the street segments (i.e., two-way or one-way roads, speed
limits, number of lanes), the probability of stopping at an
intersection, traffic lights locations, traffic light timings and
phases, etc. When no additional information is provided with
the digital map, the street segment capacities are used to
estimate the enforcing speed limits, and to adapt intersec-
tion stop probabilities and red/green time phases of traffic
lights. Consequently, queues may build up at intersections
and propagate backwards. Besides topological information,
MobiDense also requires a traffic flow model: the starting point
and time, and the destination of all vehicles to be simulated.
Intermediate routing decisions are taken individually by each
vehicle’s routing module based on the topology and the street
weights that are used.

In terms of interaction with QualNet, at each time step t for
each vehicle v that is now at location v < xt, yt > MobiDense
calculates its position for the next time step v < xt+1, yt+1 >.
To perform this task, MobiDense simulates v’s mobility based
on the route that it selected to reach its final destination, the
road topology and the other vehicles in the simulation (e.g.,
traffic queues, speed limits, traffic lights, car-following models,
etc). However, periodically MobiDense re-calculates v’s route
to its final destination based on the traffic samples collected
via the network (the samples collected per vehicle are placed
in the “Collected Traffic Information” database that shown in
Figure 2). Furthermore, since each vehicle acts as a traffic
sensor, MobiDense also adds samples to the database: when
a vehicle exits a road segment a sample for this link is added
in the database. Later this sample will be disseminated via the
network (initially to v’s neighbors and later further away).

In conclusion, MobiDense takes the role of a) a smart
navigation system that can dynamically route each vehicle
based on the estimated traffic conditions that were received
via the network, b) a traffic sample sensor and c) a mobility
simulator that moves the vehicles based on the topology and
the real traffic.

B. QualNet
The wireless network dissemination modules are imple-

mented in QualNet [36], a well-known network simulator
particularly suited for the simulation of wireless networks.

First of all, at each instance t the vehicles are placed at
the locations that were instructed by MobiDense. Since we
are using short-range radio these locations will determine
connectivity.
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To disseminate information, each vehicle periodically broad-
casts samples that are found in “Collected Traffic Information”
database (a shared buffer between the two simulators). As
described in the previous sections, these broadcasts contain
only a subset of the samples that are in the database. Similarly,
when a vehicle receives a message from the network, it adds
the newly received samples to the database. MobiDense will
later use them to dynamically re-route the vehicle and QualNet
will further disseminate them.

Notice that QualNet and MobiDense continually exchange
information (they synchronize once every second). MobiDense
provides the vehicles’ positions and the streets’ traversal times
to QualNet while QualNet is used to gossip the information.

VI. STUDYING THE IMPACT OF VANET DISSEMINATION
ON TRAFFIC

We will now move to our main contribution: the evaluation
of the impact of the system presented in Section IV. The
goal of this work is to establish whether a distributed (Ad-
Hoc) system such as CATE, when used by all vehicles, can
reduce traffic congestion. The main performance metric is
the vehicle’s total trip time, but also other aspects should be
considered. First, we will study how performance improve-
ments, if any, are distributed among vehicles. Second, we will
measure how quickly the information is disseminated. Finally,
we will quantify the amount of communication traffic that is
produced.

For our evaluation, we use a scenario based on downtown
area of Portland, Oregon. The area is approximately 4 km x 7
km, a map is shown in Figure 5. The area includes 4, 968
streets and 3, 429 intersections. About 16, 500 vehicles are
involved in the simulation. Each vehicle’s journey information
(start time and location and end point) is extracted from large-
scale surveys on the population of Portland, Oregon. This
information is extremely valuable as it is very important to
have realistic traffic flows that follow a certain spatio-temporal
distribution. Origin-destination pairs are then plugged into our
coupled mobility-telecommunication simulator.

We use the same source to extract information such as traffic
light positions and delays, intersection stop probabilities, speed
limits and road capacities. MobiDense produces traces, in
absence of information dissemination between vehicles, which
reproduce in terms of flows the original survey observations.

A. Traffic Information Evaluation

Each vehicle stores traffic samples, grouped by linkID,
in a local buffer. In case no information is known about a
link, all the strategies we implement assume there is no traffic
on such link (we assume that vehicles traverse the link at
free flow speed). We now compare the three different traffic
estimation algorithms described in Section IV: (a) Most Recent
Estimate; (b) Bayes; (c) Bayes with Aging. We additionally
compare these strategies to the case where no information is
disseminated.

Traffic flows are adjusted from 33% of the traffic that is
found in the original survey to double the actual flow values.
For example, if an average of 100 vehicles per hour enter
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the map from a certain intersection in the original survey, we
begin the simulation with a flow of 33 vehicles per hour.
Therefore, we simulate the network observing its behavior
with low densities and we then gradually increase traffic to
reach typical morning traffic volumes.

As we see in Figure 3, in absence of information feedback,
when density increases overall trip times quickly rise from
400 seconds, about 7 minutes, to 1200 seconds, about 20
minutes, on average. When CATE is used, trip times drop. A
higher absolute improvement is observed under normal traffic
congestion but the gain is surprisingly less when we have
higher than normal traffic conditions. This result radically
differs from what is found in [7], [8], [9], [38]. An intuitive
explanation may be found by observing Figure 5. As we can
see in Figure 5.a, traffic is mainly localized on the freeways
and on the bridges that traverse the river. However, traffic is
not all generated by vehicles that traverse the river or that
take a freeway. Many vehicles could reach their destinations
through alternate routes, but they do not. In Figure 5.b we
see the result of using CATE. Many more yellow links (i.e.,
slightly congested links) and fewer red links (i.e., heavily
congested) are present. In fact, heavily congested links are
substituted by a number of slightly congested (yellow) links
in Figure 5.b. This indicates that when vehicles collected the
traffic information, they were diverted from heavily congested
areas to areas that were previously not congested, creating
some minor congestion.

The space for improvement is high because the topology
we are here analyzing is realistic and more than one path
is usually available to reach a location. At the center of the
map, in the Manhattan-like section, we can see an increase of
yellow links when using CATE. Under normal morning traffic
conditions, the average trip time is 29% lower, which is a
significant improvement.

In terms of weight calculation algorithms, we observe that
the most recent information and Bayes strategies provide the
best results in this simulated scenario. This happens because
if there is traffic on a link, end-to-end times increase consid-
erably, while they otherwise oscillate slightly above the free
flow delay time. Bayes with aging still improves, but not as
much as the other two methods since traffic conditions are not
rapidly changing.
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Fig. 4. Histogram of trip-times loss/gain.

(a) No information (b) CATE

Fig. 5. Map of speed [best viewed in color]. Green streets are not congested.
Yellow areas show average speed slightly lower than speed limit. In red streets
segments the average speed is much lower than speed limit.

It is important to understand how travel time improvements
are distributed. Figure 4 presents a histogram of the trip times
gain/loss for normal traffic conditions when dissemination is
used. More specifically, gain ratio (Figure 4(a)) is defined as
ratio = oldtime

newtime . For example a ratio of 2 means that the
vehicle halved its trip time, a ratio of 3 that it needed one
third, etc. Similarly, deterioration time (Figure 4(b)) is defined
as ratio = newtime

oldtime (a ratio of 2 means the vehicle doubled
its trip time). As we observe, a large number of vehicles, 34%,
saved 20% of the time (ratio 1.25 means new time is 1/1.25 of
the old time) . There were also luckier vehicles able to avoid
big traffic queues and complete their journey two or three times
faster (ratio 2 and 3). In total 64% of the vehicles saved time.
However, at the same time, we see that some of the drivers
required more time when our application was used. This is due
to some of the traffic being diverted into smaller roads that,
consequently, become busier. However, we can observe that far
fewer drivers have their time increased rather than decreased
and their trip times are no more than two times longer. Finally,
23% of vehicles were not really affected (±10% trip time).

Finally, in terms of penetration ratio, we experimented with
a range of 10% to 100%. As expected, when less vehicles
are equipped with CATE, the system’ performance is slightly
worse. However, in our experiments we noticed that when only
34% of the vehicles are equipped with CATE the performance
is comparable to higher penetration ratios.

B. Traffic Information Dissemination Quality

We also want to understand how well CATE disseminates
traffic information, giving a close representation of real traffic
conditions to each vehicle. In fact, the results we presented
in Figure 3 may derive from an unfair dissemination of
information. We should remember that, in simple scenarios
[7], [8], [9], [38], it has been shown that a fully informed
traffic network can deteriorate traffic performance. Therefore,
random inconsistencies in traffic information dissemination
may be inducing a better traffic behavior.
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Fig. 7. 2D-Heatmap of age of received information (in seconds) about the
link highlighted by the arrow (bridge) . Vehicles away from the bridge receive
older traffic information. [best viewed in color].

To estimate the impact of the dissemination protocol on the
system’s performance, we compute the overall average travel
time when all traffic information is immediately available at
all vehicles. This is the infinite bandwidth/zero delay scenario,
a full-knowledge scenario where all vehicles know all possible
information in real-time. We then observe the variation in
aggregated average traffic trip time, between a fleet of vehicles
that gossip information and a fleet of vehicles that immediately
receive all the available information. Please notice that this
mode would not be possible in reality and we just use it to
compare with full-knowledge scenario.

Figure 6 shows the results for the same traffic estimation
methods used before, yet now information is not collected
with the dissemination protocol (i.e., gossip). All the collected
information is instantly available when a vehicle requires
running its routing algorithm. We observe that the same trends
appear as when CATE is used. The comparison with Figure 3
reveals that trip times are slightly smaller. This result is
very interesting as we can conclude that informed vehicles
can reduce the overall average trip time and that CATE is
performing well, giving an updated picture of the network to
each vehicle.

To better understand how recent information is received at
a vehicle, we analyze the information propagation speed on
the map. Figure 7 shows a zoomed area of the map (near
the central section, between Burnside Bridge and Morrison
Bridge). In this graph, we plot the average age of information
about the bridge pointed by the arrow, Morrison Bridge. In
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nearby areas this information is on average less than one
minute old. In areas that are about two kilometers away,
information is on average about three minutes old. In fact,
in the whole 4 km x 7 km simulation area we could rarely
find vehicles that were using information older than fifteen
minutes. This explains why the results shown in Figure 6 and
3 are so close: CATE performs close to full-knowledge since
traffic trends (i.e., as congestion build up) are slower than
information dissemination, thus giving vehicles enough time
to react.

C. Infrastructure vs. Infrastructure-less Probing
We here compare CATE to state of the art solutions that

monitor selected street segments using video cameras or
induction loops, and disseminate traffic information using
cellular networks (e.g. 3G) or FM stations. With such sys-
tems, all vehicles can instantly access the same updated and
accurate information about the instrumented roads. In CATE
we have the opposite situation, information is collected by
all the vehicles (and, thus, on almost all street segments),
but information is not as recent due to dissemination delay.
Additionally, with CATE, distinct vehicles are likely to have
a different perspective of the traffic situation.

For our comparison, we monitor 5% and 10% of the
streets of downtown Portland. These streets are not chosen
randomly, we chose the most congested 5%-10%. Therefore,
the delay information about the most congested streets is
instantly delivered to all the vehicles.

Figure 8 shows the total average trip times as traffic flows
increase. The infrastructure-based solution is outperformed
due to its lack of flexibility. When a vehicle learns that a
monitored street is congested, it clearly avoids it. However, as
a result vehicles may congest streets with no traffic monitoring
capabilities. On the other hand, CATE collects information
about all streets using each vehicle as a mobile sensor.
Therefore, the build up of new congestion points is reported.
Information might be delayed, but it is recent enough to avoid
congestion hotspots.

D. Studying the Impact of Misbehaving Nodes
Furthermore, although trust and security protocols can be

used to ensure that the vehicles cooperate and are accountable
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for the information that they share (e.g., [18], [19], [20], [21],
[22]), we were also interested in identifying what is the impact
of misbehaving nodes on the traffic conditions.

In our scenario, misbehaving nodes are nodes that intention-
ally spread wrong information about a pre-agreed selection of
road segments. More specifically, in our simulation we would
like to identify the worse case scenario: all the misbehaving
nodes will advertise that all the bridges are fully congested
apart from one: I405 (the leftmost bridge in Figure 5). If a
large percentage of nodes spread this information, this will
force a large number of vehicles to use highway I405.

In Figure 9 we plot how different numbers of misbehaving
nodes affect trip times (0% is the reference point). Clearly, a
small percentage (< 10%) does not affect our system. As the
percentage of malicious nodes increases to a significant size
(> 22%), we observe that Bayes achieves better performance
than using the most recent estimate. This happens because
Bayes is averaging multiple samples in order to create a more
accurate estimation. In any case, we observe that it requires an
unrealistically large amount of misbehaving nodes (> 30%) to
impact worse driving times than the scenarios that do not use
our system.

E. Gossip Network Overhead

We measured the dissemination protocol network overhead
in order to estimate the communication’ s network congestion.
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Fig. 11. Our Implementation Prototype.

In all simulations, we used a 10 seconds gossip interval and a
2000 bytes sending buffer. Figure 10 presents the transfer rates
experienced by each node. As it can be observed, plenty of
space is available for more data. Vehicles only receive data
at 16kbps during normal morning traffic conditions, while
devices compliant to the 802.11p [39] standard are expected
to provide transmission rates in the order of tens of megabits.

VII. ON THE ROAD

Finally, we were interested in examining whether such a
system is feasible. There are many technical challenges in
building a system like CATE. First of all, vehicles should be
able to accurately identify and collect samples using their GPS
and maps. Furthermore, there are computationally demanding
tasks (e.g., traffic estimation based on received samples, re-
routing, etc). Finally, real performance problems such as radio
range and radio propagation speed can be evaluated. Therefore,
we implemented a fully working prototype of CATE. This
prototype allows us to further understand the challenges in
such a system.

Figure 11 shows our implementation’s graphical user inter-
face coded in C# and using Microsoft MapPoint as our naviga-
tion system API. The prototype, thought for experimentation,
enables a user to manually tune parameters such as the route
re-computation interval, the dissemination interval, the sample
selection and the weight calculation algorithms.

We here assess the practicality of deploying CATE im-
plementing its main components and performing a set of
connectivity experiments. Unfortunately, a more interesting set
of experiments that involve traffic information gathering and
dissemination and vehicular navigation is unfeasible.

We use the UCLA Campus Vehicular Testbed (C-VeT)
[40]. C-VeT offers both vehicle-to-vehicle and vehicle-to-
infrastructure connectivity, a virtualized shared environment,
and a number of tools to record a system’s behavior and
performance.

A. Experimental setup

During the experiments, each vehicle carries a PC equipped
with a Zyxel AG-225H card (IEEE 802.11a/b/g compliant),
and a SIRF STAR III based GPS receiver. The hosts were

assigned a static IP as well as a predefined SSID. A high
gain omnidirectional antenna was installed on each vehicle’s
rooftop, and the line of sight range was approximately 250
meters.

We designed two classes of experiments to study the fea-
sibility of CATE. First, we performed connectivity experi-
ments to evaluate the amount of traffic samples that can be
transmitted between two vehicles that are directed in opposite
directions. Second, we tested CATE’s basic communication
features, namely, its neighborhood discovery scheme and its
dissemination scheme. Eight vehicles were involved in this
second test.

B. Experiments

We performed a number of experiments using our prototype
implementation, aiming to examine the feasibility of such a
system.

1) Connectivity: in order to assess the connectivity between
two nodes surrounded by traffic we performed two experi-
ments. First, we measured the throughput achieved between
two static vehicles. In this way, we define the best case.
Second, we measured how much traffic samples could be
disseminated between two cars traveling in opposite directions
at 30 miles per hour (or 13.4 meters per second). Each
experiment was repeated 10 times.

In the static case, at the UDP layer the average throughput
is 30.004 Mbps, the peak throughput is 30.3 Mbps, and the
minimum throughput 28 Mbps. Two vehicles were driven
following the normal traffic, and never exceeded the speed
of 30 miles per hour. Once they were in radio range a stream
of UDP packets flowed from the first vehicle to the second. We
measured the amount of data transferred during each contact.
On average, β received 7.24 MB during an average contact
time of 15 seconds.

2) Dissemination: CATE was deployed on C-VeT, and
tested in its basic features. In fact, we tested the neighborhood
discovery protocol and the dissemination protocol. Experi-
ments were performed using eight vehicles moving in UCLA’s
campus.

The neighborhood discovery protocol transmitted hello
packets at 1 Mbps with no acknowledgements, while gossip
packets were transmitted at the nominal rate of 54 Mbps.

We performed two tests:
One-hop gossiping: In this experiment, each vehicle gos-

siped information to all other vehicles in range. We measured
the average amount of traffic samples transferred during a
contact among vehicles; on average, 2.35 MB were transferred
(about 125000 traffic samples). This value is lower than the
experiment with two cars because: (a) the channel load is
higher (each car is transmitting to 2-3 neighbors on average;
(b) the mobility pattern created a long tail distribution of
contact times ranging from three seconds to thirty seconds.
We observed a peak data transfer of 3.35 MB and a minimum
value of 1.76 MB.

2 MB traffic-sample dissemination: In the second test, only
one car behaved as a source of a 2 MB traffic-update chunk
that represents a full map update. We here aimed at estimating
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the average delay experienced when transferring a big amount
of traffic samples from this vehicle to all the others. In this
experiment, we used CATE’s dissemination scheme, setting
the dissemination interval to 1 second. On average the 2 MB
samples reached all other vehicles in 125 seconds. On average,
the first vehicle received the entire amount of data in less than
20 seconds, the majority of the other vehicles (5 out of 8)
received the data in 72.5 seconds, and the last two vehicles
received the data in 118 and 125 seconds respectively.

While the experiments described in this section are far from
realistic since they do not consider vehicular re-routing based
on traffic estimations, the experiments show the feasibility of
the proposed application. In fact, CATE is easy to deploy
with off the shelf equipment and the computation power
available in any navigation system or PDA device. Moreover,
the bandwidth provided by available wireless technologies is
more than sufficient to support the low data rates that an Ad-
Hoc ITS requires.

VIII. CONCLUSION

In this paper, we quantified the effects of deploying a decen-
tralized traffic based navigation system in downtown Portland,
Oregon. Moreover, we analyzed the effects full knowledge and
partial monitoring would have on traffic congestion. First of
all, our results show that a decentralized approach can reduce
traffic congestion in a realistic scenario. This result is not
trivial, since there are a number of previous works that point in
the opposite direction. Second, our results show that a gossip
scheme performs very well, both in terms of vehicular traffic
and of telecommunications traffic overhead. In fact, when
nodes are provided with full information about traffic with no
delay, the average travel time only slightly decreases. Third,
we show that monitoring only a subset of streets, even when
these are the most congested streets, can lead to unsatisfactory
results. In terms of future work, we are interested to study the
joint optimization of information dissemination and vehicle’s
trip times. Moreover, smart distribution techniques of traffic
information could avoid the build up of secondary congestion
generated by the dissemination of identical information (e.g.,
avoiding a closed road can congest the obvious second best
road). In conclusion, smart navigation represents a powerful
and cost efficient tool, which together with others (e.g., use of
public transportation, etc.), can combat the increase of traffic
congestion in urban areas.
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