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Abstract. An increasing number of synthetic topology generators are
available, each claiming to produce representative Internet topologies.
Every generator has its own parameters, allowing the user to generate
topologies with different characteristics. However, there exist no clear
guidelines on tuning the value of these parameters in order to obtain a
topology with specific characteristics.

In this paper we optimize the parameters of several topology genera-
tors to match a given Internet topology. The optimization is performed
either with respect to the link density, or to the spectrum of the normal-
ized Laplacian matrix. Contrary to approaches in the literature that rely
only on the largest eigenvalues, we take into account the set of all eigen-
values. However, we show that on their own the eigenvalues cannot be
used to construct a metric for optimizing parameters. Instead we present
a weighted spectral method which simultaneously takes into account all
the properties of the graph.

Keywords: Internet Topology, Graph Spectrum.

1 Introduction

Today’s Internet is formed from more than 25,000 Autonomous Systems (ASes),
each of which can contain tens or hundreds of routers. Constant evolution and
change in the Internet, due to failures and bugs in the short term, and growth
and death of networks in the long term, has made it difficult for scientists to
produce representative Internet topologies at either AS or router level. However,
such maps are essential for the simulation and analysis of ideas including new
and improved routing protocols, and peer-to-peer, media-streaming applications.
Since obtaining accurate, timely maps of the Internet topology is difficult, and
development of new protocols and systems requires understanding their perfor-
mance over a range of scenarios, researchers use synthetic topology generators.

There are many such generators, each of which is parameterized, often with
multiple parameters, giving rise to a plethora of potential synthetic graphs.
Understanding and generating those graphs, useful because they accurately
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represent features of the true underlying Internet graph, is difficult. Existing
approaches to tuning the generator parameters range from selection of partic-
ular metrics of interest, e.g., link count, and tuning to match that particular
metric, to simply using the default parameters encoded in the particular release
of the generator package in use!

The core problem is to select an appropriate cost function which reflects those
aspects of the graph that are important to the user and weights those aspects
accordingly. Such a selection process is inherently subjective: there is no “best”
cost function in general. Once a suitable cost function is selected, it is a simple
matter to tune the available parameters of the topology generator to produce
output that optimally matches said cost function.

In the light of this, our contributions in this paper are as follows:

– We propose a new cost function, the weighted spectrum, constructed from
the eigenvalues of the normalized Laplacian matrix, or graph spectrum;

– We demonstrate that the graph spectrum alone is unsatisfactory as a cost
function;

– We provide an efficient approximation of the weighted spectrum;
– We use this approximation to tune parameters for a set of Internet topol-

ogy generators, enabling us to use these generators to effectively match a
particular measured Internet topology.

The graph spectrum is a useful starting point for such a cost function as it
yields a set of invariants about a graph that encode all the properties of that
graph [8]. Our proposed cost function improves on the simple graph spectrum
because it incorporates the knowledge that not all eigenvalues are equally impor-
tant, and weights toward those that are considered to encode more significant
aspects of the graph’s structure. The basis of our algorithm is to provide a way to
measure the difference between two graphs with respect to a common reference,
a suitable regular graph.1

After reviewing related work in Section 2, we outline background theory in
Section 3 before introducing the topology generators we use in Section 4. In
Section 5 we present the results of our analysis and in Section 6 we com-
pare topologies generated at optimal values of the parameters with an observed
dataset. Finally, we conclude the paper in Section 7 and discuss future work.

2 Related Work

Zegura et al. [27] analyze topologies of 100 nodes generated using pure random,
Waxman [25], exponential and several locality based models of topology such as
Transit-Stub [6]. They use metrics such as average node degree, network diam-
eter, and number of paths between nodes, and use the number of edges as the
metric of choice for optimization of the tuning parameter. However as we show
in this paper, the number of links is not an ideal choice particularly in random

1 A regular graph is one where all nodes have the same degree.
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networks, due to the network structure only resembling the observed Internet
topology at link counts much higher than those suggested by the optimization
process.

Tangmunarunkit et al. [23] provide a first point of comparison of the under-
lying characteristics of degree-based models against structural models. A major
conclusion is that the degree-based model in its simplest form performs better
than random or structural models at representing all the studied parameters.
They compare three categories of model generators: the Waxman model of ran-
dom graphs, the TIERS [10] and Transit-Stub structural models, and the sim-
plest degree based generator, called the Power-Law Random Graph [1]. They
compare under three metrics: expansion, resilience and distortion and conclude
that the hierarchy present in the measured networks is stricter than in degree-
based generators. However, they leave many questions unanswered about the
accuracy of degree-based generators and their choice of metrics and parameter
values.

Heckmann et al. [15] discuss different types of topologies and present a collec-
tion of real-world topologies that can be used for simulation. They then define
several similarity metrics, such as the shortest path distributions, node degree
distributions and node rank exponents, to compare artificially generated topolo-
gies with real world topologies from AT&T’s network. They use these to de-
termine the input parameter range of the topology generators of BRITE [19],
TIERS and GT-ITM [6] to create realistic topologies.

Gkantsidis et al. [13] perform a comparison of clustering coefficients using
the eigenvectors of the k largest eigenvalues of the adjacency matrices of BGP
topology graphs. However, the choice of k is somewhat arbitrary, and further,
the selected eigenvectors are all given equal importance. They consider the rest
of the spectrum as noise, although it has been shown that the eigenvalues of
either the adjacency matrix or the normalized Laplacian matrix can be used to
accurately represent a topology and some specific eigenvalues provide a measure
of properties such as robustness of a network to failures [5,16].

Vukadinovic et al. [24] used the normalized Laplacian spectrum for analysis
of AS graphs. They propose that the normalized Laplacian spectrum can be
used as a fingerprint for Internet-like graphs. Using the Inet [26] generator and
AS graphs from BGP data, they obtain eigenvalues of the normalized Laplacian
matrix. The differences between synthetic and observed topologies indicate that
the structural properties of the Internet should be included in an Internet AS
model alongside power law relationships. They believe that the graph spectrum
should be considered an essential metric when comparing graphs. We expand on
this work by demonstrating how an appropriate weighting of the eigenvalues can
be used to reveal structural differences between two topologies.

Use of spectrum for graph comparison is not limited to Internet research.
Hanna [14] uses graph spectra for numerical comparison of architectural space
in large building plans. By defining space as a graph, he shows that the spectra
of two plan types can be used effectively to judge the effects of global vs. local
changes to, and hence the edit distances between, the plans. Hanna believes
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spectra give a reliable metric for capturing the local relationships and can be
used to guide optimization algorithms for reproducing plans.

3 Graph Spectra

In this section we introduce a brief overview of graph and establish the techniques
used later in the paper. Here we define the spectrum, the associated normalized
Laplacian matrix, and several relevant facts relating to this matrix. Given an
undirected graph G = (V, E), V is the set of vertices (nodes), E is the set of
edges (links) and dv is the degree of node v.

Definition 1. For a connected graph the normalized Laplacian of the graph G
is the matrix L(G) defined as:

L(G)(u, v) =

⎧
⎪⎪⎨

⎪⎪⎩

1, if u = v and dv �= 0

− 1√
dudv

, if u and v are adjacent

0, otherwise

(1)

The associated spectrum is the set of ordered eigenvalues of L denoted by
λ1, λ2, . . . , λN−1 where N is the number of vertices and the eigenvalues are or-
dered such that 0 ≤ λ1 ≤ · · · ≤ λi ≤ λi+1 ≤ · · · ≤ λN−1 ≤ 2. The normalized
Laplacian has some very interesting properties, the relevant ones of which we
list here:

1. For a connected graph the spectrum is symmetrical around 1 i.e., λi =
λN−i−1;

2. If D is the diameter of the graph (the maximum number of steps between
all pairs of nodes) and vol(G) denotes the volume of G which is the sum of
the node degrees dv:

λ1 ≥ 1
Dvol(G)

=
1

D
∑

v

(dv)
(2)

Thus, the first eigenvalue is bounded by the node degrees of the vertices.
3. For a connected graph

2hG ≥ λ1 ≥
h2

g

2
(3)

where hG is the Cheeger constant and is a measure of the minimum cut-
set of a graph, see e.g. [8] for a full explanation. The Cheeger constant is
closely related to flow problems in graphs and is thus of obvious importance
to network designers.

For these and other reasons, e.g. as presented in [8,5,24,13], the spectrum of
a graph is often called the footprint of a graph. More specifically, in this paper
we evaluate the use of the spectrum as a measure of the deviation of a graph,
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explained below. A random graph is defined as one for which all but o(N) vertices
almost certainly have degree [7]:

dv =
N

2
+ o(N) (4)

where o(N) denotes of the order of N . For random graphs there exists a large
set of properties which form an equivalence class of properties such that if one of
the properties is proven then all are proven, see e.g. [7] for an initial list. There
also exist non-random graphs which satisfy the equivalence class of properties.
These are known as quasi-random graphs. One of the most tractable properties
of the equivalence class of properties is the 4-cycle. A 4-cycle is a route starting
and ending at one vertex which passes through 4 points in total, where these
may be repeated points:

NG(C4) ≤ (1 + o(1))(
N

2
)4 (5)

where C4 denotes a 4 cycle and NG(C4) denotes the number of such cycles.
However, in this paper our interest does not lie in random graphs (those exam-
ined here are not random but structured) but in a measure called the deviation
of a graph, dev(G), which is a measure of a graph’s deviation from pseudo-
randomness. For a regular graph, in which each vertex has the same degree, this
is defined as the number of 4-cycles. However, this can also be related to the
spectrum: in a given graph G with N eigenvalues λ1, . . . , λN , the deviation is
calculated as follows. For a regular graph:

dev(G) =
∑

i

(1 − λi)4 (6)

and for a general graph:

dev(G) =
∑

i

(1 − λi)4 + 20
√

Irr(G) (7)

where Irr(G) is the irregularity of the graph [8]. The deviation of a graph may
be used as a measure of the structure in a graph, i.e., its distance away from
randomness. It is the first term on the right hand side of the bound above which
forms the metric proposed in this paper. This term expresses the appropriate
weighting, i.e., a power of 4, of the eigenvalues that sum to form the bound on
the deviation of a graph.

Next we consider the interpretation of the eigenvalues of the normalized Lapla-
cian matrix. In the following only eigenvalues less than or equal to 1 are consid-
ered, as the spectrum is symmetrical for connected graphs. Spectral clustering
is a technique which uses the eigenvalues of the normalised Laplacian matrix to
perform clustering of a dataset [20]. The first (smallest) eigenvalue and associated
eigenvector are associated with the main clusters of data. Subsequent eigenvalues
and eigenvectors can be associated with cluster splitting and also identification
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of smaller clusters [22]. Typically, there exists what is called a spectral gap in
which for some k, λk << λk+1 ≈ 1. That is, eigenvalues λk+1, . . . , λN are ap-
proximately equal to one and are likely to represent noise in the original dataset.
It is then typical to reduce the dimensionality of the data using an approxima-
tion based on the spectral decomposition. It is interesting to note that while the
normalized Laplacian has well behaved convergence properties with regards to
clustering, this is not true for other matrices derived from the adjacency ma-
trix [17]. However, with regards to topological graphs, while the first eigenvalue
may be associated, as above, with the optimal cut, which can be considered the
optimal cluster, interpretation of subsequent eigenvalues cannot be associated
with specific graph properties other than the distribution of cluster information
within a graph.

Having established the background material necessary for our method we now
examine the construction of a metric for graph comparison. Given two graphs,
G1 and G2 say we wish to determine at what points their structure vary. As
a first attempt one might try to construct a metric based on the differences
between the eigenvalues as:

C =
∑

i

λi,G1 − λi,G2 (8)

However, pairwise comparison of the eigenvalues as above leads to comparing
eigenvalues which represent different structures in the graph, i.e., it is more
appropriate to compare eigenvalues of similar size. In order to achieve this, the
distribution of eigenvalues is used to construct our metric as:

C =
∫

i

(1 − i)4(P (λi,G1 = i) − P (λi,G2 = i))di (9)

In this paper the distribution of eigenvalues P (λi = i) is estimated by using
pivoting and Sylvester’s Law of Inertia to compute the number of eigenvalues
that fall in a given interval.

While the primary motivation for using a power of four in the equation above is
the number of 4-cycles, and thus the deviation from random behaviour of a graph
as discussed above, an interesting link can also be made with the well known
clustering coefficient, as will now be shown. First however, some background
must be established. Consider the adjacency matrix for a graph, A, in which:

Ai,j = 1 if i → j

where Ai,j is the ith and jth entry of A. The number of paths of length 2 between
nodes i and j, t, can easily be found by squaring the adjacency matrix as:

A2
i,j = t if i → k → j

for some intermediate node(s) k. In general the t paths of length N between
nodes i and j can be found by taking the Nth power of A as:

AN
i,j = t if i → j via N steps.
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noting that for a cycle a path must start and finish at the same point gives:

AN
i,i = t if i → i via an N cycle.

Now consider the spectral decomposition of the matrix A:

A =
∑

i

γiεiεi
T (10)

where γi and εi are the ith eigenpair of A. These form an orthonormal basis for
A (i.e. ortogonal εiε

T
j = 0 and normal εiε

T
i = 1), and so:

AN =

(
∑

i

γiεiε
T
i

)N

(11)

Here we are interested in the number of N -cycles which is the trace of AN :

tr(AN ) =
∑

i

γN
i (12)

Thus, for an adjacency matrix the number of N -cycles in the graphs is the sum
of the eigenvalues. Next consider the normalised Laplacian which can be related
to the adjacency matrix as:

L(G) = I − D−1/2AD−1/2 (13)

where D is a diagonal matrix whose ith entry is the degree of node i. Taking
the identity matrix to the left and taking the trace gives:

tr(I − L(G)) = tr(D−1/2AD−1/2) (14)

However, tr(I − L(G)) is also related to the eigenvalues of L(G) as:

tr(I − L(G)) =
∑

i

1 − λi (15)

Putting the two results together and taking a power of N results in:

tr((I − L(G))N ) = tr((D−1/2AD−1/2)N ) =
∑

i

(1 − λi)N (16)

The right hand side of this equation is the weighted spectrum but it is the
terms on the left hand side we will now examine. Noting that the i,jth entry of
D−1/2AD−1/2 is:

(D−1/2AD−1/2))i,j =
Ai,j√
di

√
dj

(17)

then an N -path passing through a set of nodes, S say, will consist of a product
of #S such terms:

∏

S

Ai,j√
di

√
dj

(18)
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If node i has K N -cycles, consisting of the sets S1,...,K then the ith diagonal
element of (I − L(G))N is:

(D−1/2AD−1/2))N
i,i =

K∑

k=1

∏

i,j∈Sk

1
dj

(19)

Next we consider the clustering coefficient of a graph, G. The cluster coef-
ficient, γ(G), is defined as the average number of 3-cycles divided by the total
number of possible 3-cycles:

γ(G) = 1/N
∑

i

Ti

di(di − 1)/2
, di ≥ 2 (20)

where Ti is the number of 3-cycles for node i, di is the degree of node i. Now
consider a specific 3-cycle between nodes a, b and c. For the cluster coefficient
the contribution to the average is (noting that the 3-cycle will be considered
three times, once from each node):

1
da(da − 1)/2

+
1

db(db − 1)/2
+

1
dc(dc − 1)/2

(21)

However, for the weighted spectrum and taking the number of 3-cycles (Note:
4-cycles are the main focus of this research for reasons explained above), this
particular 3-cycle makes the following contribution to the overall sum (i.e. using
K=1, Sk = a, b, c for node a then likewise for nodes b and c):

3
dadbdc

(22)

So it can be seen that the clustering coefficient normalises each 3-cycle according
to the total number of possible 3-cycles while the 3-cycle weighted spectrum
instead normalises using a product of the degrees. Thus the two metrics can
be considered to be similar but not equal. Note also that in contrast to the
clustering coefficient (one number) the weighted spectrum results in many terms
which represent sucessively finer and finer clusters.

4 Available Topologies

4.1 Synthetic Topologies

There are many models available that claim to describe the Internet AS topology.
Several of these are embodied in tools built by the community for generating
simulated topologies. In this section we describe the particular models whose
output we compare in this paper. The first are produced from the Waxman
model [25], derived from the Erdös-Rényi random graphs [11], where the prob-
ability of two nodes being connected is proportional to the Euclidean distance
between them. The second come from the Barabasi and Albert (BA) [3] model,
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following measurements of various power laws in degree distributions and rank
exponents by Faloutsos et al. [12]. These incorporate common beliefs about pref-
erential attachment and incremental growth. The third are from the Generalized
Linear Preference model [4] which additionally model clustering coefficients. Fi-
nally, Inet [26] and PFP [28] focus on alternative characteristics of AS topology:
the existence of a meshed core, and the phenomenon of preferential attachment
respectively. Each model focuses only on particular metrics and parameters, and
has only been compared with selected AS topology observations.

4.2 Waxman

The Waxman model of random graphs is based on a probability model for in-
terconnecting nodes of the topology given by:

P (u, v) = αe−d/(βL) (23)

where 0 < α, β ≤ 1, d is the Euclidean distance between two nodes u and v, and
L is the network diameter, i.e., the largest distance between two nodes. Note
that d and L are not parameters for the Waxman model. The Internet is known
not to be a random network but we include the Waxman model as a baseline for
comparison purposes.

4.3 BA

The BA [2] model was inspired by the idea of preferentially attaching new nodes
to existing well-connected nodes, leading to the incremental growth of nodes and
the links between them. Starting with a network of m0 isolated nodes, m ≤ m0
new links are added with probability p. One end of each link is attached to a
random node, while the other end is attached to a node selected by preferring
the more popular, i.e., well-connected, nodes with probability

Π(ki) =
ki + 1

∑
j kj + 1

(24)

where kj is the degree of node j, with probability q, m links are rewired and new
nodes are added with probability 1−p− q. A new node m has m new links that,
with probability Π(ki), are connected to nodes i already present in the system.
We use the BRITE [19] implementation of this model in this paper.

4.4 GLP

Our third model is the Generalized Linear Preference model (GLP) [4]. It fo-
cuses on matching characteristic path length and clustering coefficients. It uses
a probabilistic method for adding nodes and links recursively while preserving
selected power law properties. In the GLP model, when starting with m0 links,
the probability of adding new links is defined as p where p ∈ [0, 1]. Let Π(di) be
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the probability of choosing node i. For each end of each link, node i is chosen
with probability Π(di) defined as:

Π(di) = (di − β)/
∑

j

(dj − β) (25)

where β ∈ (−∞, 1) is a tunable parameter indicating the preference of nodes to
connect to existing popular nodes. We use the BRITE implementation of this
model in this paper.

4.5 Inet

Inet [26] produces random networks using a preferential linear weight for the
connection probability of nodes after modeling the core of the generated topology
as a full mesh network. Inet sets the minimum number of nodes at 3037, the
number of ASes on the Internet at the time of Inet’s development. By default,
the fraction of degree 1 nodes α is set to 0.3, based on measurements from
Routeviews2 and NLANR3 BGP table data in 2002.

4.6 PFP

In the Positive Feedback Preference (PFP) model [28], the AS topology of the
Internet is considered to grow by interactive probabilistic addition of new nodes
and links. It uses a nonlinear preferential attachment probability when choos-
ing older nodes for the interactive growth of the network, inserting edges be-
tween existing and newly added nodes. As the PFP generator does not have
any user-tunable parameters we include it only in the last part of Section 5 for
completeness.

4.7 Observed Topology

Our observed topology dataset comes from the CAIDA Skitter project.4 CAIDA
computes the adjacency matrix of the AS topology from the daily Skitter mea-
surements. These are obtained by running traceroutes over a large range of
IP addresses and mapping the prefixes to AS numbers using RouteViews BGP
data. Since the Skitter data represents paths that have actually been traversed
by packets to their destinations, rather than paths calculated and propagated
by BGP system, it is more likely to faithfully represent the IP topology than
the BGP data alone. For our study, we used the graphs for March 2004 as used
by Mahadevan et al. [18]. This dataset reports 9,204 unique ASes across the
Internet.

2 http://www.routeviews.org/
3 http://www.nlanr.net/
4 http://www.caida.org/tools/measurement/Skitter/

http://www.routeviews.org/
http://www.nlanr.net/
http://www.caida.org/tools/measurement/Skitter/
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5 Results

The aim of this section is to examine how well the topology generators match the
Skitter topology for different values of their parameters. To facilitate this com-
parison, grids are constructed over the possible values of the parameter spaces
and various cost functions are evaluated as follows:

1. A cost function measuring the matching between the number of links in
skitter and the generated topologies:

C1(θ) = (lt(θ) − lskitter)2 (26)

where C1 is the first cost function, θ are the model parameters (which differ
for each topology generator), lt is the number of links (which is a function
of the parameters) and lskitter is the number of links in the Skitter dataset.

2. A cost function measuring the matching between the spectra of the Skitter
network and of the generated topologies:

C2(θ) =
∑

i

(P (Λ ≤ λt,i) − P (Λ ≤ λskitter,i))2 (27)

where λt,i is the ith eigenvalue for topology t.
3. A cost function measuring the matching of the weighted spectra:

C3(θ) =
∑

i

((w ∗ P (Λ = λt,i) − w ∗ P (Λ = λskitter,i))2 (28)

where weight w = (1 − i)4.

In addition to examining different parameter values across a grid, the opti-
mum parameters with respect to C3(θ) are estimated using the Nelder Meade
simplex search algorithm [21,9]. Note that the topologies generated by the topol-
ogy generators are random in a statistical sense, due to differing random seeds
for each run. Ten topologies are generated for each value of θ and the average
spectral distribution is calculated. We found that the variance of the spectral
distributions was sufficiently low to allow reasonable estimates of the minima in
each case.

5.1 Link Densities

Figure 1 displays the value of the cost function C1(θ) as a function of the topology
generator parameters. On the upper and lower left graphs, the grayscale color
indicates the value of the cost function. For Inet (lower right) there is only one
parameter, p, so it is plotted as a curve in Figure 1(d). Figure 1 shows that
a minimum exists for each topology in approximately the same regions as the
default values of each generator.5 For the BA generator it is known that for
5 Some of these default values are listed in table 1.
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Fig. 1. Topology generator parameter grid for sum squared error from number of links

values of p and q above the line shown in Figure 1(b), the topologies generated
follow an exponential node degree distribution while those below follow a scale-
free distribution. It is encouraging to note that the values of C1(θ) are large in
the exponential region and the minimum is in the scale-free region as the node
degree distribution of the Internet is known to be approximately scale free [2].
Overall the results obtained by tuning the parameters based on C1(θ) appear
reasonable. For link density matching it is possible to obtain parameter values
which match the link densities exactly. Indeed, there is a ridge of parameters for
BA, GLP and Waxman for which the link densities can be matched. However,
as noted in the introduction, there is no control over any other characteristic of
the graph using this method.

5.2 Spectra PDF

Figure 2 shows the spectral PDF of the Skitter dataset and the four topology
generators calculated at three parameters values in each grid (the parameter
values are indicated in brackets in the legends). The aim is to illustrate how
much the spectral PDFs change with the values of the parameters. The spectral
PDFs of Waxman (Figure 2(a)) vary significantly for different values of α and β.
Furthermore, none of the Waxman PDFs match well the spectral PDF of the
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Fig. 2. PDF of Spectra

Skitter graph. The BA PDFs vary to a lesser extent (Figure 2(b)) and appear to
give a much better match than the Waxman model, especially around eigenvalue
1 (λ = 1). This better match of BA is not surprising as the Waxman model is not
a good model for the Internet as noted in Section 4. GLP (Figure 2(c)) and Inet
(Figure 2(d)) give similar results to BA, with a poor match outside eigenvalue 1.
The better match of the BA model around eigenvalue 1 is interesting. As noted
in Section 3 the regions away from eigenvalue 1 are far more important than the
region around λ = 1. However, what is required is a technique that reveals the
differences with distance from one as these are more important. Thus it would
appear difficult to evaluate which model, or even which parameter, is better
based on the PDFs alone. This point is now further explored by analysis of the
grids calculated with respect to C2(θ).

5.3 Limitations of Spectra CDF

Figure 3 shows the value of the second cost function C2(θ) as a function of
the topology generator parameters, in the same way as Figure 1. As can be seen
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Fig. 3. Parameter grid for sum of absolute differences of spectra CDFs

in Figure 3, there are many islands corresponding to local minima, creating a
rugged landscape. The variance in the PDFs referred to in this section is actually
greater than any gradient that might exist in the grid. This means that it is not
possible to estimate the minimum with respect to C2(θ). Figure 3 shows that the
spectrum on its own is not sufficient to identify the optimum parameters of any
of the topology generators. This is because each eigenvalue in C2(θ) is weighted
equally. As noted in Section 3, the eigenvalues close to 1 are more likely to be
affected by the random seeds for each topology generator and are the source of
the noise on the grid.

5.4 Weighted Spectra

The previous section illustrated the limitations of using the raw eigenvalues
to find optimal topology generator parameters to match the Skitter topology.
Figure 4 shows a plot of the weighted spectra of the same topologies as those
shown on Figure 2. As can be seen the results are quite different from those shown
in Figure 2. The Waxman weighted spectra still shows a bad fit with respect
to the Skitter data (mainly around 0 and 2) compared to the other generators.
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Fig. 4. Weighted spectra grid for generator parameters

The other generators (BA, GLP and Inet) now show that they are capable of
matching the weighted spectra of the Skitter topology, especially around the
point of greatest weight (λ = 0.4 or 1.6). The difference between the weighted
spectra around 1 is no longer of importance (in contrast to Figure 2), reflect-
ing that the weights here approach zero as we approach eigenvalue 1. In the
next section the optimum values and the resulting weighted spectra will be
compared.

5.5 Weighted Spectra Comparison

Figure 5 shows the grids associated with C3(θ). As can be seen the grids show
that there is a region with a minima in each case and in addition, comparing
Figure 5 and Figure 1 it can be seen that these minima lie in a region close to
those for C1(θ). However, it should be noted that the weighted spectra will try
to fit more than just the number of links in a topology. This demonstrates the
inherent trade-off. Also of note is that the region of interest for the BA model
lies inside the region of scale-free behaviour as shown in Figure 5(b).
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Fig. 5. Grid of sum squared error of weighted spectra for topology generators

6 Generating Topologies with Optimum Value
Parameters

Table 1 displays the optimum values for the topology generators for generating
networks that are close to the Skitter graph. In addition, we give the values for
C3(θ), which show that PFP gives the closest fit followed by BA, GLP, Waxman
and finally Inet. While these results are mostly expected, the ranking of Inet
as the worst topology generator is surprising. We have also listed some of the
default parameters used in certain generators such as BRITE [19]. While many
of the optimised parameters are close to the default values, which is encouraging,

Table 1. Optimum parameter values for matching Skitter topology

Waxman α = 0.08 (default= 0.15) β = 0.08 (default= −0.2) C3(θ) = 0.0026 C3(θ) = 0.0797
BA p = 0.2865 (default= 0.6) q = 0.3145 (default= 0.3) C3(θ) = 0.0014 C3(θ) = 0.0300
GLP p = 0.5972 (default= 0.45) β = 0.1004 (default= 0.64) C3(θ) = 0.0021 C3(θ) = 0.0446
Inet α = 0.1013 (default= 0.3) − C3(θ) = 0.0064 C3(θ) = 0.0150
PFP − − C3(θ) = 0.0014 C3(θ) = 0.0371
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Fig. 6. Comparison of the weighted spectra

it should be noted that the default parameters are for a typical graph and are not
selected for any particular situation. Thus a direct comparison is meaningless.

Figure 6(a) shows the weighted spectra for each of the topology generators
and inspection of this figure goes some way to explaining the discrepancy in the
results. As can be seen the main peak in the weighted spectra for the Skitter
data occurs at a value of λ = 0.4. The Waxman generator peak occurs at λ =
0.6 which is closer to 1 demonstrating the greater amount of random structure
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in the Waxman topologies. However, for the Inet generator the peak occurs at
the correct point (λ =0.4) but the weighted power at this point is far greater
than in the skitter topology. By normalizing the weighted spectrum this point
becomes clear:

C3(θ) =
∑

i

((wi ∗ P (Λ = λt,i))
∑

i

((wi ∗ P (Λ = λt,i))
− ((wi ∗ P (Λ = λskitter))

∑

i

((wi ∗ P (Λ = λskitter))
(29)

Using the normalised weighted spectrum the results in Figure 6(b) show that
Inet is the best match for the Skitter data while the Waxman model still performs
worse than the other models. Further research is required before stating which
version of C3 is superior.

Figure 7 shows a comparison of the optimized topologies with respect to
four typical network metrics: the node degree distribution, the average neighbor
connectivity, the clustering coefficient and the rich-club connectivity [28]. As
can be seen PFP gives the best match for these metrics in agreement with our
proposed metric C3(θ). The performance of the other topologies is mixed showing
that while one topology is able to match one metric it fails to match another. For
example, the GLP generator achieves a reasonable match for the node degree
distribution but fails to match the average neighbor connectivity. It is interesting
to note that BA does not match the rich club connectivity which is not evident
in our metric.

7 Conclusions

Comparison of graph structures is a frequently encountered problem across a
number of problem domains. To perform a useful comparison requires definition
of a cost function that encodes which features of the graphs are considered im-
portant. Although the spectrum of a graph is often claimed to be a way to encode
a graph’s features, the raw spectrum contains too much noise to be useful on its
own. In this paper we have introduced a new cost function, the weighted graph
spectrum, that improves on the graph spectrum by discounting those eigenvalues
that are believed to be unimportant and emphasising the contribution of those
believed to be important.

We use this cost function to optimise the selection of parameter values within
the particular problem domain of Internet topology generation. The weighted
spectrum was shown to be a useful cost function in that it leads to parame-
ter choices that appear sensible given prior knowledge of the problem domain,
i.e., are close to the default values and, in the case of the BA generator, fall
within the expected region. In addition, as the metric is formed from a sum-
mation, it is possible to go further and identify which particular eigenvalues are
responsible for significant differences. Although it is currently difficult to assign
specific features to specific eigenvalues, it is hoped that this feature of our cost
function will be useful in the future.
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