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Weighted Spectral Distribution for Internet
Topology Analysis: Theory and Applications
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Abstract—Comparing graphs to determine the level of under-
lying structural similarity between them is a widely encountered
problem in computer science. It is particularly relevant to the
study of Internet topologies, such as the generation of synthetic
topologies to represent the Internet’s AS topology. We derive a
new metric that enables exactly such a structural comparison,
the weighted spectral distribution. We then apply this metric to
three aspects of the study of the Internet’s AS topology. (i) we
use it to quantify the effect of changing the mixing properties of
a simple synthetic network generator. (ii) we use this quantitative
understanding to examine the evolution of the Internet’s AS
topology over approximately 7 years, finding that the distinction
between the Internet core and periphery has blurred over time.
(iii) we use the metric to derive optimal parameterizations of
several widely used AS topology generators with respect to a
large-scale measurement of the real AS topology.

Index Terms—Internet topology, Topology generation, Spectral
graph theory, Graph metrics

I. I NTRODUCTION

Graph comparison is a problem that occurs in many
branches of computing, from vision to speech processing to
systems. Many techniques exist for graph comparison, e.g.,the
edit distance [1] (the number of link and node additions
required to turn one graph into another), or counting the
number of common substructures in two graphs [2]. However,
for large graphs such as the AS topologies examined here,
these methods are computationally too expensive. In addition,
they are inappropriate for dynamic graphs, resulting in varying
edit distances or substructure counts. Instead, we requirea
metric which reflects thestructure of large graphs in some
meaningful sense. Typical currently used “metrics” include
the clustering coefficient, the assortativity coefficient,the node
degree distribution and thek-core decomposition. However,
these are not metrics in the mathematical sense, but rather
are measures, e.g., two graphs may have the same clustering
coefficient but hugely different structures. This distinction is
important asa measure cannot be used to determine unique
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differences between graphs: two graphs with the same mea-
sures may not in fact be the same.

In this paper we present a new metric, theweighted spectral
distribution (WSD), which compares graphs based on the
distribution of a decomposition of their structure. Specifically,
the WSD is based on the spectrum of the normalised Laplacian
matrix and is thus strongly associated with the distribution of
random walk cyclesin a network (as will be shown in Section
III). The probability of randomly walkingN steps from a node
such that we return to that node, indicates the connectivityof
that node. Hence, a low probability indicates high connectivity
(there are many routes, few of which return) while a high
probability indicates high clustering (many of the routes lead
back to the original node).

The WSD is computationally inexpensive and so can be
applied to very large graphs (more than 30,000 nodes and
200,000 edges). Also, it expresses the graph structure as a
simply plotted curve which can be related to specific properties
of AS graphs: hierarchy and local connectivity. Given that the
WSD is a metric in the mathematical sense, as we show in
Section III, several applications become possible: parameter
estimation for topology generators with respect to a target
dataset (Section V-C), direct comparison among topology
generators using these optimal parameters (Table II), and
quantification of change in the underlying structure of the
Internet as it evolves over time (Section V-B). This metric
is also a useful tool to evaluate the graphs that describe
synthetic workloads generated from trace data. In such cases
the generated graphs shouldnot exactly match the original
trace data, but should share some common structure with them.
Such situations are encountered in workload generation and
Internet topology generation.

In this paper we focus on applications of the WSD to
the study of the Internet’s AS topology. An AS represents
a single network which can apply its own operational and
peering policy. An Internet Service Provider (ISP) may use 1
or more ASes. The Internet contains over 28,000 ASes, each
in a set of relationships with its neighbors, who are either its
customers, providers or peers. In the Internet’s core thereis a
full mesh formed between the ASes of the various tier-1 ISPs.
However, at the edges there are a huge number of smaller
ISPs and customer networks which connect through upstream
providers and local public exchange points. These smaller ISPs
and customer networks may have only one upstream provider,
or may have many for resilience and performance reasons.
In addition, the Internet constantly evolves; new networksare
added, old ones disappear and existing ones grow and merge.
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Links between ASes depend on business relationships which
can and do change, sometimes rapidly, making any interpre-
tation of the Internet as astatic structure inaccurate. This rich
and dynamic structure makes it difficult for researchers to
provide either a single, representative topological model, or
a single graph metric that captures all characteristics of any
topology. However, such a metric would make it possible to
generate realistic synthetic topologies improving the accuracy
of Internet-wide protocol simulations, and perhaps enabling
the prediction of the future evolution of the Internet’s topology.

Many attempts to capture one or more characteristics have
been made, resulting in several topology generators which
each synthesize Internet-like topologies using differentmodels
and parameters. Unfortunately, validating these models isan
ad hoc affair that typically means matching several of the
measures given above and hoping that this will also ensure
a matching structure. Users often select default parameters for
these models based on specific datasets measured at particular
times, and which no longer represent today’s Internet. How-
ever, as noted previously, these measures cannot be used to
estimate the optimum parameters for a model given a target
topology.

This paper makes the following contributions:

(i) a spectral metric and a strawman model for comparing
the structure of large graphs;

(ii ) the analysis of more than 7 years of the evolution of the
Internet AS topology seen from two different measure-
ment techniques;

(iii ) a comparison among the outputs of five major Internet
topology generators and a measured dataset; and

(iv) optimal parameter estimation of said topology generators
with respect to the measured dataset using our metric.

We proceed in Section II by reviewing related work on
graph matching, spectral analysis of networks and Internet
analysis. In Section III we present the necessary theoretical
background, introducing the concepts on which we base our
metric, before deriving the metric itself. In Section V we
demonstrate use of the weighted spectral distribution in three
distinct applications: comparing the structure of large graphs,
quantifying the evolution of the AS topology over 7 years, and
comparing and estimating optimal parameters for 5 widely
used topology generators. We conclude in Section VI.

II. RELATED WORK

In this section we outline related work, classifying it into
three groups: spectral graph analysis and the closely related
WSD, evolution of the AS topology, and analysis of the
clustering features of the AS topology.

The graph spectrum has been used for a variety of purposes
in addition to characterization of Internet topologies, including
space comparison [3], graph matching [4], cluster identifi-
cation [5] and topology generator tuning [6]. Gkantsidiset
al. [7] perform a comparison of clustering coefficients using
the eigenvectors of thek largest eigenvalues of the adjacency
matrices of AS topologies.k is chosen to retain the strongest
eigenvectors discarding most of the others. Those retainedare
then shown to represent finer elements of the Internet structure.

The rest of the spectrum is considered unimportant, even
though other works have shown that the eigenvalues of the
adjacency matrix or the normalized Laplacian matrix can be
used to accurately represent a topology [8], and some specific
eigenvalues provide a measure of properties such as robustness
of a network to failures [9].

Vukadinovic et al. [10] were the first to investigate the
properties of the AS topology based on the normalized
Laplacian spectrum. They observe that the normalized Lapla-
cian spectrum can be used to distinguish between synthetic
topologies generated by Inet [11] and AS topologies extracted
from BGP data. These results indicates that the normalized
Laplacian spectrum reveals important structural properties of
the AS topology. However, as noted by Haddadiet al. [6], the
spectrumalonecannot be used directly to compare graphs as it
contains too detailed information about the network structure.
We expand on this work by demonstrating how appropriate
weighting of the eigenvalues can reveal the structural dif-
ferences between two topologies. Perhaps the closest metric
to the WSD is the fast graph kernel method proposed by
Vishwanathanet al. [12]. Graph kernels are similar to the WSD
in that they count random walks in networks but differ in the
means by which they do so.

Shyu et al. [13] study the evolution of a set of topolog-
ical metrics computed on a set of observed AS topologies.
The authors rely on monthly snapshots extracted from BGP
RouteViews from 1999 to 2006. The topological metrics
they study are the average degree, average path length, node
degree, expansion, resilience, distortion, link value, and the
Normalized Laplacian Spectrum. They find that the metrics
are not stable over time, except for the Normalized Laplacian
Spectrum.

Latapy and Magnien [14] address the question of studying
the relation between the size of a measurement sample and the
corresponding topological properties. Based on AS topologies
built from IP-level measurements from Skitter for a period
from January 2005 to May 2006, they observe an increase in
the average degree and the clustering coefficient when a larger
dataset is used.

Wang and Loguinov [15] propose the Wealth-Based Internet
Topology (WIT) model. Interestingly, central to their modelis
the notion that each AS picks its connections to maximise
local random walks. This characteristic of the structure ofthe
AS topology is particularly targeted by the WSD. However,
as this model is not publicly available it is not included in our
comparisons (Section V).

Wool and Sagie [16] propose several clustering algorithms
to explore the AS topology using just a snapshot of the Skitter
data. They focus on identification of the dominant clusters,
although their result is sensitive to parameters such as the
minimum cluster size. Our technique, the WSD, differs in that
it focuses on random cycles instead of clusters and does not
require any parameter estimation. In addition, we use thek-
core decomposition to analyse the core of the Internet AS
topology.

Li et al. [17] perform a similar study to the one pre-
sented here. In their work they use several different clustering
methods to identify the distribution of clustering features
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throughout a network. Interestingly, their clustering metric
gives similar results for the Skitter and UCLA datasets, while
WSD shows differing results reflecting directly the differing
sampling characteristics of these two measurement techniques.
The WSD also allows us to obtain a “best fit” prior to
comparing topology generators with the observed datasets.

III. T HEORETICAL BACKGROUND

We now derive our metric, theweighted spectral distri-
bution, relating it to another common structural metric, the
clustering coefficient, before showing how it characterises
networks with different mixing properties.

Denote an undirected graph asG = (V,E) where V is
the set of vertices (nodes) andE is the set of edges (links).
The adjacency matrix ofG, A(G), has an entry of one if two
nodes,u andv, are connected and zero otherwise

A(G)(u, v) =

{

1, if u, v are connected

0, if u, v are not connected
(1)

Let dv be the degree of nodev and D = diag(sum(A))
be the diagonal matrix having the degrees along its diago-
nal. Denoting byI the identity matrix (I)i,j = 1 if i =
j, 0 otherwise, the Normalised LaplacianL associated with
graphG is constructed fromA by normalising the entries of
A by the node degrees ofA as

L(G) = I − D−1/2AD−1/2 (2)

or equivalently

L(G)(u, v) =















1, if u = v anddv 6= 0

− 1√
dudv

, if u andv are adjacent

0, otherwise

(3)

As L is a real symmetric matrix there is an orthonormal
basis of real eigenvectorse0, . . . , en−1 (i.e., eie

T
j = 0, i 6= j

and eie
T
i = 1) with associated eigenvaluesλ0, . . . , λn−1. It

is convenient to label these so thatλ0 ≤ . . . ≤ λn−1. The
set of pairs (eigenvectors and eigenvalues ofL) is called the
spectrum of the graph. It can be seen that

L(G) =
∑

i

λieie
T
i (4)

The eigenvaluesλ0, . . . , λn−1 represent the strength of
projection of the matrix onto the basis elements. This may be
viewed from a statistical point of view [18] where eachλieie

T
i

may be used to approximateA(G) with approximation error
inversely proportional to1 − λi. However, for a graph, those
nodes which are best approximated byλieie

T
i in fact form

a cluster of nodes. This is the basis for spectral clustering,
a technique which uses the eigenvectors ofL to perform
clustering of a dataset or graph [19]. The first (smallest)
non-zero eigenvalue and associated eigenvector are associated
with the main clusters of data. Subsequent eigenvalues and
eigenvectors can be associated with cluster splitting and also
identification of smaller clusters [5]. Typically, there exists
what is called aspectral gapin which for somek and j,
λk ≪ λk+1 ≈ 1 ≈ λj−1 ≪ λj . That is, eigenvalues

λk+1, . . . , λj−1
1 are approximately equal to one and are likely

to represent links in a graph which do not belong to any
particular cluster. It is then usual to reduce the dimensionality
of the data using an approximation based on the spectral
decomposition. However, in this paper we are interested in
representing the global structure of a graph (e.g., we are
interested in the presence or absence of many small clusters),
which is essentially the spread of clustering across the graph.
This information is contained in all the eigenvalues of the
spectral decomposition.

Let x = (x0, . . . , xn−1) be a vector. From (3) we see that

xLxT =
∑

uv∈E

(xu/
√

du − xv/
√

dv)2 (5)

Now, the eigenvalues cannot be large because from (5) we
obtain

xLxT ≤
∑

uv∈E

(xu/
√

du − xv/
√

dv)2

+ (xu/
√

du + xv/
√

dv)2

= 2
∑

u

x2
u = 2xxT (6)

and soλi = eiLeT
i ≤ 2. What is more, the mean of the

eigenvalues is 1 because
∑

i

λi = tr(L) = n (7)

by (3), wheretr(L) is the trace of L.
To summarize: the eigenvalues ofL lie in the range 0 to 2

(the smallest being 0), i.e.,0 = λ0 ≤ . . . ≤ λn−1 ≤ 2, and
their mean is 1.

The distribution of then numbersλ0, . . . , λn−1 contains
useful information about the network, as will be seen. In turn,
information about this distribution is given by its momentsin
the statistical sense, where theN th moment is1/n

∑

i(1 −
λi)

N . These moments have a direct physical interpretation in
terms of the network, as follows. WritingB for the matrix
D−1/2AD−1/2, so thatL = I −B, then by (3) the entries of
B are given by

(D−1/2AD−1/2)i,j =
Ai,j√
di

√

dj

(8)

Now the numbers1 − λi are the eigenvalues ofB = I − L,
and so

∑

i(1−λi)
N is justtr(BN ). Writing bi,j for the(i, j)-

th entry of B, the (i, j)-th entry of BN is the sum of all
productsbi0,i1bi1,i2 . . . biN−1iN

wherei0 = i andiN = j. But
bi,j , as given by (8), is zero unless nodesi andj are adjacent.
So we define anN -cycle in G to be a sequence of vertices
u1u2 . . . uN with ui adjacent toui+1 for i = 1, . . . , N − 1
and with uN adjacent tou1. (Thus, for example, a triangle
in G with vertices set{a, b, c} gives rise to six 3-cyclesabc,
acb, bca, bac, cab andcba. Note that, in general, anN -cycle
might have repeated vertices.) We now have

∑

i

(1 − λi)
N = tr(BN ) =

∑

C

1

du1
du2

. . . duN

(9)

1i.e., the eigenvalues at the centre of the spectrum.
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the sum being over allN -cycles C = u1u2 . . . uN in G.
Therefore,

∑

i(1 − λi)
N counts the number ofN -cycles,

normalised by the degree of each node in the cycle.
The number of N-cycles is related to various graph prop-

erties. The number of 2-cycles is just (twice) the number of
edges and the number of 3-cycles is (six times) the number
of triangles. Hence

∑

i (1 − λ)3 is related to the clustering
coefficient, as discussed below. An important graph property
is the number of 4-cycles. A graph which has the minimum
number of 4-cycles, for a graph of its density, is quasi-
random, i.e., it shares many of the properties of random graphs,
including, typically, high connectivity, low diameter, having
edges distributed uniformly through the graph, and so on.
This statement is made precise in [20] and [21]. For regular
graphs, (9) shows that the sum

∑

i (1 − λ)4 is directly to the
number of 4-cycles. In general, the sum counts the 4-cycles
with weights: for the relationship between the sum and the
quasi-randomness of the graph in the non-regular case, see the
more detailed discussion in [22, Chapter 5]. The right hand
side of (9) can also be seen in terms of random walks. A
random walk starting at a vertex with degreedu will choose
an edge with probability1/du and at the next vertex, sayv,
choose an edge with probability1/dv and so on. Thus the
probability of starting and ending randomly at a vertex after
N steps is the sum of the probabilities of allN -cycles that
start and end at that vertex. In other words exactly the right
hand side of (9). As pointed out in [15], random walks are an
integral part of the Internet AS structure.

The left hand side of Equation (9) provides an interesting
insight into graph structure. The right hand side is the sum
of normalisedN -cycles whereas the left hand side involves
the spectral decomposition. We note in particular that the
spectral gap is diminished because eigenvalues close to one
are given a very low weighting compared to eigenvalues far
from one. This is important as the eigenvalues in the spectral
gap typically represent links in the network that do not belong
to any specific cluster and are not therefore important partsof
the larger structure of the network.

Next, we consider the well-known clustering coefficient.
It should be noted that there is little connection between
the clustering coefficient, and cluster identification, referred
to above. The clustering coefficient,γ(G), is defined as the
average number of triangles divided by the total number of
possible triangles

γ(G) = 1/n
∑

i

Ti

di(di − 1)/2
, di ≥ 2 (10)

whereTi is the number of triangles for nodei anddi is the
degree of nodei. Now consider a specific triangle between
nodesa, b andc. For the clustering coefficient, noting that the
triangle will be considered three times, once from each node,
the contribution to the average is

1

da(da − 1)/2
+

1

db(db − 1)/2
+

1

dc(dc − 1)/2
(11)

However, for the weighted spectrum (withN = 3), this

particular triangle gives rise to six 3-cycles and contributes

6

dadbdc
(12)

So, it can be seen that the clustering coefficient normalises
each triangle according to the total number of possible tri-
angles while the weighted spectrum (withN = 3) instead
normalises using a product of the degrees. Thus, the two
metrics can be considered to be similar but not equal. Indeed,
it should be noted that the clustering coefficient is in fact not
a metric in the strict sense. While two networks can have
the same clustering coefficient they may differ significantly in
structure. In contrast, the elements of

∑

i (1 − λ)3 will only
agree if two networks are isomorphic.

We now formally define theweighted spectrumas the
normalised sum ofN -cycles as

W (G,N) =
∑

i

(1 − λi)
N (13)

However, calculating the eigenvalues of a large (even sparse)
matrix is computationally expensive. In addition, the aim here
is to represent theglobal structure of a graph and so precise
estimates ofall the eigenvalue values are not required. Thus,
the distribution2 of eigenvalues is sufficient. In this paper
the distribution of eigenvaluesf(λ = k) is estimated using
pivoting and Sylvester’s Law of Inertia to compute the number
of eigenvalues that fall in a given interval. To estimate the
distribution we useK equally spaced bins3. A measure of the
graph can then be constructed by considering the distribution
of the eigenvalues as

ω(G,N) =
∑

k∈K

(1 − k)Nf(λ = k) (14)

where the elements ofω(G,N) form the weighted spectral
distribution:

WSD : G → ℜ|K|{k ∈ K : ((1 − k)Nf(λ = k))} (15)

In addition, a metric can then be constructed fromω(G) for
comparing two graphs,G1 andG2, as

ℑ(G1, G2, N) =
∑

k∈K

(1 − k)N (f1(λ = k) − f2(λ = k))2

(16)
wheref1 and f2 are the eigenvalue distributions ofG1 and
G2 and the distribution of eigenvalues is estimated in the set
K of bins∈ [0, 2]. Equation (16) satisfies all the properties of
a metric (see Appendix A).

We next wish to test if the WSD for graphs generated
by the same underlying process vary significantly (to show
that the WSD is stable). To do this, we generate a set of
graphs that have very similar structure and test to see if
their WSDs are also similar. The results of an empirical test
are shown in Figure 1. This plot was created by generating
50 topologies using the AB [23] generator with the (fixed)
optimum parameters determined in Section V-C, but with

2The eigenvalues of a given graph are deterministic and sodistributionhere
is not meant in a statistical sense.

3K can be increased depending on the granularity required.
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Fig. 1. Mean and standard deviations for WSD and (unweighted)spectrum
for the AB model over 50 simulations.

Fig. 2. A simple example networkG1.

different initial conditions4. For each run the spectral and
weighted spectral distributions are recorded yielding50 × 50
bin values which are then used to estimate standard deviations.
As the underlying model (i.e. the AB generator) is the same for
each run, thestructuremight be expected to remain the same
and so a “structural metric” should be insensitive to random
initial conditions. As can be seen the standard deviation5 of the
(unweighted) spectrum,σfλ

(λ), is significantly higher at the
centre of the spectrum. However, for the WSD, the standard
deviation,σwsd, peaks at the same point as the WSD; the noise
in the spectral gap has been suppressed. The evidence seems
to show that the WSD is therefore stable.

IV. EXAMPLES

After the fairly theoretical previous section, we aim at giving
the reader a better intuition behind the WSD with a simple
example. Figure 2 shows a small network, calledG1, with 7

4We found similar results for other parameters and topology generators.
5Multiplied by a factor of ten for clarity.

1
2

3
4

5
6

7

1

2

3

4

5

6

7

0

0.5

1

 

Eigenvector

Node

 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fig. 3. Eigenvectors of the simple example network.

TABLE I
EIGENVALUES, WSD AND DOMINANT NODES OF EXAMPLE NETWORK.

e7 Eigenvector λ 1 − λ (1 − λ)3 Dominant
nodes

0.2500 1 1.8615 -0.8615 -0.6394 3,1,2,6
0.2500 2 1.3942 -0.3942 -0.0612 7,4,5
0.5590 3 1.3333 -0.3333 -0.0370 4,5
0.4330 4 1.0000 0.0000 0.0000 6,2
0.4330 5 1.0000 0.0000 0.0000 1,2,6
0.2500 6 0.4110 0.5890 0.2043 7,3
0.3536 7 0.0000 1.0000 1.0000 3,4,5,7

P

7

i=1
(1 − λi)

3 0.4667

nodes and 8 links. As can be seen there are 2 cycles of length
3 in this network and one of length 4. We will takeN = 3 in
this example for convenience and without loss of generality.
The random walk probabilities are labeled in Figure 2. For
example, node 3 has a degree of 5 resulting in a probability
of 1/5th for each edge. The total probability of taking a random
walk around each 3-cycle is:6×1/2×1/3×1/3 = 0.33, also
shown.6

Figure 3 shows a 3-D plot of the absolute value (for
clarity) of the eigenvectors of the normalized Laplacian. The
corresponding eigenvalues are shown in Table I.

As is well known, the eigenvectors of the normalised
Laplacian perform a partitioning of the nodes in a graph.
In this example nodes 4 and 5 are grouped into eigenvector
3, nodes 1,2 and 6 into eigenvectors 4 and 5, node 7 into
eigenvector 2 and node 3 into eigenvector 1 (Figure 3). Note
that for each partition the nodes in the partition are the same;
i.e. we could swap the labels between nodes 4 and 5 and the
network would not change (i.e. an isomorphism). Eigenvector
and eigenvalue 7,e7 andλ7 = 0, are special and partitions all
the nodes in the network with the most central nodes having
the highest coefficients (see Table I, column 1). In general the
number of eigenvalues that are zero is equal to the number of
components, arguably the most important structural property

6The six comes from the fact that the random walk can start in oneof three
nodes and go in one of two directions. It can be viewed in our case as really
just a nuisance scaling factor.
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Fig. 4. WSD of the example network.

in a graph. This graph contains 1 connected component and
so has a single zero eigenvalue (λ7). Note that the highest
possible weighting in the WSD is given at zero (i.e. 1 = 1-0);
the number of components in the graph.

Note that the sum of the eigenvalues taken to the power
of N is indeed the same as the sum of the probabilities of
taking N random walk cycles in the graph. This is shown
in Table I, last row,

∑7
i=1(1 − λi)

3 = 0.4667 which can be
easily verified by adding the cycle probabilities from Figure 3
(0.3333 + 0.1333 = 0.467). What is interesting is how this
sum is constructed. In Table I the main contributions to the
sum are from eigenvalues 1,2,3 and 6 (we ignore eigenvalue
7 as it merely reflects that the graph is connected) which are
dominated by the nodes which form the cycles; 3, 4, 5 and 7.

However, this does not mean that the information provided
by the WSD is confined toN -cycles in the graph. For example
in Figure 5 we take the edge linking nodes 1 and 3 and rewire
it so that 1 and 6 are now connected. Note that while the right
cycle is still in place its probabilities have now changed, as
the degree of node 3 is now 4. The corresponding eigenvalues
have also changed as seen in Figure 4.7

In conclusion, the WSD can roughly be seen as an amal-
gamation oflocal views (i.e. walks of lengthN ) taken from
all the nodes. As(1 − λi) ≤ 1 ∀i, (1 − λi)

N will suppress
the smaller eigenvalues more and more asN increases8.
We consider 3 and 4 to be suitable values ofN for the
current application:N = 3 is related to the well-known and
understood clustering coefficient; andN = 4 as a 4-cycle
represents two routes (i.e., minimal redundancy) between two
nodes. For other applications, other values ofN may be of
interest. Also note that in section III we propose using the
distributionof the eigenvalues for large networks; unfortunatly
it is not instructive to talk about a distribution for a small
number of eigenvalues (7 in this example).

7Note that if we had used the adjacency matrix instead of the normalised
Laplacian the re-wiring would have no effect on the sum of theeigenvalues.

8This is closely related to the settling times in Markov chainswhich are
often expressed in terms of the largest non-trivial eigenvalue. It differs in that
the Walk Laplacian and not the normalised Laplacian is used.

Fig. 5. The second example network,G2.

V. A PPLICATIONS

In this section, we use the WSD to better understand the
mixing properties of networks, the Internet’s AS topology
evolution, and the behavior of topology generators with respect
to observed Internet AS topologies.

A. Mixing properties of networks

The synthetic topology generator introduced in this section
is a strawman (demonstration) tool that can be adjusted to
show the effect of different parts of a topology on the resulting
WSD. It generates a set of topologies using a simple model
based on the existence of a network core and a periphery.

Figure 6 shows a small topology of 500 nodes. AllM nodes
within the graph are first assigned locations using a uniform
distribution. Nodes within a circle of diameterD are then
defined as thecore and nodes outside a circle of diameter
D× (1−m) as the periphery, wherem ≤ 1 is a factor called
the mixing factor. Connections are then assigned between the
core nodes using a Waxman model:

P (u → v) = αcore exp
−dβcore

D (17)

where P denotes the probability that nodeu is connected
to node v, αcore and βcore are the Waxman coefficients
for the core, andd is the distance between two nodesu
and v. Subsequently, connections are also assigned in the
periphery9 using a Waxman model with different coefficients,
αper andβper. After this process, isolated nodes are connected
to their nearest neighbor.10 Figure 7 shows the WSD (using
N = 4) for a topology generated withM = 2000 nodes,
D = 0.25, αcore = 0.08, βcore = 0.08, αper = 0.06,
βper = 0.7, and m = 0.95 (i.e., 5% mixing), resulting in
a small (relatively) meshed core with a less well connected
periphery. There are several things to note from this figure.

9Note that nodes lying betweenD andD × (1 − m) are members of the
coreand the periphery and can be assigned connections by both processes.

10Note that there are likely to be some disconnected components in the
resulting graphs giving asymmetrical spectra, but this does not affect the main
results.
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Fig. 6. Synthetic topology example (M = 2000).

Ignoring the asymmetric part of the curve, which is due to
a small number of disconnected components, the peak of the
weighted spectrum of the periphery alone lies atλ = 0.7
while that for the core lies at0.5. The spectrum for the overall
network hastwo peaksat these points. This is a direct result
of the fact that the spectrum of a graph is the union of the
spectra of its disconnected subgraphs [22]. In terms of the
WSD, the union of spectra is equivalent to a weighted average
of the WSD. That is, for a graphG + H composed of two
disconnected subgraphsG andH:

ω(G + H,N) = |G + H|
(

ω(G,N)

|G| +
ω(H,N)

|H|

)

(18)

where|.| denotes graph volume (number of vertices). Although
there is 5% mixing between the core and peripheryω(G +
H,N) results in a close estimate of the network WSD (see
Figure 7, denotedΣ||E(1 − λi)

4||). As m → 0 (i.e., the core
and periphery become less and less connected) this estimate
becomes more accurate and is exact atm = 0.

Figure 8 shows the effect of increasing the mix between the
periphery and the core.11 As can be seen, the core becomes
less distinct in the resulting spectrum, and has practically
disappeared with 40% mixing. By increasing the mix we are
effectively adding edges connecting the core and periphery,
which results in a spreading of the eigenvalues and thus a
spreading of the WSD, giving less distinct peaks. This result
is a consequence of the following theorem from [24]:

Theorem 5.1:Let G be a weighted graph andH a subgraph
on the vertices ofG with t non-isolated vertices. If{λ0 ≤
λ1... ≤ λm−1} and{θ0 ≤ θ1... ≤ θn−1} are the eigenvalues of
L(G) andL(G+H) respectively, then fork = 0, 1, . . . , n−1
we have:

λk+t−1 ≤ θk ≤
{

λk−t+1, H is bipartite,

λk−t otherwise
(19)

In the current context,H is the subgraph containing the nodes
connecting the core and periphery witht connecting edges

11Again the large peaks before 0.2 represent isolated subgraphs and are
ignored.
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(i.e. the mix). These edges cause the eigenvalues ofG−H to
spread by by at mostt places. Thus the core peak becomes
less distinct. This reflects that the core is less distinct.

B. Evolution of the Internet

In this section two data sets measuring the Internet’s AS
topology over several years are compared using the WSD and
standard measures. The first dataset we study consists of 7
years of traceroute measurements starting in January 2001 and
ending in December 2007, collected by the CAIDA Skitter
project [25]. Traceroutes are initiated from several locations
in the world toward a large range of destination IP addresses.
The IP addresses reported in the traceroutes are mapped to
AS numbers using RouteViews BGP data. We use a monthly
union of the set of all unambiguous links collected on a daily
basis by the Skitter project12.

The second dataset consists of 52 snapshots, one per month,
from January 2004 to April 2008. This dataset, referred to as

12A link may be ambiguous for a variety of reasons, principally due to
problems resolving an IP address to its AS number; we ignore such links.
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the UCLA dataset, is available at the Internet topology collec-
tion13 maintained by Oliveiraet al. [26]. These topologies are
built and updated daily using data sources such as BGP routing
tables and updates from RouteViews, RIPE14, Abilene15 and
LookingGlass servers.

Figure 9 shows the values of several graph measures for the
Skitter and UCLA datasets. As can be seen there is an overlap
between 2004 and 2007.

The number of ASes seen by Skitter exhibits abrupt changes
during the first40 months. At the end of those40 months,
changes were made in the way probing was performed.16 The
large increases in the number of ASes, observed during the first
40 months, are due to new monitors being added to the system.
After each increase in the number of ASes a smooth decrease
follows, corresponding to a subset of the IP addresses of the
Skitter list that no longer respond to probes, e.g., because
a firewall starts blocking the probes. The variations in the
number of ASes seen by Skitter are probably not caused by
changes in the AS topology itself, but rather by artifacts of
the probing, e.g. firewalls that block probes or non-responding
hosts.

The number of AS edges and the average node degree
both follow the behavior of the number of ASes seen. We
only observe a large increase in the number of links during
the first few months, during which new monitors are added
resulting in new regions of the Internet being covered by
Skitter measurements. As the list of destinations used by
Skitter does not cover the global set of ASes well [27], and the
same list is shared by all monitors, a new monitor will typically
discover new ASes close to its location. However, most of the
AS edges close to the destination IP addresses have probably
already been discovered by existing monitors [28].

The AS edges that Skitter no longer observes probably
still exist but can no longer be seen by Skitter due to its
shrinking probing scope. To be effective in observing topology
dynamics, traceroute data collection must update destination
lists constantly to give optimal AS coverage. This limitation of
Skitter is visible in the decreasing average node degree. We
would normally expect to see a net increase in the average
node degree as ASes tend to add rather than remove peerings,
and the results of the BGP data support this view. If the
coverage of the Skitter measurements was not worsening, we
should see an increasing node degree.

The lower three graphs of Figure 9 present the evolution
of the clustering coefficient, the assortativity coefficient,17 and
the weighted spectrum withN = 3, ω(G, 3) (related to the
topology’s clustering)18. We observe that changes were made

13http://irl.cs.ucla.edu/topology/
14http://www.ripe.net/db/irr.html
15http://abilene.internet2.edu/
16These changes were subject to caveats and bugs affecting measurements,

and, thus, the resulting metrics, at month40. For more information we refer
to http://www.caida.org/data/active/skitteraslinks dataset.xml/

17Assortativity is a measure of the likelihood of connection ofnodes of
similar degrees [29]. This is usually expressed by means of theassortativity
coefficientr: assortative networks haver > 0 (disassortative haver < 0 resp.)
and tend to have nodes that are connected to nodes with similar(dissimilar
resp.) degree.

18See [30] for a detailed explanation on the mathematical measures and
different datasets

to the way Skitter probes the Internet around month 40: the
metrics take an unusual value, very small for the clustering
and very high for assortativity. The values of the clustering
and the assortativity coefficients fluctuate randomly over the
7 years, as if the sampling of the AS topology by Skitter is
not stable. Neither the clustering nor the assortativity seem to
decrease or increase over the7 years. The value ofω(G, 3)
shows a long-term increasing trend, similar to the decreasing
trend in the average node degree. Although related to the
clustering,ω(G, 3) gives different weights to different parts of
the topology. The subset of the topology that corresponds to
duplicated topological structures (e.g., the periphery) receives
a smaller weight than the rest. The increasingω(G, 3) is likely
to be caused by the shrinking network sampled by Skitter, that
contains more 3-cycles on average.

The UCLA AS topologies display a completely different
evolution to the Skitter dataset, more consistent with expecta-
tion. As the three upper graphs of Figure 9 show, the number
of ASes, AS edges, and the average node degree are all
increasing, as expected in a growing Internet.

The increasing assortativity coefficient indicates that ASes
increasingly peer with ASes of similar degree. The preferential
attachment model seem to be less dominant over time. This
trend towards a less disassortative network is consistent with
more ASes bypassing the tier-1 providers through public
IXPs [31], hence connecting with nodes of similar degree.
Another possible explanation for the increasing assortativity
is an improvement in the visibility of non-core edges in BGP
data. Contrary to Skitter,ω(G, 3) for UCLA decreases over
time. As a weighted clustering metric,ω(G, 3) indicates that
the transit part of the AS topology is actually becoming
sparser over time compared to the periphery. Increasing local
peering with small ASes in order to reduce the traffic sent
to providers decreases both the hierarchy induced by strict
customer-provider relationships, and in turn decreases the
number of 3-cycles on whichω(G, 3) is based.

To further investigate this result, we now introduce sup-
porting evidence usingk-cores. A k-core is defined as the
maximum connected subgraph,H, of a graph,G, with the
property thatdv ≥ k ∀v ∈ H19. As pointed out by Alvarez-
Hamelin et al. [32], the k-core exposes the structure of a
graph by pruning nodes with successively higher degreesk
and examining the maximum remaining subgraph. Note that
this is not the same as simply pruning all nodes with degree
k or less. Figure 10 shows the proportion of nodes in each
k-core as a function ofk for the Skitter topologies. There are
84 plots shown over the 7 years, but as can be seen there is
little difference between each of them, demonstrating thatthe
proportion of nodes in each core is not changing over time.
This is not surprising due to the nature of the Skitter sampling
process: the Skitter data set is composed of traceroutes rooted
at a limited set of locations. The observed network is therefore
tree-like and so thek-core typically just removes the leaves
of the tree. [32] referred to this as being similar topeeling
the layers from an onion. From an evolution point of view

19To take thek-core of a graph we first remove all nodes with degree 1.
This might split the graph into two or more pieces, in which casewe take
the largest piece. We then remove all nodes of degree 2 and repeat k times.
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Fig. 9. Measures of the UCLA and Skitter AS topologies over several years.

this result shows that, although the number of nodes being
sampled by Skitter is decreasing, the hierarchy of the Internet
as observed by Skitter is not changing. This also implies that
Skitter is not sampling the edge of the AS topology well and
so cannot see evolutionary changes there.

Figure 11 shows the proportion of nodes in eachk-core as
a function ofk for the UCLA data set. There are 52 plots (for
more than 4 years) shown as a smooth transition between the
first and last plots, emphasized. As can be seen, the distribution
of k-cores moves to the right over time, indicating that the
proportion of nodes with higher connectivity is increasingover
time. This adds further weight to the conclusion that the UCLA
dataset shows a weakening of hierarchy in the Internet, with
more peering relationships between ASes. Note that the UCLA
data set was not examined in [32].

Next we examine the WSDs for the two datasets; a subset
showing their evolution is presented in figures 12 and 13.
There are two peaks which evolve (Skitter) and disappear
(UCLA). Comparing Figures 12 and 13 with Figures 7 and 8,
we confirm the results given by the other graph measures. The
WSDs show in the case of the UCLA dataset (Figure 12) a
less dominant core (the corepeak is disappearing) and less
structured Internet (the WSD is getting lower and moving
to the right), while Figure 13 shows a more dominant core
for Skitter and a more structured Internet (the WSDs are
increasing and moving to the left).

The differences in AS topology evolution observed by
Skitter and UCLA are likely to reflect different views of the
Internet from the two datasets. The IP-level traceroute-based
Skitter traverses paths and sees only a small portion of the AS-
level topology, mainly at the core. In contrast, the BGP dataof
the UCLA dataset is provided by public feeds from monitors
not located at the core. In conclusion, the WSD provides a
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valuable tool together with more traditional graph measures
for network characterisation.

C. Tuning Synthetic Topology Generators

This section examines the estimation of optimal parameters
for several well known topology generators. Parameter esti-
mation requires two elements: a metric and a target graph.
The aim is then to estimate the parameters that give a best
fit between the target graph and the topologies generated.
Typically, topology generator parameters are tuned by match-
ing measures such as the number of links, the node degree
distribution or the clustering coefficient [33, 34]. However, as
these are not metrics in the strict sense, obtaining a “good fit”
does not mean that the topology generator is a good model of
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the target graph. For example, we can tune the AB model to
match the clustering coefficient of our target graph exactlybut
then the degree distributions might differ. The core question

here is: is the target graph likely to have been generated by
this topology generator? As the WSD is a metric, obtaining
identical or close WSDs implies that the target is likely to have
been generated by this topology generator. However, this can
only happen if the topology generator is capable of mimicking
the structure of the target graph. As will be seen, all the
topology generators examined in this section fail to do so. For
a more detailed examination of this application see Haddadi
et al. [6].

The topology generators we consider are Waxman [35],
AB [23], GLP [34], Inet [11] and PFP [36] (PFP does not
have any parameters but is included for completeness of the
comparison). For this study we use a particular sample AS
topology, the Skitter graph from March 2004 as used by
Mahadevanet al. [37]. The process we describe could easily
be applied to other sampled AS topologies. The cost function
used is the standard quadratic norm between the weighted
spectral distributions using a value ofN = 4 (N = 3 gives
similar results)

J(Gs, Gi(Θ)) =
∑

k∈K

(1−k)4(fs(λ = k)−fi(λ = k))2 (20)

where the distribution of eigenvalues is estimated in the set
K of bins ∈ [0, 2], J(Gs, Gi(Θ)) is the cost between the
weighted spectra of the Skitter graphGs and the graphs
generated by theith topology generator using a vector of
parametersΘ.

To facilitate this comparison, grids are constructed over the
possible values of the parameter space andJ(Gs, Gi(Θ)) is
evaluated at each point. For example, Figure 14 shows the
case for the AB model which has two parameters,Θ = [p q]T .
The first thing to note is the dark region at the centre of the
graph, which represents those parameter values that returnthe
lowest values ofJ(Gs, Gi(Θ)). Figure 14 shows that the WSD
varies smoothly with changing structure. The AB model is
known to exhibit scale free behavior below the line indicated
in Figure 14 and exponential behavior above this line. It is
satisfying to note that a clear minimum exists and also that
the region with low cost (Region A) lies in the scale free
region as expected for a model of the Internet. Similar results
were also found for the other topology generators [6].

As an aside, a similar grid was also constructed using the
spectrum, specifically the unweighted spectral distribution, as
the basis for a cost function:

J ′(Gs, Gi(Θ)) =
∑

k∈K

(fs(λ = k) − fi(λ = k))2. (21)

The resulting grid is shown for the AB model in Figure 15. As
can be seen,J ′(Gs, Gi(Θ)) does not change smoothly with
Θ, which implies that a small change in the structure can lead
to a large change in the spectrum. In other words, the tuning
of the topology generator parameters through a cost function
based on the spectrum is too sensitive to changes in the graph
structure. The main reason for this was shown in Figure 1: the
variance in the spectral gap is too large.

In order to estimate the optimum parameters for the topol-
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Fig. 14. J(Gs, GAB(Θ)) for allowed values ofΘ(= [p q]T ).
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Fig. 15. J ′(Gs, GAB(Θ)) for allowed values ofΘ(= [p q]T ).

ogy generators20, we optimise Equation 20 using the Nelder
Meade simplex search algorithm [38, 39].

Table II displays these optimum parameter valuesΘ of the
topology generators when matching to the Skitter graph. In
addition, Table II displays the values ofJ(Gs, Gi(Θ)), which
shows that PFP provides the closest fit followed by AB, GLP,
Waxman and, finally, Inet. While these results are generally as
expected, the ranking of Inet as the least desirable topology
generator is not as it is one of the most recent models.

Figure 16 shows the WSD of the target graph and of the
“best fit” WSDs for each of the topology generators. As can
be seen, the main peak in the WSD for the Skitter data occurs
at a value ofλ = 0.4. The Waxman generator peak occurs
at λ = 0.6, which is closer to 1 and demonstrates the greater
amount of random structure in the Waxman topologies.

20For a givenΘ, each run of a topology generator will lead to a differ-
ent network because of random initial conditions. This interferes with the
estimation of the gradients used in the search algorithm. Thus, to reduce
the variance of gradient estimates, the averaged weighted spectra from ten
runs are used, although empirical evidence suggests that thevariance of these
weighted spectra is very low (see Figure 1).
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Fig. 16. Best fit WSDs for topology generators relative to target Skitter data
set.

The INET generator is interesting in that it is the one
generator that obtains a peak at the correct point. This is due
to the nature of the generator: the parameterα to the INET
generator specifies the percentage of nodes that are in a highly
meshed core. While a similar structure exists in the Skitter
dataset, the WSD shows that the INET core is too densely
connected relative to the Skitter observations.

All the WSDs for the generated topologies lie to the right
of the target WSD, showing that the Skitter data has far more
structure than is mimicked by any of the topology generators.
It is important to note that these are the closest approximations
that the topology generators can make to the Skitter data. In
other words, it is simply not possible to force the AB model
for instance to have a peak atλ = 0.4 with amplitude of
0.03. It is our experience that each topology generator leads
to topologies that cover only a small subset of the WSD space.

VI. CONCLUSIONS

In this paper we introduced a new metric, theweighted spec-
tral distribution (WSD). The WSD differs from other graph
measures such as the clustering and assortativity coefficients,
the node degree distribution,etc, in that it is a metric in the
mathematical sense, and so it can be used to measure the
distance between two graphs.

The WSD has many applications, and in particular can be
used for very large graphs because of its low computational
requirements, making it a good choice for topology tuning and
other applications that require multiple evaluations of a cost
function. We presented three applications of the WSD, using
it to understand: (i) the mixing properties of graphs, (ii ) the
evolution of the AS topology, and (iii ) the tuning of Internet
topology generators to match a target graph.

Observed evolution in the WSD of the Internet graph,
supported by evidence using other common graph measures,
suggests that the Internet is becoming more edge-centric. We
created a similar effect using our strawman model supporting
this hypothesis. In addition, we observed that the topology
generators we examined fail to match the complex structure
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TABLE II
OPTIMUM PARAMETER VALUES FOR MATCHINGSKITTER TOPOLOGY SAMPLED INMARCH 2004.

Waxman α = 0.08 (default= 0.15) β = 0.08 (default= −0.2) J(GWaxman, GSkitter) = 0.0026

AB p = 0.2865 (default= 0.6) q = 0.3145 (default= 0.3) J(GAB, GSkitter) = 0.0014

GLP p = 0.5972 (default= 0.45) β = 0.1004 (default= 0.64) J(GGLP, GSkitter) = 0.0021

Inet α = 0.1013 (default= 0.3) − J(GINET, GSkitter) = 0.0064

PFP − − J(GPFP, GSkitter) = 0.0014

of the Internet. This result is important for future topology
generators: the WSD could provide a valuable tool in their
design and validation.

In conclusion, the WSD provides a new analytical tool
augmenting other the ability of the graph analyst to obtain
a more complete picture of a network’s structure. Future
avenues of research also include examining the WSD of large
biological and social networks, among others.

APPENDIX A
METRIC DEFINITION

The metric we propose in this paper is

J(Gx, Gy) =
∑

k∈K

(1 − k)4(fx(λ = k) − fy(λ = k))2 (22)

We now show that
√

J(Gx, Gy) is a metric in the math-
ematical sense. The difference between

√

J(Gx, Gy) and
J(Gx, Gy) is similar to the difference between the sum
squared error and the root mean squared error. We prefer the
sum squared error (i.e.,J(Gx, Gy)) in this application as it
provides the well known minimum variance-bias trade-off.

A metric satisfies the following four conditions:

(a) J(Gx, Gy) ≥ 0 (non-negativity)
(b) J(Gx, Gy) = 0 ⇔ x = y (identity of indiscernibles)
(c) J(Gx, Gy) = J(Gy, Gx) (symmetry)
(d) J(Gx, Gz) ≤ J(Gx, Gy) + J(Gy, Gz) (triangle in-
equality)

(a) and (c) follow directly from (22). Noting that all
the elements of the sum inJ(Gx, Gy) are positive =⇒
J(Gx, Gy) = 0 if and only if fx(λ = k) = fy(λ = k) ∀k.
Arranging (and increasing the number of bins if necessary)
the k bins such that each bin contains at most 1 eigenvalue
RequiresGx to be co-spectral and isomorphic toGy. Two
graphs may beco-spectral, i.e., they share the same spectrum
but are not isomorphic. However, studies have shown [40] that
the number of co-spectral graphs falls dramatically with the
number of vertices in the graph. For example, only 0.05% of
all graphs with 21 vertices are co-spectral and not isomorphic;
this number is thought to decrease with increasing number of
vertices [40]. Thus, condition (b) is true almost certainly, in
the statistical sense.
√

J(Gx, Gy) defines the standard metric spaceRK
2 [41].

This can be seen by distributing the weights(1 − k)4 as:

√

J(Gx, Gy) =

(

∑

k∈K

(hx(λ = k) − hy(λ = k))2

)1/2

(23)

where

hx(λ = k) = (1 − k)2fx(λ = k) (24)

and hy(λ = k) is similarly defined. The triangle inequality
holds for (23). For a detailed proof see [41] Chapter 2, Section
5.
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