
Nominal Sets

Andrew Pitts

Computer Laboratory

MGS2011 1/60

Mathematics of syntax

◮ Seems of little interest to mathematicians and of
only slight interest to logicians. (?)

◮ Vital for computer science — because of symbolic

computation and automated reasoning.

◮ Has yet to reach an intellectual fixed point for
syntax involving scope, binding and freshness of
names.

MGS2011 2/60

Nominal sets
◮ Mathematical theory of names: scope, binding,

freshness.

◮ Simple math to do with properties invariant under
permuting names.

◮ Originally introduced by Gabbay & AMP circa 2000,
but the math goes back to 1930’s set theory & logic
(Fraenkel & Mostowski).

MGS2011 3/60

Nominal sets
◮ Mathematical theory of names: scope, binding,

freshness.

◮ Simple math to do with properties invariant under
permuting names.

◮ Originally introduced by Gabbay & AMP circa 2000,
but the math goes back to 1930’s set theory & logic
(Fraenkel & Mostowski).

◮ Applications: theorem-proving tools for PL
semantics; metaprogramming (within functional
programming, mainly); verification.

MGS2011 3/60

Outline
◮ Lecture 1. Structural recursion and induction in

the presence of name-binding operations.

◮ Lecture 2. Introducing the category of
nominal sets.
[Notes, chapters 1–3 +exercises]

◮ Lecture 3. Nominal algebraic data types and
α-structural recursion.
[Notes, chapters 4–5 +exercises]

◮ Lecture 4. Simply typed λ-calculus with local
names and name-abstraction.
[www.cl.cam.ac.uk/users/amp12/papers/strrls/strrls.pdf]

MGS2011 4/60

Lecture 1

MGS2011 5/60

For semantics, concrete syntax

letrec f x = if x > 100 then x − 10

else f (f (x + 11)) in f (x + 100)

is unimportant compared to abstract syntax (ASTs):

letrec

f x if

>

x 100

−

x 10

@

f @

f +

x 11

@

f +

x 101

We should aim for compositional semantics of program
constructions, rather than of whole programs. (Why?)
MGS2011 6/60

ASTs enable two fundamental (and inter-linked) tools in
programming language semantics:

◮ Definition of functions on syntax
by recursion on its structure.

◮ Proof of properties of syntax
by induction on its structure.

MGS2011 7/60

Structural recursion

Recursive definitions of functions whose values at a
structure are given functions of their values at immediate

substructures.

◮ Gödel System T (1958):

structure = numbers
structural recursion = primitive recursion for N.

◮ Burstall, Martin-Löf et al (1970s) generalized this to
ASTs.

MGS2011 8/60

Running example

Set of ASTs for λ-terms

Tr , {t ::= V a | A(t, t) | L(a, t)}

where a ∈ A, fixed infinite set of names of variables.

Operations for constructing these ASTs:

V : A � Tr
A : Tr × Tr � Tr
L : A × Tr � Tr

MGS2011 9/60

Structural recursion for Tr

Theorem.

Given f1 ∈ A � X
f2 ∈ X × X � X
f3 ∈ A × X � X

exists unique f̂ ∈ Tr � X satisfying

f̂ (V a) = f1 a

f̂ (A(t, t′)) = f2(f̂ t, f̂ t′)
f̂(L(a, t)) = f3(a, f̂ t)

MGS2011 10/60

Structural recursion for Tr

E.g. the finite set var t of variables occurring in t ∈ Tr:

var(V a) = {a}
var(A(t, t′)) = (var t)∪ (var t′)
var(L(a, t)) = (var t)∪ {a}

is defined by structural recursion using

◮ X = Pf(A) (finite sets of variables)

◮ f1 a = {a}

◮ f2(S, S′) = S ∪ S′

◮ f3(a, S) = S ∪ {a}.

MGS2011 11/60

Structural recursion for Tr

E.g. swapping: (a b) · t = result of transposing all
occurrences of a and b in t

For example

(a b) · L(a, A(V b, V c)) = L(b, A(V a, V c))

MGS2011 12/60

Structural recursion for Tr

E.g. swapping: (a b) · t = result of transposing all
occurrences of a and b in t

(a b) · V c = if c = a then V b else

if c = b then V a else V c
(a b) · A(t, t′) = A((a b) · t, (a b) · t′)
(a b) · L(c, t) = if c = a then L(b, (a b) · t)

else if c = b then L(a, (a b) · t)
else L(c, (a b) · t)

is defined by structural recursion using. . .

MGS2011 12/60

Structural recursion for Tr

Theorem.

Given f1 ∈ A � X
f2 ∈ X × X � X
f3 ∈ A × X � X

exists unique f̂ ∈ Tr � X satisfying

f̂ (V a) = f1 a

f̂ (A(t, t′)) = f2(f̂ t, f̂ t′)
f̂(L(a, t)) = f3(a, f̂ t)

MGS2011 13/60

Structural recursion for Tr

Theorem.

Given f1 ∈ A � X
f2 ∈ X × X � X
f3 ∈ A × X � X

exists unique f̂ ∈ Tr � X satisfying

f̂ (V a) = f1 a

f̂ (A(t, t′)) = f2(f̂ t, f̂ t′)
f̂(L(a, t)) = f3(a, f̂ t)

Doesn
’t tak

e binding into
acc

ount!

MGS2011 13/60

Alpha-equivalence

Smallest binary relation =α on Tr closed under the rules:

a ∈ A

V a =α V a

t1 =α t′1 t2 =α t′2
A(t1, t2) =α A(t′1, t′2)

(a b) · t =α (a′ b) · t′ b /∈ {a, a′} ∪ var(t t′)

L(a, t) =α L(a′, t′)

E.g. A(L(a, A(V a, V b)), V c) =α A(L(c, A(V c, V b)), V c)
6=α A(L(b, A(V b, V b)), V c)

Fact: =α is transitive (and reflexive & symmetric).

MGS2011 14/60

ASTs mod alpha equivalence

Dealing with issues to do with binders and alpha
equivalence is

◮ pervasive (very many languages involve binding
operations)

◮ difficult to formalise/mechanise without losing sight
of common informal practice:

MGS2011 15/60

ASTs mod alpha equivalence

Dealing with issues to do with binders and alpha
equivalence is

◮ pervasive (very many languages involve binding
operations)

◮ difficult to formalise/mechanise without losing sight
of common informal practice:

“We identify expressions up to alpha-equivalence”. . .

MGS2011 15/60

ASTs mod alpha equivalence

Dealing with issues to do with binders and alpha
equivalence is

◮ pervasive (very many languages involve binding
operations)

◮ difficult to formalise/mechanise without losing sight
of common informal practice:

“We identify expressions up to alpha-equivalence”. . .
. . . and then forget about it, referring to
alpha-equivalence classes [t]α only via representatives t.

MGS2011 15/60

ASTs mod alpha equivalence

Dealing with issues to do with binders and alpha
equivalence is

◮ pervasive (very many languages involve binding
operations)

◮ difficult to formalise/mechanise without losing sight
of common informal practice:

E.g. notation for λ-terms:

Λ , {[t]α | t ∈ Tr}
a means [V a]α (= {V a})

e e′ means [A(t, t′)]α, where e = [t]α and e′ = [t′]α
λa.e means [L(a, t)]α where e = [t]α

MGS2011 15/60

Informal structural recursion

E.g. capture-avoiding substitution:
f = (−)[e1/a1] : Λ � Λ

f a = if a = a1 then e1 else a

f (e e′) = (f e) (f e′)

f(λa. e) = if a 6∈ fv(a1, e1) then λa. (f e)
else don’t care!

Not an instance of structural recursion for Tr.

Why is f well-defined and total?

MGS2011 16/60

Informal structural recursion

E.g. denotation of λ-term in a suitable domain D:
J−K : Λ � ((A � D)� D)

JaKρ = ρ a

Je e′Kρ = app(JeKρ , Je′Kρ)

Jλa. eKρ = fun(λ(d ∈ D)� JeK(ρ[a � d]))

where

{

app ∈ D × D �cts D
fun ∈ (D �cts D) �cts D

are continuous functions satisfying. . .

MGS2011 16/60

Informal structural recursion

E.g. denotation of λ-term in a suitable domain D:
J−K : Λ � ((A � D)� D)

JaKρ = ρ a

Je e′Kρ = app(JeKρ , Je′Kρ)

Jλa. eKρ = fun(λ(d ∈ D)� JeK(ρ[a � d]))

why is this very standard
definition independent of the
choice of bound variable a?

MGS2011 16/60

Is there a recursion principle for Λ that legitimises these
‘definitions’ of (−)[e1/a1] : Λ � Λ and J−K : Λ � D

(and many other e.g.s)?

MGS2011 17/60

Is there a recursion principle for Λ that legitimises these
‘definitions’ of (−)[e1/a1] : Λ � Λ and J−K : Λ � D

(and many other e.g.s)?

Yes! — α-structural recursion.

MGS2011 17/60

Is there a recursion principle for Λ that legitimises these
‘definitions’ of (−)[e1/a1] : Λ � Λ and J−K : Λ � D

(and many other e.g.s)?

Yes! — α-structural recursion.

What about other languages with binders?

MGS2011 17/60

Is there a recursion principle for Λ that legitimises these
‘definitions’ of (−)[e1/a1] : Λ � Λ and J−K : Λ � D

(and many other e.g.s)?

Yes! — α-structural recursion.

What about other languages with binders?

Yes! — available for any nominal signature.

MGS2011 17/60

Is there a recursion principle for Λ that legitimises these
‘definitions’ of (−)[e1/a1] : Λ � Λ and J−K : Λ � D

(and many other e.g.s)?

Yes! — α-structural recursion.

What about other languages with binders?

Yes! — available for any nominal signature.

Great. What’s the catch?

MGS2011 17/60

Is there a recursion principle for Λ that legitimises these
‘definitions’ of (−)[e1/a1] : Λ � Λ and J−K : Λ � D

(and many other e.g.s)?

Yes! — α-structural recursion.

What about other languages with binders?

Yes! — available for any nominal signature.

Great. What’s the catch?

Need to learn a bit of possibly unfamiliar math, to do
with permutations and support.

MGS2011 17/60

Lecture 2

MGS2011 18/60

Outline
◮ Lecture 1. Structural recursion and induction in

the presence of name-binding operations.

◮ Lecture 2. Introducing the category of
nominal sets.
[Notes, chapters 1–3 +exercises]

◮ Lecture 3. Nominal algebraic data types and
α-structural recursion.
[Notes, chapters 4–5 +exercises]

◮ Lecture 4. Simply typed λ-calculus with local
names and name-abstraction.
[www.cl.cam.ac.uk/users/amp12/papers/strrls/strrls.pdf]

MGS2011 19/60

Preliminaries on
name-permutations

◮ A = fixed countably infinite set of names (a,b,. . .)

MGS2011 20/60

Preliminaries on
name-permutations

◮ A = fixed countably infinite set of names (a,b,. . .)
◮ Perm A = group of finite permutations of A

(π, π′,. . .)
◮ π finite means: {a ∈ A | π(a) 6= a} is finite.
◮ group: multiplication is composition of functions

π′ ◦ π; identity is identity function ι.

MGS2011 20/60

Preliminaries on
name-permutations

◮ A = fixed countably infinite set of names (a,b,. . .)
◮ Perm A = group of finite permutations of A

(π, π′,. . .)
◮ π finite means: {a ∈ A | π(a) 6= a} is finite.
◮ group: multiplication is composition of functions

π′ ◦ π; identity is identity function ι.

◮ swapping: (a b) ∈ Perm A is the function
mapping a to b, b to a and fixing all other names.

Fact: every π ∈ Perm A is equal to
(a1 b1) ◦ · · · ◦ (an bn)

for some ai & bi (with π ai 6= ai 6= bi 6= π bi).

MGS2011 20/60

Preliminaries on
name-permutations

◮ A = fixed countably infinite set of names (a,b,. . .)

◮ Perm A = group of finite permutations of A

(π, π′,. . .)

◮ action of Perm A on a set X is a function

(−) · (−) : Perm A × X � X

satisfying for all x ∈ X
◮ π′ · (π · x) = (π′ ◦ π) · x
◮ ι · x = x

MGS2011 20/60

Running example

Action of Perm A on set of ASTs for λ-terms

Tr , {t ::= V a | A(t, t) | L(a, t)}

π · V a = V(π a)
π · A(t, t′) = A(π · t, π · t′)
π · L(a, t) = L(π a, π · t)

This respects α-equivalence and so induces an action on
set of λ-terms Λ = {[t]α | t ∈ Tr}:

π · [t]α = [π · t]α

MGS2011 21/60

Nominal sets

are sets X with with a Perm A-action satisfying

Finite support property: for each x ∈ X, there is a
finite subset a ⊆ A that supports x, in the sense that
for all π ∈ Perm A

((∀a ∈ a) π a = a) ⇒ π · x = x

Fact: in a nominal set every x ∈ X possesses a smallest

finite support, written supp x.

MGS2011 22/60

Nominal sets

are sets X with with a Perm A-action satisfying

Finite support property: for each x ∈ X, there is a
finite subset a ⊆ A that supports x, in the sense that
for all π ∈ Perm A

((∀a ∈ a) π a = a) ⇒ π · x = x

Fact: in a nominal set every x ∈ X possesses a smallest

finite support, written supp x.

E.g. Tr and Λ are nominal sets—any a containing all the variables
occurring (free, binding, or bound) in t ∈ Tr supports t and (hence)
[t]α.

Fact: for e ∈ Λ, supp e = fv e. (See Notes, p28.)
MGS2011 22/60

Further examples of support

[Perm A acts of sets of names S ⊆ A pointwise:

π · S , {π a | a ∈ S}.]

What is a support for the following sets of names?

◮ S1 , {a}

◮ S2 , A −{a}

◮ S3 , {a0, a2, a4, . . .}, where A = {a0, a1, a2, . . .}

MGS2011 23/60

Further examples of support

[Perm A acts of sets of names S ⊆ A pointwise:

π · S , {π a | a ∈ S}.]

What is a support for the following sets of names?

◮ S1 , {a}
Answer: {a} is smallest support.

◮ S2 , A −{a}

◮ S3 , {a0, a2, a4, . . .}, where A = {a0, a1, a2, . . .}

MGS2011 23/60

Further examples of support

[Perm A acts of sets of names S ⊆ A pointwise:

π · S , {π a | a ∈ S}.]

What is a support for the following sets of names?

◮ S1 , {a}
Answer: {a} is smallest support.

◮ S2 , A −{a}
Answer: {a} is smallest support.

◮ S3 , {a0, a2, a4, . . .}, where A = {a0, a1, a2, . . .}

MGS2011 23/60

Further examples of support

[Perm A acts of sets of names S ⊆ A pointwise:

π · S , {π a | a ∈ S}.]

What is a support for the following sets of names?

◮ S1 , {a}
Answer: {a} is smallest support.

◮ S2 , A −{a}
Answer: {a} is smallest support.

◮ S3 , {a0, a2, a4, . . .}, where A = {a0, a1, a2, . . .}
Answer: {a0, a2, a4, . . .} is a support

MGS2011 23/60

Further examples of support

[Perm A acts of sets of names S ⊆ A pointwise:

π · S , {π a | a ∈ S}.]

What is a support for the following sets of names?

◮ S1 , {a}
Answer: {a} is smallest support.

◮ S2 , A −{a}
Answer: {a} is smallest support.

◮ S3 , {a0, a2, a4, . . .}, where A = {a0, a1, a2, . . .}
Answer: {a0, a2, a4, . . .} is a support, and so is
{a1, a3, a5, . . .}—but there is no finite support. S3 does not
exist in the ‘world of nominal sets’—in that world A is
infinite, but not enumerable.

MGS2011 23/60

Category of nominal sets, Nom

◮ objects are nominal sets

◮ morphisms are functions f ∈ X � Y that are
equivariant:

π · (f x) = f(π · x)

for all π ∈ Perm A, x ∈ X.

MGS2011 24/60

Category of nominal sets, Nom

Fact. Nom is equivalent to the Schanuel topos, a
well-known Grothendieck topos classifying the geometric
theory of an infinite decidable object.

So in particular Nom is a model of classical higher-order
logic.

MGS2011 24/60

Category of nominal sets, Nom

Fact. Nom is equivalent to the Schanuel topos, a
well-known Grothendieck topos classifying the geometric
theory of an infinite decidable object.

Finite products: X1 × · · · × Xn is cartesian product of
sets with Perm A-action

π · (x1, . . . , xn) , (π · x1, . . . , π · xn)

which satisfies

supp(x, . . . , xn) = (supp x1)∪ · · · ∪ (supp xn)

MGS2011 24/60

Category of nominal sets, Nom

Fact. Nom is equivalent to the Schanuel topos, a
well-known Grothendieck topos classifying the geometric
theory of an infinite decidable object.

Coproducts are given by disjoint union.

Natural number object: N = {0, 1, 2, . . .} with

trivial Perm A-action: π · n , n (so supp n = ∅).

MGS2011 24/60

Category of nominal sets, Nom

Fact. Nom is equivalent to the Schanuel topos, a
well-known Grothendieck topos classifying the geometric
theory of an infinite decidable object.

Exponentials: X �fs Y is the set of functions f ∈ YX

that are finitely supported w.r.t. the Perm A-action

π · f , λ(x ∈ X) � π · (f(π−1 · x))

(Can be tricky to see when f ∈ YX is in X �fs Y .)

MGS2011 24/60

Category of nominal sets, Nom

Fact. Nom is equivalent to the Schanuel topos, a
well-known Grothendieck topos classifying the geometric
theory of an infinite decidable object.

Subobject classifier: Ω = {true, false} with trivial

Perm A-action: π · b , b (so supp b = ∅).

(Nom is a Boolean topos: Ω = 1 + 1.)

Power objects: X �fs Ω ∼= Pfs X, the set of subsets
S ⊆ X that are finitely supported w.r.t. the
Perm A-action

π · S , {π · x | x ∈ S}

MGS2011 24/60

The nominal set of names

A is a nominal set once equipped with the action

π · a = π(a)

which satisfies supp a = {a}.

N.B. A is not N! Although A ∈ Set is a countable,
any f ∈ N �fs A has to satisfy

{ f n} = supp(f n) ⊆ supp f ∪ supp n = supp f

for all n ∈ N, and so f cannot be surjective.

MGS2011 25/60

Nom 6|= choice

Nom models classical higher-order logic, but not
Hilbert’s ε-operation, εx.ϕ(x) satisfying

(∀x : X) ϕ(x) ⇒ ϕ(εx.ϕ(x))

Theorem. There is no equivariant function
c : {S ∈ Pfs A | S 6= ∅} → A satsifying c(S) ∈ S for
all non-empty S ∈ Pfs A.

Proof. Suppose there were such a c. Putting a , c A and picking
some b ∈ A −{a}, we get a contradiction to a 6= b:

a = c A = c((a b) · A) = (a b) · c A = (a b) · a = b

MGS2011 26/60

Nom 6|= choice

Nom models classical higher-order logic, but not
Hilbert’s ε-operation, εx.ϕ(x) satisfying

(∀x : X) ϕ(x) ⇒ ϕ(εx.ϕ(x))

In fact Nom does not model even very weak forms of
choice, such as Dependent Choice.

MGS2011 26/60

Freshness

For each nominal set X, we can define a relation
⊆ A × X of freshness:

a # x , a /∈ supp x

MGS2011 27/60

Freshness

For each nominal set X, we can define a relation
⊆ A × X of freshness:

a # x , a /∈ supp x

◮ In N, a # n always.

◮ In A, a # b iff a 6= b.

◮ In Λ, a # t iff a /∈ fv t.

◮ In X × Y, a # (x, y) iff a # x and a # y.

◮ In X �fs Y, a # f can be subtle!
(and hence ditto for PfsX)

MGS2011 27/60

Lecture 3

MGS2011 28/60

Outline
◮ Lecture 1. Structural recursion and induction in

the presence of name-binding operations.

◮ Lecture 2. Introducing the category of
nominal sets.
[Notes, chapters 1–3 +exercises]

◮ Lecture 3. Nominal algebraic data types and
α-structural recursion.
[Notes, chapters 4–5 +exercises]

◮ Lecture 4. Simply typed λ-calculus with local
names and name-abstraction.
[www.cl.cam.ac.uk/users/amp12/papers/strrls/strrls.pdf]

MGS2011 29/60

Alpha-equivalence

Smallest binary relation =α on Tr closed under the rules:

a ∈ A

V a =α V a

t1 =α t′1 t2 =α t′2
A(t1, t2) =α A(t′1, t′2)

(a b) · t =α (a′ b) · t′ b /∈ {a, a′} ∪ var(t t′)

L(a, t) =α L(a′, t′)

E.g. A(L(a, A(V a, V b)), V c) =α A(L(c, A(V c, V b)), V c)
6=α A(L(b, A(V b, V b)), V c)

Fact: =α is transitive (and reflexive & symmetric).

MGS2011 30/60

Name abstraction

Each X ∈ Nom yields a nominal set [A]X of

name-abstractions 〈a〉x are ∼-equivalence classes of
pairs (a, x) ∈ A × X, where

(a, x) ∼ (a′, x′) ⇔ ∃b # (a, x, a′, x′)
(b a) · x = (b a′) · x′

The Perm A-action on [A]X is well-defined by

π · 〈a〉x = 〈π(a)〉(π · x)

Fact: supp(〈a〉x) = supp x −{a}, so that

b # 〈a〉x ⇔ b = a ∨ b # x

(See Notes, p40.)
MGS2011 31/60

Name abstraction

Each X ∈ Nom yields a nominal set [A]X of

name-abstractions 〈a〉x are ∼-equivalence classes of
pairs (a, x) ∈ A × X, where

(a, x) ∼ (a′, x′) ⇔ ∃b # (a, x, a′, x′)
(b a) · x = (b a′) · x′

We get a functor [A](−) : Nom � Nom sending
f ∈ Nom(X, Y) to [A] f ∈ Nom([A]X, [A]Y) where

[A] f (〈a〉x) = 〈a〉(f x)

MGS2011 31/60

Name abstraction

[A](−) : Nom � Nom is a kind of (affine) function space—it is

right adjoint to the functor A ⊗ (−) : Nom � Nom sending X to

A ⊗ X = {(a, x) | a # x}.

MGS2011 32/60

Name abstraction

That explains what morphisms into [A]X look like.
More important is the following characterization of
morphisms out of [A]X.

Theorem. f ∈ (A × X) �fs Y factors through the
subquotient {(a, x) | a # f} ⊆ A × X ։ [A]X to

give a unique element of f ∈ ([A]X) �fs Y satisfying

f(〈a〉x) = f(a, x) if a # f

iff (∀a ∈ A) a # f ⇒ (∀x ∈ X) a # f(a, x)

iff (∃a ∈ A) a # f ∧ (∀x ∈ X) a # f(a, x).

(Notes, p46.)
MGS2011 32/60

Initial algebras

◮ [A](−) has excellent exactness properties. It can
be combined with ×, + and X �fs (−) to give
functors T : Nom � Nom that have initial algebras
I : T D � D

T D

I

T X

Ffor all

D X

MGS2011 33/60

Initial algebras

◮ [A](−) has excellent exactness properties. It can
be combined with ×, + and X �fs (−) to give
functors T : Nom � Nom that have initial algebras
I : T D � D

T D T F̂

I

T X

F

D
F̂

exists unique
X

MGS2011 33/60

Initial algebras

◮ [A](−) has excellent exactness properties. It can
be combined with ×, + and X �fs (−) to give
functors T : Nom � Nom that have initial algebras
I : T D � D

◮ For a wide class of such functors (nominal algebraic
functors) the initial algebra D coincides with
ASTs/α-equivalence.
E.g. Λ is the initial algebra for

T(−) , A + (−×−) + [A](−)

MGS2011 33/60

Nominal algebraic signatures

◮ Sorts S ::= N name-sort (here just one, for simplicity)

| D data-sorts
| 1 unit
| S , S pairs
| N . S name-binding

◮ Typed operations op : S � D

Signature Σ is specified by the stuff in red.

MGS2011 34/60

Nominal algebraic signatures

Example: λ-calculus

name-sort Var for variables, data-sort Term for terms,
and operations

V : Var → Term

A : Term , Term → Term

L : Var . Term → Term

MGS2011 34/60

Nominal algebraic signatures

Example: π-calculus

name-sort Chan for channel names, data-sorts Proc, Pre and Sum
for processes, prefixed processes and summations, and operations

S : Sum → Proc

Comp : Proc , Proc → Proc

Nu : Chan . Proc → Proc

! : Proc → Proc

P : Pre → Sum

O : 1 → Sum

Plus : Sum , Sum → Sum

Out : Chan , Chan , Proc → Pre

In : Chan , (Chan . Proc) → Pre

Tau : Proc → Pre

Match : Chan , Chan , Pre → Pre

MGS2011 34/60

Nominal algebraic signatures

Closely related notions:

◮ binding signatures of Fiore, Plotkin & Turi (LICS
1999)

◮ nominal algebras of Honsell, Miculan & Scagnetto
(ICALP 2001)

N.B. all these notions of signature restrict attention to iterated, but unary

name-binding—there are other kinds of lexically scoped binder (e.g. see Pottier’s
Cαml language.)

MGS2011 34/60

Σ(S) = raw terms over Σ of sort S

a ∈ A

a ∈ Σ(N)

t ∈ Σ(S) op : S → D

op t ∈ Σ(D) () ∈ Σ(1)

t1 ∈ Σ(S1) t2 ∈ Σ(S2)

t1 , t2 ∈ Σ(S1 , S2)

a ∈ A t ∈ Σ(S)

a . t ∈ Σ(N . S)

Each Σ(S) is a nominal set once equipped with the
obvious Perm A-action—any finite set of atoms
containing all those occurring in t supports t ∈ Σ(S).

MGS2011 35/60

Alpha-equivalence
=α ⊆ Σ(S)× Σ(S)

a ∈ A

a =α a

t =α t′

op t =α op t′ () =α ()

t1 =α t′1 t2 =α t′2
t1 , t2 =α t′1 , t′2

(a1 a) · t1 =α (a2 a) · t2 a # (a1, t1, a2, t2)

a1 . t1 =α a2 . t2

MGS2011 36/60

Alpha-equivalence
=α ⊆ Σ(S)× Σ(S)

Fact: =α is equivariant (t1 =α t2 ⇒ π · t1 =α π · t2)
and each quotient

Σα(S) , {[t]α | t ∈ Σ(S)}

is a nominal set with

π · [t]α = [π · t]α

supp [t]α = fn t
where

fn(a . t) = fn t −{a}
fn(t1 , t2) = fn t1 ∪ fn t2

etc.
MGS2011 36/60

Theorem. Given a nominal algebraic signature Σ

(for simplicity, assume Σ has a single data-sort D as well as a single

name-sort N)

Σα(D) is an initial algebra for the
associated functor TΣ : Nom → Nom.

(Notes, p61.)

MGS2011 37/60

Theorem. Given a nominal algebraic signature Σ

(for simplicity, assume Σ has a single data-sort D as well as a single

name-sort N)

Σα(D) is an initial algebra for the
associated functor TΣ : Nom → Nom.

TΣ(−) = JS1K(−) + · · ·+ JSnK(−)

where Σ has operations opi : Si → D (i = 1..n)

and JSK(−) : Nom → Nom is defined by:

JNK(−) = A

JDK(−) = (−)
J1K(−) = 1

JS1 , S2K(−) = JS1K(−)× JS2K(−)
JN . SK(−) = [A](JSK(−))

MGS2011 37/60

Theorem. Given a nominal algebraic signature Σ

(for simplicity, assume Σ has a single data-sort D as well as a single

name-sort N)

Σα(D) is an initial algebra for the
associated functor TΣ : Nom → Nom.

E.g. for the λ-calculus signature with operations

V : Var → Term

A : Term , Term → Term

L : Var . Term → Term

we have

TΣ(−) = A + (−×−) + [A](−)

MGS2011 37/60

Theorem. Given a nominal algebraic signature Σ

(for simplicity, assume Σ has a single data-sort D as well as a single

name-sort N)

Σα(D) is an initial algebra for the
associated enriched functor TΣ : Nom → Nom.

TΣ not only acts on equivariant (=emptily supported)
functions, but also on finitely supported functions:

(X �fs Y) → (TΣ X �fs TΣ Y)
F 7→ TΣ F

MGS2011 37/60

α-Structural recursion
For λ-terms:
Theorem.

Given any X ∈ Nom and







f1 ∈ A �fs X
f2 ∈ X × X �fs X
f3 ∈ [A]X �fs X

∃! f̂ ∈ Λ �fs X
s.t.







f̂ a = f1 a

f̂ (e1 e2)= f2(f̂ e1, f̂ e2)
f̂(λa.e) = f3(〈a〉(f̂ e)) if a # (f1, f2, f3)

The enriched functor [A](−) : Nom � Nom sends f ∈ X �fs Y
to [A] f ∈ [A]X �fs [A]Y where

[A] f (〈a〉x) = 〈a〉(f x) if a # f

MGS2011 38/60

α-Structural recursion

For λ-terms:
Theorem.

Given any X ∈ Nom and







f1 ∈ A �fs X
f2 ∈ X × X �fs X
f3 ∈ A × X �fs X

s.t.

(∀a) a # (f1, f2, f3) ⇒ (∀x) a # f3(a, x) (FCB)

∃! f̂ ∈ Λ �fs X
s.t.







f̂ a = f1 a

f̂ (e1 e2)= f2(f̂ e1, f̂ e2)
f̂(λa.e) = f3(a, f̂ e) if a # (f1, f2, f3)

MGS2011 38/60

Name abstraction

Recall:

Theorem. f ∈ (A × X) �fs Y factors through the
subquotient {(a, x) | a # f} ⊆ A × X ։ [A]X to

give a unique element of f ∈ ([A]X) �fs Y satisfying

f(〈a〉x) = f(a, x) if a # f

iff (∀a ∈ A) a # f ⇒ (∀x ∈ X) a # f(a, x)

iff (∃a ∈ A) a # f ∧ (∀x ∈ X) a # f(a, x).

MGS2011 39/60

α-Structural recursion
For λ-terms:
Theorem.

Given any X ∈ Nom and







f1 ∈ A �fs X
f2 ∈ X × X �fs X
f3 ∈ A × X �fs X

s.t.

(∀a) a # (f1, f2, f3) ⇒ (∀x) a # f3(a, x) (FCB)

∃! f̂ ∈ Λ �fs X
s.t.







f̂ a = f1 a

f̂ (e1 e2)= f2(f̂ e1, f̂ e2)
f̂(λa.e) = f3(a, f̂ e) if a # (f1, f2, f3)

E.g. capture-avoiding substitution (−)[e′ /a′] : Λ � Λ is the f̂ for

f1 a , if a = a′ then e′ else a

f2(e1, e2) , e1 e2

f3(a, e) , λa.e

for which (FCB) holds, since a # λa.e

MGS2011 40/60

α-Structural recursion
For λ-terms:
Theorem.

Given any X ∈ Nom and







f1 ∈ A �fs X
f2 ∈ X × X �fs X
f3 ∈ A × X �fs X

s.t.

(∀a) a # (f1, f2, f3) ⇒ (∀x) a # f3(a, x) (FCB)

∃! f̂ ∈ Λ �fs X
s.t.







f̂ a = f1 a

f̂ (e1 e2)= f2(f̂ e1, f̂ e2)
f̂(λa.e) = f3(a, f̂ e) if a # (f1, f2, f3)

E.g. size function Λ � N is the f̂ for

f1 a , 0

f2(n1, n2) , n1 + n2

f3(a, n) , n + 1

for which (FCB) holds, since a # (n + 1)

MGS2011 40/60

α-Structural recursion
For λ-terms:
Theorem.

Given any X ∈ Nom and







f1 ∈ A �fs X
f2 ∈ X × X �fs X
f3 ∈ A × X �fs X

s.t.

(∀a) a # (f1, f2, f3) ⇒ (∀x) a # f3(a, x) (FCB)

∃! f̂ ∈ Λ �fs X
s.t.







f̂ a = f1 a

f̂ (e1 e2)= f2(f̂ e1, f̂ e2)
f̂(λa.e) = f3(a, f̂ e) if a # (f1, f2, f3)

Non-example: trying to list the bound variables of a λ-term

f1 a , nil

f2(ℓ1, ℓ2) , ℓ1 @ ℓ2

f3(a, ℓ) , a :: ℓ

for which (FCB) does not hold, since a ∈ supp(a :: ℓ).

MGS2011 40/60

α-Structural recursion
For λ-terms:
Theorem.

Given any X ∈ Nom and







f1 ∈ A �fs X
f2 ∈ X × X �fs X
f3 ∈ A × X �fs X

s.t.

(∀a) a # (f1, f2, f3) ⇒ (∀x) a # f3(a, x) (FCB)

∃! f̂ ∈ Λ �fs X
s.t.







f̂ a = f1 a

f̂ (e1 e2)= f2(f̂ e1, f̂ e2)
f̂(λa.e) = f3(a, f̂ e) if a # (f1, f2, f3)

Similar results hold for any nominal algebraic signature—see J ACM
53(2006)459–506.

Implemented in Urban & Berghofer’s Nominal package for
Isabelle/HOL (classical higher-order logic).

Seems to capture informal usage well, but (FCB) can be tricky. . .

MGS2011 40/60

Counting bound variables

For each e ∈ Λ, cbv e , f e ρ0 ∈ N

where we want f ∈ Λ �fs X with
X = (A �fs N)�fs N to satisfy

f a ρ = ρ a
f (e1 e2) ρ = (f e1ρ) + (f e2 ρ)
f(λa.e) ρ = f e (ρ[a 7→ 1])

and where ρ0 ∈ A �fs N is λ(a ∈ A)� 0.

MGS2011 41/60

Counting bound variables

For each e ∈ Λ, cbv e , f e ρ0 ∈ N

where we want f ∈ Λ �fs X with
X = (A �fs N)�fs N to satisfy

f a ρ = ρ a
f (e1 e2) ρ = (f e1ρ) + (f e2 ρ)
f(λa.e) ρ = f e (ρ[a 7→ 1])

and where ρ0 ∈ A �fs N is λ(a ∈ A)� 0.

Looks like we should take
f3(a, x) = λ(ρ ∈ A �fs N) � x(ρ[a 7→ 1]),

but this does not satisfy (FCB). Solution: take X to be a certain

nominal subset of (A �fs N)�fs N. (See Notes, p67.)
MGS2011 41/60

Lecture 4

MGS2011 42/60

Outline
◮ Lecture 1. Structural recursion and induction in

the presence of name-binding operations.

◮ Lecture 2. Introducing the category of
nominal sets.
[Notes, chapters 1–3 +exercises]

◮ Lecture 3. Nominal algebraic data types and
α-structural recursion.
[Notes, chapters 4–5 +exercises]

◮ Lecture 4. Simply typed λ-calculus with local
names and name-abstraction.
[www.cl.cam.ac.uk/users/amp12/papers/strrls/strrls.pdf]

MGS2011 43/60

α-Structural recursion
For λ-terms:
Theorem.

Given any X ∈ Nom and







f1 ∈ A �fs X
f2 ∈ X × X �fs X
f3 ∈ A × X �fs X

s.t.

(∀a) a # (f1, f2, f3) ⇒ (∀x) a # f3(a, x) (FCB)

∃! f̂ ∈ Λ �fs X
s.t.







f̂ a = f1 a

f̂ (e1 e2)= f2(f̂ e1, f̂ e2)
f̂(λa.e) = f3(a, f̂ e) if a # (f1, f2, f3)

Can we avoid explicit reasoning about finite support, # and (FCB)
when computing ‘mod α’?

Want definition/computation to be separate from proving.

MGS2011 44/60

f̂ = f1 a

f̂(e1 e2) = f2(f̂ e1, f̂ e2)
f̂ (λa. e) = f3(a, f̂ e) if a # (f1, f2, f2)

= λa′. e′ = f3(a′, f̂ e′)

Q: how to get rid of this inconvenient proof obligation?

MGS2011 45/60

f̂ = f1 a

f̂(e1 e2) = f2(f̂ e1, f̂ e2)
f̂(λa. e) = νa. f3(a, f̂ e) [a # (f1, f2, f2)]

= λa′. e′ = νa′. f3(a′, f̂ e′) OK!

Q: how to get rid of this inconvenient proof obligation?

A: use a local scoping construct νa. (−) for names

MGS2011 45/60

f̂ = f1 a

f̂(e1 e2) = f2(f̂ e1, f̂ e2)
f̂(λa. e) = νa. f3(a, f̂ e) [a # (f1, f2, f2)]

= λa′. e′ = νa′. f3(a′, f̂ e′) OK!

Q: how to get rid of this inconvenient proof obligation?

A: use a

which one?!

local scoping construct νa. (−) for names

MGS2011 45/60

Dynamic allocation

◮ Stateful: νa. t means “add a fresh name a′ to the
current state and return t[a′/a]”.

◮ Used in Shinwell’s Fresh OCaml = OCaml +
◮ name types and name-abstraction type former
◮ name-abstraction patterns

—matching involves dynamic allocation of fresh names

[www.fresh-ocaml.org].

MGS2011 46/60

Sample Fresh OCaml code
(* syntax *)

type t;;

type var = t name;;

type term = Var of var | Lam of «var»term | App of term*term;;

(* semantics *)

type sem = L of ((unit -> sem) -> sem) | N of neu

and neu = V of var | A of neu*sem;;

(* reify : sem -> term *)

let rec reify d =

match d with L f -> let x = fresh in Lam(«x»(reify(f(function () -> N(V x)))))

| N n -> reifyn n

and reifyn n =

match n with V x -> Var x

| A(n’,d’) -> App(reifyn n’, reify d’);;

(* evals : (var * (unit -> sem))list -> term -> sem *)

let rec evals env t =

match t with Var x -> (match env with [] -> N(V x)

| (x’,v)::env -> if x=x’ then v() else evals env (Var x))

| Lam(«x»t) -> L(function v -> evals ((x,v)::env) t)

| App(t1,t2) -> (match evals env t1 with L f -> f(function () -> evals env t2)

| N n -> N(A(n,evals env t2)));;

(* eval : term -> sem *)

let rec eval t = evals [] t;;

(* norm : lam -> lam *)

let norm t = reify(eval t);;

MGS2011 47/60

Dynamic allocation

◮ Stateful: νa. t means “add a fresh name a′ to the
current state and return t[a′/a]”.

◮ Used in Shinwell’s Fresh OCaml = OCaml +
◮ name types and name-abstraction type former
◮ name-abstraction patterns

—matching involves dynamic allocation of fresh names

[www.fresh-ocaml.org].

MGS2011 48/60

Dynamic allocation

◮ Stateful: νa. t means “add a fresh name a′ to the
current state and return t[a′/a]”.

Statefulness disrupts familiar mathematical properties of
pure datatypes. So we will try to reject it in favour of. . .

MGS2011 48/60

Odersky’s νa. (−)

[M. Odersky, A Functional Theory of Local Names, POPL’94]

◮ Unfamiliar—apparently not used in practice (so far).

◮ Pure equational calculus, in which local scopes
‘intrude’ rather than extrude (as per dynamic
allocation):

νa. (λx � t) ≈ λx � (νa. t) [a 6= x]
νa. (t , t′) ≈ (νa. t , νa. t′)

◮ New: a straightforward semantics using nominal
sets equipped with a ‘name-restriction operation’. . .

MGS2011 49/60

Name-restriction
A name-restriction operation on a nominal set X is a
morphism (−)\(−) ∈ Nom(A × X, X) satisfying

◮ a # a\x

◮ a # x ⇒ a\x = x

◮ a\(b\x) = b\(a\x)

Equivalently, a morphism ρ : [A]X → X making

X
κ

idX

[A]X

ρ

[A][A]X
δ

[A]ρ

[A][A]X
[A]ρ

[A]X

ρ

[A]X

ρ
X X

commute, where κ x = 〈a〉x for some (or indeed any) a # x; and where
δ(〈a〉〈a′〉x) = 〈a′〉〈a〉x.

MGS2011 50/60

Given any X ∈ Nom and







f1 ∈ A �fs X
f2 ∈ X × X �fs X
f3 ∈ A × X �fs X

s.t.

(∀a) a # (f1, f2, f3) ⇒ (∀x) a # f3(a, x) (FCB)

∃! f̂ ∈ Λ �fs X
s.t.







f̂ a = f1 a

f̂ (e1 e2)= f2(f̂ e1, f̂ e2)
f̂(λa.e) = f3(a, f̂ e) if a # (f1, f2, f3)

If X has a name restriction operation (−)\(−), we can
trivially satisfy (FCB) by using a\ f3(a, x) in place of
f3(a, x).

MGS2011 51/60

Given any X ∈ Nom and







f1 ∈ A �fs X
f2 ∈ X × X �fs X
f3 ∈ A × X �fs X

and a restriction operation (−)\(−) on X,

∃! f̂ ∈ Λ �fs X
s.t.







f̂ a = f1 a

f̂ (e1 e2)= f2(f̂ e1, f̂ e2)
f̂(λa.e) = a\ f3(a, f̂ e)

Is requiring X to carry a name-restriction operation
much of a hindrance for applications?

Not much. . .

MGS2011 51/60

Examples of name-restriction

◮ For N: a\n , n

MGS2011 52/60

Examples of name-restriction

◮ For N: a\n , n

◮ For A
′ , A ⊎ {anon}:

a\a , anon

a\a′ , a′ if a′ 6= a

a\anon , anon

MGS2011 52/60

Examples of name-restriction

◮ For N: a\n , n

◮ For A
′ , A ⊎ {anon}:

a\t , t[anon/a]

◮ For Λ
′ , {t ::= V a | A(t , t) | L(a . t) | anon}/=α:

a\[t]α , [t[anon/a]]α

MGS2011 52/60

Examples of name-restriction

◮ For N: a\n , n

◮ For A
′ , A ⊎ {anon}:

a\t , t[anon/a]

◮ For Λ
′ , {t ::= V a | A(t , t) | L(a . t) | anon}/=α:

a\[t]α , [t[anon/a]]α

◮ Nominal sets with name-restriction are closed under products,

coproducts, name-abstraction and exponentiation by a nominal

set.
MGS2011 52/60

λαν-Calculus
[AMP, Structural Recursion with Locally Scoped Names, preprint 2011,
www.cl.cam.ac.uk/users/amp12/papers/strrls/strrls.pdf]

is standard simply-typed λ-calculus with booleans and
products, extended with:

◮ type of names, Name

MGS2011 53/60

λαν-Calculus
[AMP, Structural Recursion with Locally Scoped Names, preprint 2011,
www.cl.cam.ac.uk/users/amp12/papers/strrls/strrls.pdf]

is standard simply-typed λ-calculus with booleans and
products, extended with:

◮ type of names, Name, with terms for
◮ names, a : Name (a ∈ A)

MGS2011 53/60

λαν-Calculus
[AMP, Structural Recursion with Locally Scoped Names, preprint 2011,
www.cl.cam.ac.uk/users/amp12/papers/strrls/strrls.pdf]

is standard simply-typed λ-calculus with booleans and
products, extended with:

◮ type of names, Name, with terms for
◮ names, a : Name (a ∈ A)
◮ equality test, = : Name � Name � Bool

MGS2011 53/60

λαν-Calculus
[AMP, Structural Recursion with Locally Scoped Names, preprint 2011,
www.cl.cam.ac.uk/users/amp12/papers/strrls/strrls.pdf]

is standard simply-typed λ-calculus with booleans and
products, extended with:

◮ type of names, Name, with terms for
◮ names, a : Name (a ∈ A)
◮ equality test, = : Name � Name � Bool

◮ name-swapping,
t : T

(a ≀ a′)t : T
with type-directed computation rules, e.g.

(a ≀ b)(λx � t) = λx � (a ≀ b)(t[(a ≀ b)x / x])

MGS2011 53/60

λαν-Calculus
[AMP, Structural Recursion with Locally Scoped Names, preprint 2011,
www.cl.cam.ac.uk/users/amp12/papers/strrls/strrls.pdf]

is standard simply-typed λ-calculus with booleans and
products, extended with:

◮ type of names, Name, with terms for
◮ names, a : Name (a ∈ A)
◮ equality test, = : Name � Name � Bool

◮ name-swapping,
t : T

(a ≀ a′)t : T

◮ locally scoped names
t : T

νa. t : T
(binds a)

with Odersky-style computation rules, e.g.

νa. λx � t = λx � νa. t

MGS2011 53/60

λαν-Calculus
[AMP, Structural Recursion with Locally Scoped Names, preprint 2011,
www.cl.cam.ac.uk/users/amp12/papers/strrls/strrls.pdf]

is standard simply-typed λ-calculus with booleans and
products, extended with:

◮ type of names, Name

◮ name-abstraction types, Name . T

MGS2011 53/60

λαν-Calculus
[AMP, Structural Recursion with Locally Scoped Names, preprint 2011,
www.cl.cam.ac.uk/users/amp12/papers/strrls/strrls.pdf]

is standard simply-typed λ-calculus with booleans and
products, extended with:

◮ type of names, Name
◮ name-abstraction types, Name . T, with terms for

◮ name-abstraction,
t : T

αa. t : Name . T
(binds a)

MGS2011 53/60

λαν-Calculus
[AMP, Structural Recursion with Locally Scoped Names, preprint 2011,
www.cl.cam.ac.uk/users/amp12/papers/strrls/strrls.pdf]

is standard simply-typed λ-calculus with booleans and
products, extended with:

◮ type of names, Name
◮ name-abstraction types, Name . T, with terms for

◮ name-abstraction,
t : T

αa. t : Name . T
(binds a)

◮ unbinding,
t : Name . T t′ : T ′

let a . x = t in t′ : T ′ (binds a & x in t′)

with computation rule that uses local scoping

let a . x = αa. t in t′ = νa. (t′[t/x])

MGS2011 53/60

λαν-Calculus

Denotational semantics. λαν-calculus has a
straightforward interpretation in Nom that is sound for
the computation rules—types denote nominal sets
equipped with a name-restriction operation:

JBoolK = {true, false}
JNameK = A ⊎ {anon}

JT × T ′K = JTK× JT ′K
JT � T ′K = JTK �fs JTK

JName . TK = [A]JTK

Jνa. aK

MGS2011 54/60

λαν-Calculus

Normalization. Terms possess normal forms with
respect to the computation rules that are unique up a
simple structural congruence relation generated by:

νa. t ≡ t if a /∈ fn(t)
νa. νb. t ≡ νb. νa. t

(Proof in the paper Structural Recursion with Locally Scoped Names

uses Coquand’s technique of evaluation to weak head normal form
(whnf) combined with a ‘readback’ of whnfs to normal forms.)

MGS2011 55/60

λαν-Calculus

Nominal datatypes. E.g. add type Lam with

constructors







V : Name � Lam

A : (Lam × Lam)� Lam

L : (Name . Lam) � Lam

iterator
t1 : Name � T t2 : (T × T)� T t3 : (Name . T) � T

lrec t1 t2 t3 : Lam � T

computation rules (writing f for lrec t1 t2 t3)






f(V t) = t1 t
f(A(t, t′)) = t2(f t, f t′)
f(L αa. t) = t3 (αa. f t) if a /∈ fn(t1, t2, t3)

MGS2011 56/60

λαν-Calculus

Nominal datatypes. E.g. add type Lam with

computation rules (writing f for lrec t1 t2 t3)






f(V t) = t1 t
f(A(t, t′)) = t2(f t, f t′)
f(L αa. t) = t3 (αa. f t) if a /∈ fn(t1, t2, t3)

Theorem. Computation of normal forms in this
extension of λαν-calculus adequately represents
α-structurally recursive functions on Λ.

MGS2011 56/60

λαν-Calculus

Nominal datatypes. E.g. add type Lam with

computation rules (writing f for lrec t1 t2 t3)






f(V t) = t1 t
f(A(t, t′)) = t2(f t, f t′)
f(L αa. t) = t3 (αa. f t) if a /∈ fn(t1, t2, t3)

Theorem. Computation of normal forms in this
extension of λαν-calculus adequately represents
α-structurally recursive functions on Λ.

E.g. capture-avoiding substitution of t for a is represented by
lrec t1 t2 t3 with t1 , if x = a then t else V x

t2 , λx � let(y, z) = x in A y z

t3 , λx � let a . y = x in Lαb. (a ≀ b)y

MGS2011 56/60

λαν-calculus as a FP language

To do: revisit FreshML using Odersky-style local names
rather than dynamic allocation

names Var : Set

data Term : Set where --(possibly open) λ-terms mod α
V : Var -> Term --variable

A : (Term × Term)-> Term --application term

L : (Var . Term) -> Term --λ-abstraction

/ : Term -> Var -> Term -> Term --capture-avoiding substitution

(t / x)(V x′) = if x = x′ then t else V x′

(t / x)(A(t′ , t′′)) = A((t / x)t′ , (t / x)t′′)

(t / x)(L(x′ . t′)) = L(x′ . (t / x)t′)

MGS2011 57/60

‘Nominal Agda’ (???)

names Var : Set

data Term : Set where --(possibly open) λ-terms mod α
V : Var -> Term --variable

A : (Term × Term)-> Term --application term

L : (Var . Term) -> Term --λ-abstraction

/ : Term -> Var -> Term -> Term --capture-avoiding substitution

(t / x)(V x′) = if x = x′ then t else V x′

(t / x)(A(t′ , t′′)) = A((t / x)t′ , (t / x)t′′)

(t / x)(L(x′ . t′)) = L(x′ . (t / x)t′)

data _==_ (t : Term) : Term -> Set where --intensional equality

Refl : t == t

MGS2011 57/60

‘Nominal Agda’ (???)

names Var : Set

data Term : Set where --(possibly open) λ-terms mod α
V : Var -> Term --variable

A : (Term × Term)-> Term --application term

L : (Var . Term) -> Term --λ-abstraction

/ : Term -> Var -> Term -> Term --capture-avoiding substitution

(t / x)(V x′) = if x = x′ then t else V x′

(t / x)(A(t′ , t′′)) = A((t / x)t′ , (t / x)t′′)

(t / x)(L(x′ . t′)) = L(x′ . (t / x)t′)

data _==_ (t : Term) : Term -> Set where --intensional equality

Refl : t == t --is term equality mod α

eg : (x x′ : Var) ->

((V x) / x′)(L(x . V x′)) == L(x′ . V x) --(λx.x′)[x/x′] = λx′.x
eg x x′ = {! !}

MGS2011 57/60

Dependent types

◮ Can the λαν-calculus be extended from simple to
dependent types?
At the moment I do not see how to do this,
because. . .

MGS2011 58/60

Γ, a : Name ⊢ e : T a /∈ fn(T)

Γ ⊢ νa. e : T

MGS2011 59/60

Γ, a : Name ⊢ e : T a /∈ fn(T)

Γ ⊢ νa. e : T

νa. (e1 , e2)
?
= (νa. e1 , νa. e2)

e1 : T1

e2 : T2[e1]

MGS2011 59/60

Γ, a : Name ⊢ e : T a /∈ fn(T)

Γ ⊢ νa. e : T

νa. (e1 , e2)
?
= (νa. e1 , νa. e2)

e1 : T1

e2 : T2[e1]

νa. (e1 , e2) : (x : T1)× T2[x]
if a /∈ fn(T1, T2)

MGS2011 59/60

Γ, a : Name ⊢ e : T a /∈ fn(T)

Γ ⊢ νa. e : T

νa. (e1 , e2)
?
= (νa. e1 , νa. e2)

e1 : T1

e2 : T2[e1]

νa. (e1 , e2) : (x : T1)× T2[x]
if a /∈ fn(T1, T2)

νa. e1 : T1

MGS2011 59/60

Γ, a : Name ⊢ e : T a /∈ fn(T)

Γ ⊢ νa. e : T

νa. (e1 , e2)
?
= (νa. e1 , νa. e2)

e1 : T1

e2 : T2[e1]

νa. (e1 , e2) : (x : T1)× T2[x]
if a /∈ fn(T1, T2)

νa. e1 : T1

νa. e2 : T2[νa. e1]???

MGS2011 59/60

Dependent types

◮ Can the λαν-calculus be extended from simple to
dependent types?
At the moment I do not see how to do this,
because. . .

◮ In any case, is there a useful/expressive form of
indexed structural induction mod α, whether or not
we try to use Odersky-style locally scoped names?

(Recent work of Cheney on DNTT is interesting, but probably
not sufficiently expressive.)

MGS2011 60/60

	Lecture 1
	Lecture 2
	Lecture 3
	Lecture 4

