Nominal Sets

Andrew Pitts

&3 UNIVERSITY OF
¥ CAMBRIDGE
Computer Laboratory

MGS2011 1/60



Mathematics of syntax

» Seems of little interest to mathematicians and of
only slight interest to logicians. (?)

» Vital for computer science — because of symbolic
computation and automated reasoning.

» Has yet to reach an intellectual fixed point for

syntax involving scope, binding and freshness of
names.

MGS2011



Nominal sets

» Mathematical theory of names: scope, binding,
freshness.

» Simple math to do with properties invariant under
permuting names.

» Originally introduced by Gabbay & AMP circa 2000,
but the math goes back to 1930’s set theory & logic
(Fraenkel & Mostowski).

MGS2011 3/60



MGS2011

Mathematical theory of names: scope, binding,
freshness.

Simple math to do with properties invariant under
permuting names.

Originally introduced by Gabbay & AMP circa 2000,
but the math goes back to 1930’s set theory & logic
(Fraenkel & Mostowski).

Applications: theorem-proving tools for PL
semantics; metaprogramming (within functional
programming, mainly); verification.

3/60



MGS2011

Outline

Lecture 1. Structural recursion and induction in
the presence of name-binding operations.
Lecture 2. Introducing the category of

nominal sets.

[Notes, chapters 1-3 +exercises]

Lecture 3. Nominal algebraic data types and
«-structural recursion.

[Notes, chapters 4-5 -+exercises]

Lecture 4. Simply typed A-calculus with local
names and name-abstraction.

[www.cl.cam.ac.uk/users/ampl2/papers/strrls/strrls.pdf]



Lecture 1

MGS2011 5/60



For semantics, concrete syntax

letrec f x = if x > 100 then x — 10
else £ (£ ( x + 11 ) ) in £ ( x + 100 )

is unimportant compared to abstract syntax (ASTs):

letrec
f x if @
> — @ f -+
X 100 x 10 £ @ x 101
f +
x 11

We should aim for compositional semantics of program
constructions, rather than of whole programs. (Why?)

MGS2011



ASTs enable two fundamental (and inter-linked) tools in
programming language semantics:

» Definition of functions on syntax
by recursion on its structure.

» Proof of properties of syntax
by induction on its structure.

MGS2011 7/60



Structural recursion

Recursive definitions of functions whose values at a
structure are given functions of their values at immediate
substructures.

» Godel System T (1958):

structure = numbers
structural recursion = primitive recursion for IN.

» Burstall, Martin-Lof et al (1970s) generalized this to
ASTs.

MGS2011 8/60



Running example
Set of ASTs for A-terms
Tr 2 {t:=Va|A(tt) | L(at)}

where a € A, fixed infinite set of names of variables.

Operations for constructing these ASTs:

V: A-Tr
A : TrxTr—Tr
L : AXTr—Tr

MGS2011 9/60



Tr

Theorem.

Given fi € A-X
f € XXX-X
fs € AXX-X

exists unique f € Tr— X satisfying

f(va)

7 (a(t, 1))
F(L(a 1))




Tr

E.g. the finite set vart of variables occurring in t € Tr:

var(Va) {a}

var(A(t,t')) (vart) U (vart’)
var(L(a,t)) (vart) U {a}

is defined by structural recursion using

» X = P¢(A) (finite sets of variables)
> fia={a}

. £:(8,8") =SUS’

» f3(a,S) =SU {a}.



Structural recursion for Tr

E.g. swapping: (a b) - t = result of transposing all
occurrences of a and b in t

For example

(ab)-L(a,A(Vb,Vc)) =L(b,A(Va,Vc))

MGS2011 12/60



Tr

E.g. swapping: (a b) - t = result of transposing all
occurrences of a and b in ¢t
(ab)-Vec = ifc=athenVbelse
ifc=DbthenVaelseVc

(ab)-A(t¥) = A((ab)-t (ab)-t)

(ab)-L(ct) ifc =athenL(b,(ab)-t)
elseifc = bthenL(a, (ab) - t)
elseL(c,(ab)-t)

is defined by structural recursion using. . .



Tr

Theorem.

Given fi € A-X
f € XXX-X
fs € AXX-X

exists unique f € Tr— X satisfying

f(va)

7 (a(t, 1))
F(L(a 1))




Theorem.

Given

MGS2011 13/60



Smallest binary relation =, on Tr closed under the rules:
a € A bh=xt] h=,t
Va=,Va A(ty, 1) =4 A(E, 1)

(ab)-t=,(a’b)-t' be&{aa}Uvar(tt)
L(a,t) =, L(d, 1)

Eg. A(L(a,A(Va,Vb)),Vc) =, A(L(c,A(Ve, VD)), Ve)
#ux A(L(b,A(VD, VD)), V)

Fact: =, is transitive (and reflexive & symmetric).



ASTs mod alpha equivalence

Dealing with issues to do with binders and alpha
equivalence is

» pervasive (very many languages involve binding
operations)

» difficult to formalise/mechanise without losing sight
of common informal practice:

MGS2011 15/60



ASTs mod alpha equivalence

Dealing with issues to do with binders and alpha
equivalence is

» pervasive (very many languages involve binding
operations)

» difficult to formalise/mechanise without losing sight
of common informal practice:

“We identify expressions up to alpha-equivalence”. ..

MGS2011 15/60




ASTs mod alpha equivalence

Dealing with issues to do with binders and alpha
equivalence is

» pervasive (very many languages involve binding
operations)

» difficult to formalise/mechanise without losing sight
of common informal practice:

“We identify expressions up to alpha-equivalence”. ..
...and then forget about it, referring to
alpha-equivalence classes [t], only via representatives t.

MGS2011 15/60




Dealing with issues to do with binders and alpha
equivalence is

» pervasive (very many languages involve binding

operations)
» difficult to formalise/mechanise without losing sight
of common informal practice:

E.g. notation for A-terms:

A= {[tl. |t € Tr}
a means [Val, (={Va})

ee/ means [A(t,t")],, where e = [t], and ¢/ = [t'],
Aa.e means [L(a,t)], where e = [f],




E.g. capture-avoiding substitution:
f = (-)[61/&1] A=A

ifa = a; thenejelsea

(fe)(fe)

= ifa & fv(as, e;) then Aa. (fe)
elsedon't carel

Not an instance of structural recursion for Tr.
Why is f well-defined and total?



E.g. denotation of A-term in a suitable domain D:
[-]:A~((A-D)-D)

pa

app([elp, [']p)
= fun(A(d € D) - [e](p[a - d]))

fu" S (DﬁctsD) —cts D

are continuous functions satisfying. . .

where { app € D XD —¢s D

MGS2011 16/60



E.g. denotation of A-term in a suitable domain D:
[-]:A~((A-D)-D)

[ale = pa

[ee’lp = app(lelp,[]p)
[Aa.elp = fun(A(d € D) - [e](p[a — d]))

why is this very standard
definition independent of the
choice of bound variable a?

MGS2011 16/60



Is there a recursion principle for A that legitimises these
‘definitions’ of (—)[ei/a1] : A A and [—] : A= D
(and many other e.g.s)?

MGS2011 17/60



Is there a recursion principle for A that legitimises these
‘definitions’ of (—)[ei/a1] : A A and [—] : A= D
(and many other e.g.s)?

Yes! — w-structural recursion.

MGS2011 17/60



Is there a recursion principle for A that legitimises these
‘definitions’ of (—)[ei/a1] : A A and [—] : A= D
(and many other e.g.s)?

Yes! — w-structural recursion.

What about other languages with binders?

MGS2011 17/60



Is there a recursion principle for A that legitimises these
‘definitions’ of (—)[ei/a1] : A A and [—] : A= D
(and many other e.g.s)?

Yes! — w-structural recursion.

What about other languages with binders?

Yes! — available for any nominal signature.

MGS2011 17/60



Is there a recursion principle for A that legitimises these
‘definitions’ of (—)[ei/a1] : A A and [—] : A= D
(and many other e.g.s)?

Yes! — a-structural recursion.

What about other languages with binders?

Yes! — available for any nominal signature.

Great. What's the catch?

MGS2011 17/60



Is there a recursion principle for A that legitimises these
‘definitions’ of (—)[ei/a1] : A A and [—] : A= D
(and many other e.g.s)?

Yes! — w-structural recursion.

What about other languages with binders?

Yes! — available for any nominal signature.

Great. What's the catch?

Need to learn a bit of possibly unfamiliar math, to do
with permutations and support.

MGS2011 17/60



Lecture 2

MGS2011 18/60



Outline

» Lecture 1. Structural recursion and induction in
the presence of name-binding operations.

» Lecture 2. Introducing the category of
nominal sets.
[Notes, chapters 1-3 +exercises]

» Lecture 3. Nominal algebraic data types and
«-structural recursion.
[Notes, chapters 4-5 +exercises]

» Lecture 4. Simply typed A-calculus with local
names and name-abstraction.

[www.cl.cam.ac.uk/users/ampl2/papers/strrls/strrls.pdf]

MGS2011 19/60



Preliminaries on
name-permutations

» A = fixed countably infinite set of names (a,b,...)

MGS2011 20/60



Preliminaries on
name-permutations

» A = fixed countably infinite set of names (a,b,. ..
» Perm A = group of finite permutations of A
(rt, /... )

» 7T finite means: {a € A | w(a) # a} is finite.
» group: multiplication is composition of functions
7t/ o 7r; identity is identity function t.

MGS2011

20/60



» A = fixed countably infinite set of names (a,b,...)
» Perm A = group of finite permutations of A
(rt, /... )
» 7T finite means: {a € A | w(a) # a} is finite.
» group: multiplication is composition of functions
7t/ o 7r; identity is identity function t.
» swapping: (a b) € Perm A is the function
mapping a to b, b to a and fixing all other names.

Fact: every 7t € Perm /A is equal to

(ﬂl bl) O:--0 (ﬂn bn)
for some a; & b; (with 7w a; # a; # b; # 7T b;).

MGS2011 20/60



Preliminaries on
name-permutations

» A = fixed countably infinite set of names (a,b,...)

» Perm A = group of finite permutations of A
(rt, r/,...)

» action of Perm A on a set X is a function
(—=):(=):PermA X X-X
satisfying for all x € X

» - (rex) = (t'om) - x
Lex =X

MGS2011 20/60



Action of Perm A on set of ASTs for A-terms

Tr 2 {t:=Va|A(tt)|L(at)}

This respects a-equivalence and so induces an action on
set of A-terms A = {[t], | t € Tr}:

7T - [ty = [T+ t]a



are sets X with with a Perm A-action satisfying

Finite support property: for each x € X, there is a
finite subset @ C /A that supports x, in the sense that
for all T € Perm A

(Va€a) ta=a) = m-x=x

Fact: in a nominal set every x € X possesses a smallest
finite support, written supp x.




are sets X with with a Perm A-action satisfying

Finite support property: for each x € X, there is a
finite subset @ C /A that supports x, in the sense that
for all T € Perm A

(Va€a) ta=a) = m-x=x

Fact: in a nominal set every x € X possesses a smallest
finite support, written supp x.

E.g. Tr and A are nominal sets—any @ containing all the variables
occurring (free, binding, or bound) in t € Tr supports t and (hence)
[£]a-

Fact: for e € A, suppe = fve. (See Notes, p28.)



Further examples of support

[Perm A acts of sets of names S C A pointwise:
m-S2{ma|a¢€S}]

What is a support for the following sets of names?
> 1= {a}
» S, 2 A —{a}

» S3 2 {ag,az,a4,...}, where A = {ag, a1,az,...}

MGS2011

23/60



Further examples of support

[Perm A acts of sets of names S C A pointwise:
m-S2{ma|a¢€S}]

What is a support for the following sets of names?

> $1 = {a}
Answer: {a} is smallest support.

> S = A —{a}

» S3 2 {ag,az,a4,...}, where A = {ag, a1,az,...}

MGS2011

23/60



Further examples of support

[Perm A acts of sets of names S C A pointwise:
m-S2{ma|a¢€S}]
What is a support for the following sets of names?

> §1 = {a}

Answer: {a} is smallest support.

» S, 2 A —{a}
Answer: {a} is smallest support.

» S3 2 {ag,az,a4,...}, where A = {ag, a1,az,...}

MGS2011

23/60



Further examples of support

[Perm A acts of sets of names S C A pointwise:
m-S2{ma|a¢€S}]

What is a support for the following sets of names?

> §1 = {a}

Answer: {a} is smallest support.

» S, 2 A —{a}
Answer: {a} is smallest support.

» S3 2 {ag,az,a4,...}, where A = {ag, a1,az,...}
Answer: {ag,as,a4,...} is a support

MGS2011

23/60



Further examples of support

[Perm A acts of sets of names S C A pointwise:
m-S2{ma|a¢€S}]

What is a support for the following sets of names?

A
> §1= {a}
Answer: {a} is smallest support.
> S = A —{a}
Answer: {a} is smallest support.
A
» S3 = {ap,az,a4,...}, where A = {ap,a1,az,...}
Answer: {ag, a3, a4,...} is a support, and so is
{a1, a3, as,...}—but there is no finite support. Sz does not
exist in the ‘world of nominal sets'—in that world A is
infinite, but not enumerable.

MGS2011 23/60



Category of nominal sets, Nom

» objects are nominal sets

» morphisms are functions f € X — Y that are
equivariant:

- (fx) = f(m-x)
for all T € Perm A, x € X.

MGS2011 24/60



Nom

Fact. Nom is equivalent to the Schanuel topos, a

well-known Grothendieck topos classifying the geometric
theory of an infinite decidable object.

So in particular Nom is a model of classical higher-order
logic.

MGS2011 24/60



Nom

Fact. Nom is equivalent to the Schanuel topos, a

well-known Grothendieck topos classifying the geometric
theory of an infinite decidable object.

Finite products: X; X - -+ X X, is cartesian product of
sets with Perm /A-action

e (X1, eee X)) = (T X100, 7T Xy)
which satisfies

supp(x,...,x,) = (suppx1) U--- U (supp x,)

MGS2011



Nom

Fact. Nom is equivalent to the Schanuel topos, a

well-known Grothendieck topos classifying the geometric
theory of an infinite decidable object.

Coproducts are given by disjoint union.

Natural number object: N = {0,1,2,...} with
trivial Perm A-action: 7 -n = n (so suppn = Q).

MGS2011 24/60



Nom

Fact. Nom is equivalent to the Schanuel topos, a

well-known Grothendieck topos classifying the geometric
theory of an infinite decidable object.

Exponentials: X —¢ Y is the set of functions f € YX
that are finitely supported w.r.t. the Perm A-action

o fEAxEX) o (f(rh-x))

(Can be tricky to see when f € YX isiin X —¢ Y.)

MGS2011 24/60



Nom

Fact. Nom is equivalent to the Schanuel topos, a

well-known Grothendieck topos classifying the geometric
theory of an infinite decidable object.

Subobject classifier: O = {true, false} with trivial
Perm A-action: 77 -b £ b (so suppb = Q).
(Nom is a Boolean topos: 3 =1+ 1.)

Power objects: X —¢ Q) = Py X, the set of subsets
S C X that are finitely supported w.r.t. the
Perm A-action

m-S2{m-x|x€S}

MGS2011 24/60



The nominal set of names

/A is a nominal set once equipped with the action
w-a=r(a)
which satisfies supp a = {a}.

N.B. A is not IN! Although A € Set is a countable,
any f € IN —¢ A has to satisfy

{fn} = supp(fn) C supp fUsuppn = supp f

for all n € IN, and so f cannot be surjective.

MGS2011 25/60



Nom models classical higher-order logic, but not
Hilbert's e-operation, ex.¢(x) satisfying

(Vx: X) @(x) = @(ex.9(x))

Theorem. There is no equivariant function
c:{SEPA|SF# D} — A satsifying ¢(S) € S for

all non-empty S € Py A.

Proof. Suppose there were such a ¢. Putting a = ¢ A and picking
some b € A — {a}, we get a contradiction to a 7 b:

a=cA=c((ab)-A)=(ab)-cA=(ab)-a=0b

MGS2011 26/60



Nom [~ choice

Nom models classical higher-order logic, but not
Hilbert's e-operation, ex.¢(x) satisfying

(Vx: X) @(x) = @(ex.9(x))

In fact Nom does not model even very weak forms of
choice, such as Dependent Choice.

MGS2011 26/60



For each nominal set X, we can define a relation
# C A X X of freshness:

a#x = ad&suppx

MGS2011 27/60



For each nominal set X, we can define a relation
# C A X X of freshness:

a#x = a¢ suppx

In IN, a # n always.
In A, a#biff a # b.
InA,a#tiffa & fvt.

v

v

v

v

NnX XY, a#(xy)iffattxand a#y.

v

In X —¢ Y, a# f can be subtle!
(and hence ditto for PgX)

MGS2011 27/60



Lecture 3

MGS2011 28/60



Outline

» Lecture 1. Structural recursion and induction in
the presence of name-binding operations.

» Lecture 2. Introducing the category of
nominal sets.
[Notes, chapters 1-3 +exercises]

» Lecture 3. Nominal algebraic data types and
«-structural recursion.
[Notes, chapters 4-5 +exercises]

» Lecture 4. Simply typed A-calculus with local
names and name-abstraction.

[www.cl.cam.ac.uk/users/ampl2/papers/strrls/strrls.pdf]

MGS2011 29/60



Smallest binary relation =, on Tr closed under the rules:
a € A bh=xt] h=,t
Va=,Va A(ty, 1) =4 A(E, 1)

(ab)-t=,(a’b)-t' be&{aa}Uvar(tt)
L(a,t) =, L(d, 1)

Eg. A(L(a,A(Va,Vb)),Vc) =, A(L(c,A(Ve, VD)), Ve)
#ux A(L(b,A(VD, VD)), V)

Fact: =, is transitive (and reflexive & symmetric).



Each X € Nom yields a nominal set |[A]X | of

name-abstractions (a)x are ~-equivalence classes of
pairs (a,x) € A X X, where

(a,x) ~ (a’,x") < Jb# (a,xa, x)
(ba)-x=(ba)-x

The Perm A-action on [A]X is well-defined by

- (a)x = (7t (a)) (7 - x)
Fact: supp({a)x) = supp x — {a}, so that
b#(a)yx <& b=a V b#x

(See Notes, p40.)



Each X € Nom yields a nominal set |[A]X | of

name-abstractions (a)x are ~-equivalence classes of
pairs (a,x) € A X X, where

(a,x) ~ (a’,x") < Jb# (a,xa, x)
(ba)-x=(ba)-x

We get a functor [A](—) : Nom — Nom sending
f € Nom(X,Y) to [A]f € Nom([A]X, [A]Y) where

[A]f ((a)x) = (a)(f x)



Name abstraction

[A](—) : Nom — Nom is a kind of (affine) function space—it is
right adjoint to the functor A ® (—) : Nom — Nom sending X to
ARX ={(a,x)|a#x}

MGS2011 32/60



That explains what morphisms into [A]X look like.
More important is the following characterization of
morphisms out of [A]X.

Theorem. f € (A X X) —¢ Y factors through the
subquotient {(a,x) | a# f} C A X X — [A]X to

give a unique element of f € ([A]X) —¢ Y satisfying

F((a)x) = fa,x) iFatf
iff(VaeA)a#f = (VxeX)a#f(ax)
iff (JacA)a#f N (VxeEX)a#f(ax).

(Notes, p46.)



Initial algebras

» [A](—) has excellent exactness properties. It can
be combined with X, 4+ and X —¢ (—) to give
functors T : Nom — Nom that have initial algebras
I:TD-D

TD TX
I for all | F

D X

MGS2011 33/60



Initial algebras

» [A](—) has excellent exactness properties. It can
be combined with X, 4+ and X —¢ (—) to give
functors T : Nom — Nom that have initial algebras
I:TD-D

MGS2011 33/60



Initial algebras

» [A](—) has excellent exactness properties. It can
be combined with X, 4+ and X —¢ (—) to give
functors T : Nom — Nom that have initial algebras
I:TD-D

» For a wide class of such functors (nominal algebraic
functors) the initial algebra D coincides with
ASTs/a-equivalence.

E.g. A is the initial algebra for

T(—) 2 A+ (= x—)+[A](—)

MGS2011 33/60



Nominal algebraic signatures

» Sorts S = N NAME-SOIt (nere just one, for simpiicty)
| D  data-sorts

| 1 unit

| S,S8 pairs

| N.S name-binding

» Typed operations op: S—D

Signature X is specified by the stuff in red.

MGS2011

34/60



Nominal algebraic signatures

Example: A-calculus
name-sort Var for variables, data-sort Term for terms,
and operations

V:Var — Term
A:Term,Term — Term
L:Var.Term — Term

MGS2011 34/60



Nominal algebraic signatures

Example: 7r-calculus

name-sort Chan for channel names, data-sorts Proc, Pre and Sum

for processes, prefixed processes and summations, and operations
S:

Comp :

Nu:

!': Proc — Proc

P:
0:

Plus

In

Tau:

Match

MGS2011

Sum — Proc
Proc,Proc — Proc

Chan.Proc — Proc

Pre — Sum
1 — Sum

: Sum, Sum — Sum
Out :
: Chan, (Chan.Proc) — Pre

Chan,Chan,Proc — Pre

Proc — Pre

: Chan,Chan,Pre — Pre

34/60



Nominal algebraic signatures

Closely related notions:

» binding signatures of Fiore, Plotkin & Turi (LICS
1999)

» nominal algebras of Honsell, Miculan & Scagnetto
(ICALP 2001)

N.B. all these notions of signature restrict attention to iterated, but unary
name-binding—there are other kinds of lexically scoped binder (e.g. see Pottier's
Caml language.)

MGS2011 34/60



a € A t € X(S) op:S—D
a € L(N) opt € X(D) () €Z(1)

t; € L(Sq) t, € L(S,) aceA teX(s)
t1,t € X(81,92) a.t € L(N.S)

Each X(S) is a nominal set once equipped with the
obvious Perm A-action—any finite set of atoms
containing all those occurring in t supports t € X(83).



=, C Z‘(S) X Z‘(S)

t =, t'
opt =, opt’

th=ut; t=st
tlltZ —u tj/[/té

(a1 ll) . t1 = (012 a) . tz a# (111, tl, a, tz)

lll.tl = llz.tz




Alpha-equivalence
=, C X(S) X X(9)

Fact: =, is equivariant (t; =, t, = 7w+t =, - 1)
and each quotient

Z,(8) = {[tla | t € Z(5)}

is a nominal set with

e[t = [m-th
supp [t]e - fnt
fn(a.t) = fut—{a}

fn(tl,tz) = fi’l t1 Ufn tz

MGS2011 36/60



Theorem. Given a nominal algebraic signature
(for simplicity, assume L has a single data-sort D as well as a single

name-sort )
%, (D) is an initial algebra for the
associated functor Ty : Nom — Nom.

(Notes, p61.)



Theorem. Given a nominal algebraic signature X
(for simplicity, assume L has a single data-sort D as well as a single

name-sort )
%, (D) is an initial algebra for the
associated functor Ty : Nom — Nom.

Te(=) = [S](=) + -+ -+ [8.1(—)
where X has operations op; : S; — D (i = 1..n)
and [S](—) : Nom — Nom is defined by:

[N (— A
[Pl (— §—)

)
)
[11(—=)
; [S1](—=) X [S2] (=)

[S1,82](—
[v.s](— [A]([S](—))

MGS2011 37/60



Theorem. Given a nominal algebraic signature X
(for simplicity, assume L has a single data-sort D as well as a single

name-sort )
%, (D) is an initial algebra for the
associated functor Ty : Nom — Nom.

E.g. for the A-calculus signature with operations
V:Var — Term

A:Term,Term — Term

L:Var.Term — Term

we have

Te(—) =A+ (= x—)+[A](-)



Theorem. Given a nominal algebraic signature X
(for simplicity, assume L has a single data-sort D as well as a single

name-sort )
%, (D) is an initial algebra for the
associated enriched functor Ty : Nom — Nom.

Ty not only acts on equivariant (=emptily supported)
functions, but also on finitely supported functions:

(X=tY) — (TzX =g TrY)
F — TsF

MGS2011 37/60



For A-terms:

Theorem. { fi € A-gX

Given any X € Nom and { fo € X X X =g X
f3 S [A]X —fs X

s.t.

flerex) = fa(fer, fen)
f(rae) = fz({a)(fe)) ifa#(fi,faf3)

El!feAafsx{ fa=fia

The enriched functor [A](—) : Nom — Nom sends f € X ¢ Y
to [A]f € [A]X —¢ [A]Y where

[Alf ({a)x) = (a)(fx) ifa#f



For A-terms:

Theorem. fi € A-gX
Given any X € Nom and { fo € X X X - X st
f3 e AxX —fs X

(Va) a# (fi, f2, f3) = (Vx) a# fs(a,x)  (FCB)

s.t.

flerex) = fa(fer, fen)
f(Aa.e) =f3(a,fe) ifa#(f1,faf3)

El!feAafSX{ fa=fia



Recall:

Theorem. f € (A X X) —¢ Y factors through the
subquotient {(a,x) | a# f} C A X X — [A]X to
give a unique element of f € ([A]X) —¢ Y satisfying

F((a)x) = f(ax) iFahf
iff(VaeA)a#f = (VxeX)a#f(ax)

iff (JacA)a#f N (VxeEX)a#f(ax).



For A-terms:

Theorem. fi € A-gxX
Given any X € Nom and { fo € X X X - X st
f3 € AXX-iX

(Va) a# (fi, fo f3) = (Vx) a#f3(a,x)  (FCB)

flere2) = fa(fer, fen)
f(rae) =fz(a, fe) ifa#(fiffs)

E.g. capture-avoiding substitution (—)[e’/a’] : A — A is the f for

s.t.

El!feAafSX{ fa=fia

fia = ifa=a'thene elsea
f2(e1,e2) = erex
fs(a,e) = Aae

for which (FCB) holds, since a # Aa.e



For A-terms:

Theorem. fi € A-gxX
Given any X € Nom and { fo € X X X - X st
f3 € AXX-iX

(Va) a# (fi, fo f3) = (Vx) a#f3(a,x)  (FCB)
s.t. ]11(81 62) :fz(fel,fez)

f(Aa.e) =fs3(a, fe) ifa#(fi,ff3)

E.g. size function A — N is the f for

El!feAafSX{ fa=fia

f1 a £ 0
fa(n,m2) = ni+mn
fs(a,n) = n+1

for which (FCB) holds, since a # (n + 1)



For A-terms:

Theorem. fi € A-gxX
Given any X € Nom and { fo € X X X - X st
f3 € AXX-iX

(Va) a# (fi, fo f3) = (Vx) a#f3(a,x)  (FCB)

flere2) = fa(fer, fen)
f(rae) =fz(a, fe) ifa#(fiffs)

Non-example: trying to list the bound variables of a A-term

s.t.

El!feAafSX{ fa=fia

fl a = nil
f2(1,62) = 61 @4,
fs(a,€) = a:ut

for which (FCB) does not hold, since a € supp(a :: £).



For A-terms:

Theorem. fi € A-gX

Given any X € Nom and f € XX X-gX st
f3 € A XXX

(Va) a# (fi, fo f3) = (Vx) a#f3(a,x)  (FCB)

NFfeA-X ( fa=fia
s.t. ji((’q 6’2) :fz(fel,fez)
f(Aae) = fs(a, fe) it a#(fi,f2fs)

Similar results hold for any nominal algebraic signature—see J ACM
53(2006)459-506.

Implemented in Urban & Berghofer's Nominal package for
Isabelle/HOL (classical higher-order logic).

Seems to capture informal usage well, but (FCB) can be tricky. ..



Counting bound variables

Foreache € A, |cbve= fep, € N

where we want f € A —¢ X with
X = (A - IN) -4 N to satisfy

fap = pa
flerex)p = (fep) + (fexp)
f(Aae)p = fe(pla—1])

and where pg € A - Nis A(a € A) - 0.

MGS2011

41/60



Counting bound variables

Foreache € A, |cbve= fep, € N

where we want f € A —¢ X with
X = (A - IN) -4 N to satisfy

fap = pa
f(eiez) p (feip) + (fez2p)
f(Aae)p = fe(pla—1])

and where pp € A -, IN is A(a € A) - 0.

Looks like we should take

f3(a,%) = A(p € A N) x(pla — 1]),

but this does not satisfy (FCB). Solution: take X to be a certain
nominal subset of (A —¢IN) —g IN. (See Notes, p67.)

MGS2011 41/60



Lecture 4

MGS2011 42/60



Outline

» Lecture 1. Structural recursion and induction in
the presence of name-binding operations.

» Lecture 2. Introducing the category of
nominal sets.
[Notes, chapters 1-3 +exercises]

» Lecture 3. Nominal algebraic data types and
«-structural recursion.
[Notes, chapters 4-5 +exercises]

» Lecture 4. Simply typed A-calculus with local
names and name-abstraction.

[www.cl.cam.ac.uk/users/ampl2/papers/strrls/strrls.pdf]

MGS2011 43/60



For A-terms:

Theorem. fi € A-gX
Givenany X € Nom and { fo € X X X - X st
f3 E A X X —fs X

(Va) a# (f1, fo, f3) = (Vx) a# f3(a,x) (FCB)

NFfeA- X ( fa=fia
s.t. ji((’q 6’2) :fz(fel,fez)
f(Aae) = fs(a, fe) it a#(fi,f2fs)

Can we avoid explicit reasoning about finite support, # and (FCB)
when computing ‘mod «'?

Want definition /computation to be separate from proving.



fra

= fi(fei, fer)
fs(a,fe) ifa#(fifof)

= Ad’.¢ = fi(a',fe)

Q: how to get rid of this inconvenient proof obligation?

MGS2011 45/60



fra

= fi(fei fer)
va. fs(a, fe) [a# (fi, fo f2) ]

= Ad’.¢ =va'. fs(a’, f ')

Q: how to get rid of this inconvenient proof obligation?

A: use a local scoping construct va. (—) for names

MGS2011 45/60



fra

= fi(fei fer)
va. fs(a, fe) [a# (fi, fo f2) ]

= Ad’.¢ =va'. fs(a’, f ')

Q: how to get rid of this inconvenient proof obligation?

A: use a local scoping construct va. (—) for names

which one?!

MGS2011 45/60



Dynamic allocation

» Stateful: va.t means “add a fresh name a’ to the
current state and return t[a’/a]"
» Used in Shinwell's Fresh OCam| = OCaml +

» name types and name-abstraction type former
» name-abstraction patterns
—matching involves dynamic allocation of fresh names

[www.fresh-ocaml.org].

MGS2011 46/60



Sample Fresh OCaml code

(x syntax *)

type t;;

type var = t name;;

type term = Var of var | Lam of «var»term | App of term¥term;;

(x semantics *)
type sem = L of ((unit -> sem) -> sem) | N of neu
and neu = V of var | A of neuxsem;;

(x reify : sem -> term *)
let rec reify d =
match d with L £ -> let x = fresh in Lam(«x»(reify(f(function () -> N(V x)))))
| Nn -> reifyn n
and reifyn n =
match n with V x -> Var x
| A(n’,d’) -> App(reifyn n’, reify d’);;

(x evals : (var * (unit -> sem))list -> term -> sem *)
let rec evals env t =
match t with Var x -> (match env with [ -> N(V x)
| (x’,v)::env -> if x=x’ then v() else evals env (Var x))
| Lam(«x»t) -> L(function v -> evals ((x,v)::env) t)
| App(t1,t2) -> (match evals env tl with L f -> f(function () -> evals env t2)
| Nn -> N(A(n,evals env t2)));;

(x eval : term -> sem *)
let rec eval t = evals [] t;;

(* norm : lam -> lam *)
let norm t = reify(eval t);;

MGS2011 47/60



Dynamic allocation

» Stateful: va.t means “add a fresh name a’ to the
current state and return t[a’/a]"
» Used in Shinwell's Fresh OCaml = OCaml +

» name types and name-abstraction type former
» name-abstraction patterns
—matching involves dynamic allocation of fresh names

[www.fresh-ocaml.org].

MGS2011 48/60



Dynamic allocation

» Stateful: va.t means “add a fresh name a’ to the
current state and return t[a’/a]".

Statefulness disrupts familiar mathematical properties of
pure datatypes. So we will try to reject it in favour of. ..

MGS2011 48/60



va.(—)
[M. Odersky, A Functional Theory of Local Names, POPL'94]

» Unfamiliar—apparently not used in practice (so far).

» Pure equational calculus, in which local scopes
‘intrude’ rather than extrude (as per dynamic
allocation):

Ax — (va.t) la # x]

(va.t,va.t’)

» New: a straightforward semantics using nominal
sets equipped with a ‘name-restriction operation’. . .

MGS2011 49/60



A name-restriction operation on a nominal set X is a
morphism (—)\(—) € Nom (A X X, X) satisfying
R AN

a#tx = a\x =x
a\(b\x) = b\(a\x)

Equivalently, a morphism p : [A]X — X making

J

X ——[A]X [A][A]X [A][A]X
[AlpY V[Alp
" P [A]X [A]X
X e Sl

commute, where x x = {a)x for some (or indeed any) a # x; and where

6({a)(a")x) = (a’)(a)x.



fl € Aﬂst
Givenany X € Nom and { fo € X X X - X st
f3 € A X X —fs X

(Va) a# (f1, fo, f3) = (Vx) a# fs(a,x)  (FCB)

f(erez) = fa(fer, fer)
f(Aa.e) =f3(a, fe) ifa#(fi,ff3)

s.t.

3!feA~fSX{ fa=fia

If X has a name restriction operation (—)\(—), we can
trivially satisfy (FCB) by using a\ f3(a, x) in place of

f3(a,x).



fi € A-gX
Given any X € Nom and { fo € X X X =g X
f3 € AXX-gX

and a restriction operation (—)\(—) on X,

esha
f(ere2) = fa(f e1, f e2)
f(ra.e) =a\f3(a, fe)

Is requiring X to carry a name-restriction operation
much of a hindrance for applications?

Not much. ..



Examples of name-restriction

» For IN: a\n £

MGS2011 52/60



Examples of name-restriction

» For IN: a\n £

» For A’ = A W {anon}:

a\a = anon
a\a’ = a' ifa #a
a\anon = anon

MGS2011 52/60



Examples of name-restriction

> FOI’ NZ a\n é n

» For A’ = A W {anon}:

a\t = t[anon/a]

» For A’ & {t==Va|A(t,t) | L(a.t) | anon}/=,:
a\[t], = [t[anon/a]],

MGS2011 52/60



Examples of name-restriction

v

For IN: a\n L n

v

For A’ & A W {anon}:

a\t = t[anon/a]

v

For A’ £ {t==Va|A(t,t) |L(a.t) | anon}/=,:
a\[t], = [t[anon/a]],

v

Nominal sets with name-restriction are closed under products,
coproducts, name-abstraction and exponentiation by a nominal

set.
MGS2011 52/60



Aav-Calculus

[AMP, Structural Recursion with Locally Scoped Names, preprint 2011,
www.cl.cam.ac.uk/users/ampl2/papers/strrls/strrls.pdf]

is standard simply-typed A-calculus with booleans and
products, extended with:

» type of names, Name

MGS2011 53/60



Aav-Calculus

[AMP, Structural Recursion with Locally Scoped Names, preprint 2011,
www.cl.cam.ac.uk/users/ampl2/papers/strrls/strrls.pdf]

is standard simply-typed A-calculus with booleans and
products, extended with:

» type of names, Name, with terms for
> names, a : Name (a € A)

MGS2011 53/60



Aav-Calculus

[AMP, Structural Recursion with Locally Scoped Names, preprint 2011,
www.cl.cam.ac.uk/users/ampl2/papers/strrls/strrls.pdf]

is standard simply-typed A-calculus with booleans and
products, extended with:

» type of names, Name, with terms for
> names, a : Name (a € A)
» equality test, = : Name — Name — Bool

MGS2011 53/60



Aav-Calculus

[AMP, Structural Recursion with Locally Scoped Names, preprint 2011,
www.cl.cam.ac.uk/users/ampl2/papers/strrls/strrls.pdf]

is standard simply-typed A-calculus with booleans and
products, extended with:

» type of names, Name, with terms for
> names, a : Name (a € A)
» equality test, = : Name — Name — Bool
t: T
(ara')t: T
with type-directed computation rules, e.g.

(alb)(Ax—t) = Ax— (alb)(t[(alb)x / x])

» name-swapping,

MGS2011 53/60



Aav-Calculus

[AMP, Structural Recursion with Locally Scoped Names, preprint 2011,
www.cl.cam.ac.uk/users/ampl2/papers/strrls/strrls.pdf]
is standard simply-typed A-calculus with booleans and
products, extended with:
» type of names, Name, with terms for
> names, a : Name (a € A)

» equality test, = : Name — Name — Bool
t: T

» name-swapping, W

» locally scoped nameszi binds a
y P va.t: T ( )

with Odersky-style computation rules, e.g.

va.Ax -t = Ax—-va.t

MGS2011 53/60



Aav-Calculus

[AMP, Structural Recursion with Locally Scoped Names, preprint 2011,
www.cl.cam.ac.uk/users/ampl2/papers/strrls/strrls.pdf]

is standard simply-typed A-calculus with booleans and
products, extended with:

» type of names, Name
» name-abstraction types, Name. T

MGS2011 53/60



Aav-Calculus

[AMP, Structural Recursion with Locally Scoped Names, preprint 2011,
www.cl.cam.ac.uk/users/ampl2/papers/strrls/strrls.pdf]

is standard simply-typed A-calculus with booleans and
products, extended with:

» type of names, Name
» name-abstraction types, Name . T, with terms for
) t: T ]
» name-abstraction, (binds a)
xa.t : Name.

MGS2011 53/60



Aav-Calculus

[AMP, Structural Recursion with Locally Scoped Names, preprint 2011,
www.cl.cam.ac.uk/users/ampl2/papers/strrls/strrls.pdf]

is standard simply-typed A-calculus with booleans and
products, extended with:

» type of names, Name
» name-abstraction types, Name . T, with terms for
) t: T ]
» name-abstraction, (binds a)
xa.t : Name.

t:Name.T t' T
leta.x=tint : T’
with computation rule that uses local scoping

» unbinding,

(binds a & x in t/)

leta.x=waa.tint’ = va. (t'[t/x])

MGS2011 53/60



Aav-Calculus

Denotational semantics. Aav-calculus has a
straightforward interpretation in Nom that is sound for
the computation rules—types denote nominal sets
equipped with a name-restriction operation:

[Bool] = {true,false}

[Name] = A & {anon}
[TxT] = [T] X [T'] >—[va.a]
[T-T] = [T] > [T]

[Name . T] [A][T]

MGS2011 54/60



Aav-Calculus

Normalization. Terms possess normal forms with
respect to the computation rules that are unique up a
simple structural congruence relation generated by:

t ifafu(t)

vb.va.t

va.t
va.vb.t

(Proof in the paper Structural Recursion with Locally Scoped Names
uses Coquand’s technique of evaluation to weak head normal form
(whnf) combined with a ‘readback’ of whnfs to normal forms.)

MGS2011 55/60



Aav-Calculus

Nominal datatypes. E.g. add type Lam with

V : Name — Lam
constructors ¢ A : (Lam X Lam) — Lam
L : (Name.Lam)— Lam

t1:Name—>T t: (TXT)—>T t3: (Name.T) - T
lrectitrtz: Lam— T

iterator

computation rules (writing f for 1rec tq 5 t3)
f(vt) 1t
{ F@t)) = B(ftfe)
f(Laa.t) ty (wa.ft) ifa ¢ fu(ty, t2, t3)

MGS2011 56/60



Nominal datatypes. E.g. add type Lam with

computation rules (writing f for 1rec tq t; t3)

f(vt) = tt
fAGE)) = b(ft,ft)
f(Laa.t) = tz(wa.ft) ifad fu(ty,tz,t3)

Theorem. Computation of normal forms in this

extension of Aav-calculus adequately represents
«-structurally recursive functions on A.

MGS2011 56/60



Nominal datatypes. E.g. add type Lam with

computation rules (writing f for 1rec tq t; t3)
f(Vt) = #t
fA(L 1)) = t(ft ft)
f(Laa.t) = tz(wa.ft) ifad fu(ty,tz,t3)

Theorem. Computation of normal forms in this

extension of Aav-calculus adequately represents
«-structurally recursive functions on A.

E.g. capture-avoiding substitution of ¢ for a is represented by

lrec ty tp t3 with £ jifx=athentelseVx
th = Ax—let(y,z)=xinAyz
t3 = Ax—leta.y=xinLab.(alb)y

MGS2011 56/60



Aav-calculus as a FP’ language

To do: revisit FreshML using Odersky-style local names
rather than dynamic allocation

names Var : Set

data Term : Set where --(possibly open) A-terms mod «
V : Var -> Term --variable
A : (Term X Term)-> Term --application term
L : (Var . Term) -> Term --A-abstraction

/_ : Term -> Var -> Term -> Term —--capture-avoiding substitution

Zt / x)(V x’) = if x = ¥/ then t else V x’
(¢ / A, t) = At / x)t", (¢ / x)t")
(t / DCE . t)) =LE& . &/ 0th

MGS2011 57/60



‘Nominal Agda’ (???)

names Var : Set

data Term : Set where --(possibly open) A-terms mod «
V : Var -> Term --variable
A : (Term X Term)-> Term --application term
L : (Var . Term) -> Term --A-abstraction

/_ : Term -> Var -> Term -> Term —--capture-avoiding substitution

Zt / x)(V x’) = if x = ¥’ then t else V x’
/WG , ) = A / x)t, &/ x)t)
t /7 DQE . ) =LE . &/ 0t

data _==_ (t : Term) : Term -> Set where --intensional equality

MGS2011 57/60



‘Nominal Agda’ (???)

names Var : Set

data Term : Set where --(possibly open) A-terms mod «
V : Var -> Term --variable
A : (Term X Term)-> Term --application term
L : (Var . Term) -> Term --A-abstraction

/_ : Term -> Var -> Term -> Term —--capture-avoiding substitution

Zt / x)(V x’) = if x = ¥’ then t else V x’
/WG , ) = A / x)t, &/ x)t)
t /7 DQE . ) =LE . &/ 0t

data _==_ (t : Term) : Term -> Set where --intensional equality
Refl : t ==t --is term equality mod «
eg : (x x' : Var) ->
(Wx) /HAL&x . V) =L& .Vx ——(Axx)[x/x"] = Ax'x

eg x ¥/ = {! 1}

MGS2011 57/60



Dependent types

» Can the Aav-calculus be extended from simple to
dependent types?
At the moment | do not see how to do this,
because. . .

MGS2011 58/60



Ia:Namebe: T a¢ fn(T)

I'va.e: T



Ia:Namebe: T a¢ fn(T)

I'va.e: T

va.(e1,er) =z (va.eq,va.ep)
e1:T1

er:Theq]



Ia:Namebe: T a¢ fn(T)

I'va.e: T

va.(e1,er) =z (va.eq,va.ep)
e1:T1

er:Theq]

va.(e1,e2): (x: T1) X Tr[x]
if a éﬁfl(Tl, T>)

MGS2011

59/60



Ia:Namebe: T a¢ fn(T)

I'va.e: T

va.(e1,er) =z (va.eq,va.ep)
e1:Th va.e1:Th

er:Theq]

va.(e1,e2): (x: T1) X Tr[x]
if a éﬁfl(Tl, T>)

MGS2011 59/60



Ia:Namebe: T a¢ fn(T)

I'va.e: T

va.(e1,er) =z (va.eq,va.ep)
e1:Th va.e1:Th

er:Theq] va.ey: Th[va.eq]???

va.(e1,e2): (x: T1) X Tr[x]
if a éﬁfl(Tl, T>)

MGS2011

59/60



Dependent types

» Can the Aav-calculus be extended from simple to
dependent types?
At the moment | do not see how to do this,
because. . .

> In any case, is there a useful /expressive form of
indexed structural induction mod &, whether or not
we try to use Odersky-style locally scoped names?

(Recent work of Cheney on DNTT is interesting, but probably
not sufficiently expressive.)

MGS2011 60/60



	Lecture 1
	Lecture 2
	Lecture 3
	Lecture 4

