
Reasoning about Local Variables with Operationally-Based Logical Relations

Andrew M. Pitts�
Cambridge University Computer Laboratory, Pembroke Street, Cambridge CB2 3QG, UK

ap@cl.cam.ac.uk

Abstract

A parametric logical relation between the phrases of an
Algol-like language is presented. Its definition involves the
structural operational semantics of the language, but was in-
spired by recent denotationally-based work of O’Hearn and
Reynolds on translating Algol into a predicatively polymor-
phic linear lambda calculus. The logical relation yields an
applicative characterisation of contextual equivalence for
the language and provides a useful (and complete) method
for proving equivalences. Its utility is illustrated by giving
simple and direct proofs of some contextual equivalences,
including an interesting equivalence due to O’Hearn which
hinges upon the undefinability of ‘snapback’ operations (and
which goes beyond the standard suite of ‘Meyer-Sieber’ ex-
amples). Whilst some of the mathematical intricacies of de-
notational semantics are avoided, the hard work in this oper-
ational approach lies in establishing the ‘fundamental prop-
erty’ for the logical relation—the proof of which makes use
of a compactness property of fixpoint recursion with respect
to evaluation of phrases. But once this property has been es-
tablished, the logical relation provides a verification method
with an attractively low mathematical overhead.

1. Introduction

The observable properties of sequentially executed im-
perative programs involving higher order procedures and
locally declared state can be quite subtle. This is so even
when the use of local state is quite severely constrained,
as it is in languages which are Algol-like in the sense of
Reynolds [17]—i.e. when the state just consists of variables
storing first order values (as opposed to function closures,
for example), local variable declarations are only permit-
ted in commands (not in expressions), are statically scoped
and are executed using a stack discipline. The subtleties of
the externally observable behaviour of such locally declared�Research partially supported by the EU HCM Research Network on
‘Lambda Calcul Typé’.

state are such that, despite the considerable efforts of a num-
ber of researchers [5, 11, 10, 16, 8, 20], no concrete denota-
tional model of Algol has yet been constructed which exactly
captures observational equivalence forn-th order procedures
beyondn = 2 or 3 (depending upon how one counts orders).

Nevertheless, useful semantical ideas and techniques
have emerged from the effort to construct such ‘fully ab-
stract’ models. The one that we focus on here concerns
the parametric logical relations occurring in the work
of O’Hearn-Tennent [10], Sieber [20, 21], and O’Hearn-
Reynolds [9]. Such relations are used for two intertwined
purposes. First, they can be used to identify ‘junk’ in a
model—elements that cannot possibly be meanings of
program phrases. Secondly, they can be used to prove that
two program phrases are observationally equivalent. The
work described in this paper was motivated by the desire
to extract the essence of this second aspect of the use of
logical relations from the mathematical structures used to
model an Algol-like language, and to apply that essence
directly to the language itself equipped with the commonly
used notion of operational equivalence—a Morris-style
contextual equivalence.

Recall that two program phrases M1 and M2 are con-
textually equivalent, written M1 �= M2, if occurrences of
the phrases in any complete program can be interchanged
without affecting the observable effects of executing the pro-
gram. More precisely, M1 �= M2 holds if for all program
contexts P [�], the programs P [M1] and P [M2] have equal
observable effects. Although this is a reasonable notion of
semantic equality for program phrases, the quantification
over all contexts P [�] which occurs in its definition makes
it hard to work with directly—because the ways in which
a context can make use of its ‘hole’ can be complicated.
One therefore seeks to develop general properties of contex-
tual equivalence. For example, one might hope to establish
the familiar functional extensionality property for contextual
equivalenceF �= F 0 : �! �0 , 8A : � (F A �= F 0A : �0): (1)

This serves to reduce contextual equivalence at the function
type � ! �0 to that at the structurally simpler type �0. In

languages like Scheme or ML this kind of functional exten-
sionality fails, due to the complicated interactions possible
between call-by-value function application and locally de-
clared state in expressions of function type, permitting ‘leak-
age’ of private names out of the textual scope of local decla-
rations. See Pitts and Stark [15, 23] for examples. By con-
trast, Algol-like languages, by virtue of having call-by-name
function application and having local variable declarations
restricted to commands, do satisfy (1). This is part of the
Algol Operational Extensionality Theorem which we shall
prove (Theorem 2.5). It is a generalisation to Algol of Mil-
ner’s Context Lemma [6] for the purely functional language
PCF. The properties of Algol contextual equivalence it ex-
presses will come as no surprise to a connoisseur of the lan-
guage, but the author was unable to locate any formal state-
ment or proof of these properties in the literature—mainly
because most existing work concerns itself solely with de-
notational semantics of Algol.

There are several ways to prove the Operational Exten-
sionality Theorem. For example, one can deduce it via an
extension to imperative languages of the methods developed
by Howe [2, 3] for pure functional languages (cf. [18]). Here
we deduce it from the existence of a certain kind of logical re-
lation, whose definition and properties are the main technical
contribution of this paper. This takes the form of a paramet-
ric family of relations between closed Algol terms of equal
type. Roughly speaking, the parameter ranges over relations
between states (which in this case are just assignments of in-
teger values to global variables). The definition of the logi-
cal relation proceeds by induction on the structure of types
and involves the structural operational semantics of the lan-
guage. Each clause embodies both extensionality properties
and the kind of relational parametricity considered in a de-
notational setting by O’Hearn and Tennent [10]. The Op-
erational Extensionality Theorem follows from the fact that
contextual equivalence coincides with the parametric logi-
cal relation when its parameter is instantiated to the identity
relation on states. This fact is in turn derived from the log-
ical relation’s ‘Fundamental Property’ (cf. [7]), namely that
it is preserved by the various term-forming operations of Al-
gol. The proof of the Fundamental Property (Theorem 3.9)
is non-trivial because of the presence of recursively defined
terms in the language. At this point in a denotational de-
velopment one can use the familiar characterisation of least
fixed points (used to model recursive terms) as least upper
bounds of certain ascending chains and apply Scott Induc-
tion [19, section 3]. Here we develop an operational ana-
logue of this method. This is similar to the approach taken
by Smith et al [4], except that we have to deal with an im-
perative language and we use a structural operational seman-
tics based upon an evaluation (or ‘big-step’) relation, rather
than a transition (or ‘small-step’) relation. At the heart of
the proof is a certain ‘compactness’ property of evaluation

with respect to the canonical sequence of approximations to
a recursive term (see the proof of Proposition 3.7).

The pay-off from the development of the operationally-
based parametric logical relation is not only a proof of the ex-
tensionality properties of Algol contextual equivalence, but
also a useful and mathematically lightweight tool for proving
particular equivalences. We demonstrate this by example.
As well as dealing with the well-known Meyer-Sieber exam-
ples [5], we prove a rather subtle equivalence due to O’Hearn
(Example 4.1). It illustrates the consequences for contextual
equivalence of the inability of the particular Algol-like lan-
guage under consideration to ‘snap-back’ the state to some
previous point in the thread of computation. We said above
that, roughly speaking, the logical relation is parameterized
by relations between states. More precisely, the parame-
ter is a binary relation on the flat cpo of states—in other
words some states get related to a formal, undefined state.
This level of generality is not needed to establish the oper-
ational Extensionality Theorem—binary relations on the set
of states would be enough (see Remark 3.11). Rather, the
generalisation involving undefined states is needed to cope
with O’Hearn’s example, and was adopted from the recent
denotationally-based work of O’Hearn and Reynolds [9].
The precise definition of the logical relation and the exten-
sionality results are given in Section 3, and the application
to proving equivalences is given in Section 4. In the final
section we discuss some related, operationally-based work
and further directions of research.

2. Idealised Algol

We will define the parametric logical relation for Idealised
Algol, IA, a small Algol-like language which has been used
by several authors for illustrative purposes. It is a simply
typed lambda calculus over ground types bool (booleans),int (integers), var (variables for storing integers), and cmd
(commands for changing state). It contains terms (of the ap-
propriate types) for lambda abstraction (�x:� :M), appli-
cation (F A), conditionals (if B then M1 else M2),
fixpoint recursion (�xx:� :M), integer and boolean con-
stants (n;b), and some arithmetic operations and relations
(N1 �N2). We choose to make dereferencing explicit in the
syntax: !V is the IA term of type int denoting the contents
of a term V of type var . In addition to denumerable sets of
identifiers of each type (x�), there is a denumerable set of
global variables (v), each of which is an IA term of typevar . Finally, IA contains cmd -building constructs for no-op
(skip), integer assignment (V :=N), sequencing (C1 ;C2),
and local variable blocks (new x :=N in C end), in ad-
dition to the conditional and fixpoint constructs which are
available at all types (and which permit one to define vari-
ous recursive control structures, such as while � do �).
We write M : � to indicate that the IA term M has type �.

2.1. Remark (Binding and substitution). The IA terms
for local variable blocks, lambda abstraction and fixpoint
recursion are all identifier-binding constructs: free oc-
currences of xvar in the command C become bound innew x := N in C end; and free occurrences of x� in
the term M become bound in �x:� :M and in �xx:� :M .
Henceforward we will identify IA terms up to �-conversion
of their bound identifiers. Then M [M 0=x�] will denote the
result (well-defined up to �-equivalence) of substituting a
term M 0 of type � for all free occurrences of the identifierx� in the termM . Similarly,M [v0=v] will denote the result
of substituting the global variable v0 for all occurrences of
the global variable v in M . We write �(M) for the finite
set of free identifiers of M , and gv(M) for its finite set of
global variables. LetIA�(w) def= fM : � j �(M) = ; & gv (M) � wg
denote the set of closed IA terms of type � with global vari-
ables in the set w.

We specify the operational semantics of IA in terms of an
inductively defined evaluation relation of the formw ` s;M +� s0;R: (2)

Here w is a finite set of global variables—we call such sets
worlds, because they are an operational trace of the Kripke-
style ‘possible world’ semantics of block structure using
functor categories introduced by Reynolds and Oles [11]. In
(2), M and R are elements of IA�(w), and s; s0 are states
of world w—i.e. functions assigning integers to the global
variables in w. We write States(w) for the set of all such
states. The intended meaning of (2) is that given the initial
assignment s of values to the relevant global variables,
evaluation of M yields the final result R and state s0. The
rules for inductively generating the evaluation relation are
given in Figure 1. They are quite standard, apart from some
notational choices: wv denotes the set w augmented by a
new element v 62 w, and then s
 v := n 2 States(wv)
denotes the state properly extending the function s by
mapping v to the integer n. On the other hand, if v 2 w
and s 2 States(w), then s;v := n 2 States(w) denotes
the state mapping v to n and otherwise acting like s.

The rules in Figure 1 appear more general than they re-
ally are when it comes to sequential state change, becauseIA evaluation does have the familiar and desirable property
of an Algol-like language that evaluation of terms of non-
command type is state dependent, but not state changing.
This is the first of a number of important, but quite straight-
forward properties of the evaluation relation given by the fol-
lowing lemma. Each property can easily be proved by induc-
tion on the derivation of evaluations from the rules in Fig-
ure 1.

2.2. Lemma. (Side-effect free expressions) If (2) holds
and � 6= cmd , then s = s0.

(Equivariance). Given a bijection � : w �= w0, write M [�]
for the result of replacing each v 2 w by �(v) in M ;
and for each state s 2 States(w), write s[�] for the
element of States(w0) which maps each v0 2 w0 tos(��1(v0)). If (2) holds, then w0 ` s[�];M [�] +�s0[�];R[�].

(Determinacy) If w ` s;M +� s0i;Ri holds for i = 1; 2,
then R1 = R2 and s01 = s02. (Recall that we are
identifying IA terms up to �-equivalence.)

(Weakening and Strengthening) Suppose that w = w1 [w2 withw1\w2 = ;, and that si 2 States(wi) for i =1; 2. Given M 2 IA�(w1), then w ` s1
 s2;M +�s0;R holds if and only ifR 2 IA�(w1) and s0 = s01
s2
for some s01 with w1 ` s1;M +� s01;R.

In view of the first part of the lemma, when � 6= cmd we
abbreviate (2) to w ` s;M +� R: (3)

Similarly, since the only result term of type cmd is skip,
when � = cmd we abbreviate (2) tow ` s;M + s0: (4)

Finally, we write w ` s;M *� (5)

to indicate that w ` s;M +� s0;R does not hold for any s0
and R.

Having fixed the syntax and operational semantics of our
Algol-like language, we can give the formal definition of
contextual equivalence. As usual, a context C[��] is a term
in which a subexpression of type � has been replaced by a
‘hole’, ��. The expression resulting from filling the hole
with an expression M : � will be denoted by C[M]. Since�� may occur within the scope of identifier-binding con-
structs, free identifiers of M may become bound in C[M].
We write traps(C[��]) for the set of identifiers that oc-
cur in C[��] associated to binders containing the hole ��
within their scope. This ‘capture’ of identifiers in �(M) \traps(C[��]) means that although the operation of substi-
tuting M for �� in C[��] respects �-conversion of bound
identifiers inM , it does not necessarily respect�-conversion
of bound identifiers in C[��]. Therefore we do not identify
contexts up to �-conversion. As for terms, so for contexts
we write C[��] : �0 to indicate that �0 is the type of the
context; �(C[��]) and gv(C[��]) denote the finite sets of
free identifiers and global variables of the context. A closed
context is one with no free identifiers.

w ` s;R +� s;R (if R ::= b j n j v j skip j �x :M)
w ` s;F +�!�0 s0;�x:� :M w ` s0;M [A=x�] +�0 s00;Rw ` s; (F A) +�0 s00;Rw ` s;B +bool s0;b w ` s0;Mb +� s00;Rw ` s; (if B thenMtrue elseMfalse) +� s00;R w ` s;M [�xx:� :M=x�] +� s0;Rw ` s;�xx:� :M +� s0;Rw ` s;N1 +int s0;n1 w ` s0;N2 +int s00;n2

(if c = n1 � n2)w ` s; (N1 �N2) +type(�) s00; c w ` s;V +var s0;v
(if n = s0(v))w ` s; !V +int s0;nw ` s;V +var s0;v w ` s0;N +int s00;nw ` s;V :=N +cmd (s00;v := n); skip w ` s;C1 +cmd s0; skip w ` s0;C2 +cmd s00; skipw ` s; (C1 ; C2) +cmd s00; skipw ` s;N +int s0;n wv ` (s0
 v := n);C[v=x] +cmd (s00
 v := n0); skip

(if v 62 w)w ` s; (new x :=N in C end) +cmd s00; skip
Figure 1. IA evaluation rules

2.3. Definition (IA contextual equivalence). If M1 andM2 are IA terms of type � with free identifiers contained in
a set � of identifiers, and global variables contained in a setw of global variables, we writew;� `M1 �=� M2
to indicate that the terms are contextually equivalent. By
definition this means that for all worlds w0 � w, all closed
contexts C[��] : cmd with gv(C[��]) � w0 and � �traps(C[��]), and all states s; s0 2 States(w0)w0 ` C[M1]; s + s0 , w0 ` C[M2]; s + s0:
(In case � = ;, i.e. when the Mi are closed terms, we just
write w `M1 �=� M2 for w; ; `M1 �=� M2.)

Thus two terms are contextually equivalent if occurrences
of them in some closed command can be interchanged with-
out affecting the meaning of the command as a partial func-
tion from states to states. This is a reasonable notion of pro-
gram equivalence for IA, given that it is primarily a language
for defining state-changing algorithms. It is immediate from
the definition that contextual equivalence is a congruence forIA, i.e. it is an equivalence relation and is respected by the
various term-forming operations. However, the quantifica-
tion over all contexts that occurs in the definition of contex-
tual equivalence makes it hard to establish further properties
directly from 2.3. For example, it is not immediately obvi-
ous that two closed commands are contextually equivalent if
they determine the same partial function from states to states.

This is one of a number of useful ‘extensionality’ properties
of IA that are summed up by the Operational Extensionality
Theorem for IA given below. In order to state it we introduce
the notion of extensional equivalence.

2.4. Definition (Extensional equivalence). If M1 and M2
are closed IA terms of type � with global variables con-
tained in a set w, we writew `M1 �=ext� M2
to indicate that the terms are extensionally equivalent. This
notion is defined by induction on the structure of �, as fol-
lows.� If � = bool ; int , then w ` M1 �=ext� M2 is defined

to hold if for all s 2 States(w) and all constants c,w `M1; s +� c if and only if w `M2; s +� c.� w ` C1 �=extcmd C2 is defined to hold if for all s; s0 2States(w), w ` C1; s+s0 if and only if w ` C2; s+ s0.� w ` V1 �=extvar V2 is defined to hold if w ` !V1 �=extint !V2
and w ` (V1 := n) �=extcmd (V2 := n), for all n.� w ` F1 �=ext�1!�2 F2 is defined to hold if for allw0 � w,
and all A 2 IA�1(w0), w0 ` F1A �=ext�2 F2A.

We extend extensional equivalence to open terms via closed
instantiations: given terms M1;M2 : � with free identifiers
in � = fx�1 ; : : : ; x�nn g and global variables in w, we writew;� `M1 �=ext� M2

to mean that w0 ` M1[~A=~x] �=ext� M1[~A=~x] holds for allw0 � w and all Ai 2 IA�i(w0) (i = 1; : : : ; n).

2.5. Theorem (Operational Extensionality). IA contex-
tual equivalence coincides with extensional equivalence:w;� `M1 �=� M2 , w;� `M1 �=ext� M2:

We will prove this theorem in the next section as a corol-
lary of the properties of the parametric logical relation forIA. We finish this section with some applications of the the-
orem to proving general properties of IA contextual equiva-
lence from corresponding properties of the evaluation rela-
tion.

2.6. Example (Meyer-Sieber [5, Ex. 1]). If C : cmd has
its free identifiers contained in � and its global variables
contained in w, and if xvar 62 �, thenw;� ` (new x := n in C end) �=cmd C:
Proof. According to Theorem 2.5, it suffices to show for all
worlds w, all closed commands C 2 IAcmd(w), and all
states s; s0 2 States(w) that w ` s;C + s0 holds if and
only if w ` s; (new x :=n in C end)+ s0. Because of the
structural nature of the rules in Figure 1, the only way that
the second evaluation can be deduced is fromwv ` (s
 v := n);C[v=x] + s0
 v := n0 (6)

for some v 62 w and some n0. Since C is closed, C[v=x] =C; in particular gv (C[v=x]) = gv(C) � w and so by the
‘Weakening and Strengthening’ property of + (Lemma 2.2),
(6) holds if and only if w ` s;C + s0, as required.

2.7. Example (Meyer-Sieber [5, Ex. 3]). SupposeC : cmd has free identifiers in �xvar1 xvar2 and global
variables in w. Define:C12 def= new x1 := n1 innew x2 := n2 inCendendC21 def= new x2 := n2 innew x1 := n1 inC[x2; x1=x1; x2]endend
Then w;� ` C12 �=cmd C21.

Proof. The argument is similar to that for the previous ex-
ample, but using the ‘Equivariance’ property of + given in
Lemma 2.2.

Recall that in logics of partially defined terms, two partial
terms are often called ‘Kleene equivalent’ if whenever one
term is defined so is the other and in that case they are equal.
Following a suggestion of Harper, we adopt this terminology
for programming language expressions that may diverge.
For IA this leads to the following, rather strong notion of
equivalence.

2.8. Definition (Kleene equivalence). We say that closed
terms M1;M2 2 IA�(w) are Kleene equivalent, and writew `M1 �=kl� M2
if for all s; s0; R, w ` s;M1 +� s0;R holds if and only ifw ` s;M2 +� s0;R.

The following lemma is easily proved by induction on �.

2.9. Lemma. If w `M1 �=kl� M2 then w `M1 �=ext� M2.

Thus in view of Theorem 2.5, any Kleene equivalent IA
terms are contextually equivalent. Here are a number of
examples, singled out because they will be needed later.

2.10. Examples. The following pairs of terms are Kleene
equivalent and hence also contextually equivalent. In (vii)–
(x),?� is an abbreviation for �xx : � : x.

(i) !(if B then V1 else V2) andif B then !V1 else !V2.

(ii) (if B then V1 else V2) :=N andif B then V1 :=N else V2 :=N .

(iii) V := (if B then N1 else N2) andif B then V :=N1 else V :=N2.

(iv) (if B then F1 else F2)A andif B then (F1 A) else (F2 A).
(v) (�x : � :M)A and M [A=x�].

(vi) �xx : � :M and M [�xx : � :M=x�].
(vii) ?int and !(?var).

(viii) ?cmd and (?var :=N), or (V :=?int).
(ix) ?cmd and (?cmd ;C), or (C;?cmd).
(x) ?�0 and (?�!�0 A).

3. The parametric logical relation

If X is a set, the lift of X , (X?;�), is the so-called flat
partially ordered set whose set of elements is X [f?Xg
(where ?X 62 X) and whose only non-trivial ordering is?X � x (any x 2 X). We need this construct in caseX = States(w) is the set of states at world w. We refer

to the elements of States(w)? as lifted states, and denote
its least element by? (for all w). It is convenient to extend
the evaluation and divergence relations to lifted states by
declaring that w ` ?;M +� s0;R does not hold for anyM;R 2 IA�(w), s0 2 States(w), but thatw ` ?;M *�
always holds for any M 2 IA�(w).

We will be working with binary relations between lifted
states that relate ? to itself. For each finite set w of global
variables we defineRel(w) def= fR � States(w)? � States(w)? j(?;?) 2 Rg:
3.1. Definition. The identity relation, Idw 2 Rel(w), is
defined to be f(s; s) j s 2 States(w)?g. If w1 and w2
are disjoint sets of global variables, we write w1w2 for their
union. The smash product R1
 R2 2 Rel(w1w2) of
relationsRi 2 Rel(wi) is defined to be f(s1
s2; s01
s02) j(s1; s01) 2 R1 & (s2; s02) 2 R2g, wheres1
 s2 def= (s1 [s2 if s1 6= ? 6= s2? if s1 = ?, or s2 = ?
where s1 [s2 2 States(w1w2) is the state mapping v tosi(v) if v 2 wi (for i = 1; 2).

Note that the smash product operation on relations is as-
sociative, commutative, and has identity relations as units:(R1
R2)
R3 = R1
 (R2
R3);R1
R2 = R2
R1;Idw
R = R:
Armed with these notions we can give the principal defini-
tion of the paper.

3.2. Definition (Parametric logical relation). For each fi-
nite set w of global variables, each type �, and each relationR 2 Rel(w), we define a binary relation between closed IA
terms of type � with global variables in w, denotedw `M1 R� M2 (M1;M2 2 IA�(w))
The relations are defined simultaneously for allw andR, by
induction on the structure of �, as follows. (In giving the
clauses, we make use of the extension of the evaluation and
divergence relations to lifted states mentioned above.)� If � = bool (respectively � = int), then w ` M1 R�M2 is defined to hold if for all boolean (respectively

integer) constants c1; c2, and all (s1; s2) 2 Rw ` s1;M1 +� c1 & w ` s2;M2 +� c2) c1 = c2;

w ` s1;M1 +� c1 & w ` s2;M2 *�) (s1;?) 2 R;
andw ` s1;M1 *� & w ` s2;M2 +� c2) (?; s2) 2 R:� If � = cmd , then w ` C1 Rcmd C2 is defined
to hold if for all states s01; s02 2 States(w), and all(s1; s2) 2 Rw ` s1;C1 + s01 & w ` s2;C2 + s02) (s01; s02) 2 R;w ` s1;C1 + s01 & w ` s2;C2 *cmd) (s01;?) 2 R;
andw ` s1;C1 *cmd & w ` s2;C2 + s02) (?; s02) 2 R:� If � = var , then w ` V1 Rvar V2 is defined to
hold if for all global variables v1;v2 2 w, and all(s1; s2) 2 Rw ` s1;V1 +var v1 & w ` s2;V2 +var v2)8n ((s1;v1 := n); (s2;v2 := n)) 2 R& s1(v1) = s2(v2);w ` s1;V1 +var v1 & w ` s2;V2 *var)8n ((s1;v1 := n);?) 2 R;
andw ` s1;V1 *var & w ` s2;V2 +var v2)8n (?; (s2;v2 := n)) 2 R:� If � = �1!�2, then w ` F1 R�1!�2 F2 is defined to
hold if for all R0 2 Rel(w0) with w0 disjoint from w,
and all A1; A2 2 IA�1(ww0)ww0 ` A1 (R
R0)�1 A2)ww0 ` (F1 A1) (R
R0)�2 (F2 A2):

3.3. Remark. The last clause in this definition is an oper-
ational version of the kind of relational parametricity for
functions used previously by O’Hearn and Tennent (see [10,
Sect. 2.2]); it also embodies the typical feature of ‘logical
relations’—that functions map related arguments to related
results. The way the logical relation takes account of diver-
gence in the clauses for bool , int , cmd , and var reflects re-
cent work of O’Hearn and Reynolds [9], and is crucial for
Example 4.1. There is a more elegant formulation of those
clauses, given below. We chose to take the more concrete
form in Definition 3.2, because it is useful for calculations.
The proof of the following two properties is a tedious, but
essentially straightforward case analysis (making use of the
determinacy of evaluation, Lemma 2.2).

(i) Let Val�(w) denote the set of closed syntactic values
of type � with global variables in the setw—i.e. the set
of those IA terms R appearing on the right-hand side
of evaluations (2). (For example, Valcmd(w) is justfskipg.) For each s 2 States(w)? andM 2 IA�(w),
let s
M 2 (States(w) �Val�(w))? be defined bys
M def= ((s0; R) if w ` s;M +� s0;R? otherwise

Given R 2 Rel(w), let R
 Id be the binary relation
on (States(w) �Val�(w))? given byR
 Id def= f(?;?)g [f(s1
R; s2
R) j(s1; s2) 2 R & R 2 Val�(w)g:
Then when � = bool , int , or cmd , w ` M1 R� M2
holds if and only if for all (s1; s2) 2 R(s1
M1; s2
M2) 2 R
 Id :

(ii) w ` V1 Rvar V2 holds if and only if w ` !V1 Rint !V2
and moreover for alln,w ` (V1 :=n) Rcmd (V2 :=n).

3.4. Lemma. The parametric logical relation respects ex-
tensional equivalence (Definition 2.4), in the sense that ifw ` M1 R� M2 and w ` Mi �=ext� M 0i (i = 1; 2), thenw `M 01 R� M 02.

Proof. This follows directly from Definitions 2.4 and 3.2,
by induction on the structure of �.

3.5. Definition. Extend the parametric logical relation to
open terms as follows. Given R 2 Rel(w) and termsM1;M2:� with free identifiers in � = fx�1 ; : : : ; x�nn g and
global variables in w, writew;� `M1 R� M2
to mean that for all R0 2 Rel(w0) with w0 disjoint fromw, and for all closed terms Ai1; Ai2 2 IA�i(ww0) (i =1; : : : ; n)8i �ww0 ` Ai1 (R
R0)�i Ai2�)M1[~A1=~x] (R
R0)� M2[~A2=~x]:

This definition reduces to the one in Definition 3.2 in
the case that � = ;, because of the following weakening
property of the parametric logical relation.

3.6. Lemma. (i) If R 2 Rel(w) and R0 2 Rel(w0)
with w \ w0 = ;, and if � and �0 are disjoint sets of
identifiers, thenw;� `M1 R� M2)ww0;��0 `M1 (R
R0)� M2:

(ii) w; ; `M1 R� M2 (i.e. the � = ; case of 3.5) holds if
and only if w `M1 R� M2.

Proof. Part (i) reduces (using the associativity of
) to
proving the corresponding property of the relation between
closed terms:w `M1 R� M2) ww0 `M1 (R
R0)� M2:
This is proved by induction on �, using the corresponding
weakening property of evaluation (Lemma 2.2). Part (ii)
follows immediately from this property too.

3.7. Proposition. The parametric logical relation pre-
serves the term-forming operations of IA:

(i) For c = b, n, and skip; ` c (Id;)� c
(where � = bool , int , and cmd respectively).

(ii) If v 2 w, then w ` v (Idw)var v:
(iii) If w;� ` B1 Rbool B2, w;� ` M1 R� M2, andw;� `M 01 R� M 02, thenw;� ` (if B1 thenM1 elseM 01)R� (if B2 thenM2 elseM 02):
(iv) If w;� ` N1 Rint N2 and w;� ` N 01 Rint N 02, thenw;� ` (N1 �N 01) Rtype(�) (N2 �N 02):
(v) If w;� ` F1 R�!�0 F2 and w;� ` A1 R� A2, thenw;� ` (F1 A1) R�0 (F2 A2):

(vi) If w;� ` V1 Rvar V2, thenw;� ` !V1 Rint !V2:
(vii) If w;� ` V1 Rvar V2 and w;� ` N1 Rint N2, thenw;� ` (V1 :=N1) Rcmd (V2 :=N2):

(viii) If w;� ` C1 Rcmd C2 and w;� ` C 01 Rcmd C 02, thenw;� ` (C1 ; C 01) Rcmd (C2 ; C 02):
(ix) If w;�x� `M1 R�0 M2, thenw;� ` �x:� :M R�!�0 �x:� :M2:

(x) Ifw;� ` N1 Rint N2 and for somev 62 w it is the case
that wv;� ` C1[v=xvar] Rcmd C2[v=xvar], thenw;� ` (new x :=N1 in C1 end)Rcmd (new x :=N1 in C1 end):

(xi) If w;�x� `M1 R� M2, thenw;� ` �xx:� :M1 R� �xx:� :M2:
Proof (sketch). The properties (i)–(x) follow from Defini-
tions 3.2 and 3.5 by relatively straightforward arguments,
using closure under extensional equivalence (Lemma 3.4)
combined with the particular Kleene, hence extensional (by
Lemma 2.9) equivalences of Example 2.10. For part (iii),
one has to argue by induction on the structure of �.

However, the proof of property (xi) requires more work.
First, one can show by induction on � that w ` ?� R� ?�
(where ?� def= �x x:� : x). The proof of this uses the fact
that (?;?) 2 R (by definition of Rel(w)) together with
the properties of ?� given in Example 2.10. Then fromw;�x� `M1 R� M2 one deduces by induction on n thatw;� ` �x(n)x:� :M1 R� �x(n)x:� :M2
where in general�x(0)x:� :M def= ?��x(n+1)x:� :M def= M [�x(n)x:� :M=x]:
Therefore property (xi) follows once one proves that
the relations R� satisfy an operational version of chain-
completeness. Since such a property is proved by induction
on �, to make that induction go through easily it is conve-
nient to use the following, contextual form of operational
chain-completeness:

Proposition (Operational chain-completeness). The re-
lationsR� have the property that for all contextsC[��] : �0w;� ` C[�xx:� :M1]R�0C[�x x:� :M2]
holds if for all m � 0 there is some n � m such thatw;� ` C[�x(n)x:� :M1]R�0C[�x(n)x:� :M2]:

The proof of this property follows from a (simple form
of a) compactness property of evaluation with respect to the
approximations �x(n)x:� :M to �xx:� :M , namely:

Proposition (Compactness of evaluation). Ifw ` s;C[�xx:� :M] +� s0;R
thenw ` C[�x(n)x:� :M]; s+�R0; s0 holds for some n andR0.

There are several methods for proving this proposition.
Our preferred one is a generalisation to IA of [12, Sect. 5],
because that approach yields a more involved form of com-
pactness of evaluation which is useful for establishing op-
erational chain-completeness properties in the presence of
more complicated datatypes (such as lazy lists). We omit the
details here.

3.8. Remark (Contraction). The syntactic form of IA’snew � := � in � end construct suggests the second
hypothesis of part (x) of Proposition 3.7 should just bew;�xvar ` C1 Rcmd C2
rather thanwv;� ` C1[v=xvar] Rcmd C2[v=xvar]:
The latter is a weaker assumption than the former, and so (x)
as stated is a stronger form of preservation than one might
expect. It reflects the fact that new � :=N in C[�] end
is really a binding operation on variables rather than iden-
tifiers. From a metalogical point of view, the difference
between ‘variables’ and ‘identifiers’ (which a metalogician
might well prefer to call ‘constants’ and ‘variables’ respec-
tively) lies in the structural rules satisfied by the judgements
of the form w;� `M1 =� M2
with which we formulate the various notions of equivalence
of IA terms considered in this paper. In particular, the two
zones of the ‘context’ (in type theory parlance) on the left-
hand side of ` have different properties with respect to sub-
stitution: w;�x� `M1 =�0 M2

(if w;� `M :�)w;� `M1[M=x�] =�0 M2[M=x�]wv;� `M1 =�0 M2wv0;� `M1[v0=v] =�0 M2[v0=v]
In combination with weakening properties (such as
Lemma 3.6(i)), this means that the ‘�-zone’ satisfies con-
traction w;�x�1x�2 `M1 =�0 M2w;�x� `M1[x� ; x�=x�1 ; x�2] =�0 M2[x� ; x�=x�1 ; x�2]
whereas the ‘w-zone’ does not. For examplev1v2; ; ` (v1 := 1 ; v2 := 2) �=cmd (v2 := 2 ; v1 := 1)
holds, but of course the contracted formv; ; ` (v := 1 ; v := 2) �=cmd (v := 2 ; v := 1)
does not.

3.9. Theorem (Fundamental Property). (i) For anyIA term M :� with free identifiers contained in � and
global variables contained in w, it is the case thatw;� `M (Idw)� M .

(ii) If w;��0 ` M1 (Idw)� M2, then for all worlds w0 �w and contexts C[��] : �0 with gv(C[��]) � w0
and � � traps(C[��]), it is the case that w0;�0 `C[M1] (Idw0)�0 C[M2].

Proof. Both parts are proved by induction on the structure ofM and C[��], using Proposition 3.7 and Lemma 3.6.

3.10. Corollary. The parametric logical relation in caseR = Id coincides with extensional equivalence:w;� `M1 (Idw)� M2 , w;� `M1 �=ext� M2:
Proof. By Theorem 3.9(i), w;� ` M1 (Idw)� M1. So
if w;� ` M1 �=ext� M2, then by Lemma 3.4 we have
that w;� ` M1 (Idw)� M2. This is half of the required
bi-implication. The other half can be proved directly from
Definitions 3.2 and 2.4, by induction on the structure of �.

We are now in a position to prove the Operational Exten-
sionality Theorem 2.5.

Proof of Theorem 2.5. We split the proof into three parts:w;� `M1 �=ext� M2) w;� `M1 �=� M2 (7)w;�x� `M1 �=�0 M2)w0;� `M1[A=x�] �=�0 M2[A=x�] (8)

for anyA:� with free identifiers in � and global variables inw0 � w, andw `M1 �=� M2) w `M1 �=ext� M2 (9)

Repeated use of (8) reduces the converse of (7) to the special
case when � = ;, which is (9). Thus together these proper-
ties yield the required bi-implication.

Proof of (7): Suppose that w;� ` M1 �=ext� M2 and
hence by the above Corollary that w;� ` M1 (Idw)� M2.
We wish to show that w;� ` M1 �=� M2, i.e. that for allw0 � w, all closed contextsC[��]:cmd with gv(C[��]) �w0 and � � traps(C[��]), and all states s; s0 2 States(w0)w0 ` C[M1]; s + s0 , w0 ` C[M2]; s + s0:
But given such a context, by Theorem 3.9(ii) (and
Lemma 3.6(ii)) we have w0 ` C[M1] (Idw0)cmd C[M2].
Since (s; s) 2 Idw0 , it follows from the definition of
the parametric logical relation at type cmd and from the
definition of Idw0 that the above bi-implication holds.

Proof of (8): If w;�x� ` M1 �=�0 M2, then straight
from the definition of contextual equivalence we getw0;� `(�x:� :M1)A �=�!�0 (�x:� :M2)A. The result follows
by transitivity of�= together with the fact that �-conversion
(Example 2.10(v)) is a valid Kleene equivalence, hence is
a valid extensional equivalence (by Lemma 2.9) and so is a
valid contextual equivalence, by (7).

Proof of (9): It is straightforward to show that �=� satis-
fies the defining clauses for�=ext� in Definition 2.4, by induc-
tion on the structure of �.

3.11. Remark (Doing without ?). We have developed a
logical relation parameterised by relations between lifted
states, because that seems necessary for proving some con-
textual equivalences (specifically, Example 4.1). However,
many examples and the operational Extensionality Theorem
itself, can be deduced using a simpler logical relation, call
it w ` � R� �, which is parameterised merely by binary
relations on states, R � States(w) � States(w). The
defining clause at type cmd is: w ` C1 Rcmd C2 holds if
and only if for all (s1; s2) 2 R and s01; s02 2 States(w)w ` s1;C1 + s01) 9s02 (w ` s2;C2 + s02 & (s01; s02) 2 R)w ` s2;C2 + s02) 9s01 (w ` s1;C1 + s01 & (s01; s02) 2 R):
The defining clause at types � = bool ; int is: w ` M1 R�M2 holds if and only if for all (s1; s2) 2 R and constants cw ` s1;M1 +� c, w ` s2;M2 +� c:
At type var we can define Rvar as in Remark 3.3(ii). Fi-
nally, the definition of R�1!�2 is the same as for R�1!�2
(except that one is quantifying over a different kind of state-
relation).

4. Example equivalences

The Fundamental Property of the parametric logical rela-
tion (Theorem 3.9) and its relationship to contextual equiv-
alence (Corollary 3.10 plus Theorem 2.5) enable one to use
the definition of the logical relation at function types to rea-
son about properties of procedures with respect to local vari-
ables. Here are some examples.

4.1. Example (O’Hearn [8, 2.3]). LetC1 def= new x := 0 inp (x := 1) ;if !x = 1 then ?cmd else skipendC2 def= p (?cmd):
where ?cmd def= �x c:cmd : c. Then p : cmd ! cmd `C1 �=cmd C2.

Proof. By the Operational Extensionality Theorem 2.5
it suffices to prove for all worlds w, all terms P 2IAcmd!cmd(w), and all states s; s0 2 States(w), thatw ` s;C1[P=p] + s0 if and only if w ` s;C2[P=p] + s0.
From the rules in Figure 1 it follows thatw ` s;C1[P=p]+s0
holds if and only if for some (any) v 62 w,9n 6= 1 : wv ` (s
 v := 0);P (v := 1)+ s0
 v := n: (10)

And since v 62 gv(P), w ` s;C2[P=p]+s0 holds if and only
if wv ` (s
 v := 0);P (?cmd) + s0
 v := 0: (11)

Putting these facts together, to verify the example we must
prove that (10) holds if and only if (11) does.

Define R 2 Rel(fvg) to beR def= f(?;?)g [f(s1; s2) j s1(v) = 0 = s2(v)g [f(s1; s2) j s1(v) = 1 & s2 = ?g:
From the definition of the logical relation at type cmd (Def-
inition 3.2) we find thatwv ` v := 1 (Idw
R)cmd ?cmd
holds. (Note that the ability of the parameter of the logical
relation to relate states to ? is crucial for this.) By the Fun-
damental Property 3.9, w ` P (Idw)cmd!cmd P . Hence
by the definition of the logical relation at type cmd! cmd ,
we havewv ` P (v := 1) (Idw
R)cmd P (?cmd): (12)

Note that by definition of R, for any s0 2 States(w) ands2 2 States(w)? we have(s0
 v := n; s2) 2 Idw
R ,�n = 0 & s2 = s0
 v := 0� _�n = 1 & s2 = ?�: (13)

We apply the definition of (Idw
 R)cmd to (12) at the
pair (s
 v := 0; s
 v := 0) 2 Idw
R. If (10) holds,
then it cannot be that wv ` (s
 v := 0);P (?cmd) *cmd ,
since in that case we would have (s0
 v := n;?) 2Idw
R with n 6= 1, contradicting (13). So wv `(s
 v := 0);P (?cmd) + s2 holds for some s2. Since it
is the case that (s0
 v := n; s2) 2 Idw
R, (13) implies
that s2 = s0
 v := 0 and hence (11) holds. We thus have
that (10) implies (11). Starting with the observation that for
all s1 2 States(w)? and s0 2 States(w)(s1; s0
 v := 0) 2 Idw
R , s1 = s0
 v := 0
one can show the converse implication by a similar argu-
ment. Thus (10) if and only if (11), as required.

4.2. Example (Stoughton [5, Ex. 5]). LetC3 def= new x := 0 inp (x := !x+ 2) ;if even(x) then ?cmd else skipend
where ?cmd is as in the previous example and even is a
suitable fixpoint term of type int!bool expressing a test for
divisibility by 2. Then p : cmd ! cmd ` C3 �=cmd ?cmd .

Proof. As in the previous example, the problem reduces via
the Operational Extensionality Theorem to showing for all
worlds w, terms P 2 IAcmd!cmd(w), and states s 2States(w), that w ` C3[P=p]; s *cmd . It follows from the
rules in Figure 1 that w ` C3[P=p]; s + s0 holds if and only
if for some (any) v 62 wwv ` (s
 v := 0);P (v := !v + 2);+s0
 v := n (14)

holds for some odd integer n. Define R 2 Rel(fvg) to beR def= f(?;?)g [f(s1; s2) j s1(v) = s2(v) is eveng:
Thenwv ` (v := !v + 2)(Id
R)cmd(v := !v + 2):
So if (14) holds, since (s
 v := 0; s
 v := 0) is in Idw
R, so is the pair (s0
 v := n; s0
 v := n)—from which it
follows that n is even, by definition of R. Therefore (14)
never holds for odd n, and hence w ` C3[P=p]; s *cmd , as
required.

4.3. Example (Tennent [10]). LetC4 def= new x := 0 inp (x := !x+ 1) (!x)endC5 def= new x := 0 inp (x := !x� 1) (�!x)end
Then p : cmd ! (int ! cmd) ` C4 �=cmd C5.

Proof. By the Operational Extensionality Theorem 2.5,
it suffices to show for all worlds w, all terms P 2IAcmd!(int!cmd)(w), and all states s; s0 2 States(w),
thatwv ` (s
 v := 0);P (v := !v + 1) (!v)+ s0
 v := n (15)

holds for some n if and only if for some n0wv ` (s
 v := 0);P (v := !v � 1) (�!v)+ s0
 v := n0: (16)

LettingR 2 Rel(fvg) bef(s1; s2) j s1 = ? = s2 _ s1(v) = �s2(v)g;
we have thatwv ` v := !v + 1 (Idw
R)cmd v := !v � 1wv ` !v (Idw
R)int �!v(s
 v := 0; s
 v := 0) 2 Idw
R:
Since w ` P Idcmd!(int!cmd) P , it follows thatw ` P (v := !v + 1) (!v) (Idw
R)cmdP (v := !v � 1) (�!v):
Then by definition of (Idw
R)cmd andR, if (15) holds for
some n, then (16) holds with n0 = �n, and vice versa.

For our final example we combine use of the logi-
cal relation with some equational properties of contextual
equivalence—namely its congruence property (evident from
its definition) and validity of �-conversion (established in
Example 2.10(v)). Note in particular that these two proper-
ties imply that contextual equivalence is preserved by the
operation of substituting terms for identifiers.

4.4. Example (Sieber [20, p 55]). Given any worldw, any global variable v 62 w, and any term P 2IAcmd!cmd(wv), letF def= �n : int : new x := 0 inP (x := 1 ; v := n) ;if !x = 1 then ?cmd else skipend
Then for any worldw0 � wv and termsN;N 0 2 IAint (w0),
one has w0 ` F N �=cmd F N 0.
Proof. Let G def= �n:int : �c:cmd : P (c ; v := n). Apply-
ing the substitution property of �= mentioned above to Ex-
ample 4.1, we havew0 ` C1[GN=p] �=cmd C2[GN=p]:
Using �-conversion and the congruence property of �= we
deduce thatw0 ` C1[GN=p] �=cmd F Nw0 ` C2[GN=p] �=cmd P (?cmd ; v :=N):
Now w0 ` (?cmd ; v :=N) �=cmd ?cmd by Exam-
ple 2.10(ix), and therefore w0 ` P (?cmd ; v :=N) �=cmdP (?cmd). Putting these facts together, for any N 2IAint (w0) we have w0 ` F N �=cmd P (?cmd) and
hence in particular w0 ` F N �=cmd F N 0, for anyN;N 0 2 IAint (w0).

5. Related and further work

Logical relations on domains have been used for proving
program equivalences involving local variables, especially
by O’Hearn and Tennent [10], and Sieber [20, 21]. The dis-
tinctive feature of the work presented here is that the logi-
cal relation is defined directly on the syntax of the language,
using an operational semantics rather than a denotational se-
mantics. We claim that this approach can lead to more easily
applicable verification methods. The examples given above
seem to support this claim, at least as far as proving contex-
tual equivalences is concerned.

It is interesting to compare the results presented here for
Algol with the operational methods for reasoning about local
state in Scheme-like languages developed by Honsell, Ma-
son, Smith, and Talcott [1]. ML and Scheme combine call-
by-value function application with declarations of local state
in function expressions. As we mentioned in the Introduc-
tion, this can result in very complex properties of contextual
equivalence compared with Algol. The root of the problem
is that, unlike for Algol, state grows during evaluation of
expressions—in the sense that the underlying ‘world’ gets
larger. Put another way, the canonical forms to which func-
tion expressions evaluate are not simply lambda expressions,
but rather expressions of the formnew ~x := ~n in �y : � :M end: (17)

In the presence of call-by-value evaluation of function ap-
plication, such an expression is not necessarily contextually
equivalent to a lambda abstraction (one cannot just push thenew declaration under the �). Any version of Operational
Extensionality for this kind of language has to take account
of the fact that two such expressions can be contextually in-
equivalent even though they give contextually equivalent re-
sults when applied to any value. For it may well be that some
complicated context can get access to the bound variables ~x
and use them in arguments fed to�y : � :M ; therefore such a
context may produce more observable results than those pro-
duced merely by applying (17) to argument values (which,
up to �-conversion, do not involve the bound variables ~x).
See [15, p 130] for an example of this phenomenon.

A technical tool used in [1] is a weak form of extension-
ality, the (ciu) Theorem [loc. cit., 2.3.2]. It allows one to
restrict—but only somewhat—the kind of contexts needed
to characterise contextual equivalence and is probably the
best such result known for this type of local state. By con-
trast, the Operational Extensionality Theorem presented here
(2.5) shows that an extremely restricted collection of con-
texts (generated by just [�]A, ![�], and [�] := n) suffices
to characterise contextual equivalence for Algol-like lan-
guages.

Honsell et al develop a number of proof principles in
[loc. cit.] somewhat tailored to the invariance properties

of local state in (Scheme analogues of) particular Meyer-
Sieber example equivalences. By contrast, these and other
equivalences were proved above in quite a uniform way—
by picking suitable instances of the state relation parameter
of the logical relation. The extension of this operationally-
based logical relation method to the harder case of call-by-
value functions with local state will be described in [14].
Although the parametric logical relation presented there is
merely sound for contextual equivalence (i.e. the relationw ` � (Idw)� � is contained in the relation w ` � �=� �,
but is not equal to it), it seems to provide a very useful tool for
reasoning about the rather complicated behaviour that such
functions can have. Both here and in [14] we restrict to sim-
ply typed languages, because we rely heavily upon induc-
tion over the structure of types when defining the logical re-
lation. For untyped languages, or ones with type-reflexive
features (such as storage of higher-order values, or recur-
sively defined datatypes), the mere existence of such logical
relations is problematic: we expect to adapt the denotational
techniques in [13, Sect. 4] to tackle this extension.

References

[1] F. Honsell, I. A. Mason, S. F. Smith, and C. L. Talcott. A
variable typed logic of effects. Information and Computa-
tion, 119(1):55–90, May 1995.

[2] D. J. Howe. Equality in lazy computation systems. In
4th Annual Symposium on Logic in Computer Science, pages
198–203. IEEE Computer Society Press, Washington, 1989.

[3] D. J. Howe. Proving congruence of bisimulation in func-
tional programming languages. Information and Computa-
tion, 124(2):103–112, Feb. 1996.

[4] I. A. Mason, S. F. Smith, and C. L. Talcott. From operational
semantics to domain theory. Information and Computation.
To appear. Revised and extended version of [22].

[5] A. Meyer and K. Sieber. Towards fully abstract semantics for
local variables. In Proc. 15th Symp. on Principles of Pro-
gramming Languages, San Diego, pages 191–203. ACM,
1988.

[6] R. Milner. Fully abstract models of typed lambda-calculi.
Theoretical Computer Science, 4:1–22, 1977.

[7] J. C. Mitchell. Type systems for programming languages. In
J. van Leeuwen, editor, Handbook of Theoretical Computer
Science, Volume B, pages 365–458. North-Holland, Amster-
dam, 1990.

[8] P. W. O’Hearn and U. S. Reddy. Objects, Interference and the
Yoneda Embedding, volume 1 of Electronic Notes in Com-
puter Science. Elsevier Science B. V., 1995. Mathemati-
cal Foundations of Programming Semantics, Eleventh An-
nual Conference, Tulane University New Orleans, LA, April
1995.

[9] P. W. O’Hearn and J. C. Reynolds. From algol to polymor-
phic linear lambda calculus. lectures at the Isaac Newton
Institute for Mathematical Sciences, Cambridge UK, August
1995.

[10] P. W. O’Hearn and R. D. Tennent. Parametricity and local
variables. Journal of the ACM. To appear.

[11] F. J. Oles. Types algebras, functor categories and block struc-
ture. In M. Nivat and J. C. Reynolds, editors, Algebraic
Methods in Semantics, chapter 15, pages 543–574. Cam-
bridge University Press, 1985.

[12] A. M. Pitts. Operationally-based theories of program equiv-
alence. In P. Dybjer and A. M. Pitts, editors, Semantics and
Logics of Computation. Cambridge University Press. Based
on lectures given at the CLICS-II Summer School on Seman-
tics and Logics of Computation, Isaac Newton Institute for
Mathematical Sciences, Cambridge UK, September 1995.

[13] A. M. Pitts. Relational properties of domains. Informa-
tion and Computation. To appear. A preliminary version ap-
peared as Cambridge Univ. Computer Laboratory Technical
Report Number 321, December, 1993.

[14] A. M. Pitts and I. D. B. Stark. Operational reasoning for
functions with local state. In A. D. Gordon and A. M. Pitts,
editors, Higher Order Operational Techniques in Semantics.
To appear.

[15] A. M. Pitts and I. D. B. Stark. Observable properties of
higher order functions that dynamically create local names,
or: What’s new? In Mathematical Foundations of Com-
puter Science, Proc. 18th Int. Symp., Gdańsk, 1993, volume
711 of Lecture Notes in Computer Science, pages 122–141.
Springer-Verlag, Berlin, 1993.

[16] U. S. Reddy. Global state considered unnecessary: Introduc-
tion to object-based semantics. Lisp and Symbolic Compu-
tation, 1995. special issue on State in Programming Lan-
guages, to appear.

[17] J. C. Reynolds. The essence of Algol. In J. W. de Bakker and
J. C. van Vliet, editors, Algorithmic Languages. Proceedings
of the International Symposium on Algorithmic Languages,
pages 345–372. North-Holland, Amsterdam, 1981.

[18] E. Ritter and A. M. Pitts. A fully abstract translation be-
tween a �-calculus with reference types and Standard ML. In
2nd Int. Conf. on Typed Lambda Calculus and Applications,
Edinburgh, 1995, volume 902 of Lecture Notes in Computer
Science, pages 397–413. Springer-Verlag, Berlin, 1995.

[19] D. S. Scott. A type-theoretical alternative to ISWIM, CUCH,
OWHY. Theoretical Computer Science, 121:411–440, 1993.

[20] K. Seiber. Full abstraction for the second order subset of an
ALGOL-like language. Technical Report A 04/95, Fach. In-
formatik, Univ. des Saarlandes, Saarbrücken, Germany, Apr.
1995. To appear in Information & Computation.

[21] K. Sieber. Full abstraction via logical relations. Habilitation-
sschrift, FB 14 Informatik, Universität des Saarlandes, July
1995.

[22] S. F. Smith. From operational to denotational semantics. In
S. B. et al, editor, 7th International Conference on Mathe-
matical Foundations of Programming Semantics, Pittsburgh
PA, volume 598 of Lecture notes in Computer Science, pages
54–76. Springer-Verlag, Berlin, 1992.

[23] I. D. B. Stark. Names and higher-order functions. Technical
Report 363, Cambridge Univ. Computer Laboratory, Apr.
1995.

